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Macroscopic assemblies of interacting spins give rise to a broad spectrum of behav-

iors determined by the spatial arrangement of the magnetic sites and the electronic

interactions between them. Compounds of copper (II), in which each copper car-

ries spin 1
2 , exhibit a vast variety of physical properties. For antiferromagnetically

coupled spin sites, there are two limiting scenarios: spin chains in which the spins

can exhibit a long-range order or a mixture of dimers in which the spins within each

pair are entangled but do not communicate with the spins from other dimers. In

principle, the two types can be distinguished on the basis of experimental obser-

vations and modeling using empirically parameterized effective Hamiltonians, but

in practice, ambiguity may persist for decades, as is the case for copper oxalate.

Here we use high-level ab initio calculations to establish the validity of the nearest-

site Heisenberg model and to predict the interaction strength between the magnetic

sites. The computed magnetic susceptibility provides an unambiguous interpretation

of magnetic experiments performed throughout half a century, clearly supporting the

infinite spin-chain behavior of solid copper oxalate.

I. INTRODUCTION

Strongly correlated materials exhibit unusual properties, which are exploited in emerging

applications such as quantum information science and spintronics[1]. Physical properties

depend on the spatial arrangement and the strengths of electronic couplings between the

magnetic sites, as illustrated in Fig. 1. For example, chains of antiferromagnetically coupled

spins exhibit long-range spin correlations and a zero spectral gap at zero magnetic field. In
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FIG. 1: An assembly of interacting spins is described by the Heisenberg Hamiltonian. Depending

on the structure and strength of interactions, such system can exhibit vastly different physics. For

one-dimensional systems, the two limiting cases are spin chains in which the spins can exhibit a

long-range order or a mixture of dimers in which the spins within each pair are entangled but do

not communicate with the spins from other dimers.

contrast, an assembly of weakly coupled spin pairs has no long-range order and has a gap

at zero field. Both cases give rise to a bell-shape magnetic susceptibility curve χ(T ). In

both types of systems, the equilibrium state can be converted to a fully spin-polarized state

above saturation field, roughly equal to the exchange coupling. The differences between the

two cases can be seen at low temperatures, e.g., spin chains have finite χ(T ), in contrast

to dimers. The spectral gap and long-range order can also be probed by neutron scattering

experiments, e.g., dynamic structural factors for the spin-chains at zero field start at zero

energy and show characteristic sinusoidal shape, following the spinon dispersion relation

ε(k) = π
2
|J | sin k, as was illustrated for copper sulfate[2]; whereas the dimers are expected to

show flat bands at finite energy. In addition to their technological relevance[1], spin chains

are also fundamentally interesting—for example, they give rise to quantum criticality around

the saturation field[3, 4].

Copper (II) salts can behave both as antiferromagnetic spin chains[2, 4] and as spin-

paired dimers[5, 6]. When experimental data is limited to finite-temperature magnetic

susceptibility, as in the case of copper oxalate, one cannot confidently distinguish between

the two regimes without first-principle calculations. Here we report the first fully ab initio

determination of the effective Hamiltonian and macroscopic magnetic susceptibility for

copper oxalate. The results provide unambiguous interpretation of magnetic experiments



3

performed throughout half a century and clearly support the infinite spin chain behavior of

the solid copper oxalate.

As shown in Fig. 1, an infinite chain of spins can be treated with the XXX Heisenberg

Hamiltonian

H = −J
∑

i

SiSi+1, (1)

where the Si are local spins and J is the effective exchange constant. If the effective ex-

change constant is negative, the system adopts the antiferromagnetic singlet ground state

with opposite spin orientation of the adjacent magnetic centers. The case of S = 1/2 is

one of the few known quantum integrable models. Its exact solution is given by the Bethe

ansatz[7], which facilitated the development of solid-state physics and mathematics of in-

tegrable systems. The thermodynamic properties of this model are well-known and have

been used to explain experimental observables of real materials, containing, for instance,

copper[4, 8], vanadium[9], and magnesium[10] magnetic centers.

