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Quantum ergodicity in the many-body localization problem
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We generalize Page’s result on the entanglement entropy of random pure states to the many-
body eigenstates of realistic disordered many-body systems subject to long range interactions. This
extension leads to two principal conclusions: first, for increasing disorder the “shells” of constant
energy supporting a system’s eigenstates fill only a fraction of its full Fock space and are subject
to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in
all regimes preceding the many-body localization transition individual eigenstates are thermally
distributed over these shells. These results, corroborated by comparison to exact diagonalization
for an SYK model, are at variance with the concept of “non-ergodic extended states” in many-body

systems discussed in the recent literature.
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Introduction:— Complex quantum systems exposed to
external disorder may enter a phase of strong localiza-
tion. About two decades after the prediction of many-
body localization (MBL) [T}, 2, [38], there is still no strong
consensus about the stability of the MBL phase and/or
the possible presence of an intermediate phase between
MBL and the thermal phase. One class of models where
these questions can be explored with more analytic con-
trol is confined many-body systems with long-range in-
teractions. Under these conditions, the interaction op-
erator couples all single-particle states, which facilitates
the analysis. At the same time, the Hilbert space dimen-
sion is still exponentially large in the particle number,
which leads to rich physics relevant to systems such as
chaotic many body quantum devices [4Hg], small sized
optical lattices [9HIT], or qubit arrays [12] [13].

In recent years, the complex structure of many-body
quantum states in MBL has become a focus of inten-
sive research. Unlike with single particle problems, where
extended wave functions uniformly cover real space, in-
creasing the disorder in a phase of extended many body
states |¢) leads to a diminished wave function support
in Fock space. This phenomenon, which shows, e.g., in a
suppression of wave function moments (WEFM) |(n|y)]??
in an occupation number basis, |n), has led to the pro-
posal of a phase of “nonergodic extended states” [T4HI7]
intermediate between the phases of absent and strong
localization. An alternative scenario is that for each re-
alization of the disorder only a subset of states {|n)} have
finite overlap with the eigenstates of energy F, and in this
way define a quantum energy shell in Fock space. A uni-
form (thermal) distribution of the exact eigenstates on
this shell would then be the defining criterion for main-
tained quantum ergodicity on the delocalized side of the
MBL transition.

At this stage, there is mounting evidence in favor of

the second scenario [I8-21]. However, in order to firmly
characterize the physics of a globally realized many body
ergodic quantum phase, two questions need to be ad-
dressed: how can the energy shell be described in quan-
titative terms? And what is the distribution of quantum
states on that shell? As indicated above, wave function
statistics can provide at least part of an answer to the
first question. In this Letter, we focus on the equally
important second part of the problem and demonstrate
that the key to its solution lies in concepts of quantum
information. Specifically, we will compute pure state en-
tanglement entropies (EE) under a relatively mild set of
assumptions. Within this framework we find that to ze-
roth order wave functions remain thermally distributed
over the shell. This establishes a microcanonical distri-
bution, in agreement with the second scenario — main-
tained ergodicity in all regimes prior to the transition. In
addition, the EE contains sub-leading terms which reflect
the characteristic way in which the energy shell is inter-
laced into Fock space. These contributions sharply dis-
tinguish the energy shells of genuine many body systems
from those of phenomenological high dimensional mod-
els such as the random energy model (REM), or sparse
random states [22]. In this way the combined analysis of
WFMs and EEs becomes a sensitive probe into the com-
plex manifestation of wave function ergodicity in many
particle systems.

Pure state entanglement entropies: — For a pure state,
p = |) (1|, the entanglement entropy relative to a parti-
tioning F = F4 ® Fp of Fock space is defined as the von
Neumann entropy, Sa = —tra(palnpa) of the reduced
density matrix p4 = trp(|10)(¥|) . The entanglement en-
tropies of pure maximally random states were calculated
in the classic Ref. [23]. More recent work [24] empha-
sizes the utility of the concept in the context of random
matrix models serving as proxies of high-dimensional lo-



calizing systems [I5]. In these systems, quantum inter-
ference shows in a contribution to the entanglement en-
tropy proportional to the ratio of subsystem Fock-space
dimensions. A main finding of the present work is that
energy-shell correlations distinguishing microscopic sys-
tems from random matrix models open a second channel
of quantum information and exponentially enhance the
suppression of the entanglement below its thermal value.
In this way, the entanglement sharply distinguishes be-
tween genuine many-body wave functions and wave func-
tions on generic high-dimensional random lattices.

In the rest of this Letter, we will compute the entangle-
ment entropy of pure states prior to the onset of strong
localization under a minimal set of assumptions. We will
compare our results to the entropies obtained for phe-
nomenological models and to numerical data obtained
for a Majorana SYK model.

