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We study the resistivity of three-dimensional semimetals with linear dispersion in the presence
of on-site electron-electron interaction. The well-known quadratic temperature dependence of the
resistivity of conventional metals is turned into an unusual T 6-behavior. An analogous change af-
fects the thermal transport, preserving the linearity in T of the ratio between thermal and electrical
conductivities. These results hold from weak coupling up to the non-perturbative region of the
Mott transition. Our findings yield a natural explanation for the hitherto not understood large ex-
ponents characterizing the temperature-dependence of transport experiments on various topological
semimetals.

Introduction – Topologically protected nodal semimetals
are characterized by a linear energy-momentum relation
and can be viewed as a condensed-matter realization of
Dirac and Weyl high-energy particles [1, 2]. These mate-
rials are characterized by peculiar transport properties,
as a result of their non-trivial electronic bandstructure
and of conducting boundary modes. One of the most re-
markable phenomena is the negative magnetoresistance
of Weyl semimetals, a manifestation of the chiral anomaly
[3, 4]. The impact of impurity scattering on the conduc-
tivity of three-dimensional (3D) Dirac semimetals has
attracted a lot of attention: a residual conductivity is
found for short-range random potentials [5] but, at the
same time, some of the universal transport features char-
acterizing graphene emerge [6, 7]. While for small disor-
der, propagating Dirac fermions determine the transport
properties, localized states appear in the opposite limit
giving rise to the non-Anderson scenario [8].

The low-energy spectrum of Dirac and Weyl nodes in
3D cannot be gapped out by any symmetry-preserving
single-particle perturbation. On the contrary, many-
body effects, when dominant, lead to the breakdown of
this protection and open a gap [9, 10]. We focus on
the most fundamental and, at the same time, simplest
case of electron-electron interaction: a local intra-orbital
Hubbard repulsion U . The energy-momentum dispersion
and the density of states (DOS) of 3D Dirac semimet-
als are sketched in Fig. 1. The half-bandwidth D cor-
responds to an ultraviolet cutoff Λ on the momenta and
sets the energy scale from which the physics becomes
non-perturbative, eventually leading to a Mott transi-
tion of the Dirac cone. In this Letter, we investigate the
temperature dependence of the scattering rate as well
as of the bulk diagonal electrical and thermal resistivi-
ties, from small to larger values of the dimensionless U/D
parameter, by means of analytical and non-perturbative
numerical calculations.
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FIG. 1. (a) Dirac/Weyl dispersion (for kz=0) and DOS with
cutoff Λ in k-space and energy half-bandwidth, indicated by
D. (c) Temperature exponents for scattering rate and resistiv-
ity with Hubbard repulsion U , sketched in (b), comparing 3D
Dirac/Weyl semimetals against conventional Fermi liquids.

In the weak-coupling limit, we explicitly test the ap-
plicability to 3D Dirac semimetals of the Landau Fermi-
liquid theory, which is based on a one-to-one correspon-
dence between a system of interacting electrons and a gas
of asymptotically free fermions. In Fermi liquids (FL),
quasiparticle excitations are well defined if their charac-
teristic energy is larger than their inverse lifetime, pro-
portional to the scattering rate. If only electron-electron
interaction is present the resistivity vanishes at zero tem-
perature and grows as T 2. In 3D Dirac/Weyl semimetals,
the DOS goes however quadratically to zero, approach-
ing the Fermi level. This affects both the lifetime and
the effective number of carriers available for transport
leading to a characteristic and unexpected T 6-behavior
for the resistivity ρ. Interestingly, even away from the
neutrality point (E = 0), the power-law exponents re-
main fairly large (4 to 5) in a narrow though resolvable
window of dopings. This observation has relevant impli-
cations for transport properties of Dirac/Weyl materials,
such as WP2, MoP, Cd3As2, as well as Hg1−xCdxTe.
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Weak-coupling result – In the subspace of spin and or-
bital degrees of freedom, denoted by the Pauli matrices ~S
and ~τ respectively, the three-dimensional non-interacting
Hamiltonian considered in Fig. 1 reads

H0 = ~vSz ⊗ (~k · ~τ), (1)

where the momenta ~k live inside the sphere of radius Λ
and v represents the velocity, i.e. the slope of the linear
dispersion. The Hubbard U acts when the same orbital
is occupied by two electrons with opposite spins, i.e. here
we do not consider inter-orbital two-body terms.

In the weak coupling regime (U � D), perturbation
theory holds and the scattering rate Γ(ω) = − Im Σ(ω)
can be expressed as

Γ(ω) ∝ πV 3U2

(~v)9

∫
dε1dε2dε3δ(ω + ε1 − ε2 − ε3)

× (f1(1− f2)(1− f3) + (1− f1)f2f3) ε2
1 ε

2
2 ε

2
3, (2)

where V is the volume of the unit cell, fi indicates the
Fermi-Dirac distribution function of εi and the cutoff has
been set to infinity because of the weak-coupling condi-
tion. The quadratic behavior of the DOS enters explicitly
in the integrand (last three factors) and cannot be con-
sidered constant any more, as in conventional metals. An
analytic evaluation of (2) yields [11]

Γ(ω) ∝ 8πV 3U2T 8

(~v)9
P8(x) (3)

where x = ω/T and P8(x) = x8

8! + 7π4x4

960 + 31π6x2

1008 + 3π8

128 ,
with T implicitly including the Boltzmann constant kB .
The first unexpected outcome of this simple calculation
is therefore the much higher exponents entering the tem-
perature and energy dependence of Γ, compared to the
standard quadratic Fermi-liquid case [12].

