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Abstract: We consider the problem of calculating the excitation spectrum of a gas of
nonrelativistic anyons. When the anyons have statistics close to fermionic and the statis-
tical angle has the form θ = π(1− 1

k ) where k is a large integer, the problem can be solved
by employing the method of bosonization, which maps the problem to that of an infinite
number of bosonic excitations coupled to a U(1) Chern-Simons gauge field. The spectrum
consists of a Goldstone boson branch and a large number of massive branches, each having
roton minima and maxima. The dispersion curves asymptote to the Landau levels at large
momentum.
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1 Introduction

It was recognized a long time ago [1] that in two spatial dimensions quantum mechanics
allows a much richer set of statistics besides Bose or Fermi statistics. The simplest non-
trivial possibility is the abelian anyonic statistics, in which the wave function changes by a
complex phase eiθ different from 1 or −1 under the exchange of two particles. Such statis-
tics appears in many quantum Hall states, for example in the ν = 1/3 Laughlin state [2],
as a property of the quasiparticle excitations [3, 4].

The statistics of an ensemble of anyons presents a nontrivial problem [5]. When the
statistical phase eiθ is different from 1 or −1, the statistical interaction between the anyons
cannot be ignored: a gas of anyons is never a “non-interacting” gas even when no additional
interaction between the anyons is present. One particular case is better understood than
the others: when the statistical phase has values θ = π(1 − 1/k) where k is an integer.
This includes the case of the so called “semions”—particles with statistics right in between
that of the boson and the fermion (k = 2). It can be shown (see section 2 below) that the
system is a superfluid at large k, and perhaps for all integer values of k down to k = 2.
This possibility was briefly considered, but then discarded, as a candidate for high-Tc
superconductivity.

At lowest energies the excitation spectrum of an anyon gas contains only the Nambu-
Goldstone boson of superfluidity. In this paper we investigate the spectrum of excitations of
this anyon gas beyond the Nambu-Goldstone boson. We show that at large k there are two
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momentum scales in the problem: the Fermi momentum pF and a smaller momentum scale
pF /k. The theory containing one Nambu-Goldstone boson describes only the physics below
the momentum scale pF /k (and the corresponding energy scale). We develop an effective
theory that is valid over a much larger energy and momentum scale: the momentum cutoff
of this theory is pF . We find that the gas exhibits a number of branches, each containing
roton minima and maxima. The number of branches and the number of roton minima and
maxima tends to infinity as k → ∞. Such roton-like features have been seen in previous
calculations using the random-phase approximation of the “semion” (k = 2) gas [6, 7].
While our calculations cannot be extrapolated to this case since we require the coupling
1/k to be small, our result is more reliable precisely due to the small parameter.

The paper is organized as follows. In section 2 we review the effective theory for
the Nambu-Goldstone boson. In section 3 we develop a bosonized description for Fermi
surfaces coupled to dynamical gauge fields in a Hamiltonian formalism, using the ‘higher-
spin’ theory of [8], and use it to compute the equations of motion for the Fermi surface.
In section 4 we solve the equations of motion to obtain a transcendental equation whose
solutions are the dispersion relations for the various modes of the Fermi surface. In section 5
we analyze the resulting spectrum of excitations and present the relation to Landau levels
through small and large momentum asymptotics. In section 6 we develop the effective
theory further to eliminate an unphysical zero mode from the spectrum by generalizing
Kelvin’s circulation theorem to our theory.

2 Effective theory for the Nambu-Goldstone boson of anyon superfluids

We consider a gas of nonrelativistic anyons which have a statistical angle θ of the form

θ = π

(
1− 1

k

)
. (2.1)

where k is an integer. The case k = 1 corresponds to bosons and k = 2 to the so-called
semions. We will consider the limit of large k, for which reliable calculations are possible.
This anyon gas can be modeled as a system of non-relativistic fermions at non-zero density
coupled to a U(1)−k Chern-Simons theory, with the action

S =
∫
d3x

(
iψ†D0ψ −

1
2mDiψ

†Diψ −
k

4πada
)

= Sψ − SCSk , (2.2)

where Dµ = ∂µ − iaµ is the covariant derivative, and we have denoted by Sψ and SCSk
the fermionic and Chern-Simons parts of the action, respectively. The non-zero density of
fermions fixes the vacuum expectation value (VEV) of the magnetic field 〈b〉 6= 0 via the
a0 equation of motion

ρ̄ ≡ 〈ψ†ψ〉 = k

2π 〈b〉. (2.3)

As far as we know, there has not yet been any experimental realization of this model,
since in all known experimental systems with abelian anyonic excitations, such as fractional
quantum Hall states, the anyons carry non-vanishing electric charge, while in this model
they are neutral.
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Using the random phase approximation (RPA), Refs. [9, 10] show that the anyon gas
forms a superfluid with a linearly dispersing Nambu-Goldstone boson. The most illuminat-
ing way to demonstrate this fact is to note that integrating out the fermion ψ cancels the
Chern-Simons term and results in the Maxwell action for aµ [11]. The Nambu-Goldstone
boson is just the massless photon in the resulting (2+1)D quantum electrodynamics.

