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Luttinger semimetals have quadratic band crossings at the Brillouin zone-center in three spatial di-
mensions. Coulomb interactions in a model that describes these systems stabilize a non-trivial fixed
point associated with a non-Fermi liquid state, also known as the Luttinger-Abrikosov-Beneslavskii
phase. We calculate the optical conductivity σ(ω) and the dc conductivity σdc(T ) of this phase, by
means of the Kubo formula and the Mori-Zwanzig memory matrix method, respectively. Interest-
ingly, we find that σ(ω), as a function of the frequency ω of an applied ac electric field, is characterized
by a small violation of the hyperscaling property in the clean limit, which is in contrast with the
low-energy effective theories that possess Dirac quasiparticles in the excitation spectrum and obey
hyperscaling. Furthermore, the effects of weak short-ranged disorder on the temperature depen-
dence of σdc(T ) give rise to a stronger power-law suppression at low temperatures compared to the
clean limit. Our findings demonstrate that these disordered systems are actually power-law insula-
tors. Our theoretical results agree qualitatively with the data from recent experiments performed
on Luttinger semimetal compounds like the pyrochlore iridates [(Y1−xPrx)2Ir2O7].
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I. Introduction

Theories of non-Fermi liquid (NFL) phases in two and
three-dimensions are one of the biggest enigmas in the field
of strongly-correlated quantum matter and even today, af-
ter many decades of intense research, remain largely an
unsolved problem. A deep understanding of these NFL
phases turns out to be crucial in view of the fact that these
states naturally lead to new emergent phases (such as high-
temperature superconductivity, topological phenomena in
semi-metals and superconductors, etc) as some external pa-
rameter like temperature, pressure or doping is varied in
the system. It is a theoretically challenging task to study
such systems, and consequently there have been intensive
efforts dedicated to building a framework to understand
them [1–20]. They are also referred to as critical Fermi
surface states, as the breakdown of the Fermi liquid theory
is brought about by the interplay between the soft fluctu-
ations of the Fermi surface and some gapless bosonic fluc-
tuations.

Recently, there has been also an upsurge of interest in
a new frontier of this field where NFL phases can be ob-
served at a Fermi point, i.e., in the absence of a large
Fermi surface. From the analysis of the electronic struc-
ture of compounds like pyrochlore iridates, the half-Heusler
compounds, and grey-Sn, a minimal effective model to de-
scribe such systems turns out to be the well-known three-
dimensional Luttinger model with quadratic band crossings
at the zone-center (i.e., the Γ point). Consequently, the
materials that are well-described by this low-energy effec-
tive theory are nowadays known as “Luttinger semimet-
als” in the literature [21–26]. This novel class of materi-
als not only exhibits strong spin-orbit coupling, but also
has strong electron-electron interactions. Since electron-
electron interactions are not screened in these systems, an
effective description must also include long-range Coulomb
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interactions. Interestingly, this problem was studied for
the first time back in 1974 by Abrikosov [27], who demon-
strated, using renormalization group (RG) arguments, that
the Coulomb interaction in the model stabilizes a non-
trivial fixed point associated with a new NFL state in three
spatial dimensions, which was later called the Luttinger-
Abrikosov-Beneslavskii (LAB) phase [21]. This fixed point
is stable provided that time-reversal symmetry and the cu-
bic symmetries are preserved in the system. This earlier
work was later rediscovered and extended by Moon et al.
[21], who calculated the universal power-law exponents de-
scribing various physical quantities in this LAB phase in the
clean (i.e. disorder-free) limit, including the conductivity,
susceptibility, specific heat, and the magnetic Gruneisen
number.

From a strictly theoretical point of view, there has also
been an increasing interest in the LAB phase, since it
may realize the so-called “minimal-viscosity” scenario [28],
in which the ratio of the shear viscosity η with the en-
tropy s is close to the Kovtun-Son-Starinets ratio [29], i.e.,
η/s & 1/(4π). This means that these systems may be con-
sidered as a new example of a strongly-interacting “nearly-
perfect fluid”. Other important examples that satisfy this
condition include the hydrodynamical fluid that emerges
in a clean single-layer graphene sheet at charge neutrality
point [30], the quark-gluon plasma [31] generated in rela-
tivistic heavy-ion colliders, and ultracold fermionic gases
tuned to the unitarity limit [32].

Naturally, transport properties of NFL phases are ex-
tremely important in order to characterize these sys-
tems. One of the widely used methods to calculate non-
equilibrium properties is the application of the quantum
Boltzmann equation. This method has many merits, and
along with the well-established ε-expansion, it has been
successfully used to discuss the hydrodynamical regime of
many quantum critical systems. However, this approach
also has some limitations, as one of its main assumptions
is that the quasiparticle excitations exist even at low ener-
gies in the model, which is of course not valid at the LAB
fixed point. Therefore, alternative methods to calculate
transport properties, which do not rely on the existence
of quasiparticles at low energies, should be used instead
in order to provide an unbiased evaluation of such proper-
ties in NFL systems at low temperatures. For this reason,
in the present work, we will apply the Kubo formula, and
also its implementation using the Mori-Zwanzig memory
matrix formalism, to the Luttinger model with long-range
Coulomb interactions, in order to describe some transport
coefficients of the LAB phase. More specifically, we will
compute the optical conductivity σ(ω) at T = 0 as a func-
tion of the frequency ω of an applied ac electric field, and
the dc resistivity ρ(T ) as a function of temperature T with
the addition of weak short-ranged disorder. Since the ef-
fects of disorder are relevant in the renormalization group
flow sense [22, 23] for the LAB phase, they turn out to be
important also for the study of the transport properties of

FIG. 1. The non-interacting dispersion εk of the isotropic Lut-
tinger semimetal (see Eq. (2)) shows quadratic band-touching at
the Brillouin zone-center. Here, we choose m = 1 and m′ = 0.5.
For visualization, εk is shown as a function of kx and ky (i.e.,
we set kz = 0).

the system at low temperatures.