Within the Kubo formalism we can compute the con-
ductivity σ making use of our analytical result (3) for
Γ(ω) and relying on the bubble approximation [13]. Cal-
culations can be further simplified by disregarding the ef-
fect of the real part of the self-energy, as done in Ref. [5]
and rewriting the conductivity in a Drude-Boltzmann
fashion. This is achieved upon introducing the “fω2”-
average of a quantity Q(ω)

〈Q〉fω2 =

∫
dω

[
−∂f
∂ω

]
ω2Q(ω)

/∫
dω

[
−∂f
∂ω

]
ω2

︸ ︷︷ ︸
N

, (4)

which leads to the definition of an effective number den-
sity neff/m

∗ = N/(6π2~3v) as well as a scattering time

τ = ~
〈

1

2Γ(ω)
+

3Γ(ω)

2ω2

〉

fω2

. (5)

Using these definitions, the conductivity assumes the
simple Drude form:

σ =
e2τneff

m∗
. (6)

This Drude-like formulation allows to disentangle the role
of the DOS entering in the factor neff/m

∗ from that of
the interaction, leading to a finite scattering time τ [14].
In conventional metals, the temperature dependence of
σ stems entirely from τ , as all other quantities in (6)
do not depend on T . In contrast, the parabolic DOS of
the 3D Dirac semimetal results in a quadratic behaviour
of the effective number density: neff/m

∗ = T 2/(18~3v).
Using the polynomial expression of Γ given in Eq. (3) and
considering that at low temperature the contribution of
the second term in Eq. (5) is irrelevant, we arrive at
τ ∝ T−8. The resistivity calculated from Eq.(6), i.e.
taking into account the temperature dependence of both
neff and of τ , shows hence the characteristic ρ ∝ T 6,
shown in the table of Fig. 1.

Beyond weak-coupling – By releasing the constraint
U � D and replacing perturbative analytic approaches
with numerical many-body methods, we can access the
intermediate-to-strong-coupling region. We do so using
fully dressed dynamical mean field theory (DMFT) [15]
Green’s functions in the Kubo expression [11]. As impu-
rity solver, we use the iterated perturbation theory solver
[16–19], which offers computational advantages maintain-
ing a fair accuracy for our purposes [11]. The resistivity
ρ as a function of T for different values of U and the
corresponding exponent ∂ log ρ

∂ log T are shown in Fig. 2. For
small U , where DMFT nicely reproduces our analytic
results (green curves and blue dashed line) as well as ap-
proaching the Mott transition located at Uc ≈ 5.5D, we
find that ρ scales as T 6, in striking contrast with the
T 2-resistivity of conventional metals. This particular be-
havior is not limited to low temperatures but remains
visible up to T ≈ 0.1D, as marked by the white region
in the phase diagram in Fig. 2. The green region at low
temperature around U/D ≈ 4 reflects the presence of a
low-energy kink in the T 6-resistivity behavior (see [11]).
Upon further increasing T at U <Uc the resistivity dis-
plays a smooth crossover to a linear regime (green lines in
Fig. 2 and dark green region in the phase diagram). Let
us mention, in passing, that bad-metal behavior char-
acterized by ρ ∝ T has been reported in several other
situations, from unconventional superconductors to the-
ories of hydrodynamic transport [20], in which however
the linear regime extends down to zero temperature.

On the other side of the Mott transition instead, the
typical exponential behavior of an insulating resistivity is
recovered (red line in the upper panel of Fig. 2 and blue
areas in the phase diagram). Close to the Mott transition
the exponent becomes very large, in analogy with the re-
sults for a semicircular DOS [21]. The parameter region
where ρ ∝ T 6 holds, is substantially larger than the cor-
responding T 2-one of conventional FL [21]. Since this is
controlled by the Kondo scale of the emergent local mo-
ments, we can infer that the Kondo screening in Dirac
and Weyl semimetals is strongly modified compared to
standard metals.
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FIG. 2. Top panel: DMFT results for the resistivity ρ of a
3D Dirac/Weyl semimetal at zero doping, as a function of the
temperature T for different values of the interaction strength
U/D (color bar), in units of ρ0 = 6π2~3v/(e2D). The dashed
lines indicate the asymptotic behavior for low temperature
and weak coupling and for large temperature, respectively.
Bottom panel: DMFT phase diagram, where the color indi-
cates ∂ log ρ

∂ log T
, i.e. the exponent of the T -dependence of ρ.

