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Motivated by the highly one-dimensional edge state due to a Dirac nodal line the system in single-component molecu-
lar conductor [Pt(dmdt)2], we investigate the magnetic properties of both [Pt(dmdt)2] and [Ni(dmdt)2], which are related
materials by element substitution, by real-space-dependent random-phase approximation (RPA) in three-orbital Hubbard
models with spin–orbit coupling, where these models are constructed using first-principles calculations. We calculate
longitudinal and transverse spin susceptibilities by three-dimensional real-space-dependent RPA. We find that the he-
lical spin-density wave (SDW) with incommensurate nesting of the Fermi arcs is induced at the edge by the Coulomb
repulsion. We also find that the magnetic structure of the helical SDW can be changed by extremely small carrier doping,
which is controllable in molecular conductors.

1. Introduction
In condensed matter physics, Dirac electron systems are

unconventional electronic states that have linear energy dis-
persions near the Fermi energy, which induce novel electronic
properties such as quantum transport phenomena,1–4) large
diamagnetism,5, 6) and anomalous magnetic responses.7–10)

Graphene, for example, is an ideal two-dimensional massless
Dirac electron system, where the π electron on the graphene
honeycomb sheet acts as a massless Dirac electron.11, 12)

Strongly correlated Dirac electron systems in two-
dimensional organic conductors have been observed in α-
(BEDT-TTF)2I3 and similar substances via element sub-
stitution.13–19) In fact, α-(BEDT-TTF)2I3 exhibits a metal–
insulator transition between the Dirac electron phase and the
charge-ordered phase induced by nearest-neighbor Coulomb
interactions,20–22) where anomalous spin–charge separation
on spin gaps23, 24) and transport phenomena occur.25–27) Fur-
thermore, Coulomb interactions induce anomalous magnetic
responses owing to the reshaping of the Dirac cone, ferri-
magnetism, and spin-triplet excitonic fluctuations in the Dirac
electron phase.7–10) The effects of anions (I−3 ) and spin–orbit
interactions (SOI) are also of interest to researchers.28, 29)

When the node of a two-dimensional Dirac electron sys-
tem is extended in the three-dimensional direction, it be-
comes a Dirac nodal line.30–33) If the Dirac nodal line
forms a closed curve, it is called a Dirac nodal ring sys-
tem. There are various Dirac nodal line/ring systems, such
as graphite,11) transition-metal monophosphates,34) Cu3N,35)

antiperovskites,36) perovskite iridates,37) hexagonal pnictides
CaAgX (X = P, As),38) and the single-component molecu-
lar conductors [Pd(dddt)2]39–46) and [Pt(dmdt)2].47, 48) Dirac
nodal line/ring systems exhibit novel electronic properties
that differ from those of two-dimensional systems, such
as flat Landau levels,49) the Kondo effect,50) long-range
Coulomb interaction,51) and quasi-topological electromag-
netic responses.52)

Recently, the depletion of magnetic susceptibility has been
observed in [Pt(dmdt)2].47) This anomalous magnetic re-
sponse suggests the existence of electron correlation effects

similar to those observed in the organic Dirac electron system
α-(BEDT-TTF)2I3.7–10) Using a three-orbital tight-binding
model based on density functional theory (DFT) calculations,
we also discovered an extremely flat edge state that is topolog-
ically assigned on a specific surface of [Pt(dmdt)2].48) The lo-
cal density of state (LDOS) at that specific edge has logarith-
mic peaks and very high values near the Fermi energy. This
result strongly suggests magnetic instability at that specific
edge. However, the magnetic properties have not yet been elu-
cidated.

In this study, we investigate a possible edge-induced spin-
density wave (SDW) in a three-orbital Hubbard model de-
scribing the Dirac nodal line systems of the single-component
molecular conductors [Pt(dmdt)2] and [Ni(dmdt)2]. We ob-
serve incommensurate nesting on the Fermi arc of the edge
state. Using real-space-dependent random-phase approxima-
tion (RPA), we show that, in the vicinity of charge neutral,
SDW is induced on the expected surface because of nesting
and Coulomb interactions. Because the strength of nesting
and the nesting vector are quite sensitive to carrier doping,
observations on the magnetic structure will precisely deter-
mine the amount of carrier doping.

In Sect. 2, we develop three-orbital tight-binding models
of [Pt(dmdt)2] and [Ni(dmdt)2] based on the Wannier fitting
of the first-principles calculation. In addition, we incorporate
spin–orbit coupling (SOC) into the model based on the Kane–
Mele model.53–55) We then revise the tight-binding model of
[Pt(dmdt)2] created in our previous study,48) because the re-
vised model is more convenient than the old one. In Sect. 3,
we derive the longitudinal and transverse spin susceptibilities
on the basis of the real-space-dependent RPA of the Hubbard
model. In Sect. 4, we calculate the edge state and LDOS of
[Ni(dmdt)2] at the edge. In Sect. 5, we calculate the longi-
tudinal and transverse spin susceptibilities of [Pt(dmdt)2] and
[Ni(dmdt)2] by real-space-dependent RPA, and we discuss the
magnetic structure at the edge. In Sect. 6, a summary and a
discussion are given. Finally, in Appendix, we discuss the va-
lidity of the three-orbital tight-binding model of [Ni(dmdt)2].
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2. Tight-Binding Model
In this section, we construct tight-binding models of

the single-component molecular conductors [Pt(dmdt)2] and
[Ni(dmdt)2] on the basis of the Wannier fitting of the first-
principles calculation. The microscopic models of many
molecular conductors such as the BEDT-TTF system can be
constructed with one molecular orbit, which extends through-
out a molecule. However, those of the single-component
molecular conductors are constructed with multiple orbits in
a molecule, which is called fragment orbits.56–59) We have al-
ready developed a tight-binding model of [Pt(dmdt)2] in our
previous study.48) However, it is inconvenient to calculate the
edge state and spin susceptibility. Therefore, we reconstruct
that old model into a clear representation in this study. Be-
cause the model of [Ni(dmdt)2] is formally the same as that of
[Pt(dmdt)2], we uniformly represent the tight-binding models
of the two materials. Their differences are in hopping energies
and site potentials.

First, we calculate the energy band structure of [Ni(dmdt)2]
using Quantum ESPRESSO,60) a first-principles calculation
package, on the basis of the results of X-ray structure analysis.
Figure 1(a) shows the energy band structure determined by
first-principles calculations. The horizontal axis connects the
symmetry points in the first Brillouin zone (BZ), whereas the
vertical axis is the energy measured from the Fermi energy.
In our previous study,48) we determined that three isolated en-
ergy bands exist in [Pt(dmdt)2]. However, because the corre-
sponding three energy bands of [Ni(dmdt)2] are close to the
other bands, they can have degenerate points with the others.
Therefore, we perform Wannier fitting on the six bands near
the Fermi energy εF and construct a six-orbital tight-binding
model using RESPACK,61) which is a software program used
for Wannier fitting. However, we find that the three bands near
the Fermi energy are not degenerate with the other bands and
can be separated as in the model. We discuss more details of
this phenomenon in Appendix.