The main results obtained in the paper are the following:
We find that σ(ω) in the LAB phase is characterized by a
small violation of the hyperscaling property in the clean
limit, in contrast to the low-energy effective theories that
possess Dirac quasiparticles in the excitation spectrum and
obey hyperscaling. Furthermore, on investigating the ef-
fects of weak short-ranged disorder on the dc conductivity
σdc(T ), we find that σdc(T ) displays a stronger power-law
suppression at low temperatures compared to the corre-
sponding result in the clean limit. We then compare this
theoretical result with the available experimental data.

The paper is structured as follows. In Sec. II, we define
the LAB phase for the Luttinger Hamiltonian coupled with
long-range Coulomb interactions. Then, we calculate the
the optical conductivity of the LAB phase up to two-loop
order in Sec. III, using the Kubo formula. Next, in Sec. IV,
we calculate the dc resistivity of the model as a function of
temperature, with the addition of weak short-ranged disor-
der using the memory matrix formalism. Finally, in Sec. V,
we end with a summary and some outlook. Appendix A
illustrates the derivation of some relations involving the
` = 2 spherical harmonics in d spatial dimensions, that are
useful for the loop integrals. The details of the two-loop
calculations have been explained in Appendices B and C.

II. Model

We consider a spin-orbit coupled system, in which the
states near k = 0 at the Fermi energy are split into four-
fold degenerate angular momentum j = 3/2 states. The
k · p Hamiltonian for the non-interacting system takes the
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e2Λε/2 V (q)
2 c

ω + Ω,k + q ω − Ω,k′ − q

ω,k ω′,k′

FIG. 2. The four-fermion vertex arising due to Coulomb inter-
actions.

following effective form:

H0 =
|k|2
2m′

−
5
4 |k|2 − (k ·J )2

2m
, (1)

where J is the three-vector of the angular momentum op-
erators transforming as the T2 representation of the cubic
group. This model is also known as the Luttinger Hamilto-
nian [33]. The system harbors quadratic band crossings at
the Brillouin zone-center in three spatial dimensions (see
Fig. 1), where the low-energy bands can be cast in terms of
a four-dimensional representation of the lattice symmetry
group [21, 34, 35] as follows:

H0 =

5∑
a=1

da(k) Γa +
|k|2
2m′

, da(k) =
d̃a(k)

2m
, (2)

where the Γa matrices are the rank-four irreducible repre-
sentations of the Clifford algebra relation {Γa,Γb} = 2 δab
in the Euclidean space. We have used the common nota-
tion {A,B} = AB +BA for denoting the anticommutator.

There are five such matrices that are related to the familiar
gamma matrices of the Dirac equation (plus the matrix con-
ventionally denoted as Γ5), but with the Euclidean metric
(instead of the Minkowski metric). In d = 3, the space of
4×4 Hermitian matrices is spanned by the identity matrix,
the five 4×4 Gamma matrices Γa, and the ten distinct ma-
trices Γab = 1

2 i [Γa,Γb]. Furthermore, the d̃a(k)’s are the
` = 2 spherical harmonics that have the following structure:

d̃1(k) =
√

3 ky kz , d̃2(k) =
√

3 kx kz , d̃3(k) =
√

3 kx ky ,

d̃4(k) =

√
3 (k2

x − k2
y)

2
, d̃5(k) =

2 k2
z − k2

x − k2
y

2
. (3)

The isotropic k2

2m′ term in Eq. (2) with no spinor structure
makes the band masses of the conduction and valence bands
unequal.

The Euclidean action of the interacting system can be
written as:

S0 =

∫
dτ d3x

[ Nf∑
i=1

ψ†i (τ,x) {∂τ +H0 + i eϕ(τ,x)}ψi(τ,x)

+
c

2
{∇ϕ(τ,x)}2

]
, (4)

where the Coulomb interactions are mediated by a scalar
boson field ϕ(x) with no dynamics, and Nf is the number
of fermionic flavors (to be explained below).

If we integrate out the scalar boson, the Coulomb inter-
action shows up as an effective four-fermion term. Then
the total action takes the form:

S =

Nf∑
i=1

∫
dω d3k

(2π)4
ψ̃†i (ω,k) (−iω +H0) ψ̃i(ω,k)

+
e2 Λε/2

2 c

Nf∑
i,i′=1

∫
dω dω′ dΩ d3q d3k d3k′

(2π)12
V (|q|) ψ̃†i (ω,k) ψ̃i(ω + Ω,k + q) ψ̃†i′(ω

′,k′) ψ̃i′(ω
′ − Ω,k′ − q) , (5)

where the Coulomb interaction vertex is given by
e2 Λε/2

2 c V (|q|) (see also Fig. 2), with V (|q|) = 1
q2 , in the

momentum space. The tilde over ψi indicates that it is the
Fourier-transformed version. We have also scaled e2 by us-
ing the floating mass scale Λ2 (of the renormalization group
flow) to make it dimensionless for d = 4− ε spatial dimen-
sions, after setting the tree-level scaling mass dimension [k]
of k as unity.

The bare Green’s function for each fermionic flavor is

given by

G0(ω,k) =
iω − k2

2m′ + d(k) · Γ
−
(
iω − k2

2m′

)2
+ |d(k)|2

, (6)

where |d(k)|2 = k4

4m2 . On occasions, to lighten the nota-
tion, we will use dk to denote d(k).