Finite doping – After having found the T−6 dependence
of the electrical conductivity, we examine how far this
persists upon doping the Dirac semimetal (µ 6= 0). Al-
ready a small doping adds contributions to the scattering
rate with lower exponents, down to T 2µ6. For ω= 0, an
analytic calculation yields [11]

Γ(ω=0) ∝ T 8Q6(y), (7)

where now y = µ/T and Q6(y) = 3π8+12π6y2+20π4y4+
8π2y6. When the temperature scale is substantially
smaller than the chemical potential, i.e. T / 0.2µ(T ),
the thermal broadening is negligible and the Dirac point
is sufficiently away in energy, such that it plays no role
for transport properties. In this case, the T 2 term in
Eq. (7) dominates and the scattering rate behaves simi-

lar to usual FL. When T is increased beyond 0.2µ, the
higher-order terms begin to contribute significantly. At
T >0.6µ (i.e. when the standard deviation of the deriva-
tive of the Fermi distribution (≈ 1.8T ) is roughly equal
to µ) the T 8 term wins.

This is confirmed by a DMFT calculation of ρ away
from the neutrality point, shown in Fig. 3. Upon in-
creasing the temperature at n=0.5 (dark blue circles), ρ
goes from T 6 directly to T . With a small but finite dop-
ing, the conventional T 2 Fermi-liquid behavior emerges
at low temperatures, in agreement with the analytical re-
sult (see Fig. 3). At larger temperatures, however, before
crossing over to the linear behavior, higher T -exponents
in ρ are clearly visible. The extension of this intermedi-
ate region depends on the doping level. As we will dis-
cuss below, the possibility of realizing fast-growing (even
though not necessarily a clean T 6) power-law resistivity
can play a crucial role for the explanation of experiments
on doped Dirac and Weyl semimetals. For larger devia-
tions from half-filling the resistivity goes instead directly
from quadratic to linear and the influence of the Dirac
fermiology in the intermediate region is suppressed.
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FIG. 3. DMFT results for the resistivity as a function of
temperature of a Dirac semimetal for different fillings at in-
teraction strength U = 2D. The inset shows data for Cd3As2
taken from Ref. [22].

Other sources of scattering – The precise way in which Γ
depends on ω stems from the nature of the one- and two-
body terms that we include in the model Hamiltonian.
These can be, for instance, a random disorder poten-
tial, an electron-phonon interaction, as well as different
parametrizations of the electron-electron repulsion, like
the intra-orbital Hubbard U considered here.

Within the self-consistent Born approximation
(SCBA), ImΣ arising from disorder is proportional to
the DOS – hence it is quadratic in ω – and to the
variance of the disorder distribution. As a consequence
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τ ∝ T 2. Interband transitions can be safely neglected.
This way the temperature in the expression for σ drops
out, yielding a residual resistivity at low T . The case
of (a weak) electron-phonon interaction is similar, the
only difference being an explicit (linear) temperature
dependence appearing in the variance of the distribution
of local displacements associated to classical phonons
above the Debye temperature. This leads to τ∝T 3 and,
upon plugging this into (6), to σ∝1/T . A third situation
which can be easily recasted in this simplified Drude-
Boltzmann-like framework is a long-range Coulomb
interaction at weak coupling strength: in this case, Γ(ω)
is given by max(ω, T ) [6, 7]. Interband contributions
matter and one obtains τ ∼ 1/T leading to σ ∝ T [11].
Having re-obtained these results make the comparison
of the various scattering mechanisms in three spatial
dimensions easy. Vertex corrections may introduce
modifications as it has been shown, for example, for
Dirac fermions in 2D, where transport and quasiparticle
scattering times get different T -dependences [23].

Specific heat and thermal transport – The dispersion
of Dirac/Weyl semimetals affects also other important
transport and thermodynamic coefficients. One relevant
example is the temperature behavior of the speficic heat.
In contrast to the usual renormalized linear behavior of
a conventional FL (cV ∝ T/Z, with Z being the quasi-
particle weight) for the undoped Dirac semimetals it de-
pends on the cube of the temperature (cV ∝ T 3/Z3) [24].
Similar as for ρ, doping away from the degeneracy point
introduces a conventional (linear) behaviour at low tem-

peratures: cV(T ) ∝ 7π4T 3

5Z3 (1 + ay2) with y = µ/T and

a = 5Z2

7π2 . The crossover between FL-like and Dirac-like
behavior happens at T ≈ 0.27Zµ, i.e. approximately the
same temperature as for the scattering rate. We calcu-
lated the specific heat within DMFT using the approach
outlined in Ref. [25]. The results confirm the trend given
by the analytic expression [11].

Similarly, our DMFT calculations of the thermal con-
ductivity yield results in sharp contrast to conventional
FL: we find κ ∝ T−5. In analogy to 1/σ shown in
Fig. 2, the thermal resistivity 1/κ displays a crossover
at T ∼ 0.1D, from T 5 to T 2. We can then conclude that
the κ/σ ratio is linear in T at low temperatures, which
represents a result compatible with a Wiedemann-Franz-
type of relation. Let us recall that this conclusion holds
roughly in the white region of the phase diagram of Fig. 2
and is reached within the bubble approximation for the
conductivities [11]. Relation to materials – First of all
it is important to stress that, even though we have so
far been explicitly referring to 3D Dirac semimetals, our
results apply also to the case of Weyl nodes, since these
are characterized by the same quadratic DOS. In the lit-
erature, high exponents for the resistivity have been re-
ported in some Dirac and Weyl semimetals, e.g. in the
type-II Weyl system WP2 [26], in the multifold-fermion

system MoP [27] and in the 3D Dirac semimetal Cd3As2

[22]. Data for the latter is shown in the inset to Fig. 3
(see [11] for the other compounds WP2 and MoP). As dis-
cussed above for the finite doping case, already a small
distance between the Fermi energy and the Dirac point
leads to the emergence of a conventional T 2-behaviour for
small T . Our results remain however applicable to the
intermediate temperature-region shown in Fig. 3, provid-
ing an interpretation for the observed T 4 behaviors of ρ
without any ad-hoc assumption.

