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Fractons are topological quasiparticles with limited mobility. While there exists a variety of models host-
ing these excitations, typical fracton systems require rather complicated many-particle interactions. Here, we
discuss fracton behavior in the more common physical setting of classical kagome spin models with frustrated
two-body interactions only. We investigate systems with different types of elementary spin degrees of free-
dom (three-state Potts, XY, and Heisenberg spins) which all exhibit characteristic subsystem symmetries and
fracton-like excitations. The mobility constraints of isolated fractons and bound fracton pairs in the three-state
Potts model are, however, strikingly different compared to the known type-I or type-II fracton models. One may
still explain these properties in terms of type-I fracton behavior and construct an effective low-energy tensor
gauge theory when considering the system as a 2D cut of a 3D cubic lattice model. Our extensive classical
Monte-Carlo simulations further indicate a crossover into a low temperature glassy phase where the system gets
trapped in metastable fracton states. Moving on to XY spins, we find that in addition to fractons the system
hosts fractional vortex excitations. As a result of the restricted mobility of both types of defects, our classi-
cal Monte-Carlo simulations do not indicate a Kosterlitz-Thouless transition but again show a crossover into
a glassy low-temperature regime. Finally, the energy barriers associated with fractons vanish in the case of
Heisenberg spins, such that defect states may continuously decay into a ground state. These decays, however,
exhibit a power-law relaxation behavior which leads to slow equilibration dynamics at low temperatures.

I. INTRODUCTION

Fractional quasiparticles are a widespread phenomenon in
currently investigated condensed matter phases. Despite their
rather conventional constituents such as the electron’s charge
or spin, the actual low-energy physics is governed by exci-
tations that are fractions of the original degrees of freedom.
Typical examples are fractional quantum Hall systems [1–3]
or quantum spin liquids [4–7] where the occurrence of frac-
tional quasiparticles is closely tied to topological order and
long-range entangled ground states [8]. While the exotic na-
ture of fractional excitations manifests in various intriguing
ways (e.g. anyonic braiding statistics), they usually still pos-
sess the very common property of being equipped with a ki-
netic degree of freedom.

In the last few years, however, a new class of systems has
attracted increasing interest, where the low-energy fractional
excitations are intrinsically immobile, known as fractons [9–
21]. In simple terms, the immobility stems from the fact that
fractons can only be created at the corners of a membrane-
like operator, known as type-I scenario [14]. This is, e.g., in
contrast to a more conventional quantum spin liquid, where
fractional spin excitations appear at the ends of a string op-
erator [6]. Stated differently, in these latter systems the frac-
tional ‘charge’ is conserved and the dipole operator is uncon-
served while a fracton phase is characterized by both con-
served charge and dipole moments. Such dipole conservation
laws are a natural property of symmetric tensor gauge theories
which provide an effective low-energy description of fracton
phases [22–27]. Despite their immobility when being isolated,
composites of fractons may be partially mobile within lower
dimensional subsystems. Such subsystem operations estab-
lish a subextensive groundstate degeneracy characteristic for
many fracton phases.

As a result of their mobility constraints, fracton phases fea-
ture a slow thermal relaxation and glassy dynamics even in the
absence of randomness in the Hamiltonian [11, 28]. While in
disorder-induced spin glasses the slow dynamics is a conse-
quence of a complex distribution of energy barriers, in frac-
ton phases the glassy behavior rather stems from restrictions
in the elementary moves by which the system can transition
between states. Fracton phases, hence, share many proper-
ties with kinetically constrained models [29–37], which have
a much longer history of investigation.

A severe difficulty in realizing fracton phases in real physi-
cal systems is that most of the known models consist of rather
artificial and complicated cluster spin interactions. For ex-
ample, the famous X-cube model has interactions involving
twelve spin operators [14]. Various interesting proposals have
recently been put forward, aiming to embed fracton physics
in real world systems, however, this field is still in its infancy.
For example, it has been shown that in a certain limit of cou-
pled Kitaev honeycomb layers, type-I fracton order emerges
with nearest-neighbor two-body spin interactions only [38].
In other works, fracton mobility constraints have been identi-
fied in valence plaquette solids [39], frustrated hole-doped an-
tiferromagnets [40], and breathing pyrochlore magnets [41].

Here, we investigate fracton behavior in the familiar con-
text of frustrated two-body spin models on the kagome lattice.
Our conceptual starting point is a classical kagome spin model
with nearest neighbor interactions [42–45], featuring an ex-
tensive ground state degeneracy. Through a suitable inclu-
sion of longer-range couplings, this degeneracy is lifted to be-
come subextensive, hence, realizing an environment for frac-
ton physics (see Refs. [46–56] for a selection of works about
related kagome models with longer-range interactions). The
ground and excited states may be most conveniently described
by defect variables associated with local spin constraints. We
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study three variants of this system where the elementary con-
stituents become increasingly more realistic: Starting with a
three-state Potts model we generalize the spins towards con-
tinuous inplane XY degrees of freedom and finally consider
isotropic Heisenberg spins. While all our models are classical
spin systems which cannot display real fracton topological or-
der, we still identify characteristic fracton phenomena such as
subdimensional particles, emergent tensor gauge theories and
glassy dynamics.

A first observation is that our three-state kagome Potts
model hosts isolated defects which correspond to a single vi-
olated spin constraint. While the restricted mobility of such
excitations shows a strong resemblance with fractons, they
still do not fall exactly into the known type-I [14] or type-
II [12] fracton categories. Particularly, defects are neither cre-
ated at the corners of a modified region nor through a fractal
operation. We resolve this mystery by embedding the kagome
structure in a simple 3D cubic lattice. This allows us to view
the kagome Potts model as a more conventional 3D type-I
fracton system, restricted to a particular two-dimensional sub-
space. We further formulate a 3D rank-2 U(1) electrostatics
theory describing the system’s low-energy behavior. Concern-
ing thermal properties, our extensive classical Monte Carlo
simulations indicate a high temperature regime where the sys-
tem shows characteristic line-like spin fluctuations on short
length scales. In contrast, at low temperatures the system en-
ters a glassy regime where the dynamics slows down and spin
configurations get stuck in (or around) local energy minima
(see e.g. Refs. [57–62] for further works on glassy dynamics
in kagome spin systems).

Generalizing the spins towards XY degrees of freedom, the
isolated fractons remain qualitatively unchanged. However,
the increased configurational space enables the existence of
vortices with fractional vorticity, known from other classical
XY kagome models [63, 64]. Our Monte Carlo simulations
reveal thermally excited patterns of fractons and fractional
vortices whose positions are strongly correlated among each
other. These correlations significantly reduce the dynamics
of vortices such that a Kosterlitz-Thouless transition [65–67]
into a quasi long-range ordered low-temperature phase is not
observed. Finally, in the case of Heisenberg spins, any de-
fect state can be continuously transformed into a ground state
without crossing energy barriers and, consequently, fractons
lose their stability. The associated time scales, however, easily
exceed available computation times such that even in slowly
cooled systems remnants of fracton states are still discernible.

In total, this work demonstrates that fracton behaviors are
not restricted to models with artificial spin cluster interactions
but may be observed in more common frustrated two-body
spin systems.

The remainder of this work is organized as follows: In
Sec. II we introduce the investigated models which are defined
in terms of three-color states, XY spins, and Heisenberg spins.
In the following Sec. III we discuss the properties of ground
states and isolated defect states for all three variants of the sys-
tem. We, particularly, focus on fractons in the three-state Potts
model (Sec. III A) and explain their low energy behaviors and
effective field theory. Thereafter, in Sec. IV we investigate the

thermal properties of the three systems using classical Monte
Carlo simulations. We discuss in detail thermodynamic quan-
tities such as specific heat, spin-structure factor, real space
spin configurations, as well as autocorrelation functions. The
paper ends with a conclusion in Sec. V.

II. MODELS

Below we study a family of classical three-state Potts,
XY and Heisenberg spin models defined on the sites of
the kagome lattice. Depending on the type of model, the
spin operators Si, hence, either denote color states Si ∈
{red, blue, green} [or equivalently Sred = (1, 0, 0), Sblue =

(−1/2,
√

3/2, 0), Sgreen = (−1/2,−
√

3/2, 0)], XY spins
Si = (Sxi , S

y
i , 0), or Heisenberg spins Si = (Sxi , S

y
i , S

z
i )

where normalization |Si| = 1 is always assumed. The
ground states of all models are subject to two types of con-
straints: Each elementary nearest neighbor triangle and six-
site hexagon of the kagome lattice is locally in a ground state if
their spins sum up to zero (also referred to as color-neutrality
in the Potts model),

J1-J2-J3d model:
∑

i∈n.n. triangle

Si = 0 ,
∑

i∈hexagon

Si = 0 . (1)

In Fig. 1 we present a possible three-color configuration
whose construction will be discussed in the next section. We
call this model the J1-J2-J3d model for reasons to become
clear below. Triangles and hexagons violating this rule are
associated with an energy cost.

Furthermore, we construct two variants of this model which
share the same ground states but partially differ in their ex-
cited states. To this end, consider the twelve spins labelled
S1, . . . ,S12 in Fig. 1 which form a Star of David. Combining
the constraints for three triangles with the one for the hexagon
leads to

0 = (S1 + S11 + S12) + (S3 + S4 + S5) + (S7 + S8 + S9)

= (S1 + S3 + S5 + S7 + S9 + S11)︸ ︷︷ ︸
=0

+(S4 + S8 + S12) ,

(2)

indicating that the hexagon condition implies color neutrality
in larger upward pointing triangles (here, the triangle formed
by S4, S8, and S12). These triangles have a side length of
three nearest neighbor lattice spacings and will be denoted
as J54 triangles since the involved spins are fifth neighbors.
Hence, we may formulate a variant of the above J1-J2-J3d
model which we call the J1-J54-model:

J1-J54 model:
∑

i∈n.n. triangle

Si = 0 ,
∑

i∈J54 triangle

Si = 0 . (3)

Finally, the steps in Eq. (2) can be modified to show that the
color-neutrality constraint for the hexagon is also equivalent to
S2 + S6 + S10 = 0, which involves the spins on a downward
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Figure 1. Definition of different bonds on the kagome lattice. The
hexagon on the top left illustrates the fifths neighbor J54 and J55
bonds while the hexagon on the top right shows examples for J2 and
J3d-bonds. The numbers 1 − 12 label a set of twelve spins forming
a Star of David, see text for details. The illustrated spin state is an
example for a configuration fulfilling all constraints discussed in the
main text.

pointing large triangle (denoted as J55 triangle). Adding this
constraint results in the so-called J1-J54-J55-model:

J1-J54-J55 model:∑
i∈n.n. triangle

Si = 0 ,
∑

i∈J54 triangle

Si = 0 ,
∑

i∈J55 triangle

Si = 0 .