Let us recall in more detail how this happens. At large k, we split up the gauge field
into mean-field and fluctuating components a = ā + δa. At the mean-field level, (2.3)
implies that the fermions fill exactly k Landau levels, resulting in a gapped system with
the gap given by the cyclotron frequency ωc = b/m. For the physics below the ωc energy,
the fermions can then be integrated out to obtain the low energy effective action for the
fluctuation in the gauge field.

Integrating out the fermions in k filled Landau levels amounts to computing the gener-
ating functional for the electromagnetic response of the integer quantum Hall effect. That
can be done using the formulas derived in Ref. [12] (see Eq. (66) therein) to quadratic level
and to lowest order in the derivative expansion the result reads

eiW [a] =
∫
Dψ eiSψ ,

W [a] = k

4π

∫ (
ada+ m

b2
e2 − k

m
(δb)2

)
+O(∂4).

(2.4)

In the anyon superfluid case, the low energy effective action is then given by the following,

eiSeff[δa] =
∫

[Dψ]eiS =
(∫

[Dψ]eiSψ
)
e−iSCSk ,

= ei(W−SCSk ),

=⇒ Seff[δa] = k

4π

∫ (
m

b
e2 − k

m
(δb)2

)
+O(∂4),

(2.5)

This action has a gapless excitation, since the lowest order term is the Maxwell term with
speed c2

s = kb/m2. A gapless gauge field in 2 + 1 dimensions is dual to a compact scalar
and hence describes a superfluid.

Note that this effective theory captures only the dynamics of the Nambu-Goldstone
boson of the anyon superfluid at low momenta. The momentum and energy cut-offs for
this theory are given by the cyclotron frequency ωc = b/m, or equivalently by the inverse
magnetic length 1/lb =

√
b. In order to explore the spectrum beyond these cut-offs, we

need to employ a different approach.

3 Coupling Fermi surfaces to gauge fields via bosonization

In the large k regime where the theory is weakly coupled, there exists an intermediate
regime of momentum above the cutoff momentum of the theory of the Nambu-Goldstone
boson, but below the Fermi momentum pF . This is the regime we will now be interested in.
One can obtain a quantitative description of the system by bosonizing the Fermi surface
using the ‘higher-spin’ formalism, developed in Refs. [8, 13] for fractional quantum Hall
states near half filling, and coupling it to dynamical fluctuations in the gauge field around
the uniform magnetic field.
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3.1 Fermi surface bosonization in a background magnetic field

We begin by reviewing the bosonization procedure for a Fermi surface. First we neglect
the fluctuations of the gauge field, considering the latter as a uniform static background.
The Fermi surface is bosonized by treating its shape as a dynamical field, decomposed into
angular channels,

pF (x, θ) = p0
F +

∞∑
n=−∞

un(x, θ)einθ, (3.1)

where x = (t,x) is a spacetime coordinate, and θ is the angular coordinate in momentum
space. We will drop the superscript 0 on p0

F from here on for convenience. The commuta-
tions relations for the Fourier components un can be obtained from single-particle Poisson
brackets in phase space [8],

[um(q), un(q′)] = 2π
pF

(
−bm
pF

δm+n,0 + qzδm+n,1 + qz̄δm+n,−1

)
(2π)2δ(q + q′) +O(u), (3.2)

where qz = (q1 − iq2)/2.
Let us recall one way the commutation relation (3.2) can be derived (see also Refs. [14–

16]). Denote by np(x) the distribution function which is 1 when p is located inside the
local Fermi surface at point x and 0 when p is outside. Using two arbitrary functions f , g
in phase space, we can construct two operators

F =
∫
d2x d2p

(2π)2 f(x,p)np(x),

G =
∫
d2x d2p

(2π)2 g(x,p)np(x).
(3.3)

which are implicitly functionals of the shape of the Fermi surface. The commutator of
these two operators must then obey

[F, G] = −i
∫
d2x d2p

(2π)2 {f, g}(x,p)np(x), (3.4)

where
{f, g} = ∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
− bεij ∂f

∂pi

∂g

∂pj
, (3.5)

is the canonical Poisson bracket of two phase space functions in the presence of a magnetic
field. For a zero temperature Fermi surface, np(x) is completely specified by the shape
of the Fermi surface, and we can write np(x) = θ(pF + u(x, θ) − |p|) as a step function
supported within the surface. Evaluating F,G to linear order in u results in an expression
for the left-hand side of (3.4) in terms of the commutator [u(x, θ), u(x′, θ′)], which can be
equated to the expression obtained by evaluating the right-hand side of (3.4) to zeroth
order in u. This results in an expression for the commutator of u with itself, which can be
Fourier transformed to obtained (3.2).