Hg1−xCdxTe has been reported as a realization of
the so-called Kane-semimetal [28], i.e. a 3D zero-gap
Dirac system. Provided that the influence of the struc-
tural thermal expansion remains small, we expect the ap-
pearence of T 6 terms in the longitudinal resistivity. The
situation at the critical doping, where the gap closes,
is however disturbed by the presence of an additional
flat band. The Weyl semimetal realized in compressively
strained HgTe might offer a prosiming alternative, as it
avoids the disturbance of the heavy-hole band and re-
quires no fine-tuning of the doping [29].
Conclusions – In three-dimensional Dirac and Weyl
semimetals, the temperature power law of the scattering
rate originating from short-range electron-electron inter-
action gains as many as six powers, compared to con-
ventional FL. As a consequence, electrical and thermal
resistivities are altered dramatically and go up four pow-
ers of T : in Dirac/Weyl systems we indeed find ρ∝ T 6

and κ−1 ∝ T 5. These conclusions hold not only for
weak strengths of the Hubbard repulsion, where they
can also be derived analytically, but also in a substan-
tial region of the T -U phase diagram, essentially up to
the point at which the semimetal breaks down and is
turned into a Mott insulator. These particular tem-
perature exponents lead to an unusual situation: they
describe a strongly suppressed contribution to trans-
port from electron-electron repulsion at low tempera-
tures but they rapidly prevail upon increasing T , in the
intermediate-to-high regime. Interestingly, if we move
away from the Dirac/Weyl point, the temperature expo-
nent for the electrical resistivity is only slightly altered,
shifting to ρ ∝ T 4−5, offering a natural and simple expla-
nation to the so far elusive origin of the high exponents of
bulk diagonal transport coefficients measured in several
Dirac and Weyl materials.
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I. NUMERICAL CALCULATIONS

A. Iterated Perturbation Theory

Iterated Perturbation Theory(IPT) [1–3] is a simple implementation of dynamical mean-field theory(DMFT) [4].
IPT has the advantage that we can carry out the calculations on the real axis and therefore we don’t have to rely on
analytic continuation. We use a self-consistency scheme which consists of three steps:
First the local Greens function is computed (µ = 0 at half-filling and we set ~ = 1):

Gloc(ω) =
1

N

∑

k

[ω −H(k) + µ− Σ(ω)]−1. (1)

Then

G0 = (G−1
loc + Σ(ω))−1 (2)

is computed. Finally, a new self-energy is computed

Σ(ω) = −πU2

∫
dxdyρ(ω − x)ρ(y)ρ(y − x)(f(ω − x)f(y)f(x− y) + f(x− ω)f(−y)f(y − x)). (3)

and the loop is closed by computing a new Gloc(ω) using eq.(1). Here ρ(x) = − 1
π ImG0(x) and f is the Fermi

function.
In the case of the Dirac semimetal model defined in the main text, the Greens function is proportional to the identity
matrix and Eq.(1) can be rewritten as an integral over energy which can be solved analytically. In that case

Gloc(z) = 3(−z2 log((z −D)/(z +D))− 2zD)/2 (4)

with z = ω − Σ(ω) + iδ and cutoff D.
For finite doping a modified version of IPT has been proposed [3, 5]. In this case the self-energy ansatz is the following:

Σdoped(ω) = Un+

n(1−n)
n0(1−n0)Σ(ω)

1− (1−n)U−µ+µ̃
n0(1−n0)U2 Σ(ω)

(5)

where Σ is calculated using eq.(3). µ is the chemical potential and n the filling. n0 is the filling associated with

G0 = (G−1
loc + Σ(ω)− µ+ µ̃)−1 (6)

which replaces G0 in the self-consistency loop above. µ̃ is a free parameter which can be fixed by requiring that
n0 = n [6].
Because the self-energy is approximated using the second order diagram, IPT becomes correct in the weak-coupling
limit. For very strong coupling, i.e. in the atomic limit, the results IPT produces become exact again [2]. For
intermediate values of the interaction strength IPT is known to give qualitatively correct results with some quantitative
deviations of the critical coupling for the Mott transition with respect to exact solver.

ar
X

iv
:2

01
2.

07
88

6v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

4 
D

ec
 2

02
0



2

B. Electrical conductivity

Using the self-energy obtained with DMFT the conductivity is computed using a Kubo formula approach (see also
sec. IV)[7, 8]:

σ =
e2

6π2~2v

∫
dω

(
−∂f
∂ω

)∫
dε ε2

(
A2

+ + 2A+A−
)

(7)

where A± = − 1
π Im 1

ω∓ε−Σ(ω) , v is the velocity parameter and self-energy Σ(ω). The first term in the integrand

describes intraband-scattering and the second term interband-scattering. The results obtained with this approach are
shown in the main text in Fig 2. Note that for very small temperatures the results in the Mott phase are acquired by
fitting and extrapolation.
The green region around U/D ≈ 4 in the phase diagram (Fig. 3 in the main text) reflects a low-energy kink in the
resistivity (see Fig. 1). Indeed, above T/D ≈ 0.04 and below T/D ≈ 0.01 the resistivity goes as T 6 but with different
prefactors. Such kinks have been previously reported as a general consequence of strong electronic correlations in the
proximity of a Mott-Hubbard transition, see Refs. [9–11]. The kinks described there however, affect the conventional
Fermi-liquid behavior of the spectral and transport properties.

