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The generalized Kadanoff–Baym ansatz (GKBA) offers a computationally inexpensive approach to simulate
out-of-equilibrium quantum systems within the framework of nonequilibrium Green’s functions. For finite
systems the limitation of neglecting initial correlations in the conventional GKBA approach has recently been
overcome [Phys. Rev. B 98, 115148 (2018)]. However, in the context of quantum transport the contacted
nature of the initial state, i.e., a junction connected to bulk leads, requires a further extension of the GKBA
approach. In this work, we lay down a GKBA scheme which includes initial correlations in a partition-free
setting. In practice, this means that the equilibration of the initially correlated and contacted molecular
junction can be separated from the real-time evolution. The information about the contacted initial state is
included in the out-of-equilibrium calculation via explicit evaluation of the memory integral for the embedding
self-energy, which can be performed without affecting the computational scaling with the simulation time and
system size. We demonstrate the developed method in carbon-based molecular junctions, where we study the
role of electron correlations in transient current signatures.

I. INTRODUCTION

State-of-the-art electronic components are engineered
from nanoscale building blocks with emerging quantum
phenomena1–5. These devices are not isolated but af-
fected by a wide variety of environmental conditions and
external perturbations such as temperature variations,
structural defects, and chemical contamination on the
samples. The device operation is typically ultrafast;
there is no guarantee for an instant relaxation to a static
configuration once the device is switched on. Emerging
transient effects depend on, e.g., quantum dynamics and
correlations6–14, system geometry and topology15–22, and
the response to external perturbations or thermal gradi-
ents23–35. Recently, pump-probe spectroscopic methods
have grown in number rapidly leading to the current field
of ultrafast materials science with sub-picosecond tempo-
ral resolution being routinely achieved36–43.

To address all this, a fully time-dependent quantum de-
scription including many-body correlations is necessary,
as the individual components of the systems are operat-
ing on ultrafast time scales at the quantum level. The
nonequilibrium Green’s function (NEGF) approach44–49

is a natural choice: The dynamical information about
the system, e.g. electric currents or the photoemission
spectrum, is encoded into the NEGF. Accessing this in-
formation requires solving the equations of motion for
the NEGF which is computationally expensive. How-
ever, this can be made computationally more tractable
by reducing the two-time-nature of the NEGF into a
single-time-description. This approach, the generalized
Kadanoff–Baym ansatz (GKBA)50, is a well-established
procedure, and it has been succesfully applied in, e.g.
molecular junctions11,26,32,51–53, and spectroscopical set-
ups for atomic31,54–56, molecular57–60, and condensed

matter systems14,61–65.
In the language of the Keldysh formalism46–48, the

GKBA approach concerns with real-time Green’s func-
tions, namely the lesser and greater Keldysh component.
A drawback in this approach is that the so-called mixed
Keldysh components, with one of the time arguments
imaginary and the other one real, are not included. The
role of these mixed components is to relate the equilib-
rium (Matsubara) calculation to the out-of-equilibrium
one, and therefore a consistent description of the initial
correlations is troublesome. It has been shown to be pos-
sible to include the initial correlations in the GKBA ap-
proach as a separate calculation32,66–68 although it has
been customary to use a noncorrelated initial state and
build up correlations via a time evolution excluding ex-
ternal perturbations69,70.

For transport setups also the initial contacting of the
molecular junction contributes to the initial correlations.
In the partitioned approach71,72 the initial state is un-
contacted, and the molecular region is suddenly brought
into contact with the leads. In this case, the initial corre-
lation collision integral due to the contact or embedding
self-energy vanishes. The contacted initial state can be
constructed by a sudden or adiabatic switching (AS) of
the contacts and evolving the system without external
fields to a contacted equilibrium. In the partition-free
approach73 the initial state is contacted, and there is a
unique thermo-chemical equilibrium. The information
about this coupled equilibrium is then encoded in the
initial correlation (IC) collision integral I ic(t). In this pa-
per, we derive an expression for I ic(t) in closed form for
the embedding self-energy. This calculation can be sep-
arated from the time-evolution, similar to Ref. 32. The
derived expression can directly be combined with many-
body self-energies, resulting in a partition-free approach
to the GKBA time-evolution for an initially correlated
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and contacted transport setup.
The paper is organized as follows. In Sec. II we intro-

duce the model system and the governing equations of the
GKBA approach (with the underlying NEGF theory de-
tailed in Appendix A). We outline the calculation of the
initial contacting collision integral in Sec. III and defer
the implementation details to Appendix B and C. Then,
in Sec. IV we present numerical simulations for time-
resolved electronic transport in carbon-based molecular
junctions. We draw our conclusions and discuss future
prospects in Sec. V.

II. MODEL AND METHOD

We consider an electronic junction consisting of a
quantum-correlated molecular device (C) which is con-
nected to an arbitrary number of noninteracting, metallic
leads (α), see Fig. 1. The molecular junction is described
in terms of the second-quantized Hamiltonian

Ĥ =
∑
kα,σ

εkαĉ
†
kα,σ ĉkα,σ +

∑
mn,σ

hmnĉ
†
m,σ ĉn,σ

+
∑
mkα,σ

[Tmkαĉ
†
m,σ ĉkα,σ + h.c.]

+
1

2

∑
mnpq

σσ′

vmnpq ĉ
†
m,σ ĉ

†
n,σ′ ĉp,σ′ ĉq,σ, (1)

where m,n, p, q label a complete set of single-electron
states in the molecular device, and α labels the leads.
Above, εkα describes the single-electron energy state k
in the α-th lead, hmn are the single-particle matrix ele-
ments for the molecular region, Tmkα are the tunneling
matrix elements between the molecular device and the
leads, and vmnpq are the two-electron Coulomb integrals
for the molecular device. The annihilation (creation) op-

erator ĉ
(†)
x,σ removes (creates) an electron from (to) state

x with spin orientation σ ∈ {↑, ↓}, and they obey the

fermionic anti-commutation rules {ĉx,σ, ĉ†y,σ′} = δxyδσσ′

for indices x, y belonging either to the leads or to the
molecular device.