We perform Wannier fitting for the three bands and cre-
ate the three-orbital tight-binding model again. Figure 1(b)
shows that Wannier fitting reproduces the first-principles cal-
culation. The red lines and purple circles show the energy
bands obtained by the first-principles calculation and Wan-
nier fitting, respectively. Figure 1(c) shows the Wannier or-
bits of [Ni(dmdt)2], wherein orbits A(C) and B are distributed
throughout the dmdt molecule and Ni atom, respectively. Or-
bit B is a d-symmetry orbit, whereas orbits A and C are p-
symmetry orbits.

The Hamiltonian of the tight-binding model incorporating
SOC based on the Kane–Mele model53–55) is defined as

H =
∑

<i,α: j,β>,s

ti,α; j,βc
†

i,α,sc j,β,s

+ iλ
∑

<i,α: j,β>,s

νi,α: j,βti,α; j,βc
†

i,α,sσ
z
ssc j,β,s,

(1)

where s is the spin index, i and j represent unit cells, and α and
β are orbits. tiα; jβ is the hopping energy, which is obtained via
Wannier fitting. λ and σz

ss are the SOC constant and diagonal
component of the Pauli matrix σ̂z, respectively, for simplicity,
because each unit cell has a flat molecule. νiα; jβ takes a value
of either 0 or ±1, which is determined by the outer product
of the momenta and gradient of the potential energy P × ∇U.

Fig. 1. (Color online) (a) Energy band structure of [Ni(dmdt)2] deter-
mined by first-principles calculation. The horizontal axis represents con-
nected symmetry points in BZ. (b) The red lines represent the band struc-
ture of [Ni(dmdt)2] determined by first-principles calculation. The purple
circles represent the energy band structure obtained by Wannier fitting. (c)
[Ni(dmdt)2] molecule and Wannier orbits A, B, and C. The red circle repre-
sents a Ni atom.

The qualitative band structures presented in this study are ro-
bust for any other treatment of SOC, although in a quantitative
discussion, it will be necessary to treat the SOC constant and
spin as vector quantities in consideration of the anisotropy of
SOC.?) By using the Fourier transform, we can rewrite Eq. (1)
as

H =
∑

k,α,β,s

H(k)α,β,sc
†

k,α,sck,β,s, (2)

where k is the wavenumber vector. We obtain the hopping
energies and site potentials via Wannier fitting of the first-
principles calculation. Using the hopping energies, we cre-
ate a three-orbital tight-binding model of [Ni(dmdt)2]. In this
study, we use hopping energies with absolute values that are
larger than 0.010 eV and incorporate SOC on the basis of
the Kane–Mele model. Figure 2(a) shows a schematic of the
tight-binding model in the b-c plane, whereas Fig. 2(b) shows
the hopping energies, which include hopping along the a-axis.
The magenta arrows(t4 and t5) represent the hopping energies,
which are affected by SOC. In this study, the unit of energy
is eV. With the hopping energies, the matrix elements of the
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Hamiltonian are expressed as

Fig. 2. (Color online) (a) Schematic of the tight-binding model in the b-c
plane. The unit cell is shown by the broken line. (b) Schematic of the tight-
binding model that includes hopping along the a-axis. The blue and green
lines are drawn to guide the eye. The blue lines are parallel to the a direction.
The green lines connect the molecules in the same b–c plane.

HAA,s(k) = −2t9 cos ka,

HAB,s(k) = t13ei(−ka+kb+kc) − t1

+ t5(1 + iλσ)ei(kb+kc) + t4(1 − iλσ)eikc ,

HAC,s(k) = −t11ei(−ka+kb+kc) − t12ei(ka+kc) − t6

− t3eikc − t2ei(kb+kc),

HBB,s(k) = ∆ + 2t7 cos (kb + kc) − 2t8 cos kc

− 2t10 cos ka,

HBC,s(k) = t13ei(−ka+kb+kc) − t1

+ t5(1 − iλσ)ei(kb+kc) + t4(1 + iλσ)eikc ,

HCC,s(k) = −2t9 cos ka,

(3)

where ka, kb, and kc are the components of the wavenum-
ber k. All lattice constants are defined to be 1. Because the
Hamiltonian of [Ni(dmdt)2] is formally the same as that of
[Pt(dmdt)2], we can calculate the electrical state of both ma-
terials with changes in only the hopping energies and site po-
tential. Table I shows the hopping energies, which are larger
than the cut-off energy of 0.01 eV, and the site potentials of
[Ni(dmdt)2] and [Pt(dmdt)2] obtained via Wannier fitting. The
t1, t2, · · · , and t13 denote the hopping energies. We omit t10 of
[Ni(dmdt)2] because it is less than the cut-off energy of 0.01
eV. The ∆ denotes the site potential of orbit B measured from
those of orbits A and C.

In our previous study,48) we developed a tight-binding
Hamiltonian of [Pt(dmdt)2], which, however, is slightly dif-
ficult to use for the calculation of the edge state. On the other

hopping energy [Ni(dmdt)2] [Pt(dmdt)2]
t1 0.237 0.212
t2 0.184 0.179
t3 0.208 0.201
t4 0.030 0.044
t5 0.033 0.043
t6 0.039 0.042
t7 0.010 0.014
t8 0.014 0.014
t9 0.014 0.024
t10 – 0.013
t11 0.054 0.051
t12 0.053 0.051
t13 0.012 0.011

site potential [Ni(dmdt)2] [Pt(dmdt)2]
∆ 0.043 0.070

Table I. Hopping energies and site potentials of [Ni(dmdt)2] and
[Pt(dmdt)2]. The t10 of [Ni(dmdt)2] is omitted because it is less than the cut-
off energy 0.01 eV.

hand, Eq. (3) is convenient for the calculation of the edge state
because the orbits that belong to the same unit cell are in the
same molecule.

The Hamiltonian satisfies the energy eigenvalue equation

Hs(k) |k, n, s〉 = Ek,n,s |k, n, s〉 , (4)

|k, n, s〉 =

 dA,k,n,s
dB,k,n,s
dC,k,n,s

 ,
where |k, n, s〉 is the eigenvector, and Ek,n,s is the energy
eigenvalue of the band n. On the othe hand, dα,k,n,s is the wave
function of site α. In this study, 2/3 of the energy band is
filled. Therefore, the chemical potential µ is determined using

1
NL

∑
k,n,s

fk,n,s = 4, (5)

where fk,n,s is the Fermi distribution function, and NL is the
number of unit cells. Here, we define the energy eigenvalue
measured from the chemical potential εk,n:

εk,n,s ≡ Ek,n,s − µ. (6)

We obtain the energy dispersions of [Pt(dmdt)2] and
[Ni(dmdt)2] by diagonalizing the Hamiltonian [Eq. (3)] in the
absence of SOC. Figures 3(a) and 3(b) show the energy dis-
persions of [Pt(dmdt)2] and [Ni(dmdt)2], respectively, in the
kb-kc plane at ka = −π/2. Dirac cones exist between the bands
of both materials. The Dirac points between bands 1 and 2
form the Dirac nodal line, whereas those between bands 2 and
3 form the Dirac nodal ring. For this reason, it is difficult to
construct a one- or two-orbital model.