(4)

From their construction, it is clear that all three models have
the same ground states, however, their excited states differ to
some extent.

The above constraints can be straightforwardly recast into
quadratic spin Hamiltonians which fixes the energies of ex-
cited states. This amounts to replacing a constraint Si1 +Si2 +
. . .+ Sin = 0 by a term ∼ J(Si1 + Si2 + . . .+ Sin)2 in the
Hamiltonian. Up to constants the above models then read

HJ1-J2-J3d = J1
∑
〈i,j〉1

Si·Sj+J2
∑
〈i,j〉2

Si·Sj+J3d

∑
〈i,j〉3d

Si·Sj ,

(5)
where J2 = J3d. Furthermore, since the first neighbor cou-
pling J1 has contributions from both the triangle and hexagon
constraints, this interaction is bounded by J2 = J3d < J1.
Note that 〈i, j〉x stands for a pair of sites coupled by Jx and
each pair appears in the sum once, see Fig. 1 for the definition
of coupling constants. Equivalently, the other models read

HJ1-J54 = J1
∑
〈i,j〉1

Si · Sj + J54
∑
〈i,j〉54

Si · Sj , (6)

HJ1-J54-J55 = HJ1-J54 + J55
∑
〈i,j〉55

Si · Sj . (7)

As long as all interactions J are positive, the properties of
the three models do not crucially depend on the precise cou-
pling ratios J2

J1
, J54J1 and J55

J1
. Hence, without loss of gener-

ality, we will fix these ratios in our numerical calculations be-
low. Throughout the paper, we use regular periodic boundary

Figure 2. (a) Example of a ground state of the three-state kagome
Potts models. Colors have been swapped along a horizontal line,
creating a stripe-like domain. (b) Adjacency rules for the six types
of q = 0 orders. Neighboring and opposite sectors may share a
common domain wall, see text for details.

conditions or open boundary conditions, and do not consider
twisted boundary conditions.

III. GROUND STATES AND LOW-ENERGY
EXCITATIONS

In this section we discuss the set of ground states and
isolated low-energy excitations (such as fracton-like defect
states) of the models introduced in the last section, starting
with the three-state Potts models. In the next section we will
numerically simulate their thermodynamic properties within
Monte Carlo.

A. Three-state Potts models

Ground states

The simplest ground states of the Potts models obeying all
constraints are homogeneous q = 0-states where all unit cells
(which can be chosen as the three sites of the upward-pointing
J1 triangles) are identical. Globally, there are 3! = 6 such
states which transform into each other by permutations of the
three colors [see yellow region in Fig. 2(a) for an example of
a q = 0-state]. The homogeneous q = 0-states are char-
acterized by an alternation of two colors along straight lines
running through the entire system. Starting from these q = 0-
states, all other ground states can be obtained by swapping
the colors along arbitrary parallel lines, which keeps all con-
straints intact. Note, however, that swapping the colors along
two non-parallel lines creates defect triangles/hexagons near
the point where the lines cross. It follows that the system
has a subextensive ground state degeneracy proportional to 2L

(where L is the linear system size) typical for fracton systems.
In Fig. 2(a) we depict an example of a ground state where col-
ors along a single horizontal line have been swapped with re-
spect to the rest of the system. Note that when relaxing the
constraints in the hexagons or J5 triangles the ground state
degeneracy is lifted, leading to the well-known extensive de-
generacy characteristic for nearest neighbor kagome antifer-
romagnets [42, 43].
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An alternative way of describing the states of the Potts mod-
els is by viewing the six types of q = 0-states as domains. It
is then straightforward to formulate rules for possible arrange-
ments of domains such that all constraints are respected at the
domain walls. These rules are summarized in Fig. 2(b): Two
domains in adjacent sectors can have a common domain wall
with an orientation given by the gray line separating them.
Additionally, domains in opposite sectors (connected by or-
ange lines) may have a common domain wall with an orienta-
tion perpendicular to the respective orange line. Trivially, the
rules remain valid when interchanging each sector in Fig. 2(b)
with the opposite one, e.g., the domain 6 may lie above a do-
main 1 or vice versa. As illustrated in Fig. 2(b) domain walls
respecting all constraints are straight lines passing through
kagome sites of the same sublattice. Below, we will use this
domain-wall representation for discussing defect states.

Fracton behaviors

We now investigate three-color states with isolated defects
in single hexagons/triangles excited from a ground state. A
first indication for possible fracton behavior comes from the
observation that changing the value of one spin in a ground
state leads to a multipole of defects, each representing a “frac-
tion” of the excitation. For example, changing a single spin in
a ground state of the J1-J2-J3d model creates two defect tri-
angles and two defect hexagons adjacent to the modified spin.
In the usual type-I fracton scenario, as for example realized in
the plaquette Ising model (see below), these quadrupolar de-
fects can be far-separated such that they form the corners of an
area of flipped spins. Hence, the two relevant questions dis-
cussed below are: (i) Do isolated defect triangles/hexagons
exist in our kagome Potts model and (ii) if yes, are they lo-
cated at the corners of a region of flipped spins? While the
answer to the first question is yes, the situation in the second
question cannot be realized.

Before we discuss the kagome Potts models, we briefly in-
troduce the well-known plaquette Ising model [32–34]. De-
spite its simplicity, this model features various prototypical
type-I fracton properties which we will compare with the frac-
ton behaviors in our kagome systems. The plaquette Ising
model exhibits Ising spins Si = ±1 located at the sites of a 2D
square lattice, coupled via four-body interactions S1S2S3S4

involving the four spins of an elementary 1×1 square plaque-
tte. The Hamiltonian is a sum over all plaquette terms

Hplaq.-Ising = −
∑

plaquettes

∏
i∈plaquette

Si . (8)

Starting with a homogeneous ground state where all spins are
Si = +1 (or equivalently Si = −1) the system’s subextensive
ground state degeneracy is obvious from the fact that arbitrary
lines of spins (which may also intersect) can be flipped. A
single spin flip at site i in an arbitrary ground state creates
a quadrupole of four excitations in the plaquettes sharing the
site i, see Fig. 3(a). These excitations can be separated by
enlarging the region of flipped spins into a rectangular area
[Fig. 3(b)]. The isolated defects at the corners of this region,

Figure 3. Properties of the plaquette Ising model. (a) Flipping a
single spin in a ground state creates four defect plaquettes (indicated
by magenta stars). (b) When the region of flipped spins is enlarged,
isolated and immobile fracton excitations sit at its corners. (c) Two-
fracton bound states are free to move in the direction perpendicular
to itself.

called fractons, are characterized by their immobility, since
any move to a neighboring site requires flipping a whole line
of spins. Despite the immobility of single fractons, however,
a two-fracton bound state (so-called lineon) is free to move in
the direction perpendicular to itself, as illustrated in Fig. 3(c).
Such moves only require flipping a finite number of spins,
given by the size of the dipole.

We now contrast these properties with the fracton behav-
iors in our kagome Potts models. Firstly, isolated defect tri-
angles/hexagons in an otherwise defect-free system exist and
can be most easily described as points where domain walls
cross. There are two types of domain wall arrangements
which yield an excitation in a hexagon (or in a J54/J55 trian-
gle): The first [called triple fracton, see Fig. 4(a)] exhibits
π/3-sectors of domains, where six domain walls emanate
from the crossing point. This fracton has an excitation en-
ergy of EPotts

3-frac = 4.5J2 [4.5J54, 4.5(J54+ J55)] for the J1-
J2-J3d model [J1-J54-model, J1-J54-J55-model]. The sec-
ond [called single fracton, see Fig. 4(b)] has two π/3 and two
2π/3-sectors with four domain walls emanating from the frac-
ton core. This excitation has a lower energy ofEPotts

1-frac = 1.5J2
[1.5J54, 1.5(J54+J55)], for the J1-J2-J3d model [J1-J54-
model, J1-J54-J55-model]. Except for the J1-J54-J55-
model, these fractons can also be moved into neighboring
J1 triangles via a simple shift of domain walls, illustrated in
Figs. 4(c) and 4(d). The associated excitation energies are
then 4.5J1 and 1.5J1 for triple and single fractons, respec-
tively. As a further difference between the three variants of
our system the J1-J2-J3d model allows for fractons in both
the upward and downward pointing J1-triangles while the J1-
J54 model can only host isolated fractons in downward point-
ing J1-triangles. Up to real-space rotations around the frac-
ton center and permutations of domains these configurations
cover all isolated fractons the system may host.

Like in the plaquette Ising model, the immobility of de-
fects is clearly established by the fact that moving a fracton
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Figure 4. (a)-(d) Isolated fractons (magenta stars) in the kagome
Potts models residing at intersections of domain walls (gray lines).
(a) Triple defect in a hexagon/J5 triangle. (b) Single defect in a
hexagon/J5 triangle. (c) Triple defect in a J1 triangle. (d) Single
defect in a J1 triangle. (e) Two-fracton bound state in the J1-J2-J3d

model with horizontal mobility. Light magenta stars indicate the po-
sitions of fractons when the domain “5” (light blue region) is further
extended to the left.

requires shifting domain walls, which amounts to changing
the spin configuration in the whole area swept over by the do-
main wall. However, as a striking difference compared to the
plaquette Ising model, more than two domain boundaries are
sticking out of the fracton cores. Consequently, in contrast to
conventional type-I fractons models, it is impossible to create
a group of isolated fractons out of a local multipole of defects
such that they reside at the corners of a large region of flipped
spins. In other words, exciting one or more fractons out of
a ground state inevitably requires introducing domain walls
reaching out to infinity.