We note that all objects introduced in Eq. (1) are diag-
onal in spin space. However, the following consideration
could straightforwardly be extended to cases with, e.g.,
spin–orbit or Zeeman terms in the molecular Hamilto-
nian22, or ferromagnetic leads74. In addition, it would
be possible to include a contribution from a thermome-
chanical field to the lead energy dispersion giving rise to
a relative temperature shift in the leads28,75–78.

To access time-dependent nonequilibrium quantities
for the system described by Eq. (1), we consider the equa-
tion of motion for the single-particle density matrix ρ (see
Appendix A for background)

d

dt
ρ(t) + i[hHF(t), ρ(t)] = −[I(t) + I ic(t) + h.c.], (2)

FIG. 1. Schematic molecular junction described by Eq. (1).
The molecular structure is represented by the single-particle
matrix elements hmn and the interaction vertex vmnpq, which
is taken into account by the many-body self-energies Σmb.
The molecular device is connected to α leads (only two de-
picted, α ∈ {L,R}) via the tunneling matrix elements Tmkα,
represented by the embedding self-energies (Σem)α.

where hHF is the single-particle Hamiltonian supple-
mented with the time-local Hartree–Fock (HF) self-
energy. The time-nonlocal self-energies due to many-
particle and embedding effects appear in the collision in-
tegrals

I(t) =

∫ t

t0

dt̄
[
Σ>(t, t̄)G<(t̄, t)−Σ<(t, t̄)G>(t̄, t)

]
,

(3)

I ic(t) = −i

∫ β

0

dτΣe(t, τ)Gd(τ, t), (4)

where t0 marks the time when the system is driven out
of equilibrium, and β is the (equilibrium) inverse tem-
perature. We refer to Appendix A for the description
of the different components, e.g., the greater (>) and
lesser (<) functions. Solving Eq. (2) is computationally
demanding due to the full two-time history of the func-
tions in Eqs. (3) and (4), and because of the self-energies’
functional dependency on the Green’s functions Σ[G].

To reduce the computational complexity the Green’s
functions are commonly approximated by the GKBA

G≶(t, t′) = ∓GR(t, t′)ρ≶(t′)± ρ≶(t)GA(t, t′) (5)

with ρ< ≡ ρ and ρ> ≡ 1 − ρ, and the propagators are
described for the coupled system at the HF level

GR/A(t, t′) = ∓iθ[±(t− t′)]T e−i
∫ t
t′ dt̄[hHF(t̄)∓iΓ/2], (6)

where T is the chronological time-ordering and Γ is the
tunneling probability matrix from the leads to the molec-
ular region. Here we have used the wide-band approx-
imation (WBA) for the retarded/advanced embedding
self-energy, see Appendix B. This choice guarantees the
same mathematical structure for the propagators as for
the free-particle (or the HF) propagator, and it is ex-
pected to provide an accurate description when the re-
tarded/advanced embedding self-energy depends weakly
on frequency around the Fermi level. In contrast, the fre-
quency dependence of the lesser/greater embedding self-
energy can be included in Eq. (3), cf. Eq. (B7).

While Eq. (2) in combination with Eq. (5) [and the
self-energies in Eqs. (A10), (A11), and (A8)] represents
a closed set of equations, it only applies to the GKBA
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in the absence of initial contact and correlations, I ic = 0
in Eq. (4). This is because the GKBA does not provide
an approximation for the mixed functions in Eq. (4). It
is possible to pass over this issue by starting the time-
evolution from an initially noncorrelated state and then
building up correlations by adiabatically switching on
the many-particle and embedding effects69,70. This pro-
cedure may, however, lead to unpractically long prop-
agation times putting the computational gain of the
GKBA in jeopardy compared to the full Kadanoff–Baym
equations14,32,79. However, the inclusion of the initial
correlations has been shown to be possible also within
GKBA32,66–68.

In Ref. 32 a closed-form expression for I ic in terms
of ρ was derived for a closed system where electron–
electron interactions were described by the second-order
Born self-energy. In the next section we will outline a
similar procedure to evaluate I ic(t) for the embedding
self-energy. This procedure can directly be combined
with many-body self-energies, making it possible to per-
form GKBA time-evolution for an initially correlated and
contacted transport setup. This constitutes a partition-
free framework for electronic transport in terms of the
GKBA.

III. INITIAL CONTACTING COLLISION INTEGRAL

Let us start by separating the collision integral in
Eq. (4) for the correlation and contacting contributions
as

I ic(t) = I ic
mb(t) + I ic

em(t). (7)

For the first term (mb), we directly use the result derived
in Ref. 32 employing the second-order Born self-energy.
For the second term (em), we take the self-energies as
the embedding ones

I ic
em(t) ≡ −i

∫ β

0

dτΣeem(t, τ)Gd(τ, t). (8)

The objects in Eq. (8) satisfy the same analytic struc-
ture as in Ref. 32, enabling us to write a generalized
fluctuation-dissipation theorem for the Green’s function
and self-energy. This further allows for writing Eq. (8)
equivalently in terms of the real-time lesser and greater
functions32

