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Abstract

We propose a model of run-and-tumble particles (RTPs) on a line with a fertile site at
the origin. After going through the fertile site, a run-and-tumble particle gives rise to new
particles until it flips direction. The process of creation of new particles is modelled by a
fertility function (of the distance to the fertile site), multiplied by a fertility rate. If the initial
conditions correspond to a single RTP with even probability density, the system is parity-
invariant. The equations of motion can be solved in the Laplace domain, in terms of the density
of right-movers at the origin. At large time, this density is shown to grow exponentially, at a
rate that depends only on the fertility function and fertility rate. Moreover, the total density
of RTPs (divided by the density of right-movers at the origin), reaches a stationary state that
does not depend on the initial conditions, and presents a local minimum at the fertile site.
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1 Introduction

The run-and-tumble particle (RTP) is a simple model of active constituents such as bacteria, includ-
ing E. coli [1–3]. The particle draws energy from its environment to sustain a motion at constant
velocity, in a direction that changes stochastically. The corresponding equations of motion therefore
involve two densities, one for each velocity state. They are coupled, but upon elimination they give
rise to the telegrapher’s equation. Recent developments on the RTP in one dimension include relax-
ation properties with coupling to diffusion [4]. The properties of the random shape of the trajectory
of the RTP in dimension two have recently been studied in [5]. Developments involving multiple
RTPs on a line include [6], where exact results on the non-crossing probability of two RTPs have
been obtained. Models without conservation of the number of particles have been proposed: in [7]
the telegrapher’s equation was studied in the presence of traps. In [8] the survival probability of an
RTP in presence of an obstacle was worked out in arbitrary dimension. Moreover, the steady-state
probability density of an RTP subjected to resetting has been obtained in [9]. Exact results using
the propagator in higher dimension have been achieved in [10,11] for the RTP subjected to resetting.

On the other hand, recent developments [12] have given rise to a detailed understanding of the
long-time behaviour of free diffusive random walkers on a lattice, whose number is allow to grow
through the addition of a fertile site (for earlier results on fertile sites, see [13,14]). Random walkers
give rise to new random walkers when they are at the fertile site. The random walkers behave
like non-interacting diffusive particles. In such a situation the number of particles can only grow.
The growth is exponential if the dimension of the lattice is sufficiently low. Moreover, dividing the
number of random walkers at each site by the total number of random walkers in the system yields
a density, which was shown to reach a stationary state.

Due to the proliferating nature of bacteria, collective behaviour of systems of multiple RTPs beg
for modelling. Lattice models have been proposed, providing both insights into collective behaviour
and numerical tools to simulate the dynamics of RTPs. For instance, models of multispecies of
random walkers with finite persistence length have been proposed in [15], addressing interactions
that induce a decrease of the jump rate in response to an increase in density. The size of dense
clusters of swimmers on a lattice was shown in [16] to exhibit scaling properties in terms of the rate
of velocity switch. Mutual exclusion of two RTPs on a one-dimensional lattice was shown to yield
a steady state with a jammed component in [17].

In this work we neglect interactions but model the increase of density in the continuum by
allowing the creation of new RTPs. We consider non-interacting run-and-tumble particles on a line
with a fertile site. A fertile site models a source of nutrient at the origin, that triggers any passing
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constituent to give rise to new constituents (for example by cell division). In continuous space,
modelling a fertile site by the addition of a Dirac mass at the origin (multiplied by the density of
particles at the origin) gives rise to singularities. Even if the distribution of particles is absolutely
continuous in the initial state on the system, it develops a singularity at the fertile site at the
origin at positive time, which cannot be multiplied with a Dirac mass in the equations of motion.
We therefore have to propose a regularisation of the model, replacing the Dirac mass by a smooth
fertility function.