 1x10-10

 1x10-8

 1x10-6

 0.0001

 0.01

 1

 0.001  0.01

ρ
 /

 ρ
0

T / D

DMFT results
α T6

α T6

FIG. 1. DMFT results for the resistivity at U/D = 4. Here ρ0 = 6π2~2v
e2D

with half-bandwidth D. The dashed lines show the
asymptotic behaviour before and after the kink.

C. Thermal conductivity

We compute the thermal conductivity following Ref. 12, while taking inter- and intraband contributions into account:

κ =
kB

6π~2v

∫
dω
(ω
T

)2
(
−T ∂f

∂ω

)∫
dε ε2

(
A2

+ + 2A+A−
)

(8)

with A± = − 1
π Im 1

ω∓ε−Σ(ω) , self-energy Σ(ω) and Boltzmann constant kB . Note that we include a factor of kB in T .

Inserting the DMFT results for the self-energy in the above formula leads to the results displayed in Fig. 2 and
discussed in the main text.
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FIG. 2. DMFT results for the thermal resistivity κ−1 for different U at half-filling. Here κ0 = kBD
2

6π~2v with the Boltzmann

constant kB and half-bandwidth D. The crossover from T 5 to quadratic behavior is highlighted by the dashed guide-to-the-eye
fits. The results shown in the Mott phase for small T are obtained using a fit of the DMFT results.

II. ANALYTIC EXPRESSION FOR THE IMAGINARY PART OF THE SELF-ENERGY AT WEAK
COUPLING

For a Dirac semimetal the derivation of the scattering rate (i.e. the imaginary part of the self-energy) has to be
changed compared to the FL case [13] because we have to take the parabolic DOS into account.

A. Half-filling

Based on the second-order diagram and using the Dirac semimetal density of states N(ω) = 1
(~v)3ω

2 (which has

dimensions 1/[volume · energy]) the imaginary part of the local self-energy can be expressed as:

Σ
′′
(ω) ∝ − πV 3

(~v)9
U2

∫
dε1dε2dε3δ(ω + ε1 − ε2 − ε3)(n1(1− n2)(1− n3) + (1− n1)n2n3)ε2

1ε
2
2ε

2
3 (9)

where ni = f(εi) is the Fermi function and V is the volume of the unit cell. The proportionally symbol ∝ does not
include any dimensional factor. This can be rewritten as:

Σ
′′
(ω) ∝ − πV 3

(~v)9
U2 (ξ(ω) + ξ(−ω)) (10)

with

ξ(ω) =

∫
dε1dε2dε3δ(ω − (ε1 + ε2 + ε3))n1n2n3ε

2
1ε

2
2ε

2
3

=

∫
dα

2π
dε1dε2dε3e

iα(ω−(ε1+ε2+ε3))n1n2n3ε
2
1ε

2
2ε

2
3

=

∫
dα

2π
eiαωA(α)3.

(11)
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Here A(α) has been introduced which is given by

A(α) =

∫
dεe−iα̃εf(ε)ε2 (12)

with α̃ = α+ iδ.
For α ≥ 0 we can close the integration path in the lower complex half-plane:

A(α) = −2πiT
∞∑

m=0

e−α̃πT (2m+1)(πT (2m+ 1))2

= − iπ
3T 3

2

(3 + cosh(2πT α̃))

sinh(πT α̃)3
.

(13)

For α < 0 the same result is obtained when closing the path in the upper half-plane.
A(α) has poles at α+ iδ = in

T (n ∈ N) and vanishes at infinity. Therefore we we can evaluate eq.(11) by closing the

contour in the upper half-plane for ω > 0. Expanding A(α)3 in the vicinity of the n-th pole yields:

An(α)3 = 8i(−1)n

(
1

(α̃− in
T )9

+
7π4T 4

40(α̃− in
T )5
− 31π6T 6

504(α̃− in
T )3

+
3π8T 8

128(α̃− in
T )

+O(α̃− in

T
)

)
. (14)

Now the integral over the poles can be carried out:

ξ(ω) =

∫
dα

2π
eiαωA(α)3 =

∮
dz

2π
eizωA(z)3

= −8
∞∑

n=1

(−1)ne−nω/T
(
ω8

8!
+

7π4ω4T 4

40 · 4!
+

31π6ω2T 6

504 · 2!
+

3π8T 8

128

)

= +8
1

1 + eω/T

(
ω8

8!
+

7π4ω4T 4

40 · 4!
+

31π6ω2T 6

504 · 2!
+

3π8T 8

128

)
.