This system turns out to be an NFL, which can be ana-
lyzed by a controlled approximation using dimensional reg-
ularization [21, 27]. The LAB fixed point for the clean
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FIG. 3. Feynman diagram for the contribution to the current-
current correlation function at one-loop order.

system is given by e = e∗, where

e∗2 =
60π2 c ε

m (4 + 15Nf )
, (7)

and the dynamical critical exponent z at this fixed point is
given by z∗ = 2−4 ε/(4+15Nf ) [21], where ε = 4−d, with
d being the number of spatial dimensions. It is to be noted
that the results obtained using dimensional regularization
can also be obtained by large-Nf methods. Hence, we have
considered here a setting with Nf independent fermionic
flavors, although the physical case corresponds to Nf = 1.

Using the Noether’s theorem (see, e.g., Ref. [36]), the
current J and momentum P operators of the Luttinger
semimetal are given by:

J(q0,q)

=
∑
i

∫
dk0 d

dk

(2π)d+1
ψ̃†i (k0 + q0,k + q) [∇kd(k) · Γ] ψ̃i(k0,k) ,

P(q0,q)

=
∑
i

∫
dk0 d

dk

(2π)d+1
(k + q/2) ψ̃†i (k0 + q0,k + q) ψ̃i(k0,k) ,

(8)

which are associated with the global U(1) symmetry and
continuous spatial translation invariance, respectively, of
Eq. (4). In the rest of the paper, we will consider the case
with Nf = 1.

III. Current-current correlation function and optical
conductivity

In this section, we will compute the optical conductivity
σ(ω) = σzz(ω,q = 0) at T = 0 via the Kubo formula

σ(ω) = −〈Jz Jz〉 (i Ω)

Ω

∣∣∣∣
i Ω→ω+i 0+

, (9)

for current flowing along the z-direction. Here we will con-
sider the case with equal band masses, i.e., m′ =∞. Since
the model is isotropic, the scaling relation is not dependent
on the choice of the direction of the current flow. We take
an approach similar to the ones taken in the context of NFL
models in the presence of a large Fermi surface [15, 17, 37].

We will employ the scheme developed by Moon et al. [21],
where the radial momentum integrals are performed with

respect to a d = 4−ε dimensional measure
∫ |k|3−εd|k|

(2π)4−ε , but

the Γ matrix structure is as in d = 3. The angular integrals
are performed only over the three-dimensional sphere pa-
rameterized by the polar and azimuthal angles (θ, φ). How-
ever, the overall angular integral of an isotropic function∫

Ω̂
·1 is taken to be 2π2 (which is appropriate for the total

solid angle in d = 4), and the angular integrals are normal-
ized accordingly. Therefore, the angular integrations are
performed with respect to the following measure:

∫
dS (. . .) ≡ π

2

∫ π

0

dθ

∫ 2π

0

dφ sin θ (. . .) , (10)

where the π/2 is inserted for the sake of normalization. To
perform the full loop integrals, we will use the relations
shown in Appendix A.

A. One-loop contribution

The current-current correlation function at one-loop level
(see Refs. [38–42] for related work) is given by a simple
fermionic loop with two current insertions, as shown in
Fig. 3. In the present model, it evaluates to
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〈JzJz〉1loop(iω) = −
∫
dk0

2π

∫
ddk

(2π)d
Tr [{∂kzd(k) · Γ}G0(k + q) {∂kzd(k) · Γ}G0(k)]

= −
∫
dk0

2π

∫
ddk

(2π)d
Tr

[
{∂kzd(k) · Γ} i k0 + iω + d(k) · Γ

− (i k0 + iω)
2

+ |d(k)|2
{∂kzd(k) · Γ} i k0 + d(k) · Γ

− (i k0)
2

+ |d(k)|2

]

= −4

∫
dk0

2π

∫
ddk

(2π)d
−{∂kzd(k)}2 (k0 + ω) k0 + 1

4

{
∂kzd2(k)

}2 − {∂kzd(k)}2 d2(k)[
− (i k0 + iω)

2
+ |d(k)|2

] [
− (i k0)

2
+ |d(k)|2

]
= −m

1− ε
2 |ω|2− ε

2

π2 ε
, (11)

where q = (ω, 0). Consequently, at zeroth order, the opti-
cal conductivity σ(ω) is proportional to ω1− ε

2 . In d = 4−ε,
this result then agrees with the so-called hyperscaling prop-
erty, where the optical conductivity is expected to scale as
σ(ω) ∼ ω(d−2)/z for ω � T .

In the next subsection, we will consider the effect of the
Coulomb interactions, and show how this affects the hyper-
scaling property of the Luttinger semimetal.

B. Two-loop contributions

At two loops, we obtain three Feynman diagrams, as
shown in Figs. 4(a), 4(b), and 4(c). The first two di-
agrams (Figs. 4(a) and 4(b)) correspond to the fermion
self-energy corrections (due to the Coulomb interactions),
given by the insertion of the one-loop rainbow graph to the
current-current correlator. We include a factor of 2, since
the diagrams in Figs. 4(a) and 4(b) give equal contribu-
tions. This yields the result

〈JzJz〉(1)
2loop(iω) =

e2m2− ε
2 |ω|2− ε

2

90π4 c ε2

(
Λ

m |ω|

)ε/2

−
e2m2− ε

2 |ω|2− ε
2 ln

(
m |ω|

Λ

)
180π4 c ε

. (12)

The calculational details of the above equation can be
found in Appendix B 1. From the results presented in
that Appendix, we observe that since the fermionic self-
energy at one-loop level [i.e., Σ1(k) ≡ Σ1(k)] does not have
a frequency dependence, the quasiparticle weight, defined

by ZF I4×4 =

[
I4×4 − lim

k0→0
lim
k→0

∂
∂k0

Σ1(k)

]−1

, is equal to

unity at this order (but of course nonzero corrections to
ZF can appear in higher-loop contributions). Howover, if
we calculate the renormalized mass m∗, which is given by
the standard definition

m

m∗
d(k) · Γ = ZF

[
d(k) · Γ + da(k) lim

k0→0
lim
k→0

∂

∂da
Σ1(k)

]
,

we obtain m∗ → 0.
As for the diagram in Fig. 4(c), which refers to the sim-

plest vertex correction, it evaluates to

〈JzJz〉(2)
2loop(iω) =

e2m2− ε
2 |ω|2− ε

2

(
Λ

m |ω|

)ε/2
60π4 c ε2

−
e2m2− ε

2 |ω|2− ε
2 ln

(
m|ω|

Λ

)
120π4 c ε

. (13)

Note that this vertex corresponds to the four-fermion ver-
tex (see Fig. 2), which arises from Coulomb interactions.
Again, the details of the calculations can be found in Ap-
pendix B 2.