The paper is organised as follows. In Section 2 we present the model, derive the coupled equations
of motion and pick symmetric boundary conditions. In Section 3 we take the Laplace transform
of the equations of motion, which gives rise to a decoupling of left-movers and right-movers. In
Section 4 we solve the resulting second-order ordinary differential equation, treating the unknown
density of right-movers at the origin as a parameter. The resulting solution yields a constraint on
this density of right-movers at the origin: upon inversion of the Laplace transform, it satisfies an
integral equation. In Section 5 this integral equation is used to derive the rate of exponential growth
of the density of particles at the fertile site, in a self-consistent way. In Section 6 we normalise the
density of RTPs by the density of right-movers at the origin, and work out the large-time limit of
this normalised density, which is shown to have a local minimum at the fertile site. In Section 7 we
consider limits of low and high fertility and illustrate the model for a particular (gamma-distributed)
form of the fertility function.

2 Model and quantities of interest

We consider non-interacting run-and-tumble particles on a line (with coordinate at time τ denoted
by X(τ)), whose velocity switches stochastically between +v and −v, for a fixed positive velocity
v:

dX

dτ
= vσ(τ), (1)

where σ is a sign that switches according to a Poisson process of intensity γ. Let us rescale space
and time coordinates by choosing γ−1 as the unit of time and γ−1v as the unit of length:

x :=
X

γ−1v
, t := γτ. (2)

With this choice of coordinates, the velocity state of a particle can be +1 or −1. Let us denote by
n±(x, t) the densities of RTPs with fixed velocity state:

nε(x, t)dx := {average number of RTPs at time t in [x, x+dx] with velocity ε}, for ε ∈ {−1,+1}.
(3)

We will call n+ (resp. n−) the density of right-movers (resp. left-movers).

Moreover, the origin is a fertile site (as in the model studied in [12], for diffusive particles on
a discrete space): after going through the origin, a constituent can give rise to other constituents.
We will assume that particles can pull on a source of nutrient after going through the origin, as
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if they became hooked to the origin by an elastic band, through which they can pump a nutrient.
They produce new particles at a rate that depends on the distance they have travelled since going
through the origin. When they flip direction after going through the origin, they stop pulling on the
elastic band, and stop creating new particles. They behave as regular RTPs until they go through
the origin again.

The creation of RTPs at the fertile site is therefore modelled by adding creation terms to the
evolution equation of the equation satisfied by the density of a single RTP:

∂n+(x, t)

∂t
= −∂n+(x, t)

∂x
− n+(x, t) + n−(x, t) +Ke−xΘ(x)n+(0, t− x),

∂n−(x, t)

∂t
= +

∂n−(x, t)

∂x
+ n+(x, t)− n−(x, t) +KexΘ(−x)n−(0, t+ x).

(4)

The function Θ is a positive function modelling the rate of production of new particles by a particle
that has gone through the origin and has not yet changed direction. We will call Θ the fertility
function. The parameter K is a positive constant. We will call K the fertility rate. The rate of
production of particles is conserved if the product KΘ is conserved. To fix the parameters we can
therefore assume that Θ is normalised: ∫ ∞

0

Θ(x)dx = 1. (5)

Obviously Θ(x) = 0 if x is negative (a constituent cannot start producing new constituents before
going through the fertile site). The argument of the fertility function is x in the creation terms
for right-movers (resp. −x for left-movers). In both cases this argument is positive if the creation
term is positive: it is the distance travelled from the origin by constituents that have arrived at
coordinate x from the origin without flipping direction.

To avoid singularities, we will assume that Θ is smooth. In particular,

Θ(0) = Θ′(0) = 0. (6)

The factor e−|x| inserted in the last term of both equations of motion is the probability that a par-
ticle that has gone through the origin at time t− x with positive velocity has not yet switched the
sign of its velocity at time t (because particles have unit velocity in our units). When a new particle
is created, it is introduced into the system at the position of its parent particle. Moreover, every
new particle is assumed to inherit the velocity of its parent. Hence n+(0, t− x) (resp. n−(0, t− x))
contributes to the time derivative of n+(x, t) (resp. n−(x, t)) in the equations of motion. We avoided
singularities by not modelling the fertile site by a Dirac mass. If we pick smooth initial conditions,
we can therefore assume that the densities of left- and right-movers are smooth functions. We
have therefore obtained a non-local modification of the coupled system of equations satisfied by an
ordinary RTP. This system is recovered by substituting zero to the fertility rate K.