Energy shell: — We begin with a qualitative discussion
of the Fock space energy shell. Consider a many-body
Hamiltonian H = ﬁg + ﬁ4, where ]ﬁl4 is an interaction
operator and Hy a one-body operator defined by a single
particle spectrum {m;}, i = 1,..., N distributed over a
range 6. Working in the eigenbasis of H,, Fock space
is spanned by the D = 2V occupation number states
n = (ny,...,nn), n; = 0,1 for spinless fermions. We
interpret these states as sites of a hypercubic lattice, car-
rying local potentials v, = > (2n; — 1)m; with r.m.s.
value Ay = N1/2§. Individual states n are connected to
a polynomially large number N of ‘nearest neighbors’ m
by the interaction f{4. For interaction matrix elements
tam ~ gN7B/2 the rm.s. eigenvalue of H, scales as
Ay ~ gN(©@=B)/2 with g an N-independent coupling en-
ergy for the interaction. These interactions change only
an order-one number of occupation numbers, S0 v, — Uy, |
is of order § and thus for large N much smaller than the
‘bandwidth’ Ay of Ho.

In the competition of the operators H, and IL, states n
may hybridize with states m via the coupling t,,,,,. When
the eigenstates of H are delocalized in Fock space, this
hybridization gives the local spectral density

vo(B) =~ TIm{ul(E+ — H) 7o) (1)
alinewidth k = k(vy,, 0, g) which must be self-consistently
determined [25]. The solution of Eq. for a given re-
alization of the disorder contains the essential informa-
tion on the distribution of the energy shell in Fock space.
Specifically, for generic values of the energy E (we set
E = 0 for concreteness), the strength of the disorder, 4,
defines four regimes of different shell structure:

I: § « N7Y2A,: the characteristic disorder band width
SNV2 = Ay <« A, is perturbatively small. In this
regime, the spectral density, v, = v is approximately
constant over energy scales ~ As.

II: N"Y2A, < § < Ay: the bandwidth of Hs exceeds
that of the interaction f[4, but nearest neighbors remain

energetically close |v, — vp| ~ 0 < Ay. In this regime,
Kk = Ay, indicating that the full interaction Hamiltonian
enters the hybridization of neighboring sites.

II: Ay < § < 6.: only a fraction ~ (Ag/8)? of near-
est neighbors remain in resonance, and the broadening is
reduced to kK ~ A3/3.

IV: The threshold to localization, é., is reached when less
than one of the ~ N® neighbors of characteristic energy
separation ¢ falls into the broadened energy window. Up
to corrections logarithmic in N (and neglecting potential
modifications due to Fock space loop amplitudes) this
leads to the estimate 6, ~ N®/2A, for the boundary to
the strong localization regime.

The energy shell in the delocalized regimes II and ITI
is an extended cluster of resonant sites embedded in Fock
space. It owes its structure to the competition between
the large number O(N®) of nearest neighbor matrix el-
ements and the detuning of statistically correlated near-
est neighbor energies, v,,, v;,. In regime II, only a poly-
nomially (in N) small fraction x/As K Ay/(6N1/2) of
Fock space sites lie in the resonant window defining the
energy shell, and in IIT this fraction is further reduced

to X A3/(62N'/?), before the shell fragments at the
boundary to regime IV.

We also note that if a site, n, lies on the shell, the prob-
ability that its neighboring sites of energy v,, = v, £0(0)
are likewise on-shell is parametrically enhanced com-
pared to that of generic sites with energy v, 2O(As). It is
this principle which gives the energy shell of many-body
systems a high degree of internal correlations (absent in
phenomenological lattice models with statistically inde-
pendent on-site randomness) [26]. What physical quan-
tities are sensitive to these correlations? And how do
quantum states spread over the shell structure? As we
are going to discuss next, the pure state entanglement
entropy, Sa, contains the answer to these questions.

Entanglement entropy: — Consider a Fock space
(outer product) partitioning defined by n = (I, m) where
the N4-bit vector [ labels the states of subsystem A and
m those of B with Ng = N — N4 > N,. We are inter-
ested in the disorder averaged moments M, = (tra(p)),
and the entanglement entropy S4 = —0,M,|,—1 of the
reduced density matrix, pa = trg(|¥)(¥|), defined by
a realization-specific zero-energy eigenstate H ) = 0.
The bookkeeping of index configurations entering the mo-
ments tI‘A(pTA) = wllml'(/jpml Vizm2 - - - wlrmr’l;llmr is con-
veniently done in a tensor network representation as in
Fig. 1} Introducing a multi-index N' = (n!,...,n"), and
analogously for N4 g, the figure indicates how the index-
data N and M carried by ¢ and 1 is constrained by
the summation as M’ = N} and MYy = N7’, where
7i = (i + 1)mod(r). A further constraint, indicated by
red lines in the bottom part of the figure, arises from
the random phase cancellation under averaging, which
in the present notation requires N* = M7 for some
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FIG. 1: Top left: graphic representation of the tensor am-

plitude 1 ¥yrms. Top right: contraction of indices defining
tr(p%). Bottom: averaging enforces pairwise equality of in-
dices n,n’ in tensor products (...%n ... %, ...), as indicated
by red lines. Left: identity pairing of indices within the five
factors (tra(papapapapa)). Right: pairing of indices of the
second and fourth factor.