C. Scaling of the optical conductivity up to two-loop
order

In order to obtain the renormalized quantity in the ef-
fective field theory model, we have to use the fact that
1
ε2 terms are cancelled by the corresponding counterterms
of the renormalized action [36]. We also use the value
me∗2

π2 c = 60 ε
19 at the NFL fixed point. Gathering all the

terms, the final expression for 〈JzJz〉 up to two-loop order
takes the form:
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(a) (b) (c)

FIG. 4. Feynman diagrams for the contributions to the current-current correlation function at two-loop order. (a) and (b) represent
the diagrams with self-energy corrections, while (c) corresponds to the diagram with vertex correction.

〈JzJz〉(iω) = 〈JzJz〉1loop(iω) + 〈JzJz〉(1)
2loop(iω) + 〈JzJz〉(2)

2loop(iω) + 〈JzJz〉(1)
counterterms(iω)

= −m
1− ε

2 |ω|2− ε
2

π2 ε
−
e∗2m2− ε

2 |ω|2− ε
2 ln

(
m|ω|

Λ

)
180π4 c ε

−
e∗2m2− ε

2 |ω|2− ε
2 ln

(
m |ω|

Λ

)
120π4 c ε

= −m
1− ε

2 |ω|2− ε
2

π2 ε

[
1 +

5 ε

114
ln

(
m |ω|

Λ

)]
' −m

1− ε
2 |ω|2− ε

2 + 5 ε
114

π2 ε

(m
Λ

) 5 ε
114

, (14)

after re-exponentiating the correction term coming from
the two-loop diagrams. Therefore, the corrected optical
conductivity scales as

σ(ω) ∼ ω1− ε
2 + 5 ε

114 , (15)

after including the leading order corrections.
Since the optical conductivity does not scale as ω(d−2)/z∗ ,

where z∗ is the dynamical critical exponent at the LAB
fixed point, we conclude that there exists a small violation
(proportional to ε) of the hyperscaling for the optical con-
ductivity in the LAB phase. This should be contrasted with
other effective theories that possess Dirac quasiparticles in
the excitation spectrum, and obey hyperscaling.

IV. Memory matrix formalism

The second method that we will use in this work to cal-
culate transport properties is the Mori-Zwanzig memory
matrix approach (see Refs. [43–56], for many successful ap-
plications of this formalism in various recent works). This
method turns out to be ideal to describe the strongly inter-
acting regime of the LAB phase, since: (1) it is not based
on the existence of well-defined quasiparticles at low ener-
gies, and (2) it can correctly describe the effective nearly-
hydrodynamic regime that is expected to govern the com-
plicated non-equilibrium dynamics of these systems. Here,
we will be concise in explaining the technicalities of this
formalism, as more details can be found in the literature

[50, 55]. In this framework, the matrix of conductivities
can be written as:

σ(ω, T ) =
χRJP (T )[

MPP (T )− iω χRJP (T )
] [
χRJP (T )

]−1 , (16)

with χRJP (T ) being the static retarded susceptibility (which
gives the overlap of the current and momentum in the
model), and MPP (T ) is the memory matrix. For transport
along the z-direction, χRJP (T ) is given by:

χJzPz
(T ) =

∫ β

0

dτ 〈Jz(τ)Pz(0)〉 . (17)

As for the memory matrix, to leading order, it is given by
(again, for transport along the z-direction):

MPzPz
(T ) =

∫ β

0

dτ

〈
Ṗ †z (0)

i

ω − L0
Ṗz(i τ)

〉
, (18)

where L0 is the non-interacting Liouville operator. Conse-
quently, the dc conductivity (i.e. σdc(T ) ≡ σ(ω → 0, T )) is
given by

σdc(T ) =
χ2
JzPz

(T )

lim
ω→0

ImGR
ṖzṖz

(ω,T )

ω

, (19)

where GR
Ṗz Ṗz

(ω, T ) =
〈
Ṗz(ω) Ṗz(−ω)

〉
0

is the correspond-

ing retarded correlation function in the Matsubara for-
malism. The notation 〈. . .〉0 indicates that the average is
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in a grand-canonical ensemble to be taken with the non-
interacting Hamiltonian of the system.

One important mechanism for momentum relaxation
that causes dissipation in the present transport theory is
the coupling of the fermions to (weak) disorder. For this
reason, we now add an impurity term that couples to the
fermionic density as represented by the action:

Simp =
∑
i

∫
dτ d3xW (x)ψ†i (τ,x)ψi(τ,x) . (20)

We consider a weak uncorrelated disorder following a Gaus-
sian distribution: 〈W (x)〉avg = 0 and 〈W (x)W (x′)〉 =
W0 δ

3(x − x′), where W0 represents the average magni-
tude square of the random potential experienced by the
fermionic field. Therefore, to leading order in the impurity
coupling strength, we obtain the expression:

lim
ω→0

ImGR
ṖzṖz

(ω, T )

ω
≈ lim
ω→0

W0

∫
d3q

(2π)3

Im ΠR
0 (q, ω)

ω
,

(21)

where ΠR
0 (q, ω) = Π0(q, iω → ω + i 0+) is the correspond-

ing retarded correlation function in the model, with the

polarizability Π0(q, iω) being given by:

Π0(q, iω)

= −T
∑
k0

∫
d3k

(2π)3
k2
z Tr

[
G0(k + q, i k0 + iω)G0(k, i k0)

]
.