Swapping two colors in a q = 0 state along a semi-infinite
line as shown in Fig. 4(e) creates a fracton bound state with
subdimensional mobility, similar to a lineon. These excita-
tions move by extending/shortening the string of swapped col-
ors which amounts to shifting the blue domain in Fig. 4(e) to
the left/right. In contrast to conventional type-I fracton mod-

els this motion, however, is not strictly linear but occurs in
an unusual zig-zag manner, as indicated by the light magenta
stars in Fig. 4(e). As a further difference compared to more
usual fracton scenarios, the two defects forming the lineon are
not of the type of isolated excitations shown in Fig. 4(a)-(d)
but rather should be considered as parts of a defective domain
wall which violates the adjacency rules of Fig. 2(b). This be-
comes obvious when trying to extend the vertical thickness of
the domain “5” in Fig. 4(e). Indeed, there is no possible termi-
nation of this domain at its left end that obeys the adjacency
rules. Hence, in contrast to the plaquette Ising model where
the two defects in Fig. 3(c) may be vertically separated with-
out energy cost, such a separation would lead to a string of
defects in Fig. 4(e) with an energy proportional to its length.
Reversely, a subdimensional excitation consisting of two iso-
lated defects, each of the type of Fig. 4(a)-(d) does not exist.

Interpretation of the fracton behaviors

As discussed above our kagome Potts models show unusual
fracton behaviors: (i) Fractons cannot be created at the cor-
ners of a finite region of modified spins and (ii) two-fracton
bound states move along zig-zag paths and cannot be extended
in a direction parallel to themselves. This is in contrast to con-
ventional type-I fracton models [14, 32–34] where fractons
are created as a group of four at the corners of a rectangular
region. Such differences present an interesting challenge of
how to interpret them in a natural and unifying manner.

The following considerations apply to the J1-J2-J3d model
but their implications also hold for the other two models. Fur-
thermore, the arguments below do not depend on the exis-
tence of three colors. For simplicity, it suffices to consider
the degrees of freedom arising from interchanging, e.g., red
and blue colors. Starting from a ground state and changing
a single red into a blue spin means that the two adjacent tri-
angles and hexagons obey

∑
i∈triangle Si =

∑
i∈hexagon Si =

Sblue − Sred ≡ +d. The reverse process leads to two trian-
gles and two hexagons with spin sums −d such that ±d are
effective Z2 charges.

Conforming to the rank-2 U(1) gauge theory interpretation
of fractons [22, 23], we can think of the spin degrees of free-
dom sitting on the sites of the kagome lattice as discrete elec-
tric fields. The color-neutrality conditions on the triangles
and hexagons corresponds to a “Gauss’s law” which relates
the electric field to the “electric charges” (i.e., defect trian-
gles/hexagons). Hence, the fractons reside on the dual lattice
of the kagome lattice which is formed by the centers of the tri-
angles and hexagons, called the rhombille tiling (cf. Fig. 5).
Reversely, the spin degrees of freedom, or electric fields, live
on the centers of the rhombi. Changing the value of one spin
creates a quadrupole of four excitations with charges ±d on
the corners of a rhombus, see Fig. 5 (left). The fracton behav-
iors now crucially depend on how the lattice can be tiled with
these quadrupoles. As an example we show in Fig. 5 (right) a
charge configuration resulting from a pair of neighboring +d
and −d quadrupoles.

A first indication for the unusual fracton behavior comes
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Figure 5. The rhombille tiling (blue lattice) and kagome lattice (gray
lattice) are dual to each other. Left: Quadrupole resulting from a
single spin flip. Right: Charge configuration from two neighboring
+d and−d quadrupoles. Modified spins are indicated by red points.

from the fact that the rhombille tiling is lacking “scale in-
variance”. Particularly, enlarged versions of the elementary
rhombi such as parallelograms extending over large regions
do not exist in the lattice. This is in contrast to fracton models
on square or cubic lattices where rectangular areas of any size
can be embedded into the lattice. Below, these ideas will be
formulated in a more rigorous way.

We can view the rhombille tiling as a two-layer cut of a
cubic lattice, perpendicular to the [1, 1, 1] direction. In this
representation, each rhombus is a face of an elementary cube.
Hence, the fracton quadrupole created by changing the value
of a single spin now lives on the corners of a square embedded
in a square lattice in either the x-y, y-z, or x-z plane. This
is the familiar type-I fracton scenario as, e.g., realized in the
plaquette Ising model [32–34]. By considering the full cubic
lattice, large rectangular regions in the x-y, y-z, or x-z planes
can be tiled with quadrupoles which creates the usual type of
isolated fractons. Furthermore, a dipole of fractons can move
in the plane perpendicular to itself.

The fracton behavior on the rhombille tiling can, hence, be
explained by familiar fracton type-I behavior on a cubic lat-
tice, but restricted to the two-layer cut forming the rhombille
tiling. This means that any quadrupoles outside the two-layer
cut are not usable. As a consequence, a large rectangular re-
gion in the x-y, y-z, or x-z plane does not live entirely on the
cut in [1, 1, 1] direction and, hence, one cannot create isolated
fractons from a far-separated quadrupole, see Fig. 6a. Addi-
tionally, as illustrated in Fig. 6b, a plane perpendicular to a
fracton dipole intersects the [1, 1, 1] cut on a one-dimensional
sub-manifold, forming a zig-zag path on the rhombille tiling
in agreement with our observation in Fig. 4(e). This dipole
cannot be extended beyond a separation of one lattice spacing
since this would lead to fractons outside the [1, 1, 1] cut.

(a) (b)

Figure 6. Fracton behaviors explained by viewing the rhombille
tiling embeded in the cubic lattice. (a) A large rectangle highlighted
in red with a quadrupole of fractons on its corners does not fully over-
lap with the rhombille tiling cut. Hence a single fracton originating
from a far-separated quadrupole cannot be created on the rhombille
tiling. (b) A fracton dipole can move in the plane perpendicular to it-
self in the cubic latice. This plane only intersects the rhombille tiling
cut on the one-dimensional orange path. Hence a fracton dipole on
the rhombille tiling is restricted to move along the orange zig-zag
path.

Low energy effective theory

In the next step, we discuss the low energy effective the-
ory underlying the observed fracton behaviors. The following
considerations are based on a simple cubic lattice in which
the kagome model can be embedded. The cubic lattice hosts
a rank-2 U(1) electrostatics theory [22, 23], where the rank-2
electric field is a symmetric tensor with all diagonal compo-
nents vanishing:

E =

 0 Exy Ezx

Exy 0 Eyz

Ezx Eyz 0

 . (9)

This type of rank-2 U(1) theory is found to be crucial in de-
riving three-dimensional gapped fracton topological order by
Higgsing gapless rank-2 U(1) theories [26, 27]. Note that the
components Eij are defined on different lattice positions. For
example, denoting the cubic lattice sites by r, the component
Exy lives on the centers of elementary plaquettes in the x-y
plane, i.e., at r + (±ex ± ey)/2 (where ei are cartesian unit
vectors). The other components are defined equivalently. The
Gauss’s law describing the charge-free sector is that of a scalar
charged rank-2 U(1) theory:

∂i∂jE
ij = 0. (10)

To connect this condition to our above discussion, we formu-
late a discretized lattice version of Eq. (10) which exists for
all cubic sites r,

Eij
r+

ei
2 +

ej
2

−Eij
r+

ei
2 −

ej
2

−Eij
r− ei

2 +
ej
2

+Eij
r− ei

2 −
ej
2

= 0 . (11)

Hence, changing Eij on a single plaquette in a state that sat-
isfies all constraints creates a quadrupole of defects at the
corners of the plaquette. These quadrupoles correspond to
the ones illustrated in Fig. 5 for the original kagome lattice.
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The fact that there are only off-diagonal components in the
field tensor is in agreement with the observation that only
quadrupoles on a plaquette can be created by changing Eij .
The low-energy effective Hamiltonian can, therefore, be writ-
ten as

H = U(∂i∂jE
ij)2 , (12)

penalizing the existence of a charge with an energy cost. Since
there are only off-diagonal components of Eij living on the
faces of the cubes, the simplest way to varyEij while respect-
ing the Gauss’ laws is to shift all Eij by the same value on an
entire plane. Degeneracies of line- or local spin flips do not
exist. In the picture of multipoles, this amounts to extending
the quadrupole on a plaquette to infinity on the plane it lives
on.

The low-energy physics of the kagome model can again be
interpreted as the restriction of the above 3D tensor gauge the-
ory to a [1, 1, 1] cut. Particularly, the degeneracies from flip-
ping three types of planes in the 3D system are translated into
three types of line degeneracies on the kagome lattice. The
fracton excitations can also be consistently explained in the
same fashion, as we discussed in detail in the previous sec-
tion.