I ic
em(t) =

∫ 0

−∞
dt̄[Σ>

em(t, t̄)G<(t̄, t)−Σ<
em(t, t̄)G>(t̄, t)],

(9)
where Eqs. (5) and (B7) are to be employed for the
Green’s functions and embedding self-energies, respec-
tively. In general Eq. (9) involves a convergence factor
eηt̄ in the integrand (see Ref. 32). However, with con-
tacted infinite leads this factor can be left out as the
embedding self-energy accounts for proper convergence
due to presence of a continuum of lead states. We notice
that for t̄ ∈ (−∞, 0) we have t̄ < 0 < t, i.e., the retareded
Green function, GR(t̄, t) ∝ θ(t̄− t), vanishes whereas the
advanced Green function, GR(t̄, t) ∝ θ(t̄ − t), does not
[cf. Eq. (6)]. Importantly, for times t̄ < 0 < t, the single-
particle density matrix is static, given by some equilib-
rium value, ρ(t̄) ≡ ρeq. In this time interval, the HF
Hamiltonian also becomes static, hHF(t̄) = hHF[ρ(t̄)] =
hHF[ρeq] ≡ heq

HF. These time intervals may then be sepa-
rated using the group property

GA(t̄, t) = −iGA(t̄, 0)GA(0, t) = e−i(heq
HF+iΓ/2)t̄GA(0, t).

(10)
Note that here the equilibrium system is taken as cou-
pled, and Γ appearing in the exponent is due to the
WBA, in accordance with Eq. (6).

With these considerations Eq. (9) can be expanded as

I ic
em(t) =

∫ 0

−∞
dt̄
{
− i
∑
α

e−iψα(t,t̄)

∫
dω

2π
[1− f(ω − µ)]Γα(ω)e−iω(t−t̄)ρeqe−i(heq

HF+iΓ/2)t̄GA(0, t)

+ i
∑
α

e−iψα(t,t̄)

∫
dω

2π
f(ω − µ)Γα(ω)e−iω(t−t̄)(1− ρeq)e−i(heq

HF+iΓ/2)t̄GA(0, t)
}
. (11)

Here, it is worth noting that the frequency-dependence of Γα(ω) results from the lesser/greater embedding self-energy
in Eq. (B7), which itself is of general form and does not require the WBA. For t̄ ∈ (−∞, 0) the system is in equilibrium,
i.e., external fields are not switched on. For the bias voltage phase factor we therefore have ψα(t, t̄) = ψα(t, 0). Then,
by canceling and combining some terms we may isolate the t̄ integration

I ic
em(t) = i

∑
α

e−iψ(t,0)

∫
dω

2π
Γα(ω)[f(ω − µ)− ρeq]e−iωt

[∫ 0

−∞
dt̄ei(ω−heq

HF−iΓ/2)t̄

]
GA(0, t). (12)

The time integration is now straightforward to perform and we are left with a frequency integral only. This gives us
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as the final result for the initial contacting collision integral

I ic
em(t) =

∑
α

e−iψα(t,0)

∫
dω

2π
Γα(ω)[f(ω − µ)− ρeq]

e−iωt

ω − (heq
HF + iΓ/2)

GA(0, t), (13)

where we used the notation c−A ≡ c1−A and 1/A ≡ A−1

for a scalar c and a matrix A.
Importantly, we are left with no time integrations,

so Eq. (13) can be evaluated at any time t with mi-
nor computational cost, provided that GA(0, t) is al-
ready available during the time evolution. We discuss
in Appendix C the case of taking explicitly the WBA
for Eq. (13), which lightens the computational cost even
more. If, in addition, we consider a specific but fre-
quently used harmonic bias voltage profile, Vα(t) =
V 0
α + Aα cos(Ωαt + φa), also the phase factor e−iψα(t,0)

can be expanded in terms of Bessel functions80–82.
The time-dependent current between the molecular

region and the leads can be calculated by the Meir–
Wingreen formula80,83

Iα(t) = 4ReTr

∫ t

t0

dt̄
[
(Σ>

em)α(t, t̄)G<(t̄, t)

−(Σ<
em)α(t, t̄)G>(t̄, t)

]
. (14)

This needs to be adjusted to include the effect from the
initial contacting collision integral in Eq. (13). The ad-
justment can be obtained by writing Eq. (13) as I ic

em(t) =∑
α(I ic

em)α(t), and then identifying the time-dependent
current as

Iα(t) −→ Iα(t) + 4ReTr(I ic
em)α(t). (15)

We note that a corresponding contribution arising from
the many-body self-energy vanishes due to conservation
laws and the self-consistent solution to the equations of
motion12.

IV. RESULTS

We now demonstrate the protocol derived in the previ-
ous section. In all of the numerical simulations presented
we consider two separate cases: (1) the standard GKBA
time evolution where the correlated and contacted initial
state is prepared by an adiabatic switching procedure for
t ∈ [−T, 0] and then switching on the bias voltage at
t = 0; and (2) the GKBA time evolution supplemented
with the initial correlations and contacting collision in-
tegral, starting the simulation directly at t = 0 with the
bias voltage. We refer to the former case as ‘GKBA|AS’
and to the latter as ‘GKBA|IC’. As we wish to analyze
the validity of the initial contacting protocol, we consider
the electronic interactions at the HF and 2B level. Note
that in the HF case I ic

mb = 0 in Eq. (7), and in the 2B
case this contribution is evaluated using the approach of
Ref. 32.

We consider two different molecular junctions where
the ‘molecule’ being coupled to macroscopic metallic
leads is (i) cyclobutadiene and (ii) a graphene nanoflake.
The modeling for the molecular regions is done at
the Pariser–Parr–Pople84,85 (PPP) level, where the ki-
netic and interaction matrix elements are obtained semi-
empirically by fitting to more sophisticated calculations.