Despite its simplicity, the magnetic structure of copper oxalate has not been settled.

On the basis of susceptibility measurements, EPR, and EXAFS, both a dimer[11–13] and

an infinite spin chain Heisenberg models[14, 15] have been proposed and used to fit the

experimental data. Even after the determination of the crystal structure in 2014, the choice

of magnetic model remained open[13].

Even when the model is known, the first-principle determination of the effective exchange

constant is not trivial. The strongly correlated nature of magnetic systems combined with

their large sizes, pose a formidable challenge for quantum chemistry. Here we use state-

of-the-art wave-function methods based on equation-of-motion coupled-cluster (EOM-CC)

theory[16]. In contrast to popular broken-symmetry density functional theory, our approach

has no empirical or system-dependent parameters and does not rely on unphysical spin-

scrambled solutions. We begin with the full-electron treatment of model systems and use

the resulting wave functions to build effective Hamiltonians[17, 18], which afford a coarse-

grained description of the electronic structure and allow extrapolation to infinite systems.

This is the first application of the spin-flip EOM-CC method to describe a periodic system,

opening a new route in the treatment of periodic strongly correlated systems. Our theoretical
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results provide unambiguous interpretation of the magnetic measurements[11–15] of copper

oxalate performed throughout several decades.

II. RESULTS AND DISCUSSION
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FIG. 2: Top, left: Crystal structure of copper oxalate (CuC2O4). Top, right: fragments with 2,

3, and 4 copper atoms from the crystal. Middle: Localized orbitals defining the open-shell model

spaces. Bottom: Des Cloizeaux effective Hamiltonians built from the EOM-SF wave functions

in the basis of open-shell determinants. The energies are shifted to produce a zero trace. The

numbers in blue show the couplings between nearest neighbors. The numbers in red show the

couplings between distant centers.

The crystal structure[13] of copper oxalate, shown in Figure 2, reveals a regular pattern

of copper oxalate chains with a bidentate orientation of the oxalate ligands. We begin with

EOM-SF-CCSD/cc-pVDZ calculations for the fragments of increasing length (containing 2,

3, and 4 copper centers, as shown in Figure 2, and capped with hydrogen atoms). We use the

resulting energies and wave functions to build effective Hamiltonians[17, 18], which afford a

coarse-grained description of the electronic structure.
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The effective Heisenberg Hamiltonians for fragments built from these highly accurate

EOM-SF-CCSD calculations are shown in the middle panel of Figure 2. Bloch’s and des

Cloizeaux’s versions of the effective Hamiltonians are consistent with each other and yield

nearly the same values of effective exchange constants J , as shown in Table S2 in the SI. This

procedure provides a rigorous mapping between the full-electron description and effective

interactions between the magnetic centers. In particular, the resulting effective exchange

constant includes not only the contribution from the exchange integral, but also screening

and correlation effects, folded in by means of the Bloch wave operator. We then use the

Heisenberg Hamiltonian to obtain the states that are not reachable by a single spin-flip, as

was pioneered by Mayhall and Head-Gordon for single-molecule magnets[19].

Note that in these calculations we constructed the full Heisenberg Hamiltonian (as shown

in the pink box in Fig. 1), i.e., without assuming nearest-neighbor approximation or con-

straining all neighboring J to be the same. The analysis of these ab initio constructed

effective Hamiltonians clearly reveals antiferromagnetic spin interactions. The off-diagonal

elements decay rapidly with the distance between the copper centers, such that only the

nearest-neighbor spin couplings are significant. Non-nearest-neighbor couplings are about