permutation o. (The figure illustrates this for the iden-
tity, o = id., and the transposition ¢ = (2,4).) Com-
bining the two constraints, we obtain the representation
My =32, > ILd [ 20N 4,00rNAONp oN5- This ex-
pression is universal in that it does not require assump-
tions other than the random phase cancellation. In a
less innocent final step we establish contact to the pre-
viously discussed local density of states, v,, and com-
pare the two representations Dv = ) 0(E — E,) =
Y [anP0(E — Eq) =X, v to identify [¢,[* = £&.
In other words, we identify the moduli |¢,|? of a fixed
eigenstate ¢ = 1), with the realization specific local den-
sity of states, v,, at F = FE,. For the legitimacy of
this replacement for single particle random systems see
Ref. [30], and for the SYK model the Supplemental Ma-
terial and Ref. [3I]. With this substitution, we obtain
the representation

M, = Z Z H An, 5NA,(UOT)NA5NB,UNB7 (2)

o N =1

with A\, = £=. This expression describes two comple-
mentary perspectives of quantum states in Fock space:
their support on a random energy shell defined by the
coefficients \,, ~ 1,,, and random phase cancellations im-
plicit in the combinatorial structure. In the following,
we discuss the manifestations of these principles in the
above regimes I-1V.

Regime I, maximally random states: — Here, wave
functions are uniformly distributed, v, = v, and the
evaluation of Eq. reduces to a combinatorial prob-
lem. The latter has has been addressed in the string the-
ory literature [32], B3] (where high-dimensional pure ran-
dom states are considered as proxies for black hole micro
states.) Inspection of the formula shows that increasing
permutation complexity needs to be paid for in summa-
tion factors Dg. Keeping only the leading term, o = id.,
and the next leading single transpositions o = (ij), we

obtain M, =~ D}L(T + (;)D?{’"D;l, and the subsequent
differentiation in r yields Page’s result [23]

Dy
— =—— =InDyu.
Sa— Sin 2Dg y Sth ntia (3)
Interestingly, higher order terms in the D,/Dp-

expansion vanish in the replica limit [23, B2-35], and
Eq. (] is exact for arbitrary Ny < Np, up to correc-
tions small in 1/D. (The case Ny > Npg follows from
exchange A < B.) The result states that to leading or-
der the entropy of the subsystem is that of a maximally
random (‘thermal’) state, Sin. The residual term results
from wave function interference across system bound-
aries. Reflecting a common signature of ‘interference con-
tributions’ to physical observables, it is suppressed by a
factor proportional to the Hilbert space dimension.

Regime II & III, energy shell entanglement: — The en-
ergy shell now is structured and correlations in the local
densities, {v, }, lead to a much stronger correction to the
thermal entropy. Since these contributions come from
the identity permutation (do not involve wave function
interference), we ignore for the moment o # id., reducing
Eq. @) to M, ~ 37, A7 ; with A4 = trp()). This expres-
sion suggests an interpretation of the unit normalized
density {\,} as a spectral measure, Y, A\, =1, Ay, >0,
and of A4 as the reduced density of system A. With this
identification, the entropy,

SA%SPE’DI‘A(AAIH()\A)) (4)

becomes the information entropy of that measure.

This is as far as the model-independent analysis goes.
Further progress is contingent on two assumptions, which
we believe should be satisfied for a wide class of systems
in their regimes II and III: First, the exponentially large
number of sites entering the computation of the spectral
measure justifies a self averaging assumption,

Y Flony) = Dx(F(vx))x =

_ Dx vk
= Ty [ e (< ag) e @

where X = A, B, AB stands for the two subsystems,
or the full space, respectively, Dx are the respective
Hilbert space dimensions, and Ax = 6v/Nx. In other
words, we replace the sum over site energies by an av-
erage over a single variable whose Gaussian distribution
follows from the central limit theorem. Second, when
integrated against the distribution of subsystem energies
vp, the local DoS at zero energy E ~ 0 acts as a smeared
d-function, setting the additive energy v =v4 +vg ~ 0,
and effectively smoothening the distribution A4 ;. Since
Kk < Ag ~ Ap, the detailed value of the width of the
shell, k, is of no significance in this construction.

Under these assumptions, straightforward computa-
tions detailed in the supplementary material yields, e.g.,




the density of states as Dv = )" , g vn = D(04(v))aB =

’72£N6' Applied to the computation of the moments

Eq. , the averaging procedure obtains the entangle-

ment entropy as [36]
1N N D
oA A ()
2 N 2N4 2Dp

1 N
Sp—Sih=—=In{ —
A th B n ( NB)
A number of comments on Eq. @: Provided the above
assumptions on the spectral measure hold, the result has
the same level of rigor as Page’s formula Eq. . The

main difference is that (for small subsystems, Ny < N)

. . 2
the information entropy Sa — S ~ —% (M)

~ is expo-
nentially enhanced compared to the correction in Eq. (3]).
Also note that there is no dependence on the disorder
strength (see supplemental material for more details).

Comparison to phenomenological models: — The en-
tanglement entropy @ is a universal signature of corre-
lations (but not the volume) of the energy shell. Con-
versely, the WFMs, |¢,,|9, describe the shrinking of the
shell volume (but not its correlations). To see that these
are independent pieces of information, it is instructive to
compare to the random energy model (REM) [42], a phe-
nomenological model replacing the one-body randomness
by a set of statistically independent Fock state potentials
{vn}. For increasing ¢, the WFMs diminish as in micro-
scopic models [43]. However, we have verified that the
EE of REM states coincides with Page’s Eq. . The
same result is obtained for sparse random states [22],
as even more phenomenological proxies of many body
states. What is the origin of the difference to Eq. (6)? A
genuine many-body model describes many “bodies”, rep-
resenting the microscopic degrees of freedom. The Fock
space is an outer product over the single body spaces, and
the Hamiltonian contains only operators coupling O(1)
of these degrees of freedom. In this sense the REM is not
a many-body model, since its nonlocal energy operator
acts on the products of all (or most) degrees of freedom
simultaneously. Specifically, it lacks the principle of en-
ergy subsystem additivity ¥ = FEa 4+ Ep, required by
Eq. @ In this way, the entanglement entropy becomes
a sensitive indicator of whether quantum states are gen-
uine many body states or of different origin.