The macroscopic metallic leads are described as nonin-
teracting semi-infinite tight-binding lattices. The role of
the leads is to act as particle reservoirs and as biased elec-
trodes accounting for a potential drop across the molecu-
lar region. The potential drop is modeled by a symmetric
bias voltage VL = −VR ≡ V , see Appendix A. We also
consider the zero-temperature limit at which we derive
in Appendix B a fast and accurate analytical representa-
tion of the embedding self-energy in terms of Bessel and
Struve functions. The matrix structure of the embedding
self-energy is specified by the coupling matrix elements
between the molecular region and the leads: In all of
the cases considered the left-most atoms of the molecu-
lar region are coupled to the left lead, and the right-most
atoms of the molecular region are coupled to the right
lead with equal coupling strength tαC where α = L,R.
The energy scale in the lead is specified by the hopping
strength between the lead sites tα.

A. Cyclobutadiene

We consider a cyclobutadiene molecule attached to
donor–acceptor-like leads. This is a circular molecule of
4 atomic sites, and it is modeled by PPP parameters
obtained by fitting to an effective valence shell Hamilto-
nian method86. The single-particle matrix is taken as (in
atomic units)

h = −

0.903 0.119 0 0.098
0.119 0.903 0.098 0

0 0.098 0.903 0.119
0.098 0 0.119 0.903

 , (16)

and the two-body interaction is of the form vmnpq =
vmnδmqδnp with (in atomic units)

v =

0.433 0.201 0.165 0.202
0.201 0.430 0.202 0.165
0.165 0.202 0.433 0.201
0.202 0.165 0.201 0.430

 . (17)

Note the slightly asymmetric structure of the hopping
and interaction matrix elements due to cyclobutadiene
being a rectangle, not a square87. The coupling be-
tween the molecule and the leads is of equal strength
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(c) HF current
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I L
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(d) 2B current

GKBA|AS
GKBA|IC
KBE

FIG. 2. Time-dependent densities (panels a and b) and cur-
rents (panels c and d) in a cyclobutadiene molecular junction
under the influence of voltage biases V = 0.06 (weak) and
V = 0.24 (strong) at the HF (panels a and c) and 2B (pan-
els b and d) level. The GKBA time evolution with adiabatic
switching is shown with the solid line and the switching time
extends over the figure frame to t = −T = −500. The GKBA
time evolution starting from t = 0 with the initial contact-
ing protocol is shown with the dashed line, and a benchmark
solution to the full KBE is shown with the dotted line. The
densities in panels (a) and (b) for the strong bias case are
shifted upwards by 0.03 for clarity.

tαC = −0.06 a.u. from the molecular sites 1 and 4
to the left lead and from the molecular sites 2 and 3
to the right lead. The hopping energy in the leads
is tα = −0.24 a.u., which gives for the tunneling rate
Γα = 2t2αC/|tα| = 0.03 a.u. The chemical potential is set
between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO),
µ = −0.119 a.u., of the isolated molecule with two elec-
trons. Such simplified modeling of the molecular junction
enables us to address the new approach with mathemati-
cal transparency, also comparing the GKBA with the full
Kadanoff–Baym equation (KBE) approach of Ref. 88.

In Fig. 2 we show the time-dependent densities (at the
first site) and currents (through the left lead interface)
in the cyclobutadiene molecular junction. We see that
the restart protocol of GKBA with the initial contact-
ing (GKBA|IC) is very well in agreement with the adi-
abatic switching (GKBA|AS) for both the density and
the current, and for both weak and strong bias. In ad-
dition, we have checked (not shown) that in the absence
of bias the GKBA|IC time evolution remains stable and
unchanged from the state described by ρeq. Even though
the bias window in the strong-bias case extends up to
half the bandwidth, we still observe a satisfactory agree-
ment between GKBA and KBE at the HF level. At the
2B level compared to full KBE, we find a typical mis-
match of the steady-state density and current. This can

2|t |

= 0.119

+ 2|t |

-0.436

-0.241

0.003

0.199

HOMO

LUMO

(a) (b) Weak bias (c) Strong bias

GKBA|HF
GKBA|2B

KBE|HF
KBE|2B

FIG. 3. Energy diagrams of the cyclobutadiene molecular
junction. Panel (a) shows the energy-dependence (vertical
axis) of the imaginary part of the embedding self-energy, i.e.,
the lead density of states. The HF energy levels of the isolated
molecule are shown as horizontal lines. Panels (b) and (c)
show the out-of-equilibrium spectral functions in the weak
(V = 0.06) and strong (V = 0.24) bias case, respectively.
The vertical energy axes of the spectral functions are aligned
with the energy axis in panel (a).

be addressed in terms of the out-of-equilibrium spectral
function, which is calculated as a Fourier transformation
with respect to the relative-time coordinate tr ≡ t− t′:

A(ω) = i

∫
dtre

iωtrTr[G>(Tc + tr/2, Tc − tr/2)

−G<(Tc + tr/2, Tc − tr/2)], (18)

where we set the center-of-time coordinate, Tc ≡ (t +
t′)/2, to half the total propagation time, so that the
relative-time coordinate spans the maximal range diago-
nally in the two-time plane. In Fig. 3 we show the en-
ergy diagram together with the out-of-equilibrium spec-
tral functions. As the GKBA in Eq. (5) satisfies the exact
condition G>−G< = GR−GA, the GKBA spectral func-
tion adheres to the form of the HF propagators in Eq. (6).
This is generally in agreement with Refs. 88 and 89 for
similar systems. Here the interaction is relatively strong,
so the KBE 2B spectral function is completely smeared
out.