The kinetic equation of Landau’s Fermi liquid theory is equivalent to the equations of
motion derived from the quadratic Hamiltonian

H = vF pF
4π

∫
d2x

∞∑
n=−∞

(1 + Fn)un(x)u−n(x). (3.6)
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and the commutation relations (3.2). Here pF and vF are the Fermi momentum and
Fermi velocity, respectively, and Fn are the Landau parameters. In the case of a weakly-
interacting anyon gas at large k the Landau parameters are expected to be small, while pF
and vF are related to the magnetic field VEV b by

p2
F

4π = kb

2π , v2
F = p2

F

m2 = 2kb
m2 . (3.7)

In Fourier space the equations of motion has the form of a recursion relation1,(
ω + b

m
n

)
un = vF (qzun−1 + qz̄un+1) . (3.8)

We will also need the formulas relating the charge density and current to the the phase
space distribution:

ρ =
∫

q
nq(x) = ρ̄+ pF

2πu0,

ji =
∫

q
nq(x) q

i

m
= p2

F

4πm

(
u1 + u−1
i(u1 − u−1)

)
.

(3.9)

Here
∫

q ≡
∫
(d2q)/(2π)2, and ρ̄ = p2

F /4π is the average fermion density. These equations
give a physical interpretation to the Fourier components u0, u±1—they are the particle
number and momentum density to linear order.

The natural cutoffs for the description that has just been presented are the Fermi
momentum pF and the Fermi energy.

3.2 Gauge field fluctuations

The formalism that has been presented needs to be modified to take into account fluctuating
gauge fields. In the Hamiltonian formalism the spatial components δai are dynamical
variables; in contrast the temporal component a0 is a Lagrange multiplier imposing a
constraint. We need to find the commutators involving ai.

From the Chern-Simons action one reads out the commutators between the fluctuations
of a1 and a2:

[δaz(q), δaz̄(q′)] = π

k
(2π)2δ(q + q′), (3.10)

In order to obtain the modified Poisson brackets of the Fermi surface Fourier com-
ponents, one can make the following observation. Since the fields u0, u±1 constitute the
current and density, they can be identified with the fermion current and density obtained
from the microscopic action:

ρ = δSψ
δa0

= ψ†ψ,

ji = δSψ
δai

= − i

2mψ†
←→
D iψ.

(3.11)

1Our convention for Fourier transform is un(x) =
∫
q

un(q)eiqµx
µ

with the mostly positive signature.
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Comparing with (3.9), we can identify u0 and u±1 with the microscopic operators

u0 = 2π
pF

(
ψ†ψ − ρ̄

)
,

u1 = −2πi
p2
F

ψ†
←→
∂ zψ −

4π
p2
F

ψ†ψaz,

u−1 = −2πi
p2
F

ψ†
←→
∂ z̄ψ −

4π
p2
F

ψ†ψaz̄.

(3.12)

From these expressions and Eq. (3.10), we find that u1 and u−1 have nonzero commutators
with az̄ and az. It is convenient to separate the parts corresponding to the fluctuations of
ai from the operators u±1. Writing ai = āi + δai, where δai is the fluctuation of the gauge
field around the configuration āi that generates the uniform magnetic field, as well as using
the fact that ψ†ψ = ρ̄ + δρ = (pF + u0)2/4π ≈ p2

F /4π + pfu0/2π, the above expressions
can be linearized in the fields (un, δai) to obtain

u1 = ū1 − δaz,
u−1 = ū−1 − δaz̄,

ū1 = −2πi
p2
F

ψ†
←→
∂z ψ −

4π
p2
F

ψ†ψāz,

ū−1 = −2πi
p2
F

ψ†
←→
∂z̄ ψ −

4π
p2
F

ψ†ψāz̄,

(3.13)

where ū±1 is the fermion momentum density in the absence of the fluctuations of the gauge
field. Since the gauge-field fluctuations do not modify any of the other fields (in particular,
due to the mismatch in spin) so

ūn = un, n 6= ±1. (3.14)

Since the only consequence of turning on gauge field fluctuations is to modify the micro-
scopic definition of the fields u±1, we propose the following Poisson brackets for the fields:

[ūm(q), ūn(q′)] = 2π
pF

(
−bm
pF

δm+n,0 + qzδm+n,1 + qz̄δm+n,−1

)
(2π)2δ(q + q′), (3.15a)

[δaz(q), δaz̄(q′)] = π

k
(2π)2δ(q + q′), (3.15b)