1 cm−1 or less, which is comparable with the thresholds used in the calculations. To further

quantify the impact of neglecting the non-nearest neighbors contributions, we carried out

two additional numeric tests. First, we computed eigenvalues of the Heisenberg Hamiltonian

in which we zeroed the contributions from non-nearest neighbors and compared them with

the eigenvalues of the full Hamiltonian; the results are shown in Table S3 of the SI. As

one can see, the individual eigenvalues change by less than 0.5 cm−1 and the effect on the

spectral gap is of the same magnitude—for example, the difference between the highest and

the lowest eigenstate in the 4-copper Hamiltonian changes by 0.44 cm−1 due to the zeroing

out non-nearest neighbor elements, which is indeed small compared to the value of the gap

(301.07 cm−1). Second, we tri-diagonalized the full effective Hamiltonian for the 3 and 4

copper centers, so that the effect of non-nearest neighbor contributions is folded into the

remaining matrix elements. The results, which are shown in Fig. S2 in the SI, show that this

operation changes the value of the key matrix element (between the two middle coppers) by

only 0.63 cm−1. Therefore, we conclude that the nearest-neighbor approximation is indeed

fully justified for this system, such that the full Heisenberg Hamiltonian for the fragments

can be replaced by the XXX Heisenberg Hamiltonian for the infinite spin chain, Eq. (1),
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which we use to extrapolate the Hamiltonian to the limit of the infinite number of copper

centers. The effective exchange constants computed for the fragments of increasing sizes

(collected in Table S2) show little variation and converge rapidly with respect to the model

system size. Hence, for calculations of thermodynamic properties we use the |J | constant

from the middle of the 4-copper fragment (-178.1 cm−1).

To account for weak correlations beyond EOM-CCSD, we calculated a perturbative triples

correction using the (fT) model for a model dimer. Surprisingly, inclusion of triple excita-

tions leads to a more than 20% increase of |J | (42.7 cm−1), illustrating that weak correlations

are important for quantitative results. The direction of the change can be explained by the

Pauli repulsion principle. Pauli repulsion, which is already built-in in the wave-function at

the mean-field level by virtue of using Slater determinants, allows the electrons in the triplet

state to avoid each other. The resulting Pauli hole covers the errors due to an incomplete

description of the Coulomb hole, which requires electron correlation. Consequently, the cor-

relation effects are always smaller for triplet states[20] and improving correlation treatment

results in stabilizing singlets relative to triplets. Previous calculations of dicopper single-

molecule magnets suggested that the cc-pVDZ basis is nearly sufficient[21, 22]. To account

for a basis-set effect beyond cc-pVDZ, we performed EOM-SF-CCSD calculations for the

dimer with the cc-pVTZ basis set. These calculations show that this improvement of the

basis-set reduces the |J | value by 8.5 cm−1.

To account for spin–orbit interaction, which can split and shift energy levels, we computed

spin–orbit couplings (for the model dimer) using the Breit–Pauli Hamiltonian within spin–

orbit mean-field approximation and non-relativistic EOM-CC states. In these calculations

we used the EOM-DIP-CCSD ansatz, which can describe not only the lowest singlet and

triplet states (i.e., the Heisenberg states), but the entire manifold of the low-lying states

derived from different occupations of coppers’ d-orbitals. Although these states are relatively

far in energy from the lowest singlet/triplet pair (about 1.6 eV above the lowest singlet),

they are expected to be important for spin–orbit coupling by virtue of El-Sayed’s rule[23–

25], which says that states with different orbital occupancies give rise to large spin–orbit

interactions.

The EOM-DIP-CCSD ansatz, which can handle strong correlation well but underes-

timates weak correlation and orbital relaxation, overestimates the energy gap relative to

EOM-SF-CCSD (J = −388.6 cm−1 for the dimer). To correct for this limitation, we com-
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bined the EOM-SF-CCSD energy gap with EOM-DIP-CCSD spin–orbit couplings to evalu-

ate the effective |J |. Table S4 illustrates the convergence of the J constant with respect to

the the lowest singlet number of interacting states. We observe that both the lowest singlet

and the lowest triplet states interact strongly through the spin–orbit operator with higher

excited states. This interaction shifts both states, largely canceling the effect of the spin–

orbit coupling on the singlet-triplet gap. Nevertheless, the singlet interacts more strongly

with the excited states than the triplet does, which results in a substantial (13 %) increase

of antiferromagnetic |J | by 32 cm−1. We note that these results indicate that neglect of

the spin–orbit interaction in previous studies of di-copper single-molecule magnets might be

responsible for the reported systematic discrepancies between the theoretical and computed

J-values[21].