Regime boundaries: — Upon approaching the bound-
ary to the trivially ergodic regime I, the second condition
gets compromised, i.e. the width x of individual states
ceases to be small compared to the statistical fluctuations
~ Ap. Leaving a detailed analysis of the crossover re-
gion to future work, our numerics below shows a collapse
of Eq.@ to Eq. upon crossing the regime boundary.
In the opposite MBL regime IV, eigenstates are concen-
trated on a small number O(1) of isolated Fock states,
and the concept of an energy shell becomes meaningless:
to exponential accuracy in IV, remote Fock states, even
if they are close in energy, have no common matrix ele-
ments with individual eigenstates.
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FIG. 2:  Numerical entanglement entropies (symbols) vs.

analytical (lines) for a system of size N = 15 in regime I,
6 = 0.01 (solid) and III, § = 1 (dashed). Inset: linear scale
representation of the same data.

The entanglement entropy then scales as Sy ~
s(6/6.)Na /N, where s is related to the entropy of the dis-
tribution of the localized eigenstate in Fock space. For
1 <« Ny < N, §S4 < 1 stays small down to § ~ §,,
where it jumps to S4 ~ N4 at the localization transition
to regime III.

Numerical analysis: — Fig. shows a comparison of
the analytical predictions of Egs. and @ with numer-
ical results obtained for the SYK Hamiltonian [36]. In
that case, Hy = 4 300 _y JijuiXiX;XeXe, where {;}
are Majorana operators [44) 45]. The competing one-
body operator reads Hy = Zf;l mi(2cjci — 1), where
c = %()Zgi,l + ix2;) are complex fermion operators de-
fined by the Majoranas [46] [47]. Referring to the supple-
mental material for details, the agreement is very good,
and it becomes better with increasing N4. (We have
no certain explanation for the deviations at the smallest
values of Ny4.)

Discussion: — In this paper, we applied a combined
analysis of the statistics and the entanglement proper-
ties of pure quantum states to explore the delocalized
phase of disordered many body systems subject to long
range correlations. Our analysis supports the view that
the appealing concept of “non-ergodic extended states”
— adopted including in publications of the present au-
thors [31], [43] — should be abandoned in favor of a qual-
ified interpretation of many body quantum ergodicity.
Its key element is the support set {n} of states of a given
energy, the quantum analog of an energy shell. We have
shown how the entanglement properties of pure quan-
tum states reveal ergodicity, and in addition character-
istic correlations distinguishing the energy shells of gen-
uine many body systems from those of phenomenological
proxies.

What is the scope of the above findings? Referring to
the supplemental material for a more detailed discussion,



the freedom to adjust the exponents «, 5 entering the def-
inition of the model Hamiltonian, implies that our result
applies to a wide class of effectively long range interact-
ing systems, among them realizations whose interaction
operators are short range in a microscopic (“real space”)
basis but long range in the eigenbasis of H,. Tt is tempt-
ing to speculate on generalizations to yet wider system
classes. To this end, we note that the derivation of Eq. @
relies on a number of necessary conditions: subsystem
additivity £ ~ E4 + Ep (requiring that the coupling
energy between the subsystems is negligibly small in the
limit of large system sizes), statistically independent dis-
tribution of the the energies F4 p, and dependence of
the spectral density (measure) on no more than the sin-
gle conserved quantity, energy. Whether these criteria
are not only required but actually sufficient to stabilize
the result is an interesting question left for forthcoming
research [48]. However, regardless of the scope of Eq. (@,
we reason that the combination of wave function statis-
tics and pure state entanglement defines the suitable di-
agnostic to characterize the ergodic phase of many body
quantum chaotic systems.

Acknowledgments: — D. A. H. thanks Vir Bulchan-
dani and Sarang Gopalakrishnan for helpful discussions.
F. M and T. M. acknowledge financial support by
Brazilian agencies CNPq and FAPERJ. A. A. acknowl-
edges partial support from the Deutsche Forschungs-
gemeinschaft (DFG) within the CRC network TR 183
(project grant 277101999) as part of projects A03. The
work of M. T. was supported in part by JSPS KAK-
ENHI Grant Numbers JP17K17822, JP20K03787, and
JP20H05270. D.A.H. is supported in part by DOE grant
DE-SC0016244.

[1] B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov,
Quasiparticle Lifetime in a Finite System: A Nonpertur-
bative Approach, Phys. Rev. Lett. 78, 2803 (1997).

[2] D. Basko, I. Aleiner, and B. L. Altshuler, Metal-insulator
transition in a weakly interacting many-electron system
with localized single-particle states, Ann. Phys. 321, 1126
(2006).