Let us define initial conditions by a smooth and parity-invariant probability density ϕ on the
real line:

n+(x, 0) = n−(x, 0) =
1

2
ϕ(x), (7)
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where ϕ is a smooth, even probability density on the real line. The run-and-tumble particle with
the initial density of left- and right-movers given by a Dirac mass at the origin is well studied
(see [9,18–20]), and the corresponding probability density is expressed in terms of Bessel functions,
and Dirac masses at the ends of the interval [−t, t] of available positions at time t. The Dirac masses
keep track of the initial state of the system: they correspond to trajectories in which no switching
of velocity has taken place since time 0. In our model we picked a smooth function instead of a
Dirac mass to define the initial conditions. This choice ensures that the densities of left-movers
and right-movers are absolutely continuous. Moreover, the system is invariant under the parity
transformation

x 7→ −x, n± 7→ n∓ (8)

at all times. Indeed the initial state of the system is parity invariant, and the equations of motion
(Eq. (4)) are. We can therefore write

∀x, t, n−(x, t) = n+(−x, t), (9)

and solving the equations of motion in n+ is enough to provide a solution of the model.

3 Laplace transform of the equations of motion

The equations of motion of a single RTP are known to decouple upon taking the Laplace transform
in the time coordinate (see [9]). It is therefore natural to apply the same transformation to our
model. Let us denote the Laplace transform of time-dependent quantities as follows:

f̃(s) :=

∫ ∞
0

f(t)e−stdt. (10)

The process starts at time zero, so we write n±(x, t) = 0 for all x and all negative t. The Laplace
transform of the creation terms in Eq. (4) reads as follows (for positive s):

e−xΘ(x)

∫ ∞
0

n+(0, t− x)e−stdt = e−xΘ(x)

∫ ∞
−x

n+(0, u)e−s(u+x)du

= e−(s+1)xΘ(x)

∫ ∞
0

n+(0, u)e−sudu

= e−(s+1)xΘ(x)ñ+(0, s),

e+xΘ(−x)

∫ ∞
0

n−(0, t+ x)e−stdt = e+(s+1)xΘ(−x)ñ−(0, s),

(11)

where we used the fact that n±(0, u) = 0 for negative time u.

The Laplace transform of the equations of motion therefore reads

sñ+(x, s)− 1

2
ϕ(x) = −∂ñ+(x, s)

∂x
− ñ+(x, s) + ñ−(x, s) +Kñ+(0, s)ξ(x),

sñ−(x, s)− 1

2
ϕ(x) = +

∂ñ−(x, s)

∂x
+ ñ+(x, s)− ñ−(x, s) +Kñ−(0, s)ξ(−x),

(12)
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where we used the initial condition defined in Eq. (7) on the l.h.s., and introduced the notation

ξ(x) := e−(s+1)xΘ(x). (13)

Taking the derivative w.r.t. x of Eqs (12) and rearranging yields

∂2xñ+(x, s) + (s+ 1)∂xñ+(x, s)− ∂xñ−(x, s) =
1

2
ϕ′(x) +Kñ+(0, s)ξ′(x). (14)

Using the Laplace transform of the equations of motion (Eq. (12)) we obtain

(s+ 1)∂xñ+(x, s)− ∂xñ−(x, s) =(s+ 1)

[
−sñ+(x, s) +

1

2
ϕ(x)− ñ+(x, s) + ñ−(x, s) +Kñ+(0, s)ξ(x)

]
− sñ−(x, s) +

1

2
ϕ(x) + ñ+(x, s)− ñ−(x, s) +Kñ−(0, s)ξ(−x)

=(s+ 1)

[
−sñ+(x, s) +

1

2
ϕ(x)− ñ+(x, s) +Kñ+(0, s)ξ(x)

]
+

1

2
ϕ(x) + ñ+(x, s) +Kñ−(0, s)ξ(−x)

=− s(s+ 2)ñ+(x, s) +
(s

2
+ 1
)
ϕ(x)

+Kñ+(0, s)(s+ 1)ξ(x) +Kñ−(0, s)ξ(−x).