Table I summarizes the various contributions to the effective J and gives our best estimate

of J = −244 cm−1 = 30.25 meV. Comparing to other copper spin chains, this value is 33

times higher than that of copper pyrazine[4] and 118 times higher than of copper sulfate[2],

implying that a much stronger magnetic field (on the order of 400-500 T) would be required

to bring this system to the fully polarized spin state and into the quantum criticality regime.

TABLE I: Contributions to the effective exchange constant J , cm−1.
−178.1 Converged effective Hamiltonian
−42.7 Perturbative triples
−32 Spin–orbit shift
+8.5 Basis-set effects
−244 Total

To compare the computed effective exchange constants with the experimental observable,

one needs to compute macroscopic magnetic susceptibility χ(T ). Even with the solvable

Bethe ansatz, such calculations require additional approximations. Here we consider two

approaches: analytic classical and numeric quantum treatment of the temperature depen-

dence of χ(T ). In the classical treatment, the quantum Heisenberg Hamiltonian is mapped

onto the classical Heisenberg Hamiltonian[26]. The connection between the quantum and

classical parameters in the case of S = 1/2 is given by

Jquant/2 = J cl, (2)

gquant = gcl. (3)
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The analytic solution of the χ(T ) exists for the case of a classical linear spin chain with

nearest-neighbor approximation under the assumption of uniformness, meaning that Ji,i+1

and gi are the same for all local spins. The solution has the following form[26]:

χ(T ) =
N(gcl)2µ2

B

12kT

1 + u(K)

1− u(K)
, (4)

u(K) = cothK − (1/K), (5)

K =
J cl/2

kT
, (6)

where N is the number of centers, gcl is a classical electron g-factor (we assumed gcl =

gquant = 2), µB is Bohr’s magneton, and k is the Boltzmann constant. This expression

predicts a maximum on the susceptibility curve at:

kT cl
max ≈ 0.2382|J cl|. (7)

The analytic expression for quantum susceptibility is not known, but there are Padé

approximants[27] fitted to numerical curves with high quality. We used such a curve (Fit

1 in Table I in the Ref. [27]) for calculation of quantum magnetic susceptibility. The

susceptibility curve of a quantum infinite spin chain has a maximum at

kTmax ≈ 0.640851|J |. (8)

One can immediately see that for the same value of Jquant, the classical model yields Tmax,

which is about 5.4 times lower that of the quantum model. Conversely, using the classical

model to fit the experimental data would yield a 5.4 times larger effective exchange constant.

It is instructive to compare the predictions of the Heisenberg model with the dimer model,

which gives the well-known Bleaney–Bowers expression for magnetic susceptibility[5]

χdim(T ) =
NAg

2µ2
B

kT

2

3 + e−
J
kT

(9)

The susceptibility of the dimer reaches maximum at

kT dim
max ≈ 0.624|J |. (10)
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Thus, although based on very different physics, the dimer model yields very similar value of

Tmax, i.e., within 3% from the quantum susceptibility derived from the Heisenberg model.
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FIG. 3: Left: Classical and quantum susceptibilities of the XXX Heisenberg model and the sus-

ceptibility for a dimer model (Bleaney–Bowers expression) computed with J = −244 cm−1. Right:

Quantum susceptibility computed with the effective exchange constants from different approxima-

tions. J0 is the converged value of the exchange coupling constant from the 4-center fragment.