We then calculate the Fermi surfaces of [Pt(dmdt)2] and
[Ni(dmdt)2]. Figures 3(c) and 3(d) show the Fermi surfaces
of [Pt(dmdt)2] and [Ni(dmdt)2], respectively, in the first BZ.
The red and blue Fermi surfaces are hole and electron pock-
ets, respectively, which result from Dirac points moving up
and down across the Fermi energy as the wavenumber ka

varies. The Fermi pockets of [Ni(dmdt)2] are smaller than
those of [Pt(dmdt)2], because the hopping energies t9 and t10
of [Ni(dmdt)2] are lower than those of [Pt(dmdt)2].

3
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Fig. 3. (Color online) (a) Energy dispersion of [Pt(dmdt)2] in the ka-kb
plane calculated on the basis of the three orbits of the tight-binding model.
The wavenumber is ka=−π/2. (b) Energy dispersion of [Ni(dmdt)2] in the ka-
kb plane calculated on the basis of the three orbits of the tight-binding model.
The wavenumber is ka=−π/2. (c) Fermi surface of [Pt(dmdt)2] in the first
BZ. (d) Fermi surface of [Ni(dmdt)2] in the first BZ. The red Fermi surfaces
inside the BZ and the blue ones on the boundary of the BZ are electron and
hole pockets, respectively.

The density of state (DOS) is calculated to be

D(E) = −
1
πNL

∑
k,n,s

Im
(

1
E − εk,n,s + iη

)
, (7)

where η(> 0) is an infinitesimally small value. Figure 4
shows the DOSs of [Pt(dmdt)2] (purple line) and [Ni(dmdt)2]
(green line). The horizontal axis represents the energy mea-
sured from the Fermi energy. The DOSs have a valley near
the Fermi energy because of the linear dispersion. In a

two-dimensional Dirac electron system, D(0) = 0. How-
ever, the DOSs of [Pt(dmdt)2] and [Ni(dmdt)2] are not zero
at the Fermi energy because these materials have Fermi
pockets. D(E = 0) reflects the size of the Fermi pockets,
which suggests that [Ni(dmdt)2] is more two-dimensional
than [Pt(dmdt)2].

Fig. 4. (Color online) Purple and green lines represent DOSs of
[Pt(dmdt)2] and [Ni(dmdt)2], respectively. The horizontal axis represents en-
ergy measured from the Fermi energy.

The single-component molecular conductors [Pt(dmdt)2]
and [Ni(dmdt)2] are regarded as the layer materials of the
two-dimensional Dirac electron system such as graphene be-
cause linear dispersion is constructed in the kb-kc plane and
the hopping energies in the a direction are smaller than in the
kb-kc plane. The result that the Fermi pockets are small for
the BZ suggests that [Pt(dmdt)2] and [Ni(dmdt)2] have high
two-dimensionality. According to the first-principles calcu-
lation, it is considered that the wave functions of Pt in the
[Pt(dmdt)2] have little weight at the Fermi energy.47) As a re-
sult, SOC of [Pt(dmdt)2] is estimated to be smaller than the
width of three bands by three orders magnitude. We assume
that the SOC constant λ of [Ni(dmdt)2] is almost same as that
of [Pt(dmdt)2]. Thus, we consider that the Kane–Mele model
is suitable for [Pt(dmdt)2] and [Ni(dmdt)2] in the present pa-
per. In the realistic case, the SOC constants of [Pt(dmdt)2]
and [Ni(dmdt)2] are estimated to be λ=0.05 (∼0.0022 eV for
[Pt(dmdt)2] and ∼0.0016 eV for [Ni(dmdt)2]).

According to RESPACK, the onsite Coulomb interactions
of [Pt(dmdt)2] and [Ni(dmdt)2] are estimated to be about 5.4
and 6.7 eV, respectively. The onsite Coulomb interaction of
[Ni(dmdt)2] is slightly larger than that of [Pt(dmdt)2]. They
are much larger than the width of the three bands of both ma-
terials, which is about 1.3 eV. Therefore, we consider that the
electron correlation effect is important for both materials.

3. Formulation
The Hubbard model with SOC describing the electronic

states of [Pt(dmdt)2] and [Ni(dmdt)2] is given by

H =
∑

<i,α: j,β>,s

ti,α; j,βc
†

i,α,sc j,β,s

+ iλ
∑

<i,α: j,β>,s,s′
νi,α: j,βti,α; j,βc

†

i,α,sσ
z
s,s′c j,β,s′

+
∑
i,α

Uαc†i,α,↑c
†

i,α,↓ci,α,↓ci,α,↑.

(8)
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In the case where the edge is cut for an axis, the Fourier trans-
form cannot be implemented for that direction. By applying
the Fourier transform on the other direction, we can rewrite
Eq. (8) as

H =
∑

k,iα, jβ,s

H(k)iα, jβ,sc
†

k,iα,sck, jβ,s

+
1

NL

∑
k,k′,q,iα

Uiα,iαc†k+q,iα,↑c
†

k′−q,iα,↓ck′,iα,↓ck,iα,↑

≡ H0 + H′,

(9)

where i and j are redefined as the numbers of unit cells along
the direction that has the edge. The first term of Eq. (9), which
is H0, is the tight-binding Hamiltonian that incorporates the
SOC. H(k)iα, jβ,s is obtained from Eq. (3). The second term
H′ represents the onsite Coulomb interaction, which acts be-
tween the up and down spins on the same site. Uiα,iα is a con-
stant value in the wavenumber space because it is the Fourier
transform of the local Coulomb interaction in the real space.

We then derive the longitudinal spin susceptibility by the
three-dimensional real-space-dependent RPA.62–64) Accord-
ing to the linear response theory, the longitudinal spin sus-
ceptibility matrix representing the real-space-dependence of
longitudinal spin fluctuation is defined as

χ̂zz(q, iωm) =

∫ 1/kBT

0
dτeiωmτ

〈
TτS z

q(τ)S z
−q(0)

〉
, (10)

S z
q =

1
NL

∑
k

(
c†k+q,↑ck,↑ − c†k+q,↓ck,↓

)
, (11)

where ωm is the Matsubara frequency, kBT is the energy of
the temperature, and τ is the imaginary time. S z

q(τ) is the op-
erator that represents the magnetization and is written on the
basis of the Heisenberg picture. When perturbation expansion
is applied to Eq. (10), the bare longitudinal spin susceptibility
is obtained as

(χ̂zz,0
s (q, iωm))iα, jβ

= −
kBT
NL

∑
k,l

G0
iα, jβ,s(k + q, iωm+l)G0

jβ,iα,s(k, iωl),
(12)

G0
iα, jβ,s(k, iωl) =

∑
n

d∗iα,n,s(k)d jβ,n,s(k)
1

iωl − εk,n,s
, (13)

where G0
iα, jβ,s(k, iωl) is the matrix element of the non-

interacting Matsubara Green function, and ωl is the Matsub-
ara frequency. εk,n,s is the energy eigenvalue of H0, which
is measured from the chemical potential, and d jβ,n,s(k) is
the eigenvector of H0. On the other hand, s and n are the
spin and band indices, respectively. When Eqs. (12) and (13)
are organized and the analytic continuation is applied to the
Matsubara frequency, the longitudinal bare spin susceptibility
[Eq. (10)] can be rewritten as

(χ̂zz,0
s (q, ω))iα, jβ = −

1
NL

∑
k,n,m

fk+q,n,s − fk,m,s
εk+q,n,s − εk,m,s − ~ω − iη

× d∗iα,n,s(k + q)d jβ,n,s(k + q)d∗jβ,m,s(k)diα,m,s(k)

≡ (χ̂zz,0(q, ω))iα, jβ.