[ūn(q), δai(q′)] = 0, (3.15c)

where the second line is obtained from the Chern-Simons action for the gauge field. Note
that b on the right hand side of Eq. (3.15a) is the VEV, and does not include fluctuations.
The reason we don’t include fluctuations is because we are working at linear order in un, δai
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at the level of equations of motion. We also note, for future use, the commutators,

[u1(q), δaz̄(q′)] = −π
k

(2π)2δ(q + q′),

[u−1(q), δaz(q′)] = π

k
(2π)2δ(q + q′),

[u1(q), u−1(q′)] = 0,

[u1(q), δb(q′)] = 2π
k
qz(2π)2δ(q + q′),

[u−1(q), δb(q′)] = 2π
k
qz̄(2π)2δ(q + q′),

(3.16)

where to obtain the last two lines we have used the fact that, in momentum space,

δb(q) = 2(qzδaz̄ − qz̄δaz). (3.17)

As a consistency check one can verify that [u1, u−1] = 0. This has to be true since
u±1 are the momentum densities of the anyons, their spatial integrals are the generators
of translations. Since the anyons don’t see any net magnetic flux due to the fact that the
flux attaches to the fermions, the generators of translations must commute, as they do.

The Hamiltonian retains its usual form in terms of the un-barred fields:

H = vF pF
4π

∫
d2q

(2π)2

∞∑
n=−∞

un(q)u−n(−q)

= vF pF
4π

∫
d2q

(2π)2

[ ∞∑
n=−∞

ūn(q)ū−n(−q)− [ū1(q)δaz̄(−q) + ū1(−q)δaz̄(q)]

− [δaz(q)ū−1(−q) + δaz(−q)ū−1(q)] + [δaz(q)δaz̄(−q) + δaz(−q)δaz̄(q)]
]
.

(3.18)

We can now commute the barred fields with the Hamiltonian to obtain the equations of
motion for ūn. These are the EFT analogs of the fermion equations of motion δS/δψ = 0.
We begin by commuting ūn with H for n 6= ±1, using the first line of (3.18). Noting that

[ūn(q), um(q′)] = [ūn(q), ūm(q′)], n 6= ±1,m ∈ Z, (3.19)

simplifies that calculation and we find

u̇n = ˙̄un = −i
(
− b

m
nun + vF (qzun−1 + qz̄un+1)

)
. (3.20)

Next, we compute the commutator of ū±1 with H to obtain

[ū1(q), H] = − b

m
u1 + vF [qzu0 + qz̄u2] + b

m
δaz(q),

[ū−1(q), H] = b

m
u1 + vF [qzu−2 + qz̄u0] + b

m
δaz̄(q),

(3.21)
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which implies the following equations for their time derivatives:

˙̄u1(q) = −i
(
− b

m
ū1 + vF [qzu0 + qz̄u2]

)
+ b

m
δaz(q),

˙̄u−1(q) = −i
(
b

m
ū1 + vF [qzu−2 + qz̄u0]

)
+ b

m
δaz̄(q).

(3.22)

Note that these can equivalently be written as equations for the time derivatives of the
un-barred fields u±1:

u̇1 = −i
(
− b

m
u1 + vF [qzu0 + qz̄u2]

)
− δ̇az,

u̇−1 = −i
(
b

m
u−1 + vF [qzu−2 + qz̄u0]

)
− δ̇az̄.

(3.23)

Putting these together in a compact form and Fourier transforming to frequency space, we
have (

ω + b

m
n

)
un = vF (qzun−1 + qz̄un+1) + iezδn,1 + iez̄δn,−1, (3.24)

where we have used Weyl gauge a0 = 0 to write ˙δai in terms of the electric field ei = fi0.
The equations of motion for the gauge field can be obtained by equating the low energy

expressions for the current to the variation of the Chern-Simons action,

δS

δaµ
= δSψ
δaµ
− δSCSk

δaµ
= 0,

=⇒ jµ = δSCSk
∂aµ

= k

4πε
µνρfνρ.

(3.25)

Plugging in the expressions (3.9), we find

k

2πδb = pF
2πu0,

ikez = p2
F

2mu1,

−ikez̄ = p2
F

2mu−1,

(3.26)

where δb is the fluctuation of the magnetic field around its expectation value. Only the
last two of these are genuine equations of motion in our Hamiltonian description, since
they describe the time derivatives of δai. The first one is the Gauss law constraint and
must be supplemented with our equations of motion. Naturally, our Poisson brackets and
Hamiltonian must reproduce the second and third line of (3.26) as well. Commuting δai
with H, we find the expressions

[δaz(q), H] = − b

m
(ū1(q)− δaz(q)) ,

[δaz̄(q), H] = b

m
(ū−1(q)− δaz̄(q)) ,

(3.27)
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which implies that the time derivatives are given by