[3] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interact-
ing Electrons in Disordered Wires: Anderson Localiza-
tion and Low-T Transport, Phys. Rev. Lett. 95, 206603
(2005).

[4] B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov,
Quasiparticle Lifetime in a Finite System: A Nonpertur-
bative Approach, Phys. Rev. Lett. 78, 2803 (1997).

[5] P. G. Silvestrov, Decay of a Quasiparticle in a Quantum
Dot: The Role of Energy Resolution, Phys. Rev. Lett.
79, 3994 (1997).

[6] P. G. Silvestrov, Chaos thresholds in finite Fermi systems,
Phys. Rev. E 58, 5629 (1998).

[7] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Many-
body delocalization transition and relaxzation in a quan-
tum dot, Phys. Rev. B 93, 125419 (2016).

[8] I. V. Gornyi, A. D. Mirlin, D. G. Polyakov, A. L. Burin,
Spectral diffusion and scaling of many-body delocalization
transitions, Annalen der Physik (Berlin) 529, 1600360
(2017).

[9] A. Rubio-Abadal, J.-Y. Choi, J. Zeiher, S. Hollerith,
J. Rui, I. Bloch, C. Gross, Many-body delocalization in
the presence of a quantum bath, Phys. Rev. X 9, 041014
(2019).

[10] J.-Y. Choi, S. Hild, J. Zeiher, P. Schau, A. Rubio-
Abadal, T. Yefsah, V. Khemani, D. A. Huse, 1. Bloch,
C. Gross FExploring the many-body localization transition
in two dimensions, Science 352, 1547 (2016).

[11] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Liischen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider,
I. Bloch, Observation of many-body localization of inter-
acting fermions in a quasi-random optical lattice, Science
349, 842 (2015).

[12] K. Xu, J.J. Chen, Y. Zeng, Y.R. Zhang, C. Song, W. Liu,
Q. Guo, P. Zhang, D. Xu, H. Deng, K. Huang, H. Wang,
X. Zhu, D. Zheng, H. Fan, Emulating Many-Body Lo-
calization with a Superconducting Quantum Processor,
Phys. Rev. Lett. 120, 050507 (2018).

[13] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas,
A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jef-
frey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quin-
tana, D. Sank, A. Vainsencher, J. Wenner, T. White,
H. Neven, D. G. Angelakis, J. Martinis, Spectroscopic
signatures of localization with interacting photons in su-
perconducting qubits, Science 358, 6367 (2017).

[14] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and
A. Scardicchio, Anderson Localization on the Bethe Lat-
tice: Nonergodicity of Extended States, Phys. Rev. Lett.
113, 046806 (2014).

[15] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and
M. Amini, A random matriz model with localization and
ergodic transitions, New Journal of Physics 17, 122002
(2015).

[16] B. L. Altshuler, E. Cuevas, L. B. Ioffe, V. E. Kravtsov,
Non-ergodic phases in strongly disordered random reqular
graphs, Phys. Rev. Lett. 117, 156601 (2016).

[17] V. E. Kravtsov, B. L. Altshuler, L. B. Ioffe, Non-ergodic
delocalized phase in Anderson model on Bethe lattice and
regular graph, Annals of Physics 389, 148 (2018).

[18] K. S. Tikhonov, and A. D. Mirlin, Statistics of eigenstates
near the localization transition on random regular graphs,
Phys. Rev. B 99, 024202 (2019).

[19] K. S. Tikhonov, and A. D. Mirlin, Critical behavior at the
localization transition on random regqular graphs, Phys.
Rev. B 99, 214202 (2019).

[20] K. S. Tikhonov, A. D. Mirlin, From Anderson localization
on Random Regular Graphs to Many-Body localization,
arXiv:2102.05930.

[21] K. S. Tikhonov, A. D. Mirlin, Figenstate correlations
around many-body localization transition, Phys. Rev. B
103, 064204 (2021).

[22] G. De Tomasi and I. M. Khaymovich, Multifractality
Meets Entanglement: Relation for Nonergodic Extended
States, Phys. Rev. Lett. 124, 200602 (2020).

[23] D. N. Page, Average entropy of a subsystem, Phys. Rev.
Lett. 71, 1291 (1993).

[24] M. Haque, P. A. McClarty and I. M. Khaymovich,
Entanglement of mid-spectrum eigenstates of chaotic
many-body systems — deviation from random ensembles,



arXiv:2008.12782 (2020).

[25] Self consistency enters via the condition K, =
T \Jnm|21/n, where |Jnm| are the matrix elements of
the interaction operator (see also Ref. [31]).

[26] Random matrix models such as the Rosenzweig-Porter
model [27H29], too may develop structured energy shells
comprising multiple interlaced “mini bands”. Yet, the ab-
sence of a tensor product structure makes these different
from the shells of genuine many body systems.

[27] N. Rosenzweig, C. E. Porter, ‘Repulsion of Energy Levels’
in Complex Atomic Spectra, Phys. Rev. 120, 1698 (1960).

[28] E. Cuevas, V. E. Kravtsov, Two-eigenfunction correla-
tion in a multifractal metal and insulator, Phys. Rev. B
76, 235119 (2007).