Jtot = −244 cm−1 is the overall value of the coupling that includes J0, perturbative triples, spin–

orbit shift, and basis-set extrapolation. The experimental data set 1 and 2 are from the Refs. [12]

and [28], respectively.

The results of the classical and quantum Heisenberg models and the dimer model are

shown in Fig. 3. The susceptibility of the classical spin model differs dramatically from the

quantum spin model (Figure 3, left), making the classical approximation not satisfactory

in the interpretation of the magnetic data. This is expected, since the susceptibility of the

classical model approaches the susceptibility of the quantum model only for the large spin on

each center[29]. Classical, quantum, and experimental susceptibility curves reach maximum

at 42 K, 225 K, and 260 K, respectively. The quantum dimer model gives the maximum at

219 K. The difference between the quantum infinite chain and the dimer Heisenberg models

in terms of the maximum position of the χ(T ) curve is not large, but the absolute values

are vastly different (the dimer model yields absolute values that are about 4 times higher).

In the SI (Fig. S4), we show the comparison between the quantum χ(T ) and the scaled as

well as scaled and shifted dimer’s χ(T ) curves. As one can see, if the dimer χ(T ) is scaled

to match the value of the quantum χ(T ) at its maximum, then the difference in the slope at

low and high temperatures is still clearly visible. One can scale and shifts dimer’s χ(T ) to

match both the maximum and the high-energy part of the curve (as was done in Ref. [13]),

but then the slope in the low-energy part remains visibly different. This analysis clearly



10

shows that the infinite chain model reproduces not only the absolute value of χ(T ) but also

the overall shape of the curve much better than the scaled and shifted dimer model.

We also see that the χ(T ) curve is broad and rather flat, which makes it difficult to

precisely extract Tmax from noisy experimental data. Hence, the comparison on the ba-

sis of the maximum may be misleading, and one should look at the overall shape. Near

zero-temperature results would be important to further highlight the discrepancy, but, un-

fortunately, there are no reliable data, as the study that attempted such measurements

clearly shows contamination of the sample[13].

The right panel of Figure 3 shows the impact of different effects on the overall mag-

netic susceptibility of the quantum spin chain model. The value of the effective exchange

constant from the 4-center fragment results in a susceptibility curve that is far from the

experimental one. Inclusion of spin–orbit effects and weak correlation through perturbative

triples improves agreement. The impact of the basis set is relatively small but it improves

agreement even further. The more effects that are included, the closer the agreement with

the experiment becomes.

Inelastic neutron scattering allows one to probe the manifold of spin states of a magnetic

system. The intensity of inelastic neutron scattering is proportional to the dynamic structure

factor, given by

Sσσ
′
(k, ω) =

∑

i

〈ΨGS|Sσk |Ψi〉 〈Ψi|Sσ
′

k |ΨGS〉 |δ(ω − ωi), (11)

where Sσk = 1√
N

∑N
j e

iqjSσj are the spin operators in the periodic representation, ΨGS and

Ψi are the ground and excited states, and ωi is the excitation energy of excited state Ψi.

Mixtures of weakly interacting antiferromagnetic dimers would have a sharp intensity peak

at the transfer energy matching the singlet–triplet gap[30, 31]. The energy position of the

peak does not depend on the momentum transfer k. In contrast, extended spin chains show

a characteristic dispersion law, where the intensity is large at the distribution of energies

and wave-vectors[32, 33]. Thus, future neutron scattering experiments for copper oxalate

could further confirm the infinite spin-chain model and tighten the experimental error bar

on the effective exchange constant.

The rigorously derived ab initio effective Hamiltonian for copper oxalate corresponds to

the infinite Heisenberg spin chain model and validates the nearest-neighbor approximation.
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This is the first purely theoretical validation of the XXX Heisenberg model that is based

on non-empirical all-electron many-body calculations and not relying on spin-symmetry

broken solutions. Our results show that both strong and weak correlation contribute to

the effective exchange constant, whereas the dependence on the basis set is relatively weak.