B. XY models

We now generalize our system from three-state Potts spins
to continuous in-plane XY spins. Particularly, we discuss the
associated modifications of ground states and isolated defect
states from the last section, which turn out to be rather small
(new phenomena, however, emerge when considering vortex
states, see Sec. IV B). Apart from the freedom to globally ro-
tate spins within the x-y plane, the ground states are the same
as in the three-state Potts model. Likewise, there exist two
types of fractons for all three models (J1-J2-J3d, J1-J54, and
J1-J54-J55 models) which we again call single and triple
fractons. An obvious difference, however, is that the optimal
spin configurations in the cores of defects (which correspond
to a local energy minimum) are slightly deformed compared
to the fractons in the Potts model. Such optimized states can
be most easily constructed by performing an iterative mini-
mization scheme [68, 69]: The starting configuration is a de-
fect from the three-state Potts model in the center of a system
with open boundary conditions. We then successively select
random spins and orient them along its so-called local field hi
which, for a general Hamiltonian H =

∑
〈i,j〉 JijSi · Sj is

defined by

hi = −
∑
j

JijSj . (13)

By construction, in each such step the energy can only be low-
ered, however, as a steepest descent method the scheme can
get stuck in a local minimum (which in our case is a frac-
ton state). An example of an optimized single fracton in the
J1-J54 model with J1 = J54 is illustrated in Fig. 7(a), to-
gether with the initial spin configuration of a fracton in the

Figure 7. (a) Optimized spin configuration of a single fracton (ma-
genta star) in the J1-J54 model from iterative minimization. Small
black arrows at each lattice point illustrate the initial defect of
the three-state Potts model. (b) Relaxation of excitation energies
E(τ) − EXY

1-frac and E(τ) − EXY
3-frac as a function of the step count

τ for a single and triple defect. Thin lines are fits to an exponential
function.

three-state Potts model (small black arrows). While both
spin configurations in Fig. 7(a) closely resemble each other,
the excitation energies are reduced quite significantly, from
EPotts

1-frac = 1.5J1 to EXY
1-frac = 0.8546J1 for a single fracton and

fromEPotts
3-frac = 4.5J1 toEXY

3-frac = 2.2014J1 for a triple fracton.
Furthermore, the real space distribution of excitation energies
is no longer given by a single defect triangle but spreads over
a few lattice spacings. To estimate the spatial extent of the
fracton in Fig. 7(a) we note that at a distance of 4 lattice spac-
ings away from its center, the spins do not deviate more than
4.6◦ compared to the initial configuration. Adopting the con-
cept of fugacity as a measure for the size of vortex cores in
Kosterlitz-Thouless systems, one may conclude that fractons
in the three-state Potts model have the smallest possible fu-
gacity which increases for the XY model.

We also note that the decrease of the excitation energy as
a function of the step count τ in iterative minimization fol-
lows a standard exponential relaxation at sufficiently large
τ (here one step corresponds to N = 7500 individual up-
dates, where N is the total number of lattice sites). This is
shown in Fig. 7(b), where the decay of the excitation energies
E(τ) − EXY

1-frac and E(τ) − EXY
3-frac is plotted as a function of

τ . As will be discussed in the next section, this behavior is
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in stark contrast to the power-law relaxation of defects in the
Heisenberg models.

C. Heisenberg models

We now consider the ground states and low-energy defect
states of the Heisenberg models. Since the J1-J2-J3d, J1-
J54, and J1-J54-J55 models all have very similar properties
(the degenerate ground states are even identical in the three
cases) they can be treated together.

Ground states of the Heisenberg models

It is clear that all ground states of the three color models
are also ground states of the Heisenberg models, however, the
reverse is not true, i.e. not all ground states of the Heisen-
berg models consist of only three spin orientations. Indeed,
as demonstrated below, the set of degenerate ground states of
the Heisenberg models is surprisingly rich and interesting on
its own. Apart from global SO(3) rotations of all spins, the
ground state manifold can be constructed by subsystem opera-
tions. This is similar to the three color models where, starting
from a q = 0 state, one can generate all ground states by
swapping two colors on arbitrary parallel lines. In contrast
to the three color models, however, the Heisenberg models
also allow for subsystem operations on lines which cross. The
lines on which such operations are performed can have three
orientations and one may classify each ground state according
to the number of different directions of line manipulations re-
quired to generate it out of a q = 0 state. The first case (i)
is similar to the three color models, i.e., only operations along
lines with the same lattice direction are involved. In the sec-
ond case (ii), manipulations along two different lattice direc-
tions are required and in the third case (iii), all three types of
operations are performed. Below, we will consider the ground
states generated in each of the three cases and show that they
are characterized by different types of discrete and/or contin-
uous degeneracies.

Case (i): Subsystem operations on parallel lines. This case
is a direct generalization of the construction of ground states
in the three color models. The operation of swapping two
colors along a line in the latter models, which generates all
ground states, corresponds to performing a π-rotation around
the direction of the third spin. In a model with SO(3) spins,
this rotation can be performed by any angle ϕ ∈ [0, 2π) with-
out exciting the system, as illustrated in Fig. 8. Since one can
independently do such rotations on arbitrary numbers of par-
allel lines where each subsystem operation is characterized by
an angle ϕ the ground state manifold is defined by L contin-
uous parameters. In all states generated this way, one of the
kagome sublattices has a fixed direction.

Case (ii): Subsystem operations on lines with two direc-
tions. Apart from global SO(3) rotations, the degenerate
ground states in this case depend on one continuous angle
α ∈ [0, 2π/3) and are constructed using eight different spin
orientations which we denote S1a, S1b, S2a, S2b, S3a S3b,

Figure 8. Illustration of line-manipulations in the ground states of
case (i): All spins along a line with alternating green and red colors
are rotated by an angle ϕ around the direction of the blue spins. Ar-
rows indicated by contours show the orientations of the spins before
the transformation.

S3c, S3d. The free parameter α is the angle between the
spins S1a and S1b which we assume to be fixed in the fol-
lowing (changing S1a and S1b amounts to changing the angle
α and/or performing a global SO(3) rotation of all spins). The
other spin orientations are then defined according to Fig. 9(a):
Drawing a circle on the Bloch sphere around S1a such that all
points on the circle enclose an angle of 2π/3 with S1a and
drawing the same type of circle around S1b, the spins S2a and
S2b point in the two directions where the circles cross. The
remaining spin directions S3a S3b, S3c, S3d lie on opposite
positions on the two circles, as specified in Fig. 9(a). For ex-
ample, S3a lies on the circle around S1a opposite to S2a such
that S2a and S3a enclose an angle of 2π/3.

We construct the degenerate ground states in this case by
starting from a q = 0 state. For the three spin orientations
defining the q = 0 state we select an arbitrary trio of spins
from the eight directions, such that, in the usual way, each
pair of the trio encloses an angle of 2π/3. In the example
considered here [see Fig. 9(b)], we choose the three spins S1a,
S2a, and S3a (it is clear from their construction that all three
numbers “1”, “2”, “3” must be represented once in the index
labels of such a trio). Manipulations of the state in Fig. 9(b)
can now be independently performed along the two types of
lines where spins S1•, S3•, S1•, . . . alternate or where S2•,
S3•, S2•, . . . alternate (here ‘•’ is a placeholder for a, b, c,
d). Particularly, an operation on a line with S1•, S3•, S1•, . . .
(S2•, S3•, S2•, . . .) amounts to mirror all spins on the Bloch
sphere with respect to the plane passing through S2a, S2b and
the origin (passing through S1a, S1b and the origin). Since
these mirror operations commute, the order in which the line-
manipulations are performed is irrelevant. Again, this specific
construction ensures that no such operation excites the system.
An example of a spin configuration resulting from manipulat-
ing the q = 0 state in Fig. 9(b) is shown in Fig. 9(c) where
modified lines are indicated by a gray shaded background.

Like in case (i) the mirror operations can be described as
ϕ-rotations around the direction of the third spin. Particularly,
consider a manipulated nearest neighbor pair of spins on a line
S1•, S3•, S1•, . . . (S2•, S3•, S2•, . . .). This pair is connected
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Figure 9. Construction of degenerate ground states in case (ii): (a)
The dots denote the Bloch sphere locations of the eight spins defining
these states. The angle α ∈ [0, 2π/3) is a free parameter. The red
(yellow) circle indicates all positions on the Bloch sphere enclosing
an angle of 2π/3 with the red (yellow) spin. Spins with opposite
positions on the red and yellow circles are connected by gray lines.
The q = 0 state in (b) represents the starting configuration for the
manipulations performed in the example in (c). The lines on which
the mirror operations described in the text act are highlighted by a
gray shaded background in (c).

via J1 to a spin S2• (S1•) outside the chain. The manipulation
of this pair is then a result of rotating it around S2• (S1•) by
an angle ϕ2 (ϕ1) given by

ϕ1 = arccos

(
−1− 5 cosα

3 + 3 cosα

)
,

ϕ2 = arccos

(
−1

3
+

4

3
cosα

)
. (14)

In total, since the described operations can be independently
performed along each of the two types of lines, up to a global
rotation of all spins the degeneracy in this case results from
choosing a continuous angle α and performing (2L)2 possible
discrete operations.

Case (iii): Subsystem operations on lines with all three di-
rections. The construction of degenerate ground states in this
case is similar to case (ii), however, the angle α is fixed to
α = π/2 such that (apart from global rotations) no continu-
ous free parameter exists. In addition to the eight spin orien-
tations S1a, S1b, S2a, S2b, S3a S3b, S3c, S3d from case (ii)
the system may host four more spins given by S1c = −S1a,

Figure 10. Construction of degenerate ground states in case
(iii): (a) Location of the twelve spin directions (±1,±1, 0)/

√
2,

(±1, 0,±1)/
√
2, (0,±1,±1)/

√
2 on the Bloch sphere where we

fixed the global orientation. The colored circles enclose an angle of
2π/3 with the spin of the same color. Spins with opposite positions
on these circles are connected by gray lines. The q = 0 state in (b)
represents the starting configuration for the manipulations performed
in the example in (c). The lines on which the mirror operations de-
scribed in the text act are highlighted by a gray shaded background
in (c).