B. Graphene nanoflake

We then consider a graphene nanoflake which has more
structural complexity, see Fig. 4. The molecular region
is a notched armchair graphene nanoribbon of width
9 and length 8 similar to Ref. 90 where a generalized
tight-binding model was proposed. It was found that
a single parameter set with first-, second-, and third-
nearest neighbor hoppings t1 = −2.7 eV, t2 = −0.20 eV,
t3 = −0.18 eV, and a Hubbard interaction U = 2.0 eV ac-
curately reproduced density-functional theory based re-
sults for both the band structure and the conductance.
We choose these values as the PPP parameters along the
hexagonal lattice in Fig. 4 for Eq. (1): hmn = t1, t2, t3 for
first-, second-, and third-nearest neighbors, respectively,
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FIG. 4. Graphene nanoflake molecular junction. The left-
most carbon atoms (black) are connected to the left lead
(yellow) with tunneling rate ΓL, and the right-most carbon
atoms (black) are connected to the right lead (yellow) with
tunneling rate ΓR. Only the terminal sites of the leads are
depicted. Red, green, and blue arrows signify the hopping
energies between first-, second-, and third-nearest neighbors,
respectively. Electron–electron interaction is of Hubbard type
with strength U .

and vmnpq = Uδmnδmpδmq. Here we describe the interac-
tions at the 2B level. We note that, as we include next-
nearest neighbor hoppings, the electron-hole symmetry is
not preserved91. In addition, the nanoflake is coupled to
the left and right leads from the left-most and right-most
carbon atoms, respectively (see Fig. 4). We consider two
cases of tunneling rates between the graphene nanoflake
and the leads Γα ∈ {0.02|t1|, 0.2|t1|}, and we fix the bias
voltage to V = |t1| with respect to the chemical potential
µ = 1.44 eV, which is set in the middle of the HOMO–
LUMO gap of the isolated graphene nanoflake. As the en-
ergies are in electronvolts, ε = 1 eV, we convert the units
for time to seconds by t = ~/ε ≈ 6.582 · 10−16 s, and the
units for current to amperes by I = eε/~ ≈ 2.434·10−4 A.

The restart protocol with the initial contacting
(GKBA|IC) relies on a converged initial state. In Fig. 5
we show the time-dependent currents (through the left
lead interface) for the graphene nanoflake molecular junc-
tion, and we study the role of the switching time t = −T
and the tunneling rate Γα. First, the initial contacting
(GKBA|IC) is in excellent agreement with the adiabatic
switching (GKBA|AS) for both weak and intermediate
coupling. Second, the relaxation time of the switching
procedure is longer for weaker coupling11. This is re-
flected on the initial contacting protocol, which requires
an equilibrium density matrix ρeq as input. If this ρeq

does not result from a properly converged calculation,
then GKBA|IC starts deviating from GKBA|AS, as can
be seen in Fig. 5 cases T = 10 fs and T = 30 fs. We
emphasize that the computational cost for the GKBA|IC
is independent on how long the preparation stage takes:
With one prepared ρeq, as many out-of-equilibrium simu-
lations as desired may be performed (e.g. voltage sweep).

In Fig. 5 we also show a simulation with the HF self-
energy: Compared to the 2B case, the transient oscilla-
tion is roughly similar and only the steady-state value is

5 0 5 10 15 20 25 30
t [fs]

0.00

0.02

0.04

0.06

0.08

I L
 [m

A] T = 60

T = 30

(a) = 0.02|t1|

GKBA|AS
GKBA|IC

GKBA|HF
GKBA|sudd
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t [fs]
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0.1

0.2

0.3

0.4

0.5

I L
 [m

A]

T = 20

T = 10

(b) = 0.2|t1|

GKBA|AS
GKBA|IC

GKBA|HF
GKBA|sudd

FIG. 5. Time-dependent currents through the left lead inter-
face of a graphene nanoflake in (a) weak and (b) intermediate
coupling regime. The GKBA time evolution with the 2B self-
energy and with adiabatic switching (GKBA|AS) is shown
with the solid line and the indicated switching time t = −T
extends over the figure frame. The GKBA time evolution
with the 2B self-energy starting from t = 0 with initial con-
tact and correlations (GKBA|IC) is shown with the dashed
line. A comparative time evolution with the HF self-energy is
shown with the dash-dotted line. A sudden switch-on of both
correlations (2B) and voltage at t = 0 (GKBA|sudd) is shown
with a dotted line. For clarity, we apply an upward shift of
0.04 mA for the T = 60 fs case in panel (a) and 0.3 mA for
the T = 20 fs case in panel (b).

affected within the GKBA description. For this size of
the graphene structure and this model of interaction, this
is reasonable as monolayer graphene devices are known to
have fairly large coherent transport lengths91. In Fig. 5
we also show, for comparison, an ill-advised simulation of
a simultaneous and sudden switch-on of both many-body
correlations and contacts with voltage at t = 0. Clearly,
the transient features are completely misrepresented in
this case, but the long-time limit coincides with the AS
and IC results due to loss of memory of the initial state92.
Generally, with the chosen parameters for voltage and
coupling, we find the absolute values of the stationary
currents in the 10 µA ÷ 1 mA range, and the transient
signature characterized in the 1÷ 100 fs temporal range.