The spin–orbit interaction introduces a noticeable additional shift that further changes the

effective exchange constant. Only after accounting for all these effects, does the magnetic

susceptibility of the quantum spin model agree well with the experimental values[12, 28].

This is the first application of the EOM-SF-CC method to describe a periodic system,

opening a new route in the treatment of strongly correlated periodic systems. These results

provide a solid basis for future quantitative modeling of spin chains, including magnetic field

effects.

III. METHODS

Cartesian coordinates were extracted from the crystal unit cell parameters of copper

oxalate (CuC2O4) reported in Ref. 13. The crystal structure is composed of the polymer

CuC2O4 (Figure 2). The unit cell was repeated and the CuC2O4 stripes were extracted.

Hydrogen atoms were added to the oxygen ends of the chain with the corresponding to

oxalic acid bond lengths and angles. The Cartesian coordinates for all structures are given

in the SI.

All calculations were performed with the Q-Chem quantum chemistry package[34, 35].

We used Dunning’s cc-pVDZ and cc-pVTZ basis sets for all atoms[36–39]. Unrestricted

orbitals were used in calculations with open-shell references. To accelerate electronic struc-

ture calculations, we used single precision[40] for CCSD, intermediates, and EOM-SF-CCSD,

combined with the libxm library for tensor contractions[41].

We used the open-shell frozen natural orbital truncation of the virtual space[22] with the

truncation threshold corresponding to 99% of the total preserved occupation in the virtual

space. Core electrons were frozen in all calculations. Triples corrections were computed

using (fT) perturbative triples[42] for EOM-SF-CCSD. In the (fT) calculations for a model

dimer, the 40 lowest occupied orbitals were frozen for the dimer fragment.

Calculations of spin–orbit couplings[43] were performed using EOM-DIP-CCSD wave

functions[44].
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Bloch’s and des Cloizeaux’s effective Hamiltonians were built for the open-shell model

spaces of the determinants expressed in the open-shell localized orbitals following the pro-

cedure from Ref. [18]. Localized orbitals were determined using the Foster–Boys criterion

of localization[45].
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1 Effective Hamiltonians
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Figure S1: Bloch’s (B) and des Cloizeaux’s (C) effective Hamiltonians for the bi- and trinuclear
fragment. The energies are shifted to produce a zero trace.
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Table S1: 〈S2〉 of the reference determinants used in calculations and a comparison with spin-
pure solutions.
# of Cu 2 3 4
Spin-pure solution 2.00 3.75 6.00
UHF 2.007 3.760 6.013

Table S2: Effective exchange couplings J extracted with EOM-SF-CCSD/cc-pVDZ. Bloch’s
and des Cloizeax’s effective Hamiltonians provide nearly identical values of J .
# of Cu Bloch Des Cloizeaux
2 -176.96 -177.04
3 -176.87, -176.61, -0.38 -176.86, -176.60, -0.38
4 -177.34, -178.08, -177.26, -0.68, -0.72, -1.25 -177.34, -178.08, -177.26, -0.68, -0.72, -1.24

Table S3: Impact of truncation to the nearest neighbors on the eigenvalues of the des Cloizeaux
effective Hamiltonian. Eigenvalues (in cm−1) for the full and the truncated Hamiltonians are
shown.
# of Cu Full Nearest-neighbor truncation
3 -145.18, 27.20, 117.98 -145.25, 27.39, 117.86
4 -167.16, -44.25, 77.50, 133.91 -167.19, -44.40, 78.15, 133.44

 26.45    88.43    0.19

 88.43  -54.79  88.30
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Figure S2: Tridiagonalization of the des Cloizeaux (C) effective Hamiltonians for the tri- and
tetranuclear fragment.
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2 Spin–orbit calculations

As we noted in the main text, EOM-DIP-CCSD suffers from insufficient treatment of weak
correlation and orbital relaxation. However, the energy shift due to spin–orbit interaction does
not depend much on the value of the triplet–singlet gap (we report the results with the EOM-
SF-CCSD gap in the Table S4). This can be rationalized from El-Sayed’s rule: the Heisenberg
states have nearly the same orbital occupancies; therefore, there is no contribution from the
direct coupling between them. The relative energy gaps with the other excited states are much
larger, which makes the spin–orbit shifts insensitive to perturbations in the triplet–singlet gap
of hundreds of cm−1.