(14)

We define χ̂zz,0
↑

(q, ω) = χ̂zz,0
↓

(q, ω) ≡ χ̂zz,0(q, ω) in this study
because the time reversal symmetry is protected. m and n are
band indices, fk,m,s is the Fermi distribution function, and η =

0+. When real-space-dependent RPA is applied to Eq. (10),
the longitudinal spin susceptibility is rewritten as Eq. (A) in
Fig. 5 on the basis of the Feynman diagram. The bubble di-
agram in Eq. (A) represents the bare longitudinal spin sus-
ceptibility. The broken line in Eq. (A) represents the interac-
tion, which contains the factor −1 because of perturbation ex-
pansion. Therefore, on the basis of the real-space-dependent
RPA, the longitudinal spin susceptibility is expressed as the
summation of the infinite geometrical series of the bare longi-
tudinal spin susceptibility χ̂zz,0(q, ω) and interaction Û. Thus,
the longitudinal spin susceptibility is approximated to be

χ̂zz,RPA(q, ω) = 2χ̂zz,0(q, ω)[Î − Ûχ̂zz,0(q, ω)]−1, (15)

where Û and Î are the onsite Coulomb interaction matrix
and unit matrix, respectively. The onsite Coulomb interaction
Û is the diagonal matrix. We consider the onsite Coulomb
interactions Uiα,iα for α=A, B,C as parameters, which are
reflected as the ratio of the magnitude of interactions ob-
tained by RESPACK. For [Pt(dmdt)2], we treat the diago-
nal matrix elements of the onsite Coulomb interaction as
UiA,iA=UiB,iB=UiC,i=U. Meanwhile, for [Ni(dmdt)2], we treat
the case as UiB,iB=U and UiA,iA=UiC,iC=0.79U. We note that
the onsite Coulomb interactions obtained by RESPACK is too
large to use in the RPA, because the RPA tends to overesti-
mate the enhancement of spin fluctuations. We then derive the
transverse spin susceptibility by a real-space-dependent RPA.
The transverse susceptibility χ̂±(q, iωm) is defined as

χ̂±(q, iωm) =
∫ 1/kBT

0 dτeiωmτ
〈
TτS +

q (τ)S −−q(0)
〉
, (16)

S +
q = 1

NL

∑
k c†k,↑ck+q,↓, (17)

S −−q = 1
NL

∑
k c†k+q,↓ck,↑, (18)

where S +
q and S −−q are the ladder operators of the spin angular

momentum. S +
q (τ) is written on the basis of the Heisenberg

picture. The method for deriving the transverse spin suscep-
tibility χ̂∓(q, iωm) involves changing only S +

q and S −−q to S −q
and S +

−q.
In the same manner as with the bare longitudinal suscepti-

bility, the bare transverse spin susceptibility is expressed as

(χ̂±,0(q, ω))iα, jβ = −
1

NL

∑
k,n,m

fk+q,n,↓ − fk,m,↑
εk+q,n,↓ − εk,m,↑ − ~ω − iη

× d∗iα,n,↓(k + q)d jβ,n,↓(k + q)d∗jβ,m,↑(k)diα,m,↑(k).

(19)

The method for deriving the bare transverse spin susceptibil-
ity χ̂∓,0(q, iωm) involves changing only the spin indices. By a
real-space-dependent RPA, we can rewrite Eq. (16) as Eq. (B)
in Fig. 5 on the basis of the Feynman diagram. Thus, the trans-
verse spin susceptibility is approximated as

χ̂±,RPA(q, ω) = χ̂±,0(q, ω)[Î − Ûχ̂±,0(q, ω)]−1, (20)

χ̂∓,RPA(q, ω) = χ̂∓,0(q, ω)[Î − Ûχ̂∓,0(q, ω)]−1. (21)

Hereafter, we discuss the case in which the frequency ω = 0.
In the absence of SOC, χzz(q) = χ±(q) = χ∓(q) because of the
SU(2) symmetry. However, in the presence of SOC, χ̂zz(q) ,
χ̂±(q) , χ̂∓(q).

5
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Fig. 5. (Color online) Equation (A) is RPA for the longitudinal spin suscep-
tibility χzz,RPA(q, ω). It is written on the basis of the ring Feynman diagram.
Equation (B) is RPA for the transverse spin susceptibility χ±,RPA(q, ω). It is
written on the basis of the ladder Feynman diagram.

4. Edge State
In this section, we compare the topological nature of

[Ni(dmdt)2] with that of [Pt(dmdt)2] in the non-interacting
case. In our previous study,48) we found that the single-
component molecular conductor [Pt(dmdt)2] is a weak topo-
logical material that is characterized by a topological number
0(100). This indicates that [Pt(dmdt)2] has an edge state, ex-
cept at the (100) edge. The parity eigenvalue is obtained when
the spatial inversion matrix acts on the eigenvector of H0 at
the time-reversal invariant momenta (TRIMs). By using par-
ity eigenvalues, we can calculate the topological number.65–69)

Because the representation of the Hamiltonian in the present
paper differs from that in our previous paper,48) the spatial in-
version matrices in these two papers are also different. The
spatial inversion matrix for the Hamiltonian in this study is

P(k) =

 0 0 1
0 1 0
1 0 0

 . (22)

With this spatial inversion matrix, the topological number
0(100) can be derived as in our previous paper.48) We cal-
culate the energy dispersion of the system with the (001)
edge. A topological number of 0(100) indicates that the edge
state occurs at the (001) edge. Figure 6 shows a schematic
of the (001) edge. We cut the edge perpendicular to the c-
axis. The orbit is then represented by the expression iα, where
i is the number of unit cells along the c-axis, which is an
integer 1 ≤ i ≤ Nc. On the other hand, α represents the
Wannier orbits in a unit cell, which may be A, B, or C. By
diagonalizing the Hamiltonian of the system with the (001)
edge, we can obtain the energy dispersion shown in Fig. 7(a).
Specifically, Figs. 7(a) and 7(b) show the energy dispersions
(ka=−π/2) of [Ni(dmdt)2] in the absence and presence of SOC
(λ=0.2∼0.006 eV), respectively. The horizontal axis is for the
wavenumber kb/π, whereas the vertical axis is for the energy
measured from the Fermi energy. In Fig. 7(a), the flat band
between the Dirac nodal lines is the energy dispersion of the
edge state. Meanwhile, in Fig. 7(b), the degenerate flat energy
bands in Fig. 7(a) split into two bands: one that has an up
spin and the other has a down spin. This is because the energy

gap is opened on the Dirac nodal line. The bands with up and
down spins indicate the existence of a helical edge state. The
combination of spins and bands depicted in Fig. 7(b) is for the
i=1 edge. The orbits that act as the edge state at edge i=1 are
the orbits in the yellow frame in Fig. 6. These are iα=1A and
1B orbits. A similar result is obtained for [Pt(dmdt)2].