[29] G. De Tomasi, M. Amini, S. Bera, I. M. Khaymovich,
and V. E. Kravtsov, Survival probability in General-
ized Rosenzweig Porter random matriz ensemble, SciPost
Phys. 6, 014 (2019).

[30] V. N. Prigodin, Spatial Structure of Chaotic Wave Func-
tions, Phys. Rev. Lett. 74, 1566 (1995).

[31] F. Monteiro, T. Micklitz, M. Tezuka, and A. Altland,
A minimal model of many body localization, Phys. Rev.
Research 3, 013023 (2021).

[32] Geoff Penington, Stephen H. Shenker, Douglas Stanford,
Zhenbin Yang, Replica wormholes and the black hole in-
terior, arXiv:1911.11977.

[33] Hong Liu and Shreya Vardhan, Entanglement entropies
of equilibrated pure states in quantum many-body systems
and gravity, Phys. Rev. X Quantum 2, 010344 (2021).

[34] S. K. Foong, S. Kanno, Proof of Page’s conjecture on
the average entropy of a subsystem, Phys. Rev. Lett. 72,
1148 (1994).

[35] J. Sanchez-Ruiz, Simple proof of Page’s conjecture on the
average entropy of a subsystem, Phys. Rev. E. 52, 5653
(1995).

[36] See Supplemental Material, where we provide details on
the analytical calculation of the entanglement entropy
and on the numerical calculations for the SYK model,
which includes Refs. [37H41]

[37] K. B. Efetov, Supersymmetry in Disorder and Chaos
(Cambridge Univ. Press, 1999).

[38] Alexander D. Mirlin, Phys. Rep. 326, 259 (2000).

[39] A. Altland and D.Bagrets, Nucl. Phys. B 930, 45 (2018)

[40] K.S. Tikhonov and A. D. Mirlin, Many-body localiza-
tion transition with power-law interactions: Statistics of
eigenstates, Phys. Rev. B 97, 214405 (2018).

[41] N. Macé, F. Alet, and N. Laflorencie Multifractal Scalings
Across the Many-Body Localization Transition, Phys.
Rev. Lett. 123, 180601 (2019).

[42] C. L. Baldwin, C. R. Laumann, A. Pal, and A. Scardic-
chio, The many-body localized phase of the quantum ran-
dom energy model, Phys. Rev. B 93, 024202 (2016).

[43] T. Micklitz, F. Monteiro, and A. Altland, Non-ergodic
extended states in the SYK model, Phys. Rev. Lett. 123,
125701 (2019).

[44] S. Sachdev and J. Ye, Gapless spin-fluid ground state in
a random quantum Heisenberg magnet, Phys. Rev. Lett.
70, 3339 (1993).

[45] A. Kitaev, http://onlinekitp.ucsb.edu/online/ entan-
gled15/kitaev/ .... /kitaev2/ (Talks at KITP on April
7th and May 27th 2015).

[46] A. M. Garcia-Garcia, B. Loureiro, A. Romero-Bermudez,
and M. Tezuka, Chaotic-Integrable Transition in the
Sachdev- Ye-Kitaev Model, Phys. Rev. Lett. 120, 241603

(2018).

[47] A. R. Kolovsky and D. L. Shepelyansky, Dynamical ther-
malization in isolated quantum dots and black holes, Eur.
Phys. Lett. 117, 10003 (2017).

[48] Work in progress.



Supplementary Material to: “Quantum ergodicity in the many-body localization
problem”

Felipe Monteiro,! Masaki Tezuka,? Alexander Altland,® David A. Huse,* and T. Micklitz

I Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil
“Department of Physics, Kyoto University, Kyoto 606-8502, Japan
dInstitut fir Theoretische Physik, Universitit zu Koln, Zilpicher Str. 77, 50937 Cologne, Germany
4 Department of Physics, Princeton University, Princeton, NJ 08544, USA
(Dated: February 26, 2022)

In this Supplemental Material, we provide details on the analytical calculation of the entanglement
entropy and on the numerical calculations for the SYK model.

PACS numbers: 05.45.Mt, 72.15.Rn, 71.30.+h

ENTANGLEMENT ENTROPY AND LOCAL
DENSITY OF STATES

In this section we discuss the derivation of Eq. (2) de-
scribing the entanglement entropy in terms of the local
density of states. The construction parallels a similar one
for the wave functions of single particle systems [I, 2],
(see also Ref. [3] for a recent extension to Fock space),
and we limit ourselves to an outline of the main construc-
tion steps.

Moments of the reduced density matriz from Fock space
resolvents:— Working in a first quantized representation
— where the Hamiltonian H is considered as a high di-
mensional matrix — our starting point is a representa-
tion of the reduced density matrix, M, (A4) = (Tra(p%)),
in terms of retarded /advanced resolvent operators, G =
(E+in—H)~'. Introducing a formal Lehmann represen-
tation in term of exact eigenstates, it is straightforward
to verify the likewise exact relation

(23;2 lim "~ {tra ((tr6lGE) ™ tra(G7))),
(s1)

M, =

where vg is the density of states at energy F.