δ̇az(q) = i
b

m
(ū1(q)− δaz(q)) = i

b

m
u1(q),

δ̇az̄(q) = −i b
m

(ū−1(q)− δaz̄(q)) = −i b
m
u−1(q),

(3.28)

in agreement with (3.26).
Finally we have the primary constraint,

C(q) ≡ pFu0(q)− kδb(q) ≈ 0, (3.29)

where we use ≈ as the symbol for ‘weak equality’ à la Dirac, i.e., the expression should
be set to zero after computing all Poisson brackets. C commutes with all the un-barred
fields, but doesn’t commute with δai:

[C(q), um(q′)] = 0

[C(q), δaz(q′)] = −2π
k
qz(2π)2δ(q + q′)

[C(q), δaz̄(q′)] = −2π
k
qz̄(2π)2δ(q + q′)

(3.30)

so it isn’t trivially satisfied and does indeed constrain the phase space. What needs to be
checked, in particular, is whether we generate any secondary constraints upon imposing

iĊ(q) = [C(q), H] = 0. (3.31)

The commutator with the Hamiltonian identically vanishes, since C commutes with um for
every value of m, and hence we generate no new secondary constraints.

4 Solving the equations of motion

We can use rotational symmetry to set, without loss of generality, qz = qz̄ = q/2. Further-
more, we introduce the dimensionless frequency ω̃ = ω/ωc = mω/b, where ωc is the cy-
clotron frequency, the dimensionless momentum z = mvF q/b = pF q/b, and λ = 2km/p2

F =
m/b to simplify our equations of motion to

(ω̃ + n)un = z

2(un−1 + un+1) + i
m

b
ezδn,1 + i

m

b
ez̄δn,−1,

u1 = iλez, u−1 = −iλez̄.
(4.1)

The Gauss law constraint doesn’t play a role in solving these, since all it does it determine
the fluctuation in the magnetic field δb in terms of u0, once u0 has been solved for from
these equations.

Imposing the boundary condition |un| → 0 as n → ±∞, we can solve the recursion
relation (4.1) for |n| ≥ 2 and express all un with n 6= 0 through two functions F (ω̃, z) and
G(ω̃, z):

un =

Jn+ω̃F (ω̃, z), n ≥ 1,
(−1)nJ−n−ω̃(z)G(ω̃, z), n ≤ −1.

(4.2)
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The remaining three equations of motion, corresponding to n = 0,±1 in (4.1), are

ω̃u0 = z

2[J1+ω̃(z)F − J1−ω̃(z)G],

(ω̃ + 1)J1+ω̃(z)F = z

2 [u0 + J2+ω̃(z)F ] + J1+ω̃(z)F,

(−ω̃ + 1)J1−ω̃(z)G = z

2 [u0 + J2−ω̃(z)G] + J1−ω̃(z)G.

(4.3)

Plugging the first equation into the second and third, we find

F (ω̃, z)
[(
ω̃ − z2

4ω̃

)
J1+ω̃(z)− z

2J2+ω̃(z)
]

= −G(ω̃, z)
[
z2

4ω̃ J1−ω̃(z)
]
,

G(ω̃, z)
[(
ω̃ − z2

4ω̃

)
J1−ω̃(z) + z

2J2−ω̃(z)
]

= −F (ω̃, z)
[
z2

4ω̃ J1+ω̃(z)
]
.

(4.4)

These equations give us a constraint on the dispersion relation:

0 =
(
ω̃2 − z2

2

)
J1+ω̃(z)J1−ω̃(z)− z2

4 J2+ω̃(z)J2−ω̃(z)

+ z

2ω̃

(
ω̃2 − z2

4

)
[J1+ω̃(z)J2−ω̃(z)− J2+ω̃(z)J1−ω̃(z)] . (4.5)

There are infinitely many solutions ω̃(n)(z) to (4.5), labelled by integers n ∈ Z. For
frequencies that obey (4.5), we find that the rest of the solution to (4.2) is given by

G(ω̃, z) = −F (ω̃, z)
[(

4ω̃2

z2 − 1
)
J1+ω̃(z)
J1−ω̃(z) −

2ω̃
z

J2+ω̃(z)
J1−ω̃(z)

]
,

u0(ω̃, z) = F (ω̃, z)
(2ω̃
z
J1+ω̃(z)− J2+ω̃(z)

)
,

(4.6)

with the function F (ω̃(n)(z), z) remaining arbitrary. Setting F = 1 determines the ‘plane-
wave’ solution for that mode.

4.1 Notation convention

From here onward we will use the following convention to label our solutions: a raised Latin
index in parenthesis labels the mode/solution, while a lower Latin index labels the Fourier
component of the function. For example u(0)

n labels the nth Fourier component of the zero
mode. Likewise u(1)

m labels the mth Fourier component of the 1st (Goldstone) mode. The
same holds for the dispersion relation; ω̃(n)(z) is the dispersion relation for the nth mode.