(15)

Substituting into Eq. (14) yields

∂2xñ+(x, s)− s(s+ 2)ñ+(x, s) =−
(s

2
+ 1
)
ϕ(x) +

1

2
ϕ′(x)

−Kñ+(0, s)(s+ 1)ξ(x)−Kñ−(0, s)ξ(−x) +Kñ+(0, s)ξ′(x),
(16)

which almost displays the expected decoupling, except for the Laplace transform of the density of
left-movers at the origin ñ−(0, s), which appears on the r.h.s, and can be re-expressed using the
parity symmetry of the model. Indeed, Eq. (9) holds at the fertile site x = 0. Let us denote the
common value of the densities of left- and right-movers at the origin and at time t by R(t):

R(t) := n+(0, t) = n−(0, t). (17)

We can therefore rewrite Eq. (16) as follows:

∂2xñ+(x, s)− s(s+ 2)ñ+(x, s) = g+(x, s), (18)

where the function g+ is an affine function of the unknown density of right-movers at the fertile
site, with coefficients expressed in terms of the initial conditions and the other parameters of the
model (fertility function Θ and fertility rate K):

g+(x, s) :=−
(s

2
+ 1
)
ϕ(x) +

1

2
ϕ′(x) +KR̃(s) [−(s+ 1)ξ(x)− ξ(−x) + ξ′(x)]

=−
(s

2
+ 1
)
ϕ(x) +

1

2
ϕ′(x)

+KR̃(s)
[
−2(s+ 1)e−(s+1)xΘ(x)− e(s+1)xΘ(−x) + e−(s+1)xΘ′(x)

]
.

(19)
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The function g+ is a smooth function of x because the fertility rate Θ is. We can attempt to solve
this equation as a second-order ordinary differential equation, treating R̃(s) as a parameter. The
solution will yield a consistency condition satisfied by the density of right-movers at the origin.

4 Integration of the equations of motion

If we treat the Laplace variable s conjugate to time as a constant parameter, Eq. (18) becomes a
second-order ordinary differential equation of the form

y′′(x)− σy(x) = f(x), (20)

with the notations

σ := s(s+ 2),

f(x) := g+(x, s),
(21)

where the function g+ is defined in Eq. (19) in terms of the parameters of the problems (initial
conditions, fertility rate and fertility function), and of the unknown density of right-movers at the

origin in Laplace space, denoted by R̃(s).

This differential equation is readily reformulated as a first-order equation in the vector Y (x)
defined as

Y (x) :=

[
y(x)
y′(x)

]
. (22)

The problem reads
Y ′(x) = MY (x) + F (x), (23)

with

M :=

[
0 1
σ 0

]
, F (x) :=

[
0

f(x)

]
. (24)

This problem is readily solved by diagonalising the matrix M . The derivation is shown in Appendix
A. The density of right-movers is expressed as

ñ+(x, s) = cosh(x
√
σ)λ(s) +

1√
σ

sinh(x
√
σ)µ(s) +

1√
σ

∫ x

0

sinh
(
(x− y)

√
σ
)
g+(y)dy, (25)

where λ(s) and µ(s) are integration constants, expressed in Eqs (91) in terms of the function g+.

The resulting density of right-movers (in Laplace domain) is an affine function of R̃(s), because this
unknown quantity enters the definition of the function g+ in Eq. (19), with coefficients that depend
on the parameters of the fertile site (and not on the initial conditions). We can therefore rewrite
Eq. (25) at x = 0 in the following form:

ñ+(0, s) = R̃(s) = λ(s) = ψ̃(s) + Ξ̃(s)R̃(s), (26)
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where the s-dependent coefficients ψ̃(s) and Ξ̃(s) have been denoted as Laplace transforms. Let us
extract the following expressions from the value of λ(s) obtained in the Appendix (Eq. (97)):

ψ̃(s) =
1

2

√
s+ 2

s

∫ ∞
0

e−y
√
s(s+2)ϕ(y)dy, (27)

Ξ̃(s) =
K

2
√
s(s+ 2)

(
s+ 2−

√
s(s+ 2)