S1d = −S1b, S2c = −S2a, S2b = −S2d, see Fig. 10(a).
Fixing the global orientation, we may choose the S1•-spins
to lie in the x-z plane at positions (±1, 0,±1)/

√
2. Equiv-

alently, the S2•-spins (the S3•-spins) reside in the y-z plane
(x-y plane) at (0,±1,±1)/

√
2 ((±1,±1, 0)/

√
2). We again

start the construction of degenerate spin configurations with
the q = 0 state shown in Fig. 10(b) which is based on S1a,
S2a, and S3a-spins (note that any other choice of a planar trio
of spins with mutual angles 2π/3 can, likewise, be used for
the initial configuration). Line-manipulations can now be in-
dependently performed along all three lattice directions: An
operation on a line S1•, S2•, S1•, . . . amounts to mirror the
spins with respect to the plane in which the S3•-spins reside
(i.e. the x-y plane). The definitions of the other two types of
line-manipulations follow by cyclic permutations of indices
1 → 2 → 3 → 1. In Fig. 10(c) we show an example of
a spin configuration obtained after various such operations.
We may, alternatively, view the transformation of any pair
of nearest neighbor spins on a modified line as a rotation by
ϕ = arccos(−1/3) ≈ 109.5◦ around the direction of the third
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Figure 11. Construction of isolated defects (illustrated by magenta
stars) located (a) in the center of a hexagon and (b) in the center of
a J1-triangle. The configurations consist of six different q = 0 do-
mains (indicated by light background colors) which involves twelve
different spin orientations (indicated by numbers 1− 12 and by dif-
ferent colors of the points). The arrows ⇒ · · · ⇐ mark the lines
which need to be modified according to case (iii) in Sec. III C to
generate a zero energy defect out of a q = 0 state.

spin in the respective J1-triangle. Again, all manipulations are
independent of each other (i.e., they commute) such that the
total discrete degeneracy in case (iii) is proportional to (2L)3.

In summary, the degenerate ground states in our kagome
Heisenberg models fall into three classes which are charac-
terized by the type of allowed subsystem operations within
each class. In the simplest case (i) continuous spin rotations
on any set of parallel lines can be performed. In contrast, case
(ii) and (iii) also permit subsystem operations on intersecting
lines which, however, comes at the expense that such manip-
ulations are only of discrete nature. As we will see below,
these ground state degeneracies also have consequences for
the properties of excited defect states.

Single defects in the Heisenberg models

Knowing the ground states of the Heisenberg models we
continue discussing the possible existence of fracton-like ex-
cited states. The procedure here is similar to the three-state
Potts and XY models, i.e., we first construct ‘by hand’ states
with a single isolated defect triangle or hexagon (which gener-
alizes the single and triple fractons discussed above). We then
investigate their stability by applying iterative minimization.
As we will see below, fracton-like excitations have nearly

identical properties for all three models (J1-J2-J3d, J1-J54,
and J1-J54-J55 models) such that they are again treated to-
gether.

The simplest and most generic way of constructing a sin-
gle defect (which applies to all three systems) is by merging
six sectors with different q = 0 states as illustrated by the
colored regions in Fig. 11(a). The defect is then located in the
center hexagon where the domain walls separating the six sec-
tors intersect. All other hexagons and small/large triangles not
part of this center hexagon shall fulfill the local constraints.
Since neighboring sectors share one type of spin, these con-
figurations have a maximum twelve different spin orientations
labelled 1− 12 in Fig. 11(a).

A priori it is not clear whether solutions other than the sin-
gle and triple fractons from the three state Potts model exist.
However, simple geometric considerations show that up to a
global SO(3) rotation of all spins a continuous manifold of
defects exists which may be characterized by three continu-
ous parameters u, v, w, each in the interval u, v, w ∈ [−1, 1].
One possible way of parametrizing the twelve (normalized)
spins S1, . . . ,S12 in terms of u, v, w (where u = 0 must be
excluded) is given by

S1 =

 0
0
1

 , S5 =

 sin
(

2π|u|
3

)
0

cos
(
2πu
3

)
 , S9 = c e + d ,

(15)
where

d = −1

2

 tan
(
π|u|
3

)
0
1

 ,

e =

 sin(π|v|) sin
[
2π|u|

3 − π
2 + |w|

(
π − 2π|u|

3

)]
cos(πv)

sin(π|v|) cos
[
2π|u|

3 − π
2 + |w|

(
π − 2π|u|

3

)]
 ,

c = −d · e +

√
(d · e)2 − 1

4 cos2(πu3 )
+ 1 . (16)

Furthermore,

Si = − Si+2 + Si−2
2(1 + Si+2 · Si−2)

+ sgn(ξi)Si+2 × Si−2 ·

·

√
(1 + 2Si+2 · Si−2)

2(1 + Si+2 · Si−2) [1− (Si+2 · Si−2)2]
, (17)

with i ∈ {3, 7, 11}, ξ3 = u, ξ7 = v, ξ11 = w and S13 ≡ S1.
Finally,

Sj = − Sj+1 + Sj−1
2(1 + Sj+1 · Sj−1)

, (18)

with j ∈ {2, 4, 6, 8, 10, 12}. We note that u, v, w cover
each possible isolated defect exactly once. The single and
triple fractons of the three-state Potts model discussed in
Sec. III A are special cases which correspond to {u = 0+, v =
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−1/2, w = 1/2} and {u = 0+, v = −1/2, w = −1/2}, re-
spectively.

Note that for the J1-J2-J3d model, the defect can also be
shifted into a J1 triangle (either an up-pointing or a down-
pointing one) by shifting one domain wall, as illustrated in
Fig. 11(b). In the case of the J1-J54 model the single defect
can only be moved into a downward pointing J1 triangle [see
Fig. 11(b)] while this is not possible for an upward pointing
J1 triangle. Finally, the J1-J54-J55 model cannot host any
isolated defects in a J1 triangle.

We also note that for isolated defects with special values of
u, v, w it is possible to perform additional manipulations of
spins on line-like subsystems without energy cost. The con-
struction is similar to Sec. III C, however, since these are fine-
tuned cases they will not be further discussed.

The excitation energies ∆E of the defects in the hexagons
are given by

∆E = Jx(S4 + S8 + S12)2/2 , (19)

with

Jx =


J2 for the J1-J2-J3d model
J54 for the J1-J54 model
J54 + J55 for the J1-J54-J55 model

, (20)

while ∆E for the defects in the triangles reads

∆E = Jx(S2 + S6 + S12)2/2 , (21)

with

Jx =

{
J1 − J2 for the J1-J2-J3d model
J1 for the J1-J54 model

. (22)

The energies ∆E are generally complicated functions in u, v,
w. However, the most important property of ∆E is that it as-
sumes continuous values between its maximum (reached for
a triple fracton in the three-color models) and its minimum at
∆E = 0. Remarkably, the case ∆E = 0 does not only occur
in the trivial configuration of a single homogeneous q = 0
state but also appears in non-trivial configurations with ac-
tual domains in the system. The fact that defects may have
zero excitation energies and, hence, are part of the set of de-
generate ground states is already included in the ground state
construction of Sec. III C. For example, one can construct a
zero-energy defect by starting with a q = 0 state and per-
forming the manipulations of case (iii) along all lines marked
⇒ · · · ⇐ in Fig. 11. This defect is described by the param-
eters {u = −1/2, v = − arccos

(
−1/
√

3
)
, w = −1/2}. We

note in passing that states with more than one of these “zero
energy defects” can be constructed. In their densest configu-
ration they are located in the centers of each hexagon. This
spin state has a twelve site unit cell given by the Star of David
around the center hexagon in Fig. 11(a) and is referred to as
cuboc 1 order (which appears in several contexts in kagome
spin models [46]). Indeed, it has previously been realized that
the line J2 = J3d < J1 of the J1-J2-J3d model as considered
here, marks the phase boundary between q = 0 and cuboc 1
ordered regimes [47–50].

Figure 12. Decay of excitation energies E(τ) of isolated defects
within iterative minimization for the J1-J54 model with J1 =
J54 = 1 where τ is the simulation time (step count). Shown are
results for three different initial defects: Triple fracton, single fracton
and a low energy fracton with {u = −0.5, v = −0.8, w = −0.5}.
Straight lines are power-law fits at large τ with the specific function
indicated in each case. Both axes are scaled logarithmically.

The key question is whether defects with ∆E > 0 are local
energy minima and how they are modified when performing
iterative minimization as has been done for the defects in the
XY-model (see Sec. III B). Indeed, the fact that single defects
have a continuous energy spectrum which reaches down to
zero means that they are no local minima but may decay to a
ground state without passing any energy barriers. However,
since such a decay amounts to changing complete sectors of
q = 0 orders in Fig. 11 which involves the modification of in-
finitely many spins, this happens very slowly. We have tested
this numerically by putting a single defect in the center of a
system with open boundary conditions. The defect is relaxed
by applying 104 iterative minimization steps according to the
procedure explained in Sec. III B. As an example, we show in
Fig. 12 the energy decay of three different initial states in the
J1-J54 model (a triple fracton with ∆E = 4.5J1, a single
fracton with ∆E = 1.5J1 and a fracton with {u = −0.5, v =
−0.8, w = −0.5} and ∆E ≈ 0.24J1). Our observations are
very different from the XY model: Firstly, while in the XY
model the relaxation towards a local minimum only involved
a small number of spins, here, the minimization procedure ap-
proaches a ground state and involves spins across the entire
system. Secondly, in contrast to the exponential energy decay
for the XY model here we observe a slow relaxation process
following a power-law behavior E(τ) ≈ τ−α. Note that τ
is the step count and the exponent α takes small values down
α = 0.13 for low-energy defects.

We will return to these defects in the next section where we
apply classical Monte Carlo to investigate their thermal be-
haviors. These studies indicate that remnants of the defects
discussed here still appear in spin configurations where ther-
mal equilibrium has not been fully reached.
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IV. MONTE CARLO SIMULATIONS

After having discussed the properties of individual fracton-
like defects we now investigate their collective and thermal
behaviors via classical Monte Carlo simulations. In the fol-
lowing, we only treat the J1-J54 model which can be con-
sidered as the minimal model exhibiting the aforementioned
fracton-like behavior. Here ‘minimal’ refers to the fact that
compared to the J1-J54-J55 and the J1-J2-J3d models it fea-
tures the smallest number of interacting bonds. It further has
the property that each site contributes to three corner-sharing
triangles (see [70–72] for similar systems in 3D) and, hence,
represents a generalization of nearest neighbor kagome sys-
tems (where each site is only connected to two triangles).
Three versions of the J1-J54 model will be discussed below,
the three state Potts, XY, and Heisenberg models, where we
always set J1 = J54.