Table S4: Positions (cm−1) of the lowest singlet and triplet states after diagonalization of the
spin–orbit Hamiltonian of the binuclear fragment. Three components of the triplet states are
shown. The last column shows the effect of the spin–orbit couplings on the effective exchange
constant. The zero energy corresponds to the energy of the singlet state prior incorporation of
spin–orbit effects. The positions of the triplet states has been shifted by the same value prior
diagonalization of the spin–orbit Hamiltonians to reproduce EOM-SF-CCSD triplet–singlet gap
(177 cm−1).
# of states S T T T ∆J
2S,2T -65.3 177 177 177 -65.3
3S,3T -65.4 109.6 109.6 177 -20.5
4S,4T -75.0 109.5 109.6 177 -30.0
5S,5T -75.0 98.7 109.6 165.0 -22.4
6S,6T -75.1 95.1 100.3 152.6 -14.1
7S,7T -89.2 95.0 100.3 152.5 -28.1
8S,8T -90.1 86.7 92.1 146.1 -21.4
9S,9T -100.1 85.7 91.5 145.5 -30.7
10S,10T -100.9 85.7 91.5 145.5 -31.5
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3 Relationship between classical and quantum Heisen-

berg models

Hcl = −1

2

∑

i<j

J cl
ijs

cl
i · sclj −

1

2

∑

i

gcli βH · si, (1)

scl =
Scl

S
(2)

where the index cl denotes a classical quantity. The correspondence between quantum quanti-
ties and their classical analogies is established through the following relations:

JquantS2 =
1

2
J cl, (3)

gquantS =
1

2
gcl. (4)

For the convenience of the reader, we use consistent definition of the Heisenberg Hamilto-
nian and exchange constants. If comparison with other texts shall be made, one should
compare definitions of the Hamiltonians. For example, we use H = −∑

i<j J
our,quant
ij SiSj =

−1
2

∑
i 6=j J

our,quant
ij SiSj. Fisher used H = −∑

i 6=j J
Fisher,quant
ij SiSj. Therefore, JFisher,quant =

Jour,quant/2.

4 Comparison with experiment
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Figure S3: Comparison between our best theoretical estimate (Jtot = 244 cm−1) and experi-
mental measurements of two samples from the Ref.1.
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Figure S4: Comparison of susceptibility of the quantum infinite chain and dimer models. Two
graphs for the dimer are shown: solid green is the susceptibility of the dimer model that has
been scaled by the factor of 0.366; the dashed line is the susceptibility of the dimer model
that has been scaled by the factor 0.201 and shifted to match the susceptibility of the infinite
chain model. The weight 0.201 has been used in the Ref. 2. The shifted and scaled dimer
susceptibility represents the high-temperature region well, but leads to noticeable differences
at lower temperatures.
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Cartesian coordinates

$comment

Fractional atom coordinates within a unit cell.

The last column represents the partial charges,

used in the work.

$end

Cu 0.00000 0.00000 0.00000 0.35465

O 0.16200 0.16500 0.80300 -0.22450

O 0.21500 0.15500 0.39600 -0.14845

C 0.10900 0.09300 0.55300 0.19560

5 Relevant Cartesian geometries

$comment

2-center fragment.