(15)

For ω < 0 we get a minus for closing in the lower half-plane but we also have to start the sum at n = 0 because the
poles are located at z = in

T − iδ. Thus in this case we have to take the pole at n = 0 into account which leads to the
same result as for ω > 0.
Finally:

Σ
′′
(ω) ∝ − πV 3

(~v)9
U2 (ξ(ω) + ξ(−ω)) = −8πV 3

(~v)9
U2

(
ω8

8!
+

7π4ω4T 4

40 · 4!
+

31π6ω2T 6

504 · 2!
+

3π8T 8

128

)
. (16)

B. Finite doping

For finite doping, the DOS in Eq. (9) has to be changed to εi → εi − µ. Then the shift ε1 → −ε1 leads to

Σ
′′
(ω) ∝ − πV 3

(~v)9
U2

∫
dε1dε2dε3δ(ω − (ε1 + ε2 + ε3))((1− n1)(1− n2)(1− n3) + n1n2n3)(ε1 + µ)2(ε2 − µ)2(ε3 − µ)2

= − πV 3

(~v)9
U2
( ∫

dε1dε2dε3δ(ω − (ε1 + ε2 + ε3))(n1n2n3)(ε1 + µ)2(ε2 − µ)2(ε3 − µ)2

+

∫
dε1dε2dε3δ(ω + (ε1 + ε2 + ε3))(n1n2n3)(ε1 − µ)2(ε2 + µ)2(ε3 + µ)2

)

= − πV 3

(~v)9
U2

(∫
dα

2π
eiαωA(α, µ)A(α,−µ)2 +

∫
dα

2π
e−iαωA(α,−µ)A(α, µ)2

)

(17)
with

A(α, µ) =

∫
dεe−iα̃εf(ε)(ε+ µ)2

= −2πiT

∞∑

n=0

e−απT (2n+1)(iπT (2n+ 1) + µ)2.

(18)



5

As for the half-filling case the poles of this expression are located at α̃ = in
T which allows to calculate the α integral

in the same way. This leads to

Σ
′′
(ω) ∝ − πV 3

(~v)9
U2
[ 1

16

(
3(πT )8 + 12(πT )6µ2 + 20(πT )4µ4 + 8(πT )2µ6

)

+ ω

(
19

210
(πT )6µ+

2

3
(πT )4µ3 +

1

3
(πT )2µ5

)
+ ω2

(
31

126
(πT )6 +

169

180
(πT )4µ2 +

4

3
(πT )2µ4 +

1

2
µ6

)

+ ω3

(
7

90
(πT )4µ+

2

3
(πT )2µ3 +

1

3
µ5

)
+ ω4

(
7

120
(πT )4 +

7

36
(πT )2µ2 +

1

12
µ4

)

− ω5 1

90
(πT )2µ+ ω6 1

180
µ2 + ω7 1

630
µ+ ω8 1

5040

]
.

(19)

III. ANALYTIC RESULTS FOR THE CONDUCTIVITY

Following Ref. [7] the two terms appearing in Eq. 7 yield

σintra =
e2

6π2~2v

∫
dω

(
−∂f
∂ω

)
(ω −∆(ω))2 + Γ2(ω)

2Γ(ω)
(20)

σinter =
e2

6π2~2v

∫
dω

(
−∂f
∂ω

)
Γ(ω) (21)

where Γ(ω) = − Im Σ(ω) and ∆(ω) = Re Σ(ω) We sum the two terms and recast the result by dividing and multiplying
the normalization factor

N =

∫
dω

(
−∂f
∂ω

)
(ω −∆(ω))2 (22)

and introducing

neff

m∗
=

N
6π2~3v

. (23)

With

τ = ~
〈 1

2Γ(ω)
+

3Γ(ω)

2(ω −∆(ω))2

〉
fω2

(24)

we arrive at Equation (6) of the main text. The inclusion of the real part of the self-energy, at variance with ref. [7]
will change only the definition of the intraband term Eq. (20) which is a renormalization of the effective number of
carriers due to the interaction-induced change of v.

We now consider different sources of scattering. The Scattering mechanism affects only the scattering time and not
the effective number of carriers which depends only on temperature. From Eq. (23) neglecting the effect of the real
part of the self-energy we have

neff

m
=

1

6π2~3v

∫
dω

(
−∂f
∂ω

)
ω2. (25)

The integral can be done giving

neff

m
=

T 2

18~3v
(26)

which shows a vanishing of effective number of carriers as temperature decreases due to the vanishing of the low
energy density of states. Now let N(ω) = Cω2 with C = 1

2π2~3v3 , then neff/m = π2v2N(T )/9.
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a. Local impurities : within Self Consistent Born Approximation (SCBA)

Γ(ω) = πs2V N(ω) (27)

where s is the strength of disorder local fluctuations, V the volume of the unit cell and N(ω) the density of states.
Assuming that N(ω) = Cω2 then Γ(ω) = πs2V Cω2 and using Eq. (5) of the main text we can calculate the scattering
time as

τ = ~〈 1

2πs2V Cω2
+

3πs2V C

2
〉fω2 . (28)

By scaling the temperature in the integrals appearing in Eq. (28) we obtain

τ = ~
(

3

2π3Cs2V T 2
+

3πs2V C

2

)
. (29)