Fig. 6. (Color online) In this study, the edge is cut perpendicular to the c-
axis. The yellow box represents the orbits that act as the edge state at the i=1
edge.

Fig. 7. (Color online) (a) Energy dispersion of [Ni(dmdt)2] at ka=−π/2 in
the cylindrical system (absence of SOC). The flat band corresponds to the
edge state. (b) Energy dispersion of [Ni(dmdt)2] at ka=−π/2 in the cylindrical
system (presence of SOC). SOC constant λ=0.2. The split bands correspond
to the helical edge state.

Figure 8(a) shows the energy dispersion of the edge state
of [Ni(dmdt)2] in the ka-kb plane in the absence of SOC. The
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edge state corresponds to the quasi-one-dimensional energy
dispersion between the Dirac nodal lines. It results from the
following two properties. The first property is the topologi-
cal invariant. An analysis of the topological invariant reveals
that the edge state appears along the a-axis.48) The second
property is the zigzag-like edge, which is perpendicular to the
c-axis, and which we cut in this study. In graphene, the edge
state at the zigzag edge is characterized by flat energy dis-
persion between the Dirac points,70) suggesting that the edge
states of [Pt(dmdt)2] and [Ni(dmdt)2] at the (001) edge cor-
respond to the zigzag edge state of the graphene.

We then calculate the local density of state (LDOS) at the
edge. LDOS Diα(E) is defined as

Diα(E) = 1
NL

∑
k Aiα(k, E), (23)

Aiα(k, E) = − 1
π

∑
s ImĜ0

iα,iα,s(k, E + iη), (24)

where Ĝ0
iα,iα,s(k, E + iη) is the retarded Green function, where

the analytic continuation iωl → E + iη is applied to Eq. (13),
and η(> 0) is an infinitesimally small value. Aiα(k, E) is the
spectral weight for the wavenumber k and energy E. Fig-
ure 8(b) shows LDOSs D1A(E) + D1B(E) at the edges of
[Pt(dmdt)2] and [Ni(dmdt)2]. LDOSs have logarithmic peaks
near the Fermi energy because of the quasi one dimensional-
ity of the edge state. The logarithmic peaks of [Pt(dmdt)2] and
[Ni(dmdt)2] correspond to approximately ±0.03 and ±0.01
eV, respectively, which correspond to the energies of the
Fermi pockets of the respective materials. The large LDOS
near the Fermi energy suggests that these materials have a
magnetic structure at the (001) edge. The edge state at the
(010) edge is also characterized by quasi-one-dimensional en-
ergy dispersion, but the LDOS is smaller at the (010) edge
than that at the (001) edge. The edge state does not occur at
the (100) edge, which is consistent with the topological num-
ber 0(100). Thus, in the next section, we discuss magnetism
at the (001) edge induced by edge state and onsite Coulomb
interaction. Long-range Coulomb interaction acts on the elec-
trons in the graphene because Thomas–Fermi screening does
not occur owing to the absence of DOS at the Fermi energy.
This results in the reshaping of the Dirac cone, which is ex-
plained by the renormalization group theory.71, 72) In partic-
ular, reshaping of the Dirac cone is realized in the organic
conductor α-(BEDT-TTF)2I3 and graphene.?) Moreover, the
short-range Coulomb interaction results in the charge-ordered
phase of the organic conductor α-(BEDT-TTF)2I3 at a low
pressure.20–22) Thus, the effect of Coulomb interaction in or-
ganic conductors should be considered.

5. Spin-Density Wave at Edge
We calculate the three-dimensional real-space-dependent

spin susceptibilities in the presence of the edge. Hereafter,
we fix the temperature to 1.0 K. Similar results are obtained
at edges i=1 and i=Nc because spatial inversion symmetry
is protected. Therefore, we discuss the magnetism at the i=1
edge.

5.1 Absence of spin–orbit coupling
In the bulk, the DOSs of [Pt(dmdt)2] and [Ni(dmdt)2] are

low near the Fermi energy because of linear energy disper-
sion (Fig. 4). However, the LDOSs of the two materials at the
(001) edge are high and have logarithmic peaks near the Fermi

Fig. 8. (Color online) (a) Energy dispersion of the edge state of
[Ni(dmdt)2] in ka-kb plane (absence of SOC). The quasi-one-dimensional
energy dispersion exists between the Dirac nodal lines, which corresponds
to the energy dispersion of the edge state. (b) The purple line represents the
LDOS of [Pt(dmdt)2]. The green line represents the LDOS of [Ni(dmdt)2].
Logarithmic peaks occur near the Fermi energy.

energy (Fig. 8). Thus, the edge magnetism can be enhanced.
Using Eq. (14), we calculate the unit cell i dependence of
the bare longitudinal spin susceptibility of (χ̂zz,0(0))iα,iα. Fig-
ure 9 shows the unit cell i dependence of (χ̂zz,0(0))iα,iα of
[Pt(dmdt)2]. The susceptibilities of orbits A and B at the i=1
edge are larger than those in the bulk. The result for the i=Nc

edge is equivalent to that for the i=1 edge for the commuta-
tion of orbits A and C. Hence, we focus mainly on iα=1A, 1B
in this study.

Fig. 9. (Color online) Unit cell i dependence of (χ̂zz,0(q = 0))iα,iα. The red,
blue, and green lines represent α=A, B, and C, respectively. At edges i=1
and i=Nc, we obtain equivalent results for commutation of orbits A and B
because of the spatial inversion symmetry. Spin susceptibility at the edge is
clearly higher than that of the bulk. We then set Nc=20.
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We then investigate the spin susceptibility at the (001) edge
in detail. We calculate the Fermi arc at the edge. Figure 10(a)
shows the spectral weight for the Fermi energy of [Pt(dmdt)2]
at the edge. It is calculated using A1A(k, 0) + A1B(k, 0) in
Eq. (24). The magenta straight lines represent the Fermi arc of
the edge state of [Pt(dmdt)2]. They have a good nesting vec-
tor Q. Meanwhile, the white line is the Fermi arc due to the
energy dispersion of the bulk, which does not play an impor-
tant role in this study. The spectral weight of the edge state is
large because the wave function of the edge state is localized
at the edge. By contrast, the spectral weight of the bulk state is
small because the Bloch wave is not localized. It is predicted
that the longitudinal susceptibility is enhanced by the nest-
ing vector Q. In [Ni(dmdt)2], an equivalent result is obtained.
Figure 10(b) shows the energy dispersions of the edge state of
[Pt(dmdt)2], where the blue, violet, and orange lines represent
ka=−π, ka=−π/2, and ka=0, respectively, and the horizontal
axis represents kb. The dots in Fig. 10 depict the intersection
of the energy dispersion and the Fermi energy. These points
correspond to the dots in Fig. 10(a). The magenta dot is a part
of the Fermi arc of the edge state, whereas the blue and orange
dots are parts of the Fermi arc of the bulk state.