We apply a standard Metropolis algorithm with single spin
updates for a system of rhombic shape with a side length of
L nearest neighbor lattice spacings and untwisted periodic
boundary conditions. A system characterized by the linear
length L then contains N = 3L2/4 lattice sites. In our results
below, L is varied between L = 40 and L = 100. To effi-
ciently approach low temperatures we simulate a slow cooling
process using an exponential protocol

T = T0e
−γt , (23)

where T0 = 2J1. Here, t counts the Metropolis steps such that
within one step each spin is, on average, updated once (note
that we use the variable t to distinguish it from the step count
τ in iterative minimization). After each normal Metropolis
step, we perform 10 overrelaxation steps which helps achiev-
ing better thermalization [45, 73–75]. For a general Heisen-
berg Hamiltonian H =

∑
i,j JijSi ·Sj an overrelaxation step

amounts to randomly select a spin which is rotated by an an-
gle of π around the direction of the local field hi =

∑
j JijSj .

Ensemble averages are performed with respect to 50 indepen-
dent simulation runs.

A. Three-state Potts model

Internal energy, specific heat and low temperature spin
configurations

We start discussing the internal energy per site E(T )/N as
a function of T for different cooling rates γ [Fig. 13(a)] and
for different system sizesL [Fig. 13(b)]. Our data in Fig. 13(a)
indicates that small γ are essential to approach the exact
ground state energy of Eexact(T = 0)/N = −1.5J1 at small
temperatures. Indeed, even for the smallest γ = 10−5 the sys-
tem may get trapped in a local minimum below T ≈ 0.5J1
where E(T ) is a flat line with a small offset compared to the
ground state energy. The dependence on the system size L is
shown in Fig. 13(b) where γ is kept constant at γ = 10−5.
While at large T results are well converged in L, a character-
istic observation at small T is thatE(t) slightly increases with

Figure 13. (a) Energy per site E(T )/(J1N) for the three-state Potts
model at constant system size L = 100 and varying cooling rates γ.
(b) Energy per site E(T )/(J1N) for the three-state Potts model at
constant cooling rate γ = 10−5 and different system sizes L. The
inset shows the low temperature behavior in detail. (c) Specific heat
per site cv(T )/N of the three-state Potts model for different γ and
constant L = 100.

L [see inset of Fig. 13(b)] indicating that in larger systems the
defect density is higher. This behavior can be understood from
the fact that moving a fracton requires flipping spins across the
entire system and, consequently, the probability for fractons to
recombine and annihilate is larger for small systems.

It might seem tempting to compare the simulated E(T )
to an exact solution as is possible for other kinetically con-
strained models [29–34]. Indeed, many of such models have
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Figure 14. Typical output of a spin configuration from Monte Carlo
for the three state Potts model. The simulation has been performed
for a system size of L = 100, at T = 0.1J1 and cooling rate γ =
10−5. Each point represents a J1 or J54 triangle of the original
lattice where the colors of the points indicate the six possible local
q = 0 orders, see Fig. 2. Black points denote defect triangles and
gray circles highlight the lineons.

a dual description which allows for a direct mapping between
independent defect variables and spin states such that the ther-
modynamics becomes trivial and an exact solution may be
easily formulated. In our case, however, we could not identify
such a dual representation and, consequently, defects cannot
be considered as independent. For the J1-J2-J3d model this
is immediately obvious since for two triple defects in adja-
cent J1 triangles, the nearby hexagons must, likewise, carry
defects. We can, however, not exclude the possibility that an
effective dual representation exists in a suitably defined low-
energy subspace.

In Fig. 13(c) we present the system’s specific heat for vary-
ing γ at constantL = 100, calculated by differentiatingE(T ).
Due to the gapped nature of spin excitations we find activated
behavior at low T and zero slope dcv(T )

dT for T → 0. An ob-
vious feature is a pronounced peak at T ≈ 0.8J1. Below, we
will argue that this peak is associated with a crossover into a
spin glass-like regime where the system becomes non-ergodic.

A typical spin configuration in a local minimum obtained
for T = 0.1J1 and γ = 10−5 is shown in Fig. 14 where each
J1 and J54 triangle is represented by a point (which together
form a triangular lattice). If a J1 or J54 triangle is in a local
ground state (i.e., the three-color constraint is fulfilled) the
color of the point encodes the six possible configurations. A
triangle violating the color constraint is illustrated as a black
point. As can be seen, the system exhibits a patchwork of
different q = 0 order domains with single fractons at positions
where four domain walls meet. Note that triple fractons cost
too much energy to be observed at T = 0.1J1. The system
also features various lineons consisting of two single fractons,
indicated by gray circles.

Spin structure factor

Next, we discuss the equal-time spin structure factor

S(q) =
1

N

∑
i,j

e−iq·(ri−rj)〈Si · Sj〉 , (24)

where ri is the position of site i and 〈. . .〉 averages over in-
dependent simulation runs. For better interpretation of the
Monte Carlo data, we first present results of an O(n) approx-
imation where the spins Si are generalized to n-component
vectors Si = (S1

i , S
2
i , . . . , S

n
i ) subject to local length con-

straints
∑n
µ=1(Sµi )2 = 1. The system can be treated exactly

in the limit of large n [76–78], where thermal fluctuations are
correctly accounted for even if ergodicity is lost. While the
generalization from a three state Potts model (which is a dis-
cretized version of an n = 2 system) to n → ∞ may ap-
pear drastic, previous results from pyrochlore magnets indi-
cate that the large n limit provides an excellent approximation
for models with small n [78]. The large n approximation uses
the eigenvalues εα(q) and corresponding eigenvectors ψα(q)
(where α = 1, 2, 3) of the coupling matrix

Jαβ(q) =
∑
b

e−iq·(r0α−rbβ)J0αbβ . (25)

Here, we have split up the site index i into two indices i →
(a, α) where a denotes the unit cell and α enumerates sites
within a unit cell. In this notation couplings and site positions
read Jij → Jaαbβ and ri → raα. The spin structure factor is
then obtained via

S(q) =

3∑
α,β,γ=1

[ψβ(q)]α[ψ∗β(q)]γ
εβ(q)
T + λ

, (26)

where λ is a Lagrange multiplier enforcing spin normaliza-
tion, which is determined from the condition

1

N

∑
q∈BZ

3∑
α=1

[
εα(q)

T
+ λ

]
= 1 . (27)

In Fig. 15(a)-(d) we show the spin structure factor of the J1-
J54 model at large n for various temperatures T . At small
T the response is entirely distributed along streaks in momen-
tum space (forming again a kagome lattice) which is a direct
consequence of the system’s subextensive degeneracy. The
three directions of the streaks corresponds to the three direc-
tions of lines along which the spins of a q = 0 state can be
swapped to form a new ground state. With increasing T the
streaks broaden and pinch point-like patterns become visible
at their intersections. Similar features at the same momenta
are well known from nearest neighbor kagome antiferromag-
nets which are characterized by an extensive ground state de-
generacy. These similarities indicate that at finite tempera-
tures, the system may explore parts of this extensive manifold
of states. It can further be seen that the broadening of streaks
occurs in a continuous manner without any noticeable abrupt
changes.
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Figure 15. Spin structure factor of the J1-J54 model for different temperatures T . Top row [(a)-(d)]: Spin structure factor in large n
approximation. Bottom row [(e), (f)]: Spin structure factor of the three-state Potts model from classical Monte Carlo for γ = 10−5 and
L = 100. The lattice constant of the kagome lattice has been set to unity for the definition of q. (i) Spin structure factor S(q0) at the q = 0
order position q0 = (0, π/

√
3) as a function of temperature in large n approximation (blue line, rescaled by a factor of 4 for better visibility)

and from Monte Carlo simulations in the three-state Potts model (red line). Note that the spin structure factor in the large n approximation is
only calculated for one spin component.

Turning to the Monte Carlo results [see Fig. 15(e)-(h)] we
observe qualitative agreement with the large n approximation
at sufficiently large temperatures T & J1 where broadened
streaks dominate the magnetic response. The intactness of
these streaks indicates that the system undergoes the charac-
teristic fluctuations of color swaps along lines of alternating
colors. Lowering the temperature below T ≈ 0.8J1 (which
is the peak position in the specific heat), the signal shows a
sudden rearrangement not seen in large n, where pronounced
peaks at q = 0 order positions (located at the intersections
of the streaks) emerge. The absence of streaks in momen-
tum space indicates that the system can no longer realize the
aforementioned line-like fluctuations since any intersection of
a flipped two-color line with a domain wall creates defects as-
sociated with an excitation energy. The system, hence, gets ar-
rested in states with patch-like patterns of different q = 0 do-
mains as shown in Fig. 14. To further investigate the thermal
behavior of domains it is instructive to plot the spin structure
factor at the q = 0 order positions [e.g. at q0 = (0, π/

√
3)]

as a function of temperature, see Fig. 15(i). In an ideal q = 0
state each site contributes 4/9 to S(q0) while on length scales
larger than the typical domain size the correlations decay to
zero. Hence, the spin structure factor at the q = 0 order
positions provides a direct measure of domain sizes. Fig-
ure 15(i) reveals that below the steep increase at T ≈ 0.8J1
this quantity further grows, indicating a limited mobility of
domain walls, but eventually shows a plateau-like behavior at
small temperatures [this is in contrast to the smooth increase
of S(q0) in large n approximation, see blue line in Fig. 15(i)].
Note that the plateau value is still significantly smaller than
the maximal possible value of 716 due to the system’s finite
size and, hence, the plateau is no finite-size effect. Obviously,

in this low temperature regime the system gets stuck in local
minima. We, therefore, conclude that the system undergoes a
glass-like transition at T ≈ 0.8J1.

For a 2D system without any continuous degrees of free-
dom, a finite-temperature transition to a long-range magnet-
ically ordered state is generally possible which in our case
would be associated with a thermal order-by-disorder selec-
tion. However, the system does not display this behavior. The
low-temperature spin configurations are given by a dilute gas
of single defects (which are the lowest energy excitations) as
shown in Fig. 14. These defects are connected by a network
of domain walls, where each wall disrupts the q = 0 cor-
relations. Indeed, already one single defect in an otherwise
defect-free system has domains walls sticking out in four di-
rections which is sufficient to destroy long-range q = 0 order.