The dominant transient oscillation observed in Fig. 5
is independent of the tunneling rate Γα and corresponds
to a frequency of |t1| which is equal to the applied bias
voltage. Therefore, these oscillations represent transi-
tions between the biased Fermi level of the leads and the
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(a) t = 5 fs
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(b) t = 30 fs
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FIG. 6. Temporal snapshots of spatial charge-density vari-
ation (colormap) along the graphene nanoflake with respect
to the equilibrium density. Relative strength of the nearest-
neighbor bond current is indicated by the line thickness
along the hexagonal lattice. The calculation corresponds to
Fig. 5(a) with weak coupling Γα = 0.02|t1|. Panel (a) shows
the initial transient at t = 5 fs while panel (b) is closer to the
stationary state at t = 30 fs.

zero-energy states of the graphene nanoflake93,94. These
zero-energy states correspond to surface states along the
zigzag segments of the graphene nanoflake95,96. This is
confirmed in Fig. 6 where the excited zero-energy modes
are spatially focused along the surface during the ini-
tial transient. Interestingly, this effect therefore seems
to be robust against electronic interactions. While it
is outside of the scope of the present work, this ef-
fect could be associated with nontrivial spin polariza-
tion or antiferromagnetic alignment at the edges of the
system97–99. As the system relaxes towards the station-
ary state, the density response becomes more delocalized
along the nanoflake. In Fig. 6 we also show the relative
strength of the bond current between nearest-neighbor
carbon atoms. Due to the notched geometry, the current
is appreciably stronger in the lower part of the nanoflake.
We suspect larger graphene nanostructures would show
even more pronounced separation of the charge and cur-
rent density between the bulk and the surface during the
initial transient18.

V. CONCLUSION

We have extended the GKBA approach for open quan-
tum systems to a partition-free setting in electronic trans-
port. We formulated the initial state for a molecular
junction, before applying, e.g., a bias voltage driving, as
correlated and contacted. In practice, the contacted ini-
tial state was resolved as a separate calculation, which
could be included to the out-of-equilibrium calculation
via the initial contacting collision integral with a mi-
nor computational cost. This approach could directly be
combined with the initial correlations in Ref. 32, mak-
ing it possible to perform GKBA time-evolution for an
initially correlated and contacted transport setup.

The inclusion of the initial contacting collision inte-
gral is very general. Since it only concerns the embed-
ding self-energy, extensions to more sophisticated cor-
relation self-energies, such as the T -matrix100 or the
GW approximation101, are directly applicable. In ad-
dition, extensions to correlated approximations to the
propagators are applicable as long as they can be rep-

resented by GR/A(t, t′) ∝ exp{−i
∫ t
t′

dt̄[hqp(t̄) ∓ iΓ/2]},
where hqp ≡ hHF + Σ̃ includes some quasiparticle ef-
fects11,78. Even though we only considered constant bias
voltage profiles, the driving could also be modulated in
time80–82.

We demonstrated the developed method by study-
ing transient current signatures in carbon-based molec-
ular junctions. A compact system of a cyclobutadiene
molecule allowed for a transparent comparison of the
new approach to adiabatic switching GKBA, and even
to the full Kadanoff–Baym equation. Time-resolved den-
sities and currents via the initial contacting approach
were found to be in excellent agreement with the adi-
abatic switching approach in both weak- and strong-
bias regimes. A more structurally complex system of a
graphene nanoflake addressed both the potential and the
limitations of the new approach. While the comparison
with the adiabatic switching approach was found to be
successful, it was important to verify the convergence of
the initially correlated and contacted state before initi-
ating an out-of-equilibrium simulation. We also found
predominant oscillations in the transient current signal
associated with virtual transitions between the graphene
surface states and the biased Fermi levels of the lead.
Together with recent experimental developments in ul-
trafast techniques these findings highlight the potential
of addressing transiently emerging topological phenom-
ena in molecular junctions out of equilibrium.
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Appendix A: Background for the NEGF-GKBA equations

Generally, the Hamiltonian in Eq. (1) is described with
an argument z referring to a time parameter on the
Konstantinov–Perel’ time contour102 γ ≡ γ−⊕γ+⊕γM ≡
(t0, t) ⊕ (t, t0) ⊕ (t0, t0 − iβ), where t0 marks the begin-
ning of a transport process generated by, e.g., a voltage
switch-on, t is the observation time, and β = 1/(kBT ) is
the inverse temperature. The molecular junction Hamil-
tonian may then be specified for all contour times as103

εkα(z) =

{
εkα + Vα(t) when z ∈ γ− ⊕ γ+

εkα − µ when z ∈ γM,
(A1)

hmn(z) =

{
hmn + umn(t) when z ∈ γ− ⊕ γ+

hmn − µδmn when z ∈ γM,
(A2)

where we introduced a bias voltage profile Vα(t) for the
lead energy dispersion, a nonlocal potential profile umn(t)
for the molecular device, and the equilibrium chemi-
cal potential µ. The coupling Tmkα(z) and interaction
vmnpq(z) matrix elements can either be set equal and
nonzero for all z, or zero for z ∈ γM and proportional to
a switching function f(t) for z ∈ γ−⊕γ+ on the horizon-
tal branches.

The one-electron Green’s function is defined on the
time contour as48

Gxy(z, z′) = −i〈Tγ [ĉx(z)ĉ†y(z′)]〉, (A3)

where Tγ is the contour-time-ordering, the creation and
annihilation operators are represented in the Heisenberg
picture, and the ensemble average 〈·〉 is taken as a trace
over the density matrix. The Green’s function satisfies
the equation of motion (in matrix form)48

[i∂z1−h(z)]G(z, z′) = δ(z, z′)1+

∫
γ

dz̄Σmb(z, z̄)G(z̄, z),

(A4)
and the corresponding adjoint equation. In Eq. (A4) we
introduced a block matrix structure with respect to the
basis of single-electron states

h(z) =

(
hαα′(z) hαC(z)
hCα′(z) hCC(z)

)
, (A5)

where the lead part is diagonal, (hαα′)kk′(z) =
δαα′δkk′εkα(z), the tunneling is through the molecular de-
vice, (hCα)mk(z) = Tmkα(z), and (hCC)mn(z) = hmn(z).
In Eq. (A4) we also wrote the many-body self-energy
Σmb accounting for the electronic interactions. While
this interaction is constricted to the molecular region
only, the Green’s function matrix has nonzero entries ev-
erywhere:

Σmb =

(
0 0
0 (Σmb)CC

)
, G =

(
Gαα′ GαC
GCα′ GCC

)
.