Fig. 10. (Color online) (a) Spectral weight for the Fermi energy of
[Pt(dmdt)2] at edge i=1, which is A1A(k, 0) + A1B(k, 0). The two magenta
lines correspond to the Fermi energy of the edge state. A good nesting vector
Q connects the Fermi arc. (b) Energy dispersions of edge state of [Pt(dmdt)2].
The flat bands correspond to the edge state. The blue, violet, and orange lines
show the energy dispersions at ka=−π, ka=−π/2, and ka=0, respectively. The
magenta dot represents the intersection point of the edge state and Fermi en-
ergy, and it draws the magenta lines in (a). The blue and orange dots represent
the intersection points of the bulk state and Fermi energy, respectively.

We calculate the wavenumber dependence of the bare lon-

gitudinal susceptibility using Eq. (14). In the absence of
SOC, the transverse spin susceptibility is equivalent to the
longitudinal spin susceptibility because of SU(2) symmetry.
Figure 11(a) illustrates the bare longitudinal susceptibility
(χ̂zz,0(q))1A,1A of [Pt(dmdt)2] in the qa-qb plane. It has a peak at
(qa, qb)=(0.94π, 0.28π), which corresponds to the nesting vec-
tor Q in Fig. 10(a). Moreover, Fig. 11(b) shows the real parts
of (χ̂zz,0(q))1A,1A, (χ̂zz,0(q))1A,1B, and (χ̂zz,0(q))1B,1B, where the
horizontal axis is qa. The wavenumber qb is fixed at 0.28π.
Because the real parts of (χ̂zz,0(q))1A,1B are positive, the direc-
tions of the spins of orbits A and B at edge i=1 are the same.
For [Ni(dmdt)2], a similar result is obtained. The bare longi-
tudinal susceptibility of [Ni(dmdt)2] at the edge has a peak at
(qa, qb)=(0.95π, 0.22π).

Fig. 11. (Color online) (a) Bare longitudinal susceptibility (χ̂zz,0(q))1A,1A
of [Pt(dmdt)2] in qa-qb plane. Wavenumber that results in peak corresponds
to nesting vector Q. (b) Red, blue, and purple lines denote real parts of
(χ̂zz,0(q))1A,1A, (χ̂zz,0(q))1A,1B, and (χ̂zz,0(q))1B,1B, respectively.

In the presence of the interaction, using Eq. (15), we cal-
culate the longitudinal spin susceptibility χ̂zz,RPA(q). We in-
troduce the Stoner factor αs. The Stoner factor is defined
as the maximum eigenvalue of the matrix Ûχ̂zz,0(q). The
Stoner factor αs=1 gives the divergence of the longitudi-
nal spin susceptibility, Eq. (15), and a magnetic transition
occurs. Figure 12 shows the longitudinal spin susceptibility
(χ̂zz,RPA(qa, 0.28π))1A,1A of [Pt(dmdt)2], where the horizontal
axis is qa. The wavenumber kb is fixed to 0.28π, and U=0.135
results in αs=0.98. The longitudinal spin fluctuation is en-
hanced at this wavenumber, which corresponds to the nest-
ing vector Q. The inset illustrates the U dependence of the
Stoner factor αs, where the αs values of the [Pt(dmdt)2] and
[Ni(dmdt)2] are shown in purple and green lines, respectively.
In Fig. 12, U=0.137 results in [Pt(dmdt)2] αs=1, whereas
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U=0.073 results in [Ni(dmdt)2] αs=1. Divergence of the spin
susceptibility at the incommensurate wavenumber indicates
that the SDW is induced. The result reveals that longitudinal
SDW is induced at the edge. The inset of Fig. 12 shows that a
smaller Coulomb interaction induces the SDW at the edge of
[Ni(dmdt)2] than that needed for [Pt(dmdt)2].

Fig. 12. (Color online) Longitudinal spin susceptibility
(χ̂zz,RPA(qa, 0.28π))1A,1A of [Pt(dmdt)2], where the horizontal axis is
qa. Furthermore, U=0.135 and αs=0.98. Longitudinal spin fluctuation is
enhanced at nesting vector Q. The inset shows the U dependence of the
Stoner factor. The Stoner factors of [Pt(dmdt)2] and [Ni(dmdt)2] are denoted
by purple and green lines, respectively. U=0.137 results in [Pt(dmdt)2]
αs=1, and U=0.073 results in [Ni(dmdt)2] αs=1.

We then investigate the effect of carrier doping, which mod-
ulates the Fermi arc at the edge. We calculate the Fermi arc at
the edge of [Pt(dmdt)2] for hole doping. Figure 13 shows the
spectral weight for the Fermi energy of [Pt(dmdt)2] at the edge
for 1.4% hole doping. Two Fermi arcs move to ka=0 for hole
doping, whereas the Fermi arc moves to ka=±π for electron
doping. Because of the modulation of the Fermi arc, the nest-
ing vector Q changes. Figure 14 visualizes the bare longitudi-
nal spin susceptibilities (χ̂zz,0(q))1A,1A of [Pt(dmdt)2] for hole
doping, where the horizontal axis represents qa. The rates of
hole doping are 1.4, 1.6, 1.8, and 2.0%. As the rate of doping
increases, the qa component of the nesting vector approaches
0. The fixed wavenumber qb is determined such that the bare
spin susceptibility attains the maximum values. The inset
shows the longitudinal spin susceptibility (χ̂zz,RPA(qa, 0))1A,1A

of [Pt(dmdt)2] for 2.0% hole doping. U=0.060 results in a
Stoner factor of αs=0.97.

Figure 15 visualizes the relationship between the rate of
carrier doping and the qa component of the nesting vector
Q for both materials. For [Pt(dmdt)2], 2.0% hole doping and
2.0% electron doping yield Q=0. For [Ni(dmdt)2], 0.23% hole
doping and 0.23% electron doping give a result equivalent to
that for [Pt(dmdt)2]. The nesting vector Q=0 induces edge fer-
romagnetism. Carrier doping can change the nesting vector Q
and control the magnetic structure at the (001) edge.

5.2 Presence of spin–orbit coupling
In this section, we investigate edge magnetism in the pres-

ence of SOC. According to the first-principles calculation, the
SOC constant of [Pt(dmdt)2] is λ=0.05 (∼ 0.0022 eV for the
hopping energies t4 and t5). In this study, we use λ=0.05 for

Fig. 13. (Color online) Spectral weight for the Fermi energy of [Pt(dmdt)2]
at the edge for 1.4% hole doping, A1A(k, 0) + A1B(k, 0). The Fermi arcs (ma-
genta lines) become close; thus, the nesting vector Q becomes short.