Autocorrelation function

To further substantiate the glassy dynamics at small tem-
peratures, we discuss the system’s autocorrelation function

A(t) =
1

N

∑
i

〈Si(t0) · Si(t0 + t)〉 (28)

for varying temperatures. Again, 〈. . .〉 denotes an averaging
over independent simulation runs. The time argument of the
spin variables denotes the Monte Carlo step. The initial time
t0 is given by the Monte Carlo step at which our exponential
cooling protocol reaches the desired temperature T . Since we
use the smallest cooling rate γ = 10−5 for the initial equili-
bration, the time t0 corresponds to a “long waiting time” such
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Figure 16. Autocorrelation function A(t) [see Eq. (28)] of the three-
state Potts model for system sizeL = 100 and different temperatures
T . The initial equilibration prior to the measurement of A(t) has
been performed with a cooling rate of γ = 10−5. Note that the blue
and red curves lie almost on top of each other.

that for large t the autocorrelation functionA(t) approximates
the Edwards-Anderson parameter [79] for spin glasses qEA de-
fined as

qEA = lim
t→∞

lim
t0→∞

lim
L→∞

1

N

∑
i

〈Si(t0) · Si(t0 + t)〉 . (29)

After the time t0, the temperature is kept constant and the data
sampling for A(t) starts.

The results in Fig. 16 confirm the expected behavior. For
temperatures T & J1 the autocorrelation function A(t)
quickly decays to zero showing that the system loses its mem-
ory about the initial state. On the other hand, in the low tem-
perature regime T . 0.3J1 practically no evolution in t is ob-
served and the autocorrelation functions remain close to one.

It is worth emphasizing that even though the system shows
signatures of glassy behavior, it still differs from conventional
spin glasses. According to common understanding a spin
glass exhibits a distribution of energy barriers whose heights
scale as a power law in L. In our case, however, removing an
isolated fracton in an otherwise defect-free system is associ-
ated with a constant energy barrier (on the order of J1) inde-
pendent of system size. Rather, the slow dynamics at small
T is due to the fact that the minimal number of spin flips re-
quired to remove such a defect scales with a power law in L.

B. XY model

Internal energy, specific heat and low temperature spin
configurations

Next, we investigate thermodynamic properties of the XY
J1-J54 model. The system’s internal energy per siteE(T )/N
from classical Monte Carlo for various γ and fixed L = 100
is shown in Fig. 17(a). In comparison to the three-state Potts
model, convergence in the cooling rate is much better, i.e., γ
can be chosen significantly larger. This is due to the fact that

Figure 17. (a) Energy per site E(T )/(J1N) for the XY J1-J54
model with L = 100 and varying γ. At small temperatures, the
Monte Carlo data approximately followsE(T )/N = −1.5J1+T/2,
as indicated by the dashed line. (b) Specific heat cv(T )/N for L =
100 and varying γ obtained by differentiating E(T ).

the continuous spin degrees of freedom facilitate the system’s
escape from local energy minima. Similarly, convergence
with respect to system size L (not shown here) is also found
to be much better. At low temperatures the internal energy
is well approximated by E(T )/N = −1.5J1 + T/2 where
Eexact(T = 0)/N = −1.5J1 is the exact ground state energy
and the term T/2 is the expected contribution from a single
quadratic mode per site. The system’s specific heat cv(T )
obtained from differentiating E(T ) is plotted in Fig. 17(b).
As will be discussed further below, a pronounced peak at
T ≈ 0.27J1 is again associated with a crossover into a glassy
phase.

A typical low temperature real space spin configuration is
shown in Fig. 18(a). Apart from the individual spin orien-
tations, the figure also highlights the domains walls between
different local q orders which we define via the spin chiralities
κ on J1-triangles

κ = S1 × S2 + S2 × S3 + S3 × S1 . (30)

Here, S1, S2, S3 are the three spins in a (upward- or down-
ward pointing) J1-triangle ordered in a counterclockwise
manner. If two neighboring triangles have parallel (antipar-
allel) chiralities κ they belong to the same domain (are sep-
arated by a domain wall passing through the shared spin).
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Figure 18. (a) Real space spin configuration in the XY J1-J54 model at T = 0.01J1 obtained for γ = 0.0001. Domain walls are illustrated
by black lines defined via antiparallel chiralities κ [see Eq. 30] on neighboring J1 triangles. Fractons (fractional vortices) are indicated by
magenta (blue) stars. The triangular domain walls highlighted by red lines in the upper part of the figure show a typical pattern where the
positions of one vortex and two fractons are fixed with respect to each other. (b) Construction of a fractional vortex starting from a three-color
state with a kinked domain wall (thick gray line), see text for details. The blue star indicates the vortex core and the wavy orange line is
a branch cut of defect triangles. (c) Fractional vortex obtained after rotating the spins in (b) by an angle specified on the outer circle. (d)
Alternative domain wall configurations of fractional vortices.

As in the three-state Potts model, single fractons are clearly
observed via their characteristic structure of crossing domain
walls, indicated by magenta stars. Interestingly, however, one
also finds kinks in the domain walls enclosing angles of π/3 or
2π/3 (blue stars) which are forbidden in a three color model.
We argue in the following, that these spin configurations are
fractional vortices known from classical nearest neighbor XY
kagome antiferromagnets [45, 63, 64].

To start with, we illustrate in Fig. 18(b) an attempt to con-
struct a three-color spin state with a domain wall exhibiting
a π/3 kink (thick gray line). Obviously, the restriction to
only three spin orientations creates mismatches along a branch
cut (orange wavy line) where defect triangles are unavoidable.
Comparing the two gray shaded triangles in Fig. 18(b) reveals
that on both sides of the branch cut the spin configurations
differ by a cyclic permutation of the three colors (which is
equivalent to a 2π/3 spin rotation). Hence, when allowing for
continuous in-plane spin orientations, this branch cut can be
removed by a rotation of all spins by an angle ϕ ∈ [0, 2π/3)
which varies continuously when encircling the kink [such ro-
tation angles are specified on the outer circle in Fig. 18(c)].
The resulting spin configuration in Fig. 18(c) can be consid-
ered as a 1/3 fraction of a conventional integer vortex since
the local trio of spins rotates by an angle of 2π/3 when mov-
ing around the core. There are several other possible domain
wall structures for fractional vortices where either two or four
domain walls emanate from the core, see Fig. 18(d). Note that
vortices with an odd number of emanating domain walls are
not possible. This is because when trying to construct such

Figure 19. Real-space spin correlations 〈Si · Sj〉 of the XY J1-
J54 model as a function of the distance |ri − rj | between spins
for temperatures T = 0.01 and T = 0.1 using γ = 0.0001 and
L = 100. To avoid sublattice effects, only sites on the same kagome-
sublattice have been considered. Lines are exponential fits of the
data.

vortices in a three color model, the states on both sides of the
branch cut differ by an odd permutation. Such a mismatch
cannot be removed by a continuous twist but requires a mir-
ror operation in spin space (which is equivalent to inserting
another domain wall).

Fractional vortices are well known in nearest neighbor
XY kagome antiferromagnets where they undergo a usual
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Kosterlitz-Thouless binding/unbinding transition. The asso-
ciated transition temperatures are, however, substantially re-
duced compared to models with integer vortices [63, 64]. As
discussed below, in our systems the Kosterlitz-Thouless tran-
sition even appears completely suppressed. A first obvious
difference compared to more conventional XY magnets is that
fractional vortices cannot be placed everywhere in the system
without creating additional defects. Particularly, since frac-
tional vortices exhibit domain walls, their real space positions
highly depend on the fracton positions. A typical configu-
ration is shown in the upper part of Fig. 18(a) where a tri-
angle of domain walls is highlighted by red lines. In this
spin arrangement two single fractons and a fractional vor-
tex of the type of Fig. 18(c) are forced to form an equilat-
eral triangle. [In contrast to Fig. 18(c), however, the 2π/3
twist is not evenly distributed around the vortex core but is
only found in the (2π − π/3)-segment outside the kink. In-
side the π/3 segment a homogeneous q = 0 state is real-
ized.] Another difference compared to conventional XY mag-
nets is that depending on the precise arrangement of domain
walls, a fractional vortex-antivortex pair does not necessar-
ily decay to a ground state when merged, but may result
in a fracton. As a consequence of these restrictions, ther-
mal fluctuations of vortex states which drive the Kosterlitz-
Thouless transition in more conventional XY magnets [65–
67] are strongly suppressed. Indeed, our systems do not dis-
play the characteristic properties of the quasi long-range or-
dered state below a Kosterlitz-Thouless transition. Firstly,
even at the lowest simulated temperatures a complete binding
of vortices into short-distance vortex/antivortex pairs is not
observed in our numerical outputs. Secondly, the spin corre-
lations 〈Si · Sj〉 show a clear exponential decay as a function
of the distance between sites i and j down to T = 0.01J1,
see Fig. 19. This is opposed to the power-law correlations
and short-distance vortex-antivortex pairs observed in conven-
tional XY magnets below the Kosterlitz-Thouless transition.
It is worth emphasizing, however, that due to slow thermal-
ization our low-temperature Monte-Carlo data should be in-
terpreted with caution. Hence, we cannot generally exclude
the possibility that a perfectly thermalized ensemble of states
would show a Kosterlitz-Thouless transition at small temper-
atures.

Spin structure factor and autocorrelation function

In this subsection we demonstrate based on the spin struc-
ture factor and the autocorrelation function that despite the
larger configuration space of the spins and the occurrence of
vortices, the system still behaves glassy at small temperatures.