(A6)
The integration in Eq. (A4) is performed over the
Konstantinov–Perel’ contour through the Langreth
rules104,105. In this procedure, the contour-time func-
tions are represented in real-time components: lesser (<),
greater (>), retarded (R), advanced (A), left (d), right
(e), and Matsubara (M) depending on the contour-time
arguments48.

We now consider the molecular region C and take the
projection of the equation of motion (A4) onto these
states. This procedure leads to88

[i∂z − hCC(z)]GCC(z, z′) = δ(z, z′)

+

∫
γ

dz̄[(Σmb)CC(z, z̄) + (Σem)CC(z, z̄)]GCC(z̄, z′),

(A7)

and a similar adjoint equation. In Eq. (A7) we defined
the embedding self-energy as

(Σem)CC(z, z′) =
∑
α

hCα(z)gαα(z, z′)hαC(z′), (A8)

where the Green’s function of the noninteracting lead
gαα satisfies [i∂z − hαα(z)]gαα(z, z′) = δ(z, z′). As we
are mainly considering the dynamical quantities within
the molecular region, we will drop the CC subscript for
simplicity.

We consider the electronic interaction at the Hartree–
Fock (HF) and second-order Born (2B) level, which are
time-local and time-nonlocal, respectively

Σmb(z, z′) = ΣHF(z)δ(z, z′) +Σ2B(z, z′). (A9)

This separation allows us to remove the time-local part
from the collision integral on the right-hand side of
Eq. (A7), and couple it with the single-particle Hamil-
tonian on the left-hand side. Using the basis of single-
electron states, the HF self-energy reads

(ΣHF)ij(z) =
∑
mn

[2vimnj(z)ρnm(z)− vimjn(z)ρnm(z)],

(A10)
where ρ(z) ≡ −iG(z, z+) is the single-particle density
matrix. The 2B self-energy takes the form

(Σ2B)ij(z, z
′)

=
∑

mnpqrs

virpn(z)vmqsj(z
′) [2Gnm(z, z′)Gpq(z, z

′)Gsr(z
′, z)

−Gnq(z, z′)Gpm(z, z′)Gsr(z
′, z)] , (A11)
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where the summation over the basis states can be reor-
ganized for efficient computation106–108.

Taking the equal-time limit, z = t−, z′ = t+, in
Eq. (A7) and its adjoint, and employing the Langreth
rules we obtain the GKBA equation of motion (2) for
the single-particle density matrix in main text.

Appendix B: Embedding self-energy

Since the leads are treated as noninteracting, they can
be incorporated non-perturbatively into the equation of
motion (A7) using the embedding self-energy in Eq. (A8).
On the real-time branch the relevant lead Green’s func-
tions are48

g
R/A
kα (t, t′) = ∓θ[±(t− t′)]e−i

∫ t
t′ dt̄[εkα+Vα(t̄)], (B1)

g
≶
kα(t, t′) = ±if [±(εkα − µ)]e−i

∫ t
t′ dt̄[εkα+Vα(t̄)], (B2)

where f(x) = 1/(1+eβx) is the Fermi function at inverse
temperature β with the property f(−x) = 1− f(x). The
retarded and advanced embedding self-energies are then
given by81

(ΣR/A
em )α(t, t′) = e−iψα(t,t′)

∫
dω

2π
[Λα(ω)∓ iΓα(ω)/2],

(B3)

where ψα(t, t′) ≡
∫ t
t′

dt̄Vα(t̄) is the phase factor origi-
nating from the bias voltage profile, and we wrote the
level-shift and level-width matrices as

(Λα)mn(ω) =
∑
k

TmkαP
(

1

ω − εkα

)
Tkαn, (B4)

(Γα)mn(ω) = 2π
∑
k

Tmkαδ(ω − εkα)Tkαn, (B5)

respectively. In Eqs. (B4) and (B5) we used 1/(ω− εkα±
iη) = P(1/(ω−εkα))∓iπδ(ω−εkα) with η being a positive
infinitesimal and P denoting the principal value.

In the wide-band approximation (WBA) the level-
width is taken as independent of frequency, Γα(ω) ≈ Γα.
This amounts to approximating the lead density of states
being practically featureless in the energy scale of the
molecular system. In this approximation the level-shift
matrix vanishes due to Kramers–Kronig relations, and
the retarded/advanced embedding self-energy becomes
time-local

ΣR/A
em (t, t′) ≡

∑
α

(ΣR/A
em )α(t, t′) = ∓i

∑
α

Γαδ(t− t′)/2

= ∓iΓδ(t− t′)/2. (B6)

In a similar manner we obtain the lesser/greater embed-
ding self-energy as23

(Σ≶
em)α(t, t′)

= ±ie−iψα(t,t′)

∫
dω

2π
f [±(ω − µ)]Γα(ω)e−iω(t−t′). (B7)

Even though we set ourselves in the regime where the
WBA holds, in Eq. (B7) we keep the frequency depen-
dency of Γα to ensure convergence of the frequency inte-
gral.