Construction of the matriz integral:— Following Efe-
tov’s supersymmetry approach [Il 2], we next represent
the Green function matrix elements in Eq. as Gaus-
sian integrals. This representation is obtained from the
auxiliary formula M,,,} = [ D(1, 1)) e ¥M¥4)2 47, where
M is a general L x L matrix and the 2L dimensional
‘eraded’ vector ¢ = (¢®, "7 contains L-commuting
components P, and an equal number of Grassmann
components . The double integral over these vari-
ables cancels unwanted determinants det(M), while
the pre-exponential factors, either commuting or anti-
commuting, o = b, f, isolate the inverse matrix element.
With the identification M = diag(—i[GT]~1,i[G7]7!) =
n — iosH, we are then led to consider the generating
function

2lj) = [ D w) (e PCmiurssy sy

where we focus on the band center E = 0, the average (...)
is with respect to random coefficients of the Hamiltonian
H , 03 is a Pauli matrix distinguishing between advanced
and retarded components, and S; =" (jn’(/Jn + inin),
with

jn = (anﬂ-rr + ﬁnﬂ-aa) & 7Tbb7
jn — (anﬂ,rr + Bnﬂ,aa) ® 7_‘,bb.

is a source term from which the required products are
obtained by differentiation (8%1_ = Oa,, ln=n, ):

Z Gg(n17m"(l))...Gg(nT_l,m”(r_l))Gg(nT,mr)

oc€ES,_1
r—1
= H a@ml 80&,11 85mr 08, Z[j]
=1

Here, 777/%@ and 7% are projectors onto the subspaces
of retarded/advanced and commuting variables, respec-
tively. With this identity, and using the permutation
symmetry of Green function matrix elements under trace,
we obtain

r—1
My =ty S T 06,100,950, 20 (53)

7]—)
{nl} I=1

where ¢, = (2i)"~2/(rvg(r — 1)!) and the differentiation
arguments m’ are fixed as m! = (nfl, n),l=1...r—1,
and m” = (nly,n%). Using the notation in the man text
this can be summarized as M’ = N} and M’ = N7,
where 7i = (i + 1)mod(r).

Effective action:— We now average over the random
parameters of the interaction Hamiltonian and then ap-
ply constructions steps standard in the theory of dis-
ordered electronic systems[ll 2] and transferred to the
SYK context in Refs. [3, 4]. In regimes I-III, this pro-
cedure maps the generating function onto the integral
Z[j] = [ DQ e S1RI+5[Q] where Q = Q@ 1pocx is a4 x4
matrix in the spaces of advanced/retarded and commut-
ing/anticommuting indices and

SyQ] = ™ STr(2Qos), S;[Q] = —imSTr (j2Qj) .
(S4)



Here ‘STr’ refers to the graded trace over Fock and in-
ternal degrees of freedom, and ¥ is a diagonal matrix in
Fock space with the local density of states as its diagonal
elements, (), = vy,.

Moments:—Performing the 2r-fold derivative, we ar-
rive at

M, (A)—c,nhmnr ! Z Zl/ 1. Upr

cg€S, N
X (Qbb--QbbQbb)IN A, oorWa)ONs,o(NE)s  (SD)

where the average (...) is over the action Eq. (S4). In a
final step, we perform the matrix integral to obtain

e H[Qu) T QD) = (S6)

(Dv)r’
In this way, the identification of wave function moduli
with coefficients of the local density of states fundamental
to Eq. (2) of the main text is established.

ENTANGLEMENT ENTROPY IN REGIMES
II/TI1

Leading contribution:— Central to the analysis of
the wave function moments is the reduced spectral
density, A4 ﬁ(én(vl + vp))p. Performing the
Gaussian average Eq. (5) of the main text, we ob-
tain Dv = D{6,(v))ap = ﬁ and similarly Aa; =

A
DlA A, exp(—v 2/2A%).

As dlscussed in the main text, the leading contribution
to the entanglement entropy comes from the identity per-
mutation

MY (A) = DaD3(N}) a- (S7)
Substituting the above result for A4 and performing the
Gaussian average, we obtain

Dy
V1+7rN4/Ng

Subleading contribution:— Single transpositions o =
(ij), give the subleading contribution to the en-
tanglement entropy.  Inspection of Eq.(2) of the
main text (see also the index configuration defined
by the right part of the bottom panel of Fig.1)
shows that they provide a contribution M? =
le,lg Zml,...,mT_l )\llmlleml )‘l1m2 s )‘l1mr_1 to the rth
moment. Following the same recipe as above, we substi-
tute A = (Dv)716(vy, +v;) and the index summations
by Gaussian averages over the energy variables v, — va
and v; — vp. It is then straightforward to obtain

Md(A) = (S8)

—r r 2—7r)/2
wo o DTN NgTR
" Dp VNa\/2Ng+ (r—1)Ny4

(S9)

Noting that there are (;) such terms, the differentiation
in r yields the entropy Eq.(6).

Remaining contributions:—In regime I, the leading and
subleading contributions discussed above give the Page
entropy Eq. (3) in the main text [5]. Permutations that
are not the identity or single transpositions vanish. This
cancellation has been discussed in the string theory liter-
ature [0 7], and the arguments presented there also apply
to regimes IT & III. (Basically, the combinatorial factor
for contributions with a given number of transpositions
are the Narayana numbers and vanish for more than one
transposition in the replica limit.) We thus conclude that
Eq. (6) describes the entanglement entropy in regime III,
at the same level of rigor as Page’s result in regime I.