5 Spectrum of excitations and the rotons

One obvious solution to the equations is

ω̃(0)(z) = 0. (5.1)

We will argue, however, in Sec. 6 that this mode is unphysical.
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In the low momentum limit, since Jα(z) ∼ (z/2)α/Γ(α+ 1), the second and third term
in (4.5) contribute at a higher order compared to the first term, and the equation for the
dispersion relation simplifies to

z2

Γ(2 + ω̃)Γ(2− ω̃)

(
ω̃2 − z2

2

)
= 0. (5.2)

There are infinitely many solutions to this equation, corresponding to an infinite number
of branches of excitations. The lowest branch has linear dispersion relation,

(ω̃(1))2 = z2

2 =⇒ (ω(1))2 = 1
2v

2
F q

2. (5.3)

This is the Nambu-Goldstone boson, whose speed is given by

c2
s = v2

F

2 = kb

m2 , (5.4)

which agrees exactly with equation (6.8) in [10]. Equation (4.5) can be used to compute
the next correction to the dispersion relation of the Goldstone mode, which turns out to
be at order q3. We find

ω̃(1) = z√
2

(
1− z2

64

)
. (5.5)

The other branches at z = 0 correspond to the poles of the gamma functions in the
denominator. Since the gamma function has poles at nonpositive integer values, these
solutions correspond to (for positive frequencies only)

ω(n)

ωc
= ω̃(n) = n, n ∈ Z, n ≥ 2, (5.6)

which are Landau levels except for n = 0, 1.
The equation (4.5) is invariant under ω̃ 7→ −ω̃, and the spectrum is hence symmetric.

The negative frequency solutions can be ignored in the usual way.
We can also compute the large momentum asymptotics of these solutions. Using the

large-z asymptotic expansion of the Bessel function Jν(z), equation (4.5) becomes

− sin πω̃
4πω̃ z2 − cos 2z

π
+O

(1
z

)
= 0. (5.7)

which has the solutions

ω̃(n) = n+ (−1)n+14n
π

cos 2z
z2 +O

( 1
z3

)
, n ∈ Z, n ≥ 0. (5.8)

At large momentum, the spectrum reduces to the Landau levels, but now without skipping
the level with n = 1. The numerical solutions for the first few bands are plotted in Figure
1. We see that the excitation spectrum of an anyon superfluid is a deformation of Landau
levels with oscillations dying out at large momentum. The broadening of the bands also
reduces for higher Landau levels. The minima of the dispersion curve resemble the roton
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Figure 1: Spectrum of excitations for the anyon superfluid.

minimum in superfluid 4He. Previous studies using the random-phase approximation have
found a roton minimum in the spectrum of the Nambu-Goldstone boson in the semion gas
(k = 2 in our language) [6, 7].

Note that the Nambu-Goldstone branch corresponds to the Landau level index n = 1.
Here the deformation is large enough to close the gap with the zeroth Landau level, making
it the Nambu-Goldstone boson of the superfluid. We also observe repeated magnetoroton
minima (maxima) of decreasing depth (height) as momentum increases and as we go to
higher Landau bands.

The asymptotics are plotted in red along with the dispersion relation in Figure 1. The
asymptotics are accurate in the regime z � n for the nth Landau band, since this is the
regime of validity of the large argument expansion of the Bessel functions. However, as
evidenced by Figure 1, the asymptotics need to be improved in the regime z & n. We do
so in the next section.

We do, however, have an unphysical solution with zero energy at all values of momen-
tum. Our theory must hence be modified in order to get rid of this mode. We will return
to this problem later in section 6.

5.1 Analysis in θ-space

Since the asymptotics (5.8) do not agree with the numerical solution for z & n for higher
Landau bands, in this section we compute improved large momentum asymptotics for
the Landau bands by recasting the equations of motion (4.1) into an integro-differential
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equation in θ-space that takes the form:

ω̃u(θ) = i∂θu(θ) + (z cos θ)u(θ) + i
m

b

(
eze

iθ + ez̄e
−iθ
)
,

1
2π

∫
dθ e−iθu(θ) = i

m

b
ez,

− 1
2π

∫
dθ eiθu(θ) = i

m

b
ez̄.