The matrix structure of the embedding self-energy is
determined by the corresponding structure of the level-
width matrix Γα which is specified by the coupling and
lead Hamiltonians in Eq. (B5). We now address the
frequency integral in Eq. (B7) and consider the effec-
tive form of the level-width matrix for a one-dimensional
semi-infinite tight-binding lead88

Γα(ω) ∝

√
1−

(
ω − aα
2|ta|

)2

, (B8)

where aα is the on-site energy of the sites in lead α
and tα the hopping energy between the sites in lead
α. This form also limits the integration range to ω ∈
[aα − 2|tα|, aα + 2|tα|], see Fig. 3(a). We also consider
the zero-temperature limit at which the Fermi function
becomes a Heaviside step function, f(ω−µ)→ θ(µ−ω),
and this introduces a further cutoff to the integral. We
also write tr = t− t′ for brevity and obtain∫ ∞

−∞

dω

2π
f(ω − µ)Γα(ω)e−iω(t−t′)

∝
∫ µ

aα−2|tα|

dω

2π

√
1−

(
ω − aα
2|tα|

)2

e−iωtr . (B9)

We make the identification that the on-site energies in the
leads are aligned with the equilibrium chemical potential,
µ = aα, resulting in half filling for the leads’ energy con-
tinua. Making a change of variables x ≡ (ω−aα)/(2|tα|)
we obtain∫ µ

aα−2|tα|

dω

2π

√
1−

(
ω − aα
2|tα|

)2

e−iωtr

=
|tα|
π

e−iaαtr

∫ 0

−1

dx
√

1− x2e−2ix|tα|tr

=
e−iaαtr

4tr
[J1(2|tα|tr) + iH1(2|tα|tr)], (B10)

where on the last line we used an integral representation
of the Bessel and Struve functions of the first kind109,110.
We remind that the final result for the lesser embed-
ding self-energy at the zero-temperature limit, obtained
by inserting Eq. (B10) in Eq. (B7), needs to be supple-
mented with the appropriate matrix structure. We also
note that at the equal-time limit, tr → 0, Eq. (B10)
reduces to a value of |tα|/4. The case of the greater em-
bedding self-energy with f [−(ω − µ)] in Eq. (B7) results

in the integral
∫ 1

0
dx
√

1− x2e−2ix|tα|tr which has other-
wise the same representation as in Eq. (B10) but the sign
in front of the Struve function is changed. The Struve
function can be evaluated using an approximate expan-
sion in terms of the Bessel functions111,112, or as a direct
combination of power series and continued fraction113.
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Appendix C: Evaluation of the frequency integral at the
wide-band approximation

In practice, we evaluated Eq. (13) by numerical inte-
gration for all the simulations presented. However, we
can make some further analytical progress by taking ex-
plictly the WBA. We show here how, in this case, the
frequency integral in Eq. (13) can further be expressed
in terms of the hypergeometric function109 which can
be evaluated using a fast and accurate numerical algo-
rithm114. Now, Γα(ω) due to the lesser/greater embed-
ding self-energy is also taken as independent of frequency,
and Eq. (13) can be written as

I ic
em(t) =

∑
α

Γαe−iψα(t,0)

∫
dω

2π

f(ω − µ)e−iωt

ω − (heq
HF + iΓ/2)

GA(0, t).

(C1)
Here we used the fact that the frequency integral is per-
formed over the full real axis ω ∈ (−∞,∞), and it can
be evaluated using contour integration techniques. The
exponential factor in the numerator converges only in the
lower-half of the complex plane. In this region the con-
tribution ∼ ρeqe−iωt/(ω−heq

HF− iΓ/2) from Eq. (13) does
not contain any poles, so this contribution to the integral
vanishes. The other contribution contains the Matsub-
ara poles of the Fermi function, in the lower-half of the
complex plane, keeping the integral nonzero.

We may then expand the result in the (right) eigen-
vector basis of the nonhermitian matrix

(heq
HF + iΓ/2)|ψR

j 〉 = εj |ψR
j 〉. (C2)

We recall that the left/right eigenvectors of a nonhermi-
tian matrix form a biorthogonal basis set. The frequency
integral of Eq. (C1) in this basis reads

〈ψR
j |
∫

dω

2π
f(ω − µ)

e−iωt

ω − (heq
HF + iΓ/2)

|ψR
k 〉

= 〈ψR
j |ψR

k 〉
∫ ∞
−∞

dω

2π

e−iωt

(eβ(ω−µ) + 1)(ω − εk)
. (C3)

Due to the exponential factor in the numerator, we close
the integration contour in the lower-half plane. Since
εk is an eigenvalue of heq

HF + iΓ/2, it is located on the
upper-half plane (Γ is a positive-definite matrix). Then,
in the lower-half plane, only the residues at the Matsub-
ara poles, ω = ωn = iπ(2n + 1)/β + µ (with n integer),
contribute to the integral. This consideration is very sim-
ilar to Ref. 22, and also here it is possible to show that
the result can be written in terms of the hypergeometric
function109∫ ∞

−∞

dω

2π

e−iωt

(eβ(ω−µ) + 1)(ω − εk)

=
e−i(µ−iπ/β)t

iβ(εk − µ)− π
×

2F1

[
1,

1

2
− iβ(εk − µ)

2π
,

3

2
− iβ(εk − µ)

2π
, e−2πt/β

]
.

(C4)

After this manipulation, Eq. (C4) can simply be in-
serted back into Eq. (C1) with a suitable rotation of the
left/right eigenvectors22.

While, in this approach, the restart protocol
(GKBA|IC) is consistent with the adiabatic switching
(GKBA|AS) only when the WBA is a good approxima-
tion, this is still a fairly practical way of computing the
initial contacting collision integral in Eq. (13) because it
is considerably faster than numerical integration and can
be performed to arbitrary numerical precision114. In ad-
dition, the GKBA approach is expected to be accurate
in this regime due to the choice of propagators at the
level of WBA. We have checked that the transient fea-
tures presented in Figs. 2 and 5 are very well represented
also when using Eq. (C1) with Eq. (C4).
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64Y. Murakami, M. Schüler, S. Takayoshi, and P. Werner, Phys.

Rev. B 101, 035203 (2020).
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