The second term is negligible for small temperature. Then only (a part of) intraband transitions contribute to
the scattering. The scattering time diverges as the temperature approaches zero. However taking into account the
vanishing of the effective number of carriers (neff/m

∗ = π2v2N(T )/9) we arrive to a constant residual resistivity

σ =
e2v2~
6πs2V

. (30)

b. Classical phonons : this case is similar to that of local disorder if we consider classical phonons (Temperature
greater than Debye energy). Then using again SCBA we formally treat phonons as temperature-dependent disorder
with variance given by s2 = 2λTD where λ is the electron-phonon dimensionless coupling constant and D the cutoff.
Now s depends on temperature therefore scattering time diverges faster than the vanishing of effective number of
carriers leading to

σ =
e2v2~

12πλTDV
. (31)

and the resisitivity goes linearly as in the Fermi liquid case.

c. Long-range interactions : here Γ(ω) = αmax(ω, T ) [14, 15] with α being a coupling constant. The scattering
time obtained by Eq. (24) is thus

τ = ~
(

1

2αT
I1 +

3α

2T
I2

)
(32)

where

I1 =
3

4π2

(∫ 1

−1

dx
x2

cosh2(x/2)
+ 2

∫ ∞

1

dx
x

cosh2(x/2)

)
(33)

I2 =
6

4π2

(∫ 1

0

dx
1

cosh2(x/2)
+

∫ ∞

1

dx
x

cosh2(x/2)

)
. (34)

From Eq. (32) we notice that the temperature behaviour induced in the scattering time by intraband and interband
term is the same and gives a linear divergence for low temperature. However the effective number of carrier vanishes
more rapidly and the conductivity goes linearly to zero at low temperature producing a divergent resitivity.

d. Hubbard interaction : Using Γ(ω) = Γ0

(
a0ω

8 + a1ω
4T 4 + a2ω

2T 6 + a3T
8
)

with Γ0 and ai given in Eq. (16)
leads to

σ =
e2

6π2~2v
(α1

1

Γ0T 6
+ α2Γ0T

8). (35)

with α1 ≈ 0.0032 and α2 ≈ 530.91. At low temperature the second term can be neglected and we arrive at σ ∝ T−6

as discussed in the main text.
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IV. VERTEX CORRECTIONS

While vertex corrections to the spin/charge response functions can become very large in DMFT[16–20], their
effects on the electrical and thermal conductivities are customarily neglected. Indeed, at the level of single orbital
calculations in DMFT, all vertex corrections to the conductivities exactly vanish[4, 21] after performing the internal
momentum summations, as a result of the interplay between the pure locality of the two-particle irreducible vertex Γ
of DMFT[4, 22] and the odd parity of the current operator (red loop in Fig. 3) .

This symmetry argument applies, however, only to massive particles. In the Weyl case, instead, the current operator

v(α) = ∂kαH(~k) is a constant in momentum space, while it acquires a specific spin structure:

v(α) = σz ⊗ τα. (36)

Here boldface indicates a matrix in the spin and orbital space and α is the direction of the external field. In order to
show that the vertex corrections vanish in the Weyl case we can calculate the diagram appearing in the right panel
of Fig. 3 i.e.

VVV(α)(z, z′) =
∑

k

Gk(z)v(α)Gk(z′). (37)

In Eq. (37) sum over internal spin indexes, in each orbital sector, is implied. The Green’s function is given by

Gk(z) = [z1⊗ 1− σz ⊗ (~k · ~τ)]−1 or explicitly

Gk(z) =
1

z2 − |k|2
(
z1⊗ 1 + σz ⊗ (~k · ~τ)

)
. (38)

In Eqs. (37,38) z = ω − Σ(ω) with Σ(ω) being the self-energy. Using Eq. (38) in Eq. (37) we have

VVV(α)(z, z′) =
∑

k

1

z2 − |k|2
1

z′2 − |k|2
(
z1⊗ 1 + σz ⊗ (~k · ~τ)

)
(σz ⊗ τα)

(
z′1⊗ 1 + σz ⊗ (~k · ~τ)

)
. (39)

Since v is now even in k using Eq. (36) we are left with the following expression

VVV(α)(z, z′) =
∑

k

1

z2 − |k|2
1

z′2 − |k|2
(
zz′σz ⊗ τα + σz ⊗ (~k · ~σ)τα(~k · ~σ)

)
. (40)

Using the anticommutation relations for the Pauli matrix we arrive at

VVV(α)(z, z′) = σz ⊗ τα
∑

k

zz′ − |k|2
(z2 − |k|2)(z′2 − |k|2)

+ σz ⊗
∑

k

2kα(~k · ~τ)

(z2 − |k|2)(z′2 − |k|2)
. (41)

The second term in Eq. (41) can be further simplified noting that after summation in k only kατα term survives
leading to

VVV(α)(z, z′) = σz ⊗ τα
∑

k

zz′ − |k|2 + 2k2
α

(z2 − |k|2)(z′2 − |k|2)
(42)

as a consequence the whole spin structure of the diagram is embodied in the Pauli matrix τα.
Let us consider the simple bubble without vertex corrections:

B(0)(α)(z, z′) = Tr vαVVV(α)(z, z′) = Trσz ⊗ ταVVV(α)(z, z′) (43)