(5.9)

Plugging the second and third equations into the first results in

ω̃u(θ)− i∂θu(θ)− (z cos θ)u(θ) = I[u, θ]

≡ i

π

(
sin θ

∫ 2π

0
dφ cosφ u(φ)− cos θ

∫ 2π

0
dφ sinφ u(φ)

)
. (5.10)

Recall that we had earlier set the momentum to be purely in the x-direction by invok-
ing isotropy in order to derive this equation. Restoring the y-component results in the
following:

ω̃u(θ)− i∂θu(θ)− pF
b

(qx cos θ + qy sin θ)u(θ) = I[u, θ]. (5.11)

In what follows, it will be easier to work instead with qx = 0, qy = zb/pF which gives us
the equation

ω̃u(θ)− i∂θu(θ)− (z sin θ)u(θ) = I[u, θ]. (5.12)

We treat the momentum z as a parameter, which makes this equation an eigenvalue equa-
tion for an integro-differential operator, with the eigenvalue being ω̃ and the eigenfunction,
u(θ).

The integro-differential equation (5.12) can be written in the form of the time-independent
Schrödinger’s equation on the Hilbert space of complex functions of θ with the Hamiltonian

H[u] = (i∂θ + z sin θ)u(θ) + I[u, θ] = H0[u] +H1[u]. (5.13)

In order to make this analogy precise, we need an inner product in θ-space that makes the
Hamiltonian Hermitian. It’s easy to see that the inner product,

〈f |g〉 ≡ 1
2π

∫ 2π

0
f∗(θ)g(θ)dθ, (5.14)

does the trick. Suppose the solutions to this equation are given by functions u(m)(θ). Since
the Hamiltonian is Hermitian, and we have reduced the equations of motion to an eigen-
value problem for a Hermitian integro-differential operator, we also have an orthonormality
condition on the solutions:

〈u(a)|u(b)〉 = 1
2π

∫ 2π

0
u(a)∗u(b)dθ = 0. (5.15)

At large z, the solution to H0 will be rapidly oscillating and hence H1 = I[_, θ] can be
treated as a small perturbation. We can then expand the eigenvalues and eigenvectors in
a perturbation series,

u(a)(θ) = u(a),0(θ) + u(a),1(θ) + . . . ,

ω̃a = ω̃(a),0 + ω̃(a),1 + . . . .
(5.16)
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Figure 2: Improved asymptotics for the dispersion relations.

The zeroth order solutions are the eigenfunctions and eigenvalues of H0:

u(n),0(θ) = e−i(nθ+z cos θ),

ω̃(n),0 = n ∈ Z.
(5.17)

The correction to the ‘energies’ at first order is then the expectation value

ω̃(n),1 = 〈u(n),0|H1|u(n),0〉

= 1
2π

∫ 2π

0
u(n),0∗I[u(n),0, θ] dθ

= 1
(2π)2

[ ∫ 2π

0
u(n),0∗(θ)eiθdθ

∫ 2π

0
u(n),0(φ)e−iφdφ

−
∫ 2π

0
u(n),0∗(θ)e−iθdθ

∫ 2π

0
u(n),0(φ)eiφdφ

]

= 2n
z
Jn(z)

(
−2∂Jn

∂z

)
.

(5.18)

The 1/z factor in front of this correction verifies that H1 can indeed be treated as a
perturbation at large z. Now, if we use the asymptotic expansion for Bessel functions with
large argument, we find that first order correction simplifies to

ω̃(n),1 = 2n
z

[√
2
πz

cos
(
z − nπ

2 −
π

4

)][√ 2
πz

sin
(
z − nπ

2 −
π

4

)]

= (−1)n+14n
π

cos 2z
z2 ,

(5.19)

which agrees with (5.8). We can also compute more accurate asymptotics by using the
large order, large argument asymptotic form of the Bessel functions:

Jν(ν secβ) =
√

2
πν tan β cos

[
ν(tan β − β)− π

4

]
+O

(1
ν

)
, (5.20)
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with ν = n and β = cos−1(n/z). This expression is only valid in the nth Landau level for
the region z ≥ n. Working out the leading order behaviour of the dispersion, we find

ω̃(n),1 = n− 4n
πz2 cos

[
2
√
n2 − z2 − 2n cos−1 n

z

]
. (5.21)

Note that for z � n we recover the large z asymptotics of (5.8). The improved asymptotics
are plotted in Figure 2. The improved asymptotic form is fairly accurate beyond the second
minimum in each Landau level.

6 Kelvin’s circulation theorem and the unphysical nature of the zero
mode

We now return to the problem of the mode with zero energy. We will argue in this Section
that this mode is unphysical and has to be eliminated from the quantum theory. The
idea is that such a mode corresponds to an operator (more precisely, an infinite number of
operators) which commutes with every other operator in the algebra, hence the states where
this operator has nonzero expectation value are unphysical, since they are inaccessible from
the ground state by any unitary transformation.