Comment on crossover to Regime I:—The crossover
between Page’s result and our Eq. (5) can be worked out,
but requires a more elaborate analysis of above integrals
without approximating the local density of states by a
o-function. We leave this analysis for future work.

EXACT DIAGONALIZATION

We numerically calculated the reduced density matrix
and the average entanglement entropy for generic eigen-
states (1n the center of the band) of the SYK Hamiltonian
H H4 + H2a where H4 =1 21] k=1 Jz]leszXlev
and the free particle contribution [, 0] H, =
5 Z” 1 JijXiX; - Matrix elements {J;jx;} and {J;;} are
drawn from Gaussian distributions with vanishing mean
and variances (|J;;u|?) = 6J2/(2N)? and (|J;;|?)
§2/2N. The many body band width, Ay, of the inter-
action operator and the distribution width, A, of the

on-site random potential then read Ay = 2’1‘623 (2N )
and Ap = %(Zé\[ ), respectively. For our calculations,

we generate at least 100 realizations of the Hamiltoni-
ans (Hy, Hs), taking the average of the entanglement en-
tropy over eigenstates corresponding to energies within
the middle 1/7th of the spectrum, unless otherwise men-
tioned. Here, the even and odd fermion parity sectors are
diagonalized separately. We further improve the statis-
tics by averaging over all ( A) Fock space bi-partitions.

In Fig. 2 and Fig. {4 (see below), the error bar shows
the standard deviation of the results over the realizations
of the Hamiltonians. The two parity sectors are treated
as separate samples. We observe an increasing ratio of
this error bar to the value of Sy, — Sa for diminishing
subsystem size N4. The reason is the exponential dimin-
ishing of Sy, — S4 with decreasing N4, which leads to
relatively larger numerical fluctuations around this value.
We have no certain explanation for the observation that
in regime III (and I) results for smallest N4 lie outside
the estimated error bar (see also Fig. [3)).

A subtlety in these calculations is that the SYK Hamil-
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FIG. 3: Numerical entanglement entropies (symbols) vs. analytical (lines) for a system of size N = 14 (left), 15 (middle), 16
(right) in regime I, 6 = 0.01 (solid) and III, § = 1 (dashed). Inset: linear scale representation of the same data.

tonian conserves fermion parity. Considering the den-
sity matrix p defined by an eigenstate with definite par-
ity, the partial trace leads to a block diagonal structure
pa =trpp = (pj*
the even and odd fermion parity subspaces of the subsys-
tem A Hilbert space. A trace over the two-dimensional
parity sector defines the (normalized) reduced density
matrix trppa = p% + p%. One can then convince oneself
that trpp4 has the same entropy as the reduced density
matrix of a pure state in the 2V~! system with broken
fermion parity conservation. This can be also verified by
comparing our results in the fully ergodic phase to Page’s
prediction for a Fock space of dimension D = 2V~ as
shown (by the dashed line) in Fig. 2 of the main text.

Variation of entanglement entropy with disorder:—
Our analytical analysis predicts the formation of a §-
independent plateau of the entanglement entropy in
regime III. In Fig. [4] we show the numerically calculated
entanglement entropy for the system sizes N = 14, 15, 16,
as a function of §, and for different partitions N4. For
the limited system sizes accessible to exact diagonaliza-
tion, the observation of a true plateau seems out of reach.
However, one can see the formation of the plateau around
0 = 1 which becomes more pronounced with increasing
N4 and N. At the same time, the value § = 1 defines
the “center” of regime III. This follows from the recent
work Ref. [3] by some of the present authors, where the
regimes [-IV were characterized in terms of their WFMs.
(On the same basis, 6 = 0.01 is well within regime I.)
While we cannot exclude a coincidence, the respective
regime centers as determined by wave function statistics
show the best agreement between numerics and analytics
for the entropies.

o5 ) with matrices p4 and p% acting in

GENERALIZATION

Within the above class of strong interaction coupled
models, there is some freedom in the specific realization
of the Hy eigenstates. Broadly speaking, this setup is

realized in 3 types of settings: i) The system may not
have any other geometry beyond that specified by the
matrix elements of Hy, as in a SYK model. i) The
single-particle eigenstates of H, may be localized in a d-
dimensional real-space, and the couplings in H, are such
that the long-range couplings dominate (e.g., a power-
law in space that decays slowly enough) [10]. In these
first two cases, as we take the limit of large IV, the spar-
sity of the interactions can be adjusted with N to set «,
but we require o > 0. #44) The single-particle eigenstates
of Hy may be all delocalized in real space. In this case,
even local interactions couple all-to-all and for density-
density interactions, for example, we will have o = 4.
In all three cases, as we take the limit of large N, the
strength of the interactions can be adjusted with N to set
B. Our analysis does not apply to models of MBL with
only short-range interactions (see e.g. the recent numeri-
cal study Ref. [TI1] on the multifractal scalings across the
MBL transition). At the same time, it does not specif-
ically exclude this case, and it seems natural that the
ergodicity picture extends to it. However the corrobora-
tion of that belief requires further study. (For very recent
work on the entanglement entropy of extended random
systems, see Ref. [12].)
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