Inserting the expression for VVV from above leads to

B(0)(α)(z, z′) = 4
∑

k

zz′ − |k|2 + 2k2
i

(z2 − |k|2)(z′2 − |k|2)
. (44)

Using this equation and performing the sum over frequency it is possible to derive Eq. (7).
Now let us consider the vertex correction contribution to the conductivity bubble

B(z, z′) = TrVVV(z, z)Γ(z, z′)VVV(z′, z′). (45)
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In the previous equation the function Γ is local but is a tensor in the four-dimensional spin and orbital space.
Let us begin with the lowest-order vertex correction (left panel of Fig. 4). In that case the vertex Γηρθγ =
Γηρθγδθρδγη = Γηρρη = Γηρ is given by

Γ = Uσx ⊗ τ0 (46)

because the interaction couples different spin on the same orbital. The bubble including the lowest-order vertex
correction is then given by

B(1)(α)(z, z′) = VVV(α)
ηρ (z, z)ΓηρVVV(α)

ρη (z′, z′). (47)

When summing over the internal indices this expression is zero for all α, demonstrating the vanishing of the lowest-
order vertex correction to the bare bubble. Let’s recall that this cancellation is a consequence of the tensor structure
of the vertex given in Eq. 36 and a Hubbard repulsion without inter-orbital contributions.
This cancellation is also present for higher-order ladder diagrams (right panel Fig. 4)

B(i)(α)(z, z′) = VVV(α)
µκ (z, z) . . .ΓνγGνρGηγ · ΓηρVVV(α)

ρη (z′, z′). (48)

In fact, already the rightmost part of the diagram, i.e. all elements of the matrix Xηρ := ΓηρVVV(α)
ρη (z′, z′) =

ΓρηVVV(α)
ρη (z′, z′) vanish before even carrying out the sum over internal indices. This is due to the structure of Γ

which is non-zero only on the off-diagonal blocks and VVV which is non-zero only on the diagonal blocks.

FIG. 3. Left panel: the conductivity bubble including the vertex Γ. Right panel: definition of VVV. Here G is the Greens function
and v the current operator.

FIG. 4. Left panel: lowest order vertex correction. Right panel: higher-order ladder diagram.

V. SPECIFIC HEAT

The specific heat can be computed by evaluating the entropy [23, 24]:

S =
kB

2πiT

∫
dεN(ε)

∫
dω

∂f

∂ω
ω[logGR(ε, ω)− logGA(ε, ω)]. (49)

cv(T ) = kB
T

Z

∫
dydεN(ε)

y2ey

(ey + 1)2
A(ε, yT ). (50)
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with A(ε, ω) = − 1
π ImGR(ε, ω) = Zδ(ω − Zε). Here Z is the quasiparticle weight. This leads to:

cv(T ) = kB
T

Z

∫
dyN(yT/Z)

y2ey

(ey + 1)2
. (51)

For a quadratic dispersion N(ω) = 3
2(~v)3ω

2 this yields (including a factor of two for the two spin configurations):

cv(T ) = kB
1

(~v)3

7π4

5

T 3

Z3
. (52)

Doping away from the degeneracy point, i.e. N(ω) = 3
2(~v)3 (ω − µ)2, leads to

cv(T ) = kB
1

(~v)3

7π4T 3 + 5π2Z2Tµ2

5Z3
. (53)

Figure 5 displays DMFT results compared to the analytic formula for different fillings. The results show qualitative
agreement. The differences can be attributed to the fact that the spectral function of the DMFT results differs slightly
from the parabolic form which enters the analytic calculations.
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FIG. 5. DMFT (dots) and analytic (lines) results for the specific heat at different fillings (U/D = 1.0). c is given in units of
c0 = kBD

3/(~v)3.
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VI. RELATION TO REAL MATERIALS

The temperature range where Tα with α > 2 can be expected is restricted from below by the chemical potential,
i.e. the distance of the degeneracy point from the Fermi level, and from above by the ’effective cut-off’ Deff, i.e. the
extension of the linear dispersion in the band structure. For Cd2As3 the latter can be estimated using a summary
of different experimental and theoretical works presented in Ref. 25. There, an energy scale ED is given for the
Dirac cones which ranges from 20meV to several hundred meV . Because the dispersion starts to deviate from linear
behaviour already before ED is reached, we can use ED as an upper bound for the effective cutoff. Using the smallest
reported value ED = 20meV the upper bound in temperature: kBT = 0.1Deff can be estimated to be 23K which is
of the same order as the transition shown in Fig. 6. The transition from T 2 to Tα with α > 2 takes place at T ≈ 9K
which using kBT = 0.2µeff for the transition temperature yields µeff ≈ 4meV .
Note that the temperature dependence of the resistivity of Cd2As3 varies strongly between different samples measured
in Ref. 26. Not all samples show the α > 2 behaviour. This suggests that the exponent is strongly sensitive to sample
preparation and exact position of the chemical potential.
Figure 6 also displays data for MoP [27] and WP2 [28] which both show qualitative similar behaviour when compared
to Cd2As3.
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10-1
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FIG. 6. Experimental results for the resistivity as a function of temperature of Cd2As3 (taken from Ref. 26), MoP (taken from
Ref. 27) and WP2 (taken from Ref. 28).
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