(22)

We now proceed to calculate χJzPz (T ) and MPzPz (T ) in
the static limit at finite temperatures in the following sub-
sections. Note that, unlike in the previous section, instead
of performing a systematic ε-expansion, we will work di-
rectly in d = 3 to overcome technical complexity. Further-
more, we will use a hard ultraviolet (UV) cutoff Λ0 for the
the momentum integrals, rather than using a dimensional
regularization.

A. Current-momentum susceptibility at finite T

First we note that for equal band masses, implemented
by taking the limit m′ → ∞, the current-momentum sus-
ceptibility clearly vanishes at one-loop order, as only an
odd power of k0 appears in the numerator. Furthermore, at
two-loop order, the contribution to the current-momentum
susceptibility due to self-energy insertions (similar to the
diagrams depicted in Figs. 4(a) and 4(b)) is given by

− χJzPz
=

(
e2

2 c

)
T 2
∑
k0,`0

∫
d3k d3`

(2π)6
kz Tr

[
(∂kzd(k) · Γ)G0(k0,k)

G0(`0,k + `)

`2
G0(k0,k)G0(k0,k)

]

=

(
e2

2 c

)
T 2
∑
k0,`0

∫
d3k d3`

(2π)6
kz

Tr
[
(∂kzd(k) · Γ) i k0+d(k)·Γ

(i k0)2−|d(k)|2
d(k)·Γ

(i `0)2−|d(k)|2
i k0+d(k)·Γ

(i k0)2−|d(k)|2
i k0+d(k)·Γ

(i k0)2−|d(k)|2

]
(k + `)

2

= 0 , (23)

which also vanishes, as it also contains only odd powers of
k0 in the numerator after performing the trace in the above
integral. One can verify that the same result holds for
the two-loop diagram with the vertex correction, similar to
Fig. 4(c). In fact, this vanishing result holds for all higher-
order loops. This is related to the particle-hole symmetry of
the model, which is present for equal band masses. Since
J and P are odd and even, respectively, under particle-
hole symmetry, their overlap (i.e., the current-momentum

susceptibility) must be zero at all loop orders.

The vanishing of χJzPz
(T ) no longer holds for finite m′

(i.e., for unequal conduction and valence band masses). For
this reason, we will analyze the effect of higher-order cor-
rections of the current-momentum susceptibility for finite
m′.

We first calculate the free fermion susceptibility. It eval-
uates to
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χ1loop
JzPz

(T ) = − lim
q→0

T
∑
k0

∫
d3k

(2π)3
kz Tr [(∂kzd(k) · Γ)G0(k0,k + q)G0(k0,k)]

= −4T lim
q→0

∑
k0

∫
d3k

(2π)3
kz

(
i k0 − (k+q)2

2m′

)
kz k

2

2m2 +
(

i k0 − k2

2m′

)
∂kzd(k) · d(k + q)[(

i k0 + iω − (k+q)2

2m′

)2

− |dk+q|2
] [(

i k0 − k2

2m′

)2 − |dk|2
] . (24)

We then perform the above summation over the fermionic
Matsubara frequency k0 using the method of residues using
the standard formula

T
∑
ωn

h(ωn) =
∑
zk

Res [nF (z)h(−i z)]

∣∣∣∣
zk= Poles of h(−i z)

,

(25)

where Res[. . . ] denotes the residue, and nF (z) = 1
ez/T +1

is the Fermi-Dirac distribution function. Next we solve

Eq. (24) by means of both analytical and numerical tech-
niques using the software Mathematica, and obtain that

χ1loop
JzPz

(T ) ∼ T 3/2 (see Fig. 5).

One can easily check that there are only three Feynman
diagrams at two-loop order. The corresponding diagrams
are similar to the ones in Figs. 4(a), 4(b), and 4(c). These

contributions evaluate to χ2loop
JzPz

(T ) = χ
(2,1)
JzPz

(T )+χ
(2,2)
JzPz

(T ),
where

χ
(2,1)
JzPz

(T ) ∼
(

8 e2Λ0

15π2c T

)
T
∑
k0

∫
d3k

(2π)3
kz

[(
i k0 − k2

2m′

)3

(∂kzdk · dk) + 3
(

i k0 − k2

2m′

)
(∂kzdk · dk) |dk|2

]
[(

i k0 − k2

2m′

)2 − |dk|2|
]3 , (26)

χ
(2,2)
JzPz

(T ) ∼
(
e2 Λ0

2π2c T

)
T
∑
k0

∫
d3k

(2π)3
kz

(
i k0 − k2

2m′

)
(∂kzdk · dk)[(

i k0 − k2

2m′

)2 − |dk|2|
]2 . (27)

We provide the detailed steps of the calculation in Ap-
pendix C. Finally, we evaluate the expressions in Eqs. (26)

and (27) numerically, and obtain that χ2loop
JzPz

(T ) ∼ e2

c T
1/2

(see Fig. 6).