The operator that we will construct is a generalization of the vorticity in ideal hydro-
dynamics, which gives rise to the Kelvin circulation theorem. In a generalization of ideal
hydrodynamics called “chiral metric hydrodynamics” [17], which includes spin-2 operators
in addition to the density and velocity, such an operator also exists. Inspired by these
examples, we search for an operator of the form

Ω̃(q) = a0(q2)ū0 +
∞∑
n=1

an(q2)
(q/2)n [qnz̄ ūn + (−1)nqnz ū−n] (6.1)

Requiring this operator to commute with all other operators in the theory leads to the
following recursion relation

z(an+1 + an−1)− 2nan = 0, n ≥ 1 (6.2)

Demanding that an → 0 when n → ∞, the solution to this recursion relation is, up to an
overall coefficient

an(q2) = Jn(z) (6.3)

so
Ω̃(q) = J0(z)ū0 +

∞∑
n=1

Jn(z)
(q/2)n (qnz̄ ūn + (−1)nqnz ū−n) (6.4)

This can be written in terms of the “unbarred” un fields. By using 2(qzδaz̄−qz̄δaz) = δb =
pFu0/k we find

Ω̃(q) = −J2(z)u0 +
∞∑
n=1

Jn(z)
(q/2)n (qnz̄ un + (−1)nqnz u−n) (6.5)
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Let us now show that Ω̃(q) is nonzero only on the mode with zero energy. Setting
qx = q, qy = 0 without loss of generality in (6.5), we find

Ω
n

(q) = −J2(z)u0(q) +
∑
n≥1

[Jn(z)un(q) + (−1)nJnu−n(q)]

= −J2(z)u0(q) +
∑
n≥1

Jn(z)un(q) +
∑
n≤−1

(−1)nJ−n(z)un(q)
(6.6)

Now the solution for the zero mode is given by plugging in ω̃ = 0 into (4.2) and (4.6). Up
to an overall factor,

u
(0)
0 (z) = −J2(z)

u(0)
n (z) =

Jn(z), n ≥ 1
(−1)nJ−n(z), n ≤ −1

(6.7)

Using (6.7), the value of the Casimir, evaluated on a mode with amplitudes un(q), can be
written as

Ω
z

(q) =
∞∑

n=−∞
u(0)
n (q)un(q) =

∞∑
n=−∞

u(0)∗
n (q)un(q) (6.8)

Using the θ-space formalism of section 5.1, we see that the Casimir can also be written as
the inner product

Ω
n

[u] =
∫ 2π

0

dθ

2πu
(0)∗(θ)u(θ) = 〈u(0)|u〉 (6.9)

In particular, orthogonality of the solutions then implies that

Ω
n

[u(m)(θ)] = 〈u(0)|u(m)〉 ∝ δ0m (6.10)

Hence the Casimir vanishes for the non-zero modes, and does not vanish for the zero
mode. Thus the mode with zero frequency is unphysical and should be eliminated from
the spectrum.

7 Conslusion and Discussion

In this paper, we have calculated the excitation spectrum of a gas of nonrelativistic anyons
with statistical angle θ = π(1− 1

k ) for integer and large k. We have shown that the spectrum
consists of discrete branches which, at large momenta, have energy given by the energy
levels of the Landau levels in the effective magnetic field. At small momenta these “Landau
levels” are distorted, and the lowest excitation branch turns into a Nambu-Goldstone boson.
Each branch of the spectrum possesses series of roton maxima and minima.

That at large momentum the energy levels look like Landau levels can be explained
as follows. The excitations considered in this paper are neutral excitations and can be
interpreted as electron-hole bound states. In a magnetic field the distance between the
particle and the hole is proportional to the momentum carried by the pair, thus at large
momentum the distance between the two particles are large. The interaction between the
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particle and the hole can be neglected, and as both these particles live in a nonzero average
magnetic field, is then natural that the energy levels become multiples of the cyclotron
frequency.

It is interesting to compare our result with the spectrum of magnetorotons in the
fractional quantum Hall effect [13]. While our model is not directly applicable to fractional
quantum Hall states, a very similar procedure can be used to compute the dispersion
relations of excitations in FQH states, as in [13]. These excitations also have roton-like
minima and maxima. Our picture implies then that the dispersion curves of the neutral
excitations in the FQHE also look like Landau levels at large momentum. This is consistent
with the magnetorotons being a well separated particle-hole pair at large momentum.

The calculations performed in this paper are done to the leading order in the expansion
over 1/k. To this order the excitations that we found are stable. To find the decay rates
of the higher excitations one needs to go to subleading orders in 1/k. These also introduce
nonlinearities in the Poisson bracket (3.15) as well as the Hamiltonian (3.18) and it is
unclear apriori whether this expansion is resummable. We defer these calculations to
future work.

We thank Alexander Bogatskiy for discussion. This work is supported, in part, by the
U.S. DOE grant No. DE-FG02-13ER41958, a Simons Investigator grant and by the Simons
Collaboration on Ultra-Quantum Matter, which is a grant from the Simons Foundation
(651440, DTS).
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