The spin structure factors of the XY J1-J54 model and
the three-state Potts model (presented in Fig. 15) are quali-
tatively similar. Particularly, streaks of strong signal forming
a kagome lattice are found at large temperatures while sharp
peaks at q = 0 order positions dominate the response at small
T . To capture this behavior it is sufficient to plot the spin
structure factor at these peak positions, see Fig. 20(a). Similar
to the Potts model, this quantity shows a sharp increase (ap-

Figure 20. (a) Spin structure factor S(q0) of the XY J1-J54 model
at the q = 0 order position q0 = (0, π/

√
3) as a function of tem-

perature for γ = 0.0001 and L = 100. (b) Autocorrelation function
of the XY J1-J54 model [see Eq. (28)] at different temperatures T
for L = 100. The initial equilibration has been performed with a
cooling rate of γ = 0.0001.

proximately at T ≈ 0.27J1) which matches the temperature
of the peak in the specific heat. Compared to the three state
Potts model, however, this crossover is significantly reduced
in temperature. Below T ≈ 0.2J1, the peaks only show a
moderate increase, indicating that the system enters a glassy
phase with reduced domain wall motion.

The system’s glassiness is also reflected in the autocorrela-
tion function as defined in Eq. (28) and plotted in Fig. 20(b).
We note that in these results we explicitly eliminated a possi-
ble global drift, i.e. an overall spin rotation as a function of
Monte Carlo time. Such effects lead to a spurious decay of
the autocorrelation function especially at small system sizes
L. To remove this behavior we rotated the spin state at time
t0 + t into a frame where for a given site i the spin directions
Si(t0) and Si(t0+t) are identical. Effectively, this allows one
to reduce finite size effects [80]. As shown in Fig. 20(b) the
temporal behavior of the autocorrelation function is clearly
different in the high temperature regime T & 0.3, where a
rapid decay to zero is found, and at low temperatures T . 0.1,
where correlations remain finite in the long-time limit.



18

Figure 21. (a) Energy per site E(T )/(J1N) for the Heisenberg J1-
J54 model with L = 100 and varying γ. The Monte Carlo data
approximately behaves as E(T )/N = −1.5J1 +T at small temper-
atures, as indicated by the dashed line. (b) Specific heat cv(T )/N
for L = 100 and varying γ obtained by differentiating E(T ).

Figure 22. (a) Real space spin configuration of a numerical outcome
obtained for the Heisenberg J1-J54 model at T = 0.01J1,L = 100,
and γ = 0.001. For each site, the angle between the spin chiralities
[Eq. (30)] on the two adjacent J1 triangles is plotted. The black
circle highlights a typical decaying defect state. (b) For comparison,
an intact isolated defect in a single hexagon with u = 1, v = 0.57,
and w = −0.8 (see Sec. III C) is illustrated, using the same plotting
scheme as in (a).

C. Heisenberg model

Internal energy, specific heat and low temperature spin
configurations

In this section we discuss the thermal behavior of the
Heisenberg J1-J54 model with a particular focus on the fate
of defect states. The trend towards faster equilibration when
going from the three-state Potts to the XY model continues
for the Heisenberg model: The energy per site E(T )/N is al-
ready well converged for a cooling process with a rather large
γ = 0.001, see Fig. 21(a). At small T the energy is well
approximated by a straight line E(T )/N = −1.5J1 + T cor-
responding to two quadratic modes per spin. Particularly, this
result indicates the absence of local zero modes which are e.g.
present in Heisenberg antiferromagnets with nearest neighbor
couplings only (where the energy shows the well-known low-
T behavior E(T )/N ∼ 11T/12 [43]). The system’s specific
heat cv(T ) in Fig. 21(b) exhibits a peak at T ≈ 0.14J1 which
is again significantly lower compared to the three-state Potts
and XY models. As we will discuss below, this peak again
marks a crossover into a low temperature regime where ther-
mal fluctuations slow down, however, the equilibration pro-
cess is still qualitatively different compared to the three-state
Potts and XY models.

An important property explaining these differences is that
local low-energy defect states are unstable in the Heisenberg
model. For the isolated fractons constructed in Sec. III C
this has already been discussed: There are paths in configu-
ration space where a defect state can be continuously trans-
formed into a ground state and along which the energy de-
creases monotonically. Vortex states are, likewise, unstable
since local three-component spins do not support a topolog-
ically protected vorticity. Nevertheless, the relaxation pro-
cess of defects is very slow, such that it can be numerically
costly to obtain perfectly thermalized ensembles within classi-
cal Monte Carlo. Energetically our numerical outcomes seem
to be close to thermal equilibrium [see Fig. 21(a)], however,
the real-space spin configurations still show remnants of de-
caying fractons.

An example for a spin configuration obtained at L = 100,
T = 0.01J1 and for the slowest simulated cooling rate γ =
0.001 is shown in Fig. 22(a). For each lattice site the angle
between the spin chiralities [see Eq. (30)] for the two adja-
cent J1-triangles is plotted, i.e., for a homogeneous q = 0
state (domain wall in the three-state Potts model) this angle
is zero (π). In the case of three-component Heisenberg spins,
however, any intermediate value may also be assumed. As
can be seen in Fig. 22(a), the system features a network of
domain walls where intersections correspond to fracton-like
defects. A typical example is highlighted in the upper right
corner (black circle) where two domain walls cross. However,
the fading of two legs with increasing distance from the defect
core indicates that this defect is in the process of decaying. To
compare this spin arrangement with an intact fracton defined
by a single defect hexagon, we plot in Fig. 22(b) a state with
u = 1, v = 0.57, and w = −0.8 as has been constructed in
Sec. III C. We generally find that for smaller cooling rates γ
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Figure 23. (a) Spin structure factor S(q0) of the Heisenberg J1-J54
model at the q = 0 order position q0 = (0, π/

√
3) as a function

of temperature for L = 100 and γ = 0.001. (b) Autocorrelation
function of the Heisenberg J1-J54 model at different temperatures
T and L = 100. The initial equilibration has been performed with a
cooling rate of γ = 0.001.

these residual defect patterns become rarer such that we at-
tribute them to incomplete thermalization.

Spin structure factor and autocorrelation function

To further characterize the low-temperature regime we dis-
cuss the magnitude of the spin structure factor at the relevant
q = 0 momenta which indicates the size of contiguous q = 0
order domains. As shown in Fig. 23(a), similar to the previ-
ous two models, S(q0) exhibits a sharp increase at a tempera-
ture that matches the peak position in the specific heat. How-
ever, as a clear distinguishing feature S(q0) does not show
a plateau at small T but instead keeps growing and is even-
tually only limited by the system’s finite size. In accordance
with the real-space plot in Fig. 22(a) these results indicate that
at low T the system exhibits approximate q = 0 order con-
figurations, however, the system does not freeze in such states
but keeps slowly evolving towards more accurate q = 0 order
realizations as the temperature is further lowered.

The autocorrelation function A(t) in Fig. 23(b) reveals the
same behavior. It is worth highlighting that in these results we
have again eliminated effects of a global drift between the two
times t0 and t0 + t. Particularly, we have globally rotated the
system at time t0+t such that Si(t0+t) at a given site i points

in the same direction as Si(t0). Additionally, a second overall
rotation around Si(t0) needs to be performed which ensures
that Si(t0), Sj(t0), and Sj(t0 + t) all lie in the same plane
(where i and j are arbitrary but fixed) [59]. The autocorrela-
tion function obtained this way again shows the two temper-
ature regimes. While at temperatures above the heat-capacity
peak a few Monte-Carlo steps are sufficient to completely sup-
press A(t), in the low temperature regime a slow decrease is
observed. However, even at T = 0.01J1 the autocorrelation
function does not seem to saturate at a finite value for large t,
consistent with an ongoing but slow thermalization process.

In summary, both results in Fig. 23 indicate a low-
temperature regime with slow spin dynamics. In contrast to
the previous two systems, however, this behavior is not caused
by energy barriers and local energy minima in which the sys-
tem may get trapped. Rather, the slow thermalization process
stems from the equilibration dynamics of defects whose decay
requires the simultaneous modification of an extensive num-
ber of spins.

V. CONCLUSION

Fracton states of matter represent a vast landscape, stretch-
ing from the field of quantum information and quantum many-
body theory to experimental realizations.

In this work, we studied in detail how to realize fracton
states on the kagome lattice, a paradigm of two-dimensional
frustrated magnetism. We analyzed an array of models with
different interactions and different elementary degrees of free-
dom, using a combination of analytical and numerical tech-
niques. They all have the characteristic subsystem symmetries
and host fracton excitations, but their quantitative properties
vary depending on the model. For example, the three-state
Potts model and the XY model share the same ground state
degeneracy structure aside from the global rotational sym-
metry of the XY model; however, the Heisenberg model en-
joys a much larger degeneracy from subsystem operations on
non-parallel lines. The three-state Potts model and the XY
model also share similar fracton excitations that are stable and
have a finite size, while fractons in the Heisenberg model can
smoothly decay into ground states at a power-law speed.

Using classical Monte-Carlo, we studied the thermal prop-
erties of the models via their heat capacities, spin structure
factors, and real space spin configurations. In the three-
state Potts model, we discovered a crossover from a high-
temperature paramagnetic phase to a low-temperature spin
glass phase. A similar crossover occurs in the XY model,
where we additionally observe fractional vortices which, how-
ever, do not undergo a Kosterlitz-Thouless transition due to
their fracton nature. While the Heisenberg model likewise
shows a crossover into a low-temperature regime, its dynam-
ics is not completely frozen, due to the long-time instability
of fractons.

We also find an unusual deviation from the conventional
type-I fractons: In the kagome model, a single fracton can-
not be isolated from a ground state by extending a fracton
quadrupole to infinity. This, and various other low-energy
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properties of the model can be explained by viewing the
kagome model as an embedding in the cubic fracton model.

Many interesting questions follow from this work. Our dis-
covery suggests that there is an underlying effective theory
of fractonalized vortices that is equivalent to the classical 2D
fracton model with subsystem symmetries. It will be inter-
esting to pursue a clearer understanding of this equivalency.
Another useful development would be to extend the model
to three dimensions. For example, frustrated magnets on the
pyrochlore lattice may be further good candidates for real-
izing fractons. It is also interesting to upgrade the models
to its quantum version, and explore the existence of fractons
therein.

We hope that this work lays some groundwork for finding

experimentally realistic scenarios to realize fractons, and will
be useful for both future experiments as well as other model
building efforts.
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