B. Memory matrix calculation

We now compute the Feynman diagram associated with
the calculation of the memory matrix to leading order, as
shown in Fig. 7, which is given by:

M
(0)
PzPz

(T ) = −W0 lim
ω→0

Im

[ ∫
d3k d3q
(2π)6 k2

z T
∑
k0

Tr [G0(ω + k0,k + q)G0(k0,k)]

]∣∣∣∣∣
iω→ω+i δ

ω

= −4W0 lim
ω→0

Im

[ ∫
d3k d3q′

(2π)6 k2
z T
∑
k0

{
i k0+iω− (k+q)2

2m′

}(
i k0− k2

2m′

)
+(dk+q·dk){(

i k0− (k+q)2

2m′

)2
−|dk+q|2

}{(
i k0− k2

2m′

)2
−|dk|2

}]∣∣∣∣∣
iω→ω+i δ

ω
. (28)

As before, the summation over k0 is evaluated using the method of residues. After performing the analytical contin-
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FIG. 5. Plot of the current-momentum susceptibility χ1loop
JzPz

(T )
at one-loop order versus temperature T . Here, we have chosen
the parameters m = 1, m′ = 5, Nf = 1, and the UV cutoff Λ0

for the momentum integrals has been taken to the infinity limit
(note that this result does not depend on the UV cutoff). The
temperature dependence of this one-loop contribution is found
to be |χ1loop

JzPz
(T )| ∼ 0.170T 3/2.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

FIG. 6. Plot of the current-momentum susceptibility χ2loop
JzPz

(T )
at two-loop order versus temperature T . Here, we have chosen
the parameters m = 1, m′ = 5, e = 0.1, c = 1, Nf = 1,
and Λ0 = 150. The temperature dependence of this two-loop

contribution is found to be |χ(2loop)
JzPz

(T )| ∼ 0.005T 1/2.

uation, the resulting integral is then evaluated numerically

which finally gives M
(0)
PzPz

(T )/W0 ∼ a′ + b′/T (see Fig. 8),
where a′ and b′ (b′ � a′) are non-universal constants that
depend only on the UV cutoff Λ0. These constants are such

that a′ scales as Λ2
0 and b′ scales as Λ4

0, leading to a′

b′ → 0 for
Λ0 →∞. Therefore, the final expression can be effectively

approximated as M
(0)
PzPz

(T ) ≈ b′/T at low temperatures.

FIG. 7. Feynman diagram for the calculation of the leading-

order contribution M
(0)
PzPz

(T ) to the memory matrix. The
solid line represents the bare fermionic propagator, whereas the
dashed line represents the impurity line that carries only inter-
nal momentum and external energy ω.

C. Scaling of dc conductivity

Taking into account all contributions, the scaling of the
dc conductivity of the LAB phase in the presence of weak
short-ranged scalar disorder is given by:

σdc(T ) ≡ 1

ρ(T )
=
|χJzPz

(T )|2
MPzPz

(T )
∼ Tn , where 2 . n . 4 ,

(29)

and ρ(T ) is the resistivity. It is important to compare this
expression with the dc conductivity of the LAB phase in
the clean limit. If we assume that the ω/T scaling holds for
the conductivity in this system, then σdc(T ) ∼ Tα

∗
in the

clean limit according to our optical conductivity results,
where α∗ ≈ 0.54 is the renormalized exponent that violates
hyperscaling for d = 3 (i.e. ε = 1) andNf = 1. This implies
that σdc(T ) in the presence of disorder displays a stronger
power-law suppression as a function of temperature, which
is an expected feature since the influence of disorder is a rel-
evant perturbation in the vicinity of the LAB fixed point
[22, 23]. It is also interesting to compare our theoretical
results with recent transport experiments [57] performed
on Luttinger semimetal compounds like pyrochlore iridates
[(Y1−xPrx)2Ir2O7]. In these compounds, some degree of
disorder is always present, and the dc resistivity has been
found to follow the power-law ρ(T ) ∼ T−n, with the ex-
ponent being n ≈ 2.98 at zero doping [57]. Therefore, we
conclude that our calculation is in qualitative agreement
with these experimental data.

V. Summary and outlook

In this paper, we have computed the scaling behavior
of the optical conductivity and the dc conductivity of the
LAB phase of Luttinger semimetals, by means of the Kubo
formula and the Mori-Zwanzig memory matrix method, re-
spectively. We have found that the optical conductivity in
the LAB phase is characterized by a small violation (pro-
portional to ε = 4− d) of the hyperscaling property in the
clean limit, in contrast to the low-energy effective theories
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FIG. 8. Plot of M
(0)
PzPz

(T ) versus temperature T . Here, we have

chosen the parameters W0 = 1, Nf = 1, m = 1, m′ = 5, and
Λ0 = 150. To obtain the memory matrix, we have performed
the analytical continuation iω → ω + i δ, where we have set
δ = 10−9. The curve corresponds to the fit given by g(T ) =
a′ + b′/T , where the parameters a′ ≈ 0.059 and b′ ≈ 211.25
depend only on the UV cutoff Λ0.

that possess Dirac quasiparticles in the excitation spectrum
(which obey hyperscaling). In the computations for dc con-
ductivity σdc(T ), we have included the effects of weak short-
ranged scalar disorder. We have shown that σdc(T ) exhibits
a stronger power-law suppression at low temperatures com-
pared to the corresponding result in the clean limit. This
was an expected feature since the influence of disorder is
a relevant perturbation in the system. Lastly, we have
directly compared our theoretical prediction with recent
experiments performed in disordered Luttinger semimetal
materials like the pyrochlore iridates [57] and found qualita-

tive agreement with the experimental data. In some other
experiments [58], the experimentalists have measured the
optical conductivity in the Luttinger semimetal material
Pr2Ir2O7, but they could not tune the Fermi energy low
enough to touch the band-crossing point. Their sample
was thus a slightly doped Luttinger semimetal, where they
found a number of signatures that are precursors to the
LAB physics. Further experiments are planned in this di-
rection, which will hopefully support our analytical find-
ings. Moreover, from a theoretical point of view, it will
be interesting to see if other computational strategies, such
as the Kubo formula or the kinetic Boltzmann equation,
are able to reproduce the dc conductivity at T > 0 due to
weak-disorder effects, which has been obtained here using
the memory matrix approach.