Fig. 14. (Color online) Bare longitudinal spin susceptibilities
(χ̂zz,0(q))1A,1A of [Pt(dmdt)2] for hole doping. The magenta, orange, green,
and blue lines represent 1.4%(qb=0.13π), 1.6%(qb=0.13π), 1.8%(qb=0.09π),
and 2.0%(qb=0) hole doping, respectively. Hole doping changes the nesting
vector Q. The inset shows longitudinal spin susceptibilities (χ̂zz,RPA(q))1A,1A
of [Pt(dmdt)2] for 2.0% hole doping, where U=0.060 and αs = 0.97.

[Ni(dmdt)2]. For [Ni(dmdt)2], λ=0.05 results in hopping en-
ergies t4 and t5 ∼0.0016 eV. Because of the SOC, a helical
edge state occurs, and the Fermi arc splits.

Figure 16 shows the Fermi arcs at the edge in the pres-
ence of SOC. The red and blue lines represent the Fermi arcs
with up and down spins, respectively. The nesting vectors,
which connect the same spin bands, degrade; however, dif-
ferent good nesting vectors Q± and Q∓ appear. Q± is the nest-
ing vector that goes to the band with the down spin from the
band with the up spin, whereas Q∓ is the nesting vector that
goes to the band with the up spin from the band with the down
spin. Q± and Q∓ connect the Fermi arcs of the different bands.
Thus, they are excitonic.

We calculate the bare transverse spin susceptibility χ̂±,0(q)
and χ̂∓,0(q) using Eq. (19), where it is expected that
the good nesting vectors Q± and Q∓ enhance them. Fig-
ure 17(a) and 17(b) show the bare transverse spin sus-
ceptibility (χ̂±,0(q))1A,1A and (χ̂∓,0(q))1A,1A of [Pt(dmdt)2] in
the qa-qb plane. (χ̂±,0(q))1A,1A and (χ̂∓,0(q))1A,1A have peaks
at incommensurate wavenumbers (qa, qb)=(0.95π, 0.22π) and
(qa, qb)=(0.92π, 0.38π), which correspond to the nesting vec-
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Fig. 15. (Color online) Doping dependence of the qa component of
the nesting vector. The purple and green lines represent [Pt(dmdt)2] and
[Ni(dmdt)2], respectively.

Fig. 16. (Color online) The red and blue lines represent the Fermi arcs with
up and down spins, respectively, on the i=1 edge. The Fermi arc has indepen-
dent nesting vectors Q± and Q∓.

tors Q± and Q∓, respectively. Figure 17(c) shows the real
parts of χ̂±,0(qa, 0.22π) (solid line) and χ̂∓,0(qa, 0.38π) (bro-
ken line), where the horizontal axis is qa. The 1A1A, 1B1B,
and 1A1B components are represented by the red, blue, and
purple lines, respectively. Because the real parts of the 1A1B
component are positive, the directions of the spins of orbits A
and B at edge i=1 are the same. The results for [Ni(dmdt)2]
are similar to those for [Pt(dmdt)2]. The bare transverse spin
susceptibilities (χ̂±,0(q))1A,1A and (χ̂∓,0(q))1A,1A have peaks
at incommensurate wavenumbers (qa, qb)=(0.96π, 0.28π) and
(qa, qb)=(0.93π, 0.25π), respectively.

We then calculate the Stoner factors α±s and α∓s at the i=1
edge. They are defined as the maximum eigenvalues of the
matrices Ûχ̂±,0(q) and Ûχ̂∓,0(q), where we use only the ma-
trix elements of transverse spin susceptibility, which corre-
spond to a few unit cells near the i=1 edge. Of the two
Stoner factors, α±s =1 causes the transverse spin susceptibility
Eq. (20) to diverge, whereas α±s =1 causes Eq. (21) to diverge.
Figure 18 shows the U dependence of the Stoner factors α±s
and α∓s at the i=1 edge of [Pt(dmdt)2] and [Ni(dmdt)2]. The
purple and green lines represent [Pt(dmdt)2] and [Ni(dmdt)2],
whereas the solid and broken lines represent α±s and α∓s , re-
spectively. At the edge of [Pt(dmdt)2], U=0.132 and U=0.140

Fig. 17. (Color online) (a) (χ̂±,0(q))1A,1A in qa-qb plane. (b) (χ̂∓,0(q))1A,1A.
(c) qa dependence of bare transverse spin susceptibility. Solid and bro-
ken lines denote χ̂±,0(qa, 0.22π) and χ̂∓,0(qa, 0.38π), respectively. Red, blue,
and purple represent 1A1A, 1B1B, and 1A1B components, respectively.
Wavenumbers that result in peaks correspond to the nesting vectors Q± and
Q∓.

Fig. 18. (Color online) U dependence of Stoner factors at i=1 edge of
[Pt(dmdt)2] and [Ni(dmdt)2]. The purple solid and broken lines represent α±s
and α∓s of [Pt(dmdt)2], respectively. The green solid and broken lines repre-
sent α±s and α∓s of [Ni(dmdt)2], respectively.

yield α±s =1 and α∓s =1, respectively. Meanwhile, at the edge
of [Ni(dmdt)2], U=0.067 and U=0.075 give α±s =1 and α∓s =1,
respectively. Thus, at the i=1 edge of the two materials, an
excitonic transverse SDW corresponding to χ̂±(q) is induced.
On the other hand, an excitonic transverse SDW correspond-
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ing to χ̂∓(q) is induced at the i=Nc edge. This is because the
combination of spins and energy bands at the i=Nc edge is
opposite to that at the i=1 edge.

Q± at the i=1 edge is equal to Q∓ at the i=Nc edge be-
cause of time reversal symmetry. In the presence of SOC,
carrier doping modulates the Fermi arc as also observed in
the absence of SOC. However, the Fermi arc in the pres-
ence of SOC is different from that in the absence of SOC.
We calculate the Fermi arc for carrier doping in the pres-
ence of SOC. Figures 19(a) and 19(b) show the Fermi arcs
of [Pt(dmdt)2] in the presence of SOC for 2.0% hole dop-
ing and 2.0% electron doping, respectively. The red and blue
lines represent Fermi arcs with up and down spins, respec-
tively. The black points denote the energy dispersion of the
bulk, which does not play an important role in this study. Cal-
culation of the bare transverse spin susceptibility reflects the
modulation of the Fermi arc. Figure 20(a) shows the trans-
verse spin susceptibility (χ̂±,0(qa, qb))1A,1A of [Pt(dmdt)2] for
2.0% hole doping in the qa-qb plane, whereas Fig. 20(b) illus-
trates (χ̂∓,0(qa, qb))1A,1A for 2.0% electron doping in the qa-qb

plane, which have maximum values at (qa, qb)=(0, 0.22π) and
(qa, qb)=(0, 0.14π), respectively. For [Ni(dmdt)2], we obtain
results similar to those for [Pt(dmdt)2]. The transverse spin
susceptibilities (χ̂±,0(qa, qb))1A,1A for 0.23% hole doping and
(χ̂∓,0(qa, qb))1A,1A for 0.23% electron doping have maximum
values at (qa, qb)=(0.11π, 0.24π) and (qa, qb)=(0, 0.16π), re-
spectively. As in the absence of SOC, carrier doping modu-
lates the Fermi arc and magnetic structure at the (001) edge in
the presence of SOC.