Nuclear Repulsion Energy = 2461.71150178 hartrees

$end

$molecule

0 3

Cu 17.28721 16.65840 13.91353

Cu 15.10708 16.65840 18.55137

C 17.84352 16.14199 11.34880

C 15.66339 16.14199 15.98664

C 13.48326 16.14199 20.62449

C 18.91103 17.17481 11.84041

C 16.73090 17.17481 16.47826

C 14.55077 17.17481 21.11610

O 18.07284 15.74219 10.18934

O 16.86981 15.79772 12.07694

O 15.89271 15.74219 14.82718

O 14.68968 15.79772 16.71479

O 13.71258 15.74219 19.46503

O 12.50955 15.79772 21.35263

O 18.68171 17.57461 12.99987

O 19.88474 17.51908 11.11227

O 16.50159 17.57461 17.63772

O 17.70461 17.51908 15.75011

O 14.32146 17.57461 22.27556

O 15.52448 17.51908 20.38796

H 12.57480 16.30614 22.19545

H 19.76499 17.10589 10.24838

$end

$comment
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3-center fragment.

Nuclear Repulsion Energy = 3967.11437581 hartrees

$end

$molecule

0 4

Cu 17.28721 16.65840 13.91353

Cu 15.10708 16.65840 18.55137

Cu 12.92695 16.65840 23.18921

O 18.07284 15.74219 10.18934

O 16.86981 15.79772 12.07694

O 15.89271 15.74219 14.82718

O 14.68968 15.79772 16.71479

O 13.71258 15.74219 19.46503

O 12.50955 15.79772 21.35263

O 11.53245 15.74219 24.10287

O 10.32942 15.79772 25.99047

O 18.68171 17.57461 12.99987

O 19.88474 17.51908 11.11227

O 16.50159 17.57461 17.63772

O 17.70461 17.51908 15.75011

O 14.32146 17.57461 22.27556

O 15.52448 17.51908 20.38796

O 12.14133 17.57461 26.91340

O 13.34435 17.51908 25.02580

C 17.84352 16.14199 11.34880

C 15.66339 16.14199 15.98664

C 13.48326 16.14199 20.62449

C 11.30313 16.14199 25.26233

C 18.91103 17.17481 11.84041

C 16.73090 17.17481 16.47826

C 14.55077 17.17481 21.11610

C 12.37064 17.17481 25.75394

H 10.44057 16.21315 26.86015

H 19.76363 17.09192 10.22868

$end

$comment

4-center fragment.

Nuclear Repulsion Energy = 5625.96870548 hartrees

$end

$molecule

0 5

Cu 17.28721 16.65840 13.91353

Cu 15.10708 16.65840 18.55137

Cu 12.92695 16.65840 23.18921

Cu 10.74682 16.65840 27.82706
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O 18.07284 15.74219 10.18934

O 16.86981 15.79772 12.07694

O 15.89271 15.74219 14.82718

O 14.68968 15.79772 16.71479

O 13.71258 15.74219 19.46503

O 12.50955 15.79772 21.35263

O 11.53245 15.74219 24.10287

O 10.32942 15.79772 25.99047

O 9.35232 15.74219 28.74071

O 8.14929 15.79772 30.62831

O 18.68171 17.57461 12.99987

O 19.88474 17.51908 11.11227

O 16.50159 17.57461 17.63772

O 17.70461 17.51908 15.75011

O 14.32146 17.57461 22.27556

O 15.52448 17.51908 20.38796

O 12.14133 17.57461 26.91340

O 13.34435 17.51908 25.02580

O 9.96120 17.57461 31.55124

O 11.16422 17.51908 29.66364

C 17.84352 16.14199 11.34880

C 15.66339 16.14199 15.98664

C 13.48326 16.14199 20.62449

C 11.30313 16.14199 25.26233

C 9.12300 16.14199 29.90017

C 18.91103 17.17481 11.84041

C 16.73090 17.17481 16.47826

C 14.55077 17.17481 21.11610

C 12.37064 17.17481 25.75394

C 10.19051 17.17481 30.39178

H 8.22335 16.31273 31.45165

H 19.74448 17.10907 10.23780

$end
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