We would like to point out that we have computed the
finite-temperature scalings of the thermal conductivity and
the thermoelectric coefficient of the LAB phase in a com-
panion paper [59]. Finally, we would like to stress that
it would be extremely interesting to investigate the ef-
fects of magnetic field on the magnetoresistance and the
Hall coefficient of the LAB phase, and compare the re-
sults with the corresponding experimental data available
for the pyrochlore iridates [57]. The magnetic field breaks
time-reversal symmetry and, in view of this, it must be a
strongly relevant perturbation that ultimately makes the
LAB fixed point unstable at low energy scales. We leave
this analysis for future studies.
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A. da-function algebra

We derive a set of useful relations [35, 60] for the vector functions d(k) (whose components da(k) are the ` = 2 spherical
harmonics in d spatial dimensions) and the generalized real d× d Gell-Mann matrices Λa (a = 1, 2, · · · , N). The matrices
Λa are symmetric, traceless, and orthogonal, satisfying

Tr[Λa Λb] = 2 δab ,

N∑
a=1

(Λa)ij
(
Λalj′

)
= δil δjj′ + δij′ δjl −

2

d
δij δlj′ . (A1)

Hence, the index a (or b) runs from 1 to N = (d−1)(d+2)
2 . We define the components of d(k) by

da(k) =

√
d

2 (d− 1)

d∑
i,j=1

ki (Λa)ij kj

2m
. (A2)

This gives the following identities:

∂kzda(k) =

√
d

2 (d− 1)

d∑
j=1

(Λa)zj kj +
d∑
i=1

ki (Λa)iz

2m
=

√
2 d

d− 1

d∑
j=1

(Λa)zj kj

2m
,

N∑
a=1

{∂kzda(k)}2 =
2 d

d− 1

d∑
i

(
δii + δiz δzi − 2

d δiz δiz
)
k2
i

4m2
=
d×

(
k2 + d−2

d k2
z

)
2m2 (d− 1)

,

N∑
a=1

da(k) da(p) =
d (k · p)

2 − k2 p2

4m2 (d− 1)
,

N∑
a=1

[∂kzda(k)] da(p) =
kz
{
d (k · p)− p2

}
2m2 (d− 1)

,

N∑
a=1

[∂pzda(p)] [∂kzda(k)] =

N∑
a=1

2 d

4m2 (d− 1)

d∑
j=1

(Λa)zj pj

d∑
j′=1

(Λa)zj′ kj′ =
dp · k + (d− 2) pz kz

2m2 (d− 1)
. (A3)

For the special case of p = k, we obtain:

N∑
a=1

d2
a(k) =

k4

4m2
,

1

2
∂kz

N∑
a=1

d2
a(k) =

kzk
2

2m2
. (A4)

B. Two-Loop Contributions to the current-current correlators

1. Self-energy corrections

The diagrams in Figs. 4(a) and 4(b) involve inserting the one-loop fermion self-energy (Σ1) corrections into the current-
current correlator. We include a factor of 2 as the two diagrams give equal contributions and the expression incorporating

https://doi.org/10.1103/PhysRevB.99.235136
https://doi.org/https://doi.org/10.1016/j.aop.2020.168230
https://doi.org/https://doi.org/10.1016/j.aop.2020.168230
https://arxiv.org/abs/2011.01818
https://doi.org/10.1103/PhysRevB.101.064405
https://doi.org/10.1038/s41467-017-02121-y
https://doi.org/10.1038/s41467-017-02121-y
https://arxiv.org/abs/2104.07459
https://doi.org/10.1103/PhysRevB.92.045117
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this correction takes the form

〈JzJz〉(1)
2loop(iω) = −2

∫
dk0

2π

∫
ddk

(2π)d
Tr [{∂kzd(k) · Γ}G0(k + q) Σ1(k + q)G0(k + q) {∂kzd(k) · Γ} G0(k)] , (B1)

where Σ1(`) = − me2

15π2 c

(
Λ1/2

|`|

)ε
d(`)·Γ
ε (see Refs. [22, 23]). This gives us:

〈JzJz〉(1)
2loop(iω) =

2me2

15π2 c ε

∫
dk0

2π

∫
ddk

(2π)d

(
Λ1/2

|k|

)ε
term1

{k2
0 + |d(k)|2}2

{
(k0 + ω)

2
+ |d(k)|2

} , (B2)

where

term1 = Tr [{∂kzd(k) · Γ} {i k0 + d(k) · Γ} {d(k) · Γ} {i k0 + d(k) · Γ} {∂kzd(k) · Γ} {i k0 + iω + d(k) · Γ}]
= −k2

0 Tr [{∂kzd(k) · Γ} {d(k) · Γ} {∂kzd(k) · Γ} {d(k) · Γ}]
− 2 k0 (k0 + ω) Tr [{∂kzd(k) · Γ} {d(k) · Γ} {d(k) · Γ} {∂kzd(k) · Γ}]
+ Tr [{∂kzd(k) · Γ} {d(k) · Γ} {d(k) · Γ} {d(k) · Γ} {∂kzd(k) · Γ} {d(k) · Γ}]

= −4 k2
0

[
2 {∂kzd(k) · d(k)}2 − {∂kzd(k) · ∂kzd(k)} |d(k)|2

]
− 8 k0 (k0 + ω) {∂kzd(k) · ∂kzd(k)} |d(k)|2

+ 8 {∂kzd(k) · d(k)}2 |d(k)|2 − 4 {∂kzd(k) · ∂kzd(k)} |d(k)|4

= k2
0 k6 × (6− 5 d) sin2 θ − d

2 (d− 1)m4
− k0 ω k6 × d+ (d− 2) sin2 θ

(d− 1)m4
+

k10
[
(3 d− 2) sin2 θ − d

]
8 (d− 1)m6

, (B3)

using the identities from Appendix A.
Performing the integrals, we finally get:

〈JzJz〉(1)
2loop(iω) =

e2m2− ε
2 |ω|2− ε

2

90π4 c ε2

(
Λ

mω

)ε/2
−
e2m2− ε

2 |ω|2− ε
2 ln

(
m |ω|

Λ

)
180π4 c ε

. (B4)