Fig. 19. (Color online) (a) Fermi arc for 2.0% hole doping in presence of
SOC. (b) Fermi arc for 2.0% electron doping in presence of SOC. The red
and blue lines represent Fermi arcs with up and down spins, respectively.

Fig. 20. (Color online) (a) Bare transverse spin susceptibility
(χ̂±,0(qa, qb))1A,1A for 2.0% hole doping in qa-qb plane. (b) (χ̂∓,0(qa, qb))1A,1A
for 2.0% electron doping in qa-qb plane.

Finally, we schematically show the spin structure at the
(001) edge of [Pt(dmdt)2] in the presence of the SOC. At the
i=1 edge, the SDW corresponding to the transverse spin sus-
ceptibility χ̂±(Q±) is induced. The transverse SDW represents
the rotation of the spins in the b-c plane because we select
the a-axis as the quantization axis in the present paper. Fig-
ures 21(a) and 21(b) show the transverse SDW at the i=1 edge
on the a=ia and a=ia +1 layers, respectively, in the absence of
carrier doping. In Figs. 21(a) and 21(b), we approximate the
wavenumber of SDW Q±∼(π, 0.2π), which represents antifer-
romagnetic spin rotation along the a-axis and ten times peri-
odic spin rotation along the b-axis. Meanwhile, at the i=Nc

edge, the spins reversely rotate and the period of the rotation
is the same as the i=1 edge. This indicate the helical SDW,73)

which results from the SOC and breaking of spatial inversion
symmetry at the edge.

6. Summary and Discussion
In this study, we constructed three-orbital tight-binding

models in the presence of SOC, which describe the electri-
cal states of [Pt(dmdt)2] and [Ni(dmdt)2] in a unified man-
ner using the first-principles calculation packages Quantum
ESPRESSO and RESPACK. We determined that [Ni(dmdt)2]
is a Dirac nodal line system that is similar to [Pt(dmdt)2]
but closer to a two-dimensional system. By applying tight-
binding models to cylindrical systems with (001) edges, we
analyzed the properties of the edge states. In the absence of
SOC, the edge state, which is characterized by quasi-one-
dimensional energy dispersion, emerges between the Dirac
nodal lines to the (001) direction. We observed an incom-
mensurate nesting vector Q between the Fermi arcs of the
edge state. Meanwhile, in the presence of SOC, helical edge
states emerge with two different incommensurate nesting vec-
tors Q± and Q∓ because of the splitting of Fermi arcs between
up and down spins. This helical split is due to SOC and the
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Fig. 21. (Color online) Spin structure at (001) edge of [Pt(dmdt)2] in the
presence of SOC. (a) and (b) are on the a=ia and a=ia +1 layers, respectively.

breaking of spatial inversion symmetry at the edge.
To investigate the edge magnetism induced by such nest-

ing vectors, we calculated the longitudinal and transverse
spin susceptibilities, by real-space-dependent RPA for the
three-orbital Hubbard model describing [Pt(dmdt)2] and
[Ni(dmdt)2]. In the absence of SOC, the nesting vector Q en-
hances the longitudinal spin susceptibility at the (001) edge.
Thus, longitudinal SDW occurs at the (001) edge. We also
investigated the effect of carrier doping. Carrier doping mod-
ulates the Fermi arc, and the nesting vector Q varies. In par-
ticular, we observed that hole doping and electron doping at
2.0% for [Pt(dmdt)2] and 0.23% for [Ni(dmdt)2] induce edge
ferromagnetism. In the presence of SOC, the nesting vectors
Q± and Q∓ induce transverse SDW at the edge. In addition
to what happens in the absence of SOC, the carrier doping
modulates the Fermi arcs, and the nesting vectors Q± and Q∓
vary. Therefore, the magnetic structure at the (001) edge is
extremely sensitive to carrier doping. Figure 9 shows that the
bare longitudinal spin susceptibility markedly decays from
the edge to the bulk. The effect of the edge state reaches within
a few unit cells near the edge. Hence, it is considered that the
large magnetic moment is induced only near the edge. Thus,

we consider that the topological property in the bulk is not
affected by the edge SDW.

[Pt(dmdt)2] and [Ni(dmdt)2] would have become weak
topological insulators if the spin–orbit interaction was
sufficiently large.48) Thus, these can be positioned as a new
variation of magnetic order at the edges of topological insu-
lators.73) In the experiment, it is predicted that the edge SDW
is observed as a magneto-optical Kerr effect. Because SOC is
finite in our reality, transverse SDW can be experimentally
observed at the (001) edge. Such optical experiments are
expected to provide information on small amounts of carrier
doping and spin–orbit interaction. For organic conductors,
carriers can be strictly controlled in the experiment; small
amounts of carrier doping have been demonstrated to be
controllable in organic conductors. For example, a field effect
transistor (FET) can change amounts of carriers and modulate
the Fermi arc,74, 75) whereas transport properties such as the
hole coefficient are sensitive probes for carrier doping.76, 77)

The sensitivity of SDW for carrier doping can also be useful
as a probe for controlling extremely dilute carriers.
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Appendix: Six Orbital Tight-Binding Model of
[Ni(dmdt)2]

In Sect. 2, we developed a three-orbital tight-binding model
based on Wannier fitting of the first-principles calculation. We
also provide a detailed explanation on how the model was cre-
ated and explain the process of creating three-orbital tight-
binding models. Figure 1(a) shows the energy band structure
of [Ni(dmdt)2], where the horizontal axis represents the con-
nected symmetry points in the BZ. We performed Wannier
fitting for the six energy bands near the Fermi energy and
developed the six-orbital tight-binding model. Figure A·1 vi-
sualizes the energy band structure obtained via Wannier fit-
ting and first-principles calculations. The purple circles de-
pict the Wannier fitting, whereas the red lines illustrate the
first-principles calculation. The Wannier fitting reproduces
the first-principles calculation. Using the hopping energies
obtained via Wannier fitting, we created the six-orbital tight-
binding model. We obtained the energy dispersion by di-
agonalizing the Hamiltonian of the six-orbital tight-binding
model. Figure A·2 shows the energy dispersion of [Ni(dmdt)2]
in the kb-kc plane, where ka=−π/2. In Fig. A·2, bands 1, 5, and
6 are flat bands and do not have the degenerate points between
bands 2, 3, and 4. Thus, bands 2, 3, and 4 are separated into
the three-orbital model. We then performed Wannier fitting
for the three bands near the Fermi energy again and devel-
oped the three-orbital tight-binding model presented in Sect.
2.
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