2. Vertex corrections

The diagram in Fig. 4(c) equals 〈JzJz〉(2)
2loop(iω), where

〈JzJz〉(2)
2loop(iω)

e2 Λε/2

c

=

∫
dk0 d`0
(2π)2

∫
ddk dd`

(2π)2d
Tr

[
{∂kzd(k) · Γ}G0(k + q)

1

`2
G0(k + q + `) {∂kz+`zd(k + `) · Γ}G0(k + `)G0(k)

]
=

∫
dk0 d`0
(2π)2

∫
ddk dd`

(2π)2d
Tr

[
{∂kzd(k) · Γ}G0(k0 + ω,k)

1

`2
G0(`0 + ω,k + `) {∂kz+`zd(k + `) · Γ}G0(`0,k + `)G0(k0,k)

]
,

(B5)

with ` = (`0, `). We observe that the expression to be evaluated is

〈JzJz〉(2)
2loop(iω)

e2 Λε/2

c

=

∫
ddk dd`

(2π)2d
Tr

[∫
dk0
2π G0(k0 − ω,k) {∂kzd(k) · Γ}G0(k0,k)

∫
d`0
2π G0(`0 + ω, `) {∂`zd(`) · Γ}G0(`0, `)

(k + `)
2

]
,

(B6)

after some clever regrouping of the terms in the integrand. Evaluating∫
d`0
2π

G0(`0 + ω, `) {∂`zd(`) · Γ}G0(`0, `) =

∫
d`0
2π

−`0 (`0 + ω) ∂`zd(`) · Γ + i(2 `0+ω)`z `2

2m2 + d(`)·Γ `z `2

2m2{
(`0 + ω)

2
+ |d(`)|2

}
{`20 + |d(`)|2}

=

[
2 `z d(`)− `2 ∂`zd(`)

]
· Γ

2m
(

`4

m2 + ω2
) , (B7)
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we get:

〈JzJz〉(2)
2loop(iω)

e2 Λε/2

c

=

∫
ddk dd`

(2π)2d
Tr

[[
2 kz {d(k) · Γ} − k2 {∂kzd(k) · Γ}

] [
2 `z {d(`) · Γ} − `2 {∂kzd(`) · Γ}

]
4m2 (k + `)

2 ( k4

m2 + ω2
) (

`4

m2 + ω2
) ]

=

∫
ddk dd`

(2π)2d

kz `z

{
d (k · `)

2 − k2 `2
}
− 2 kz `z k2

{
d (k · `)− `2

}
+ k2 `2 dk·`+(d−2) kz `z

2

m4 (d− 1) (k + `)
2 ( k4

m2 + ω2
) (

`4

m2 + ω2
) , (B8)

using the identities from Appendix A. Performing the integrals, we finally obtain:

〈JzJz〉(2)
2loop(iω) =

e2m2− ε
2 |ω|2− ε

2

(
Λ

m |ω|

)ε/2
60π4 c ε2

−
e2m2− ε

2 |ω|2− ε
2 ln

(
m |ω|

Λ

)
120π4 c ε

. (B9)

C. Two-loop contributions to the current-momentum susceptibility

For the contributions at two-loop order represented by diagrams with self-energy insertions (similar to the diagrams in
Figs. 4(a) and 4(b)), we get the expression:

χ
(2,1)
JzPz

(T ) = −2T
∑
k0

∫
d3k

(2π)3
kz Tr [{∂kzd(k) · Γ}G0(k0,k) ΣT (k0,k)G0(k0,k)G0(k0,k)] , (C1)

where

ΣT (k0,k) = −e
2

c
T
∑
`0

∫
d3`

(2π)3

G0(k0 + `0,k + `)

`2
= − e2

15π2c

[
Λ0

T
{d(k) · Γ} − 5m

4 ΛIR

∣∣d(k)
∣∣] , (C2)

where Λ0 and ΛIR correspond to the ultraviolet and infrared cutoff scales, respectively. In order to obtain the leading-order

scaling in T of χ
(2,1)
JzPz

(T ), we can neglect the temperature independent term in Eq. (C2). Performing the trace in Eq. (C1),
we obtain:

χ
(1)
JzPz

(T ) ∼
(

2 e2 Λ0

15π2 c T

)
T
∑
k0

∫
d3k

(2π)3
kz

4
(

i k0 − k2

2m′

)3

(∂kzdk · dk) + 12
(

i k0 − k2

2m′

)
(∂kzdk · dk) |dk|2[(

i k0 − k2

2m′

)2 − |dk|2|
]3 . (C3)

For the two-loop diagram with the vertex correction (similar to Fig. 4(c)), we get the expression:

χ
(2,2)
JzPz

(T ) = −T
∑
k0

∫
d3k

(2π)3
kz Tr

[
{∂kzd(k) · Γ}G0(k0,k) Γ̃1(k0,k)G0(k0,k)

]
, (C4)

where

Γ̃1(k0,k) = −2 e2

c
T
∑
`0

∫
d3`

(2π)3

G0(k0 + `0,k + `)G0(k0 + `0,k + `)

`2
= − e2

16π2c T

(
Λ0 +

2m

3 ΛIR

∣∣d(k)
∣∣) . (C5)

Plugging this in, we get:

χ
(2,2)
JzPz

(T ) =

(
e2

16π2c T

)
T
∑
k0

∫
d3k

(2π)3
kz

(
Λ0 +

2m

3 ΛIR
|d(k)|

) 8
(

i k0 − k2

2m′

)
(∂kzdk · dk)[(

i k0 − k2

2m′

)2 − ∣∣dk

∣∣2]2 . (C6)

In order to obtain the leading-order dependence on T , we can neglect the second term in Eq (C5).

In Fig. 6, we show the numerical result for χ2loop
JzPz

(T ) = χ
(2,1)
JzPz

(T ) + χ
(2,2)
JzPz

(T ) as a function of temperature.
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