)
Θ̃(s+ 1 +

√
s(s+ 2)). (28)

We have therefore obtained a formal solution of the problem in the Laplace domain, in terms of
the unknown density of particles at the origin. Inverting the Laplace transform maps the ordinary
product to a convolution product. The affine dependence of the r.h.s. of Eq. (26) on the density
of left- and right-movers at the origin therefore yields a consistency condition on the density in the
form of an integral equation:

R(t) = ψ(t) +

∫ t

0

Ξ(t− u)R(u)du. (29)

5 Exponential growth of the number of particles

In a zero-dimensional model of growth, non-interacting particles sit on top of a fertile site. Each
particle produces offspring at a constant rate, corresponding to the amount of energy it can ex-
tract from the fertile site. If we model this amount as a constant, the number of particles grows
exponentially. In our one-dimensional model, the production of particles can happen anywhere on
the real line, but it is more likely to occur close to the fertile site, because particles stop producing
offspring when they flip direction after going through the fertile site. The growth of the number of
particles is therefore expected to be governed by the behaviour of the model close to the fertile site,
which motivates us to expect an exponential growth, as in the zero-dimensional model. Moreover,
in dimension one, a population of diffusive random walkers was shown in [12] to grow exponentially.

Let us therefore look in a self-consistent way for an exponential equivalent of the density of right
movers at large time. We postulate the existence of two positive constants ρ and χ (independent
of both x and t), such that

R(t) ∼
t→∞

ρeχt. (30)

We have to take the large-time limit of the consistency condition (Eq. (29)) satisfied by the
density of right-movers at the origin. The function ψ(t) is bounded because it is the density of
right-movers at the origin if the fertility rate K is set to zero (in which case there is only one
particle in the system). At large time, the r.h.s. of Eq. (29) is therefore equivalent to the integral
term:

R(t) ∼
t→∞

∫ t

0

Ξ(t− u)R(u)du. (31)

Let us inject the exponential growth postulated in Eq. (30) on both sides, and rescale the integration
variable by introducing v := t−1u:

eχt ∼
t→∞

t

∫ 1

0

Ξ(t(1− v))eχtvdv. (32)
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In the large-time limit, dividing both sides of the above equivalent by eχt yields the limit

lim
t→∞

t

∫ 1

0

Ξ(t(1− v))eχt(v−1)dv = 1. (33)

Changing the integration variable to T := t(1 − v), the l.h.s. of the above equation becomes the
Laplace transform of the function Ξ, taken at the unknown rate χ:

lim
t→∞

∫ t

0

Ξ(T )e−χTdT = 1. (34)

The rate χ therefore satisfies
Ξ̃(χ) = 1. (35)

Using the expression of the Laplace transform Ξ̃ in Eq. (28), we obtain an equation in χ, the
postulated rate of exponential growth:

1 =
K

2

(√
1 +

2

χ
− 1

)
Θ̃(χ+ 1 +

√
χ(χ+ 2)), (36)

As the fertility function Θ is positive, the Laplace transform Θ̃(s+ 1 +
√
s(s+ 2)) is a positive and

decreasing function of s. The quantity Ξ̃(s) is therefore a decreasing function of s. Moreover, we
have the following two asymptotic behaviours:

Ξ̃(s) ∼
s→0+

KΘ̃(1)

s
√

2
−→
s→0+

+∞, Ξ̃(s) −→
s→+∞

0. (37)

There is therefore a unique positive solution to Eq. (35), which depends on the choice of parameters
K and Θ, but not on the initial conditions.

On the other hand, the Laplace transform R̃(s) of right-movers at the origin is obtained from
Eq. (26) as

R̃(s) =
ψ̃(s)

1− Ξ̃(s)
. (38)

Because of Eq. (35), this expression has a pole at s = χ. The Taylor expansions of ψ̃ and Ξ̃ about
the point χ read

Ξ̃(χ+ h) = 1 + h(Ξ̃)′(χ) + o(h),

ψ̃(χ+ h) = ψ̃(χ)(1 + o(1)).
(39)

An equivalent of R̃(χ+ h) when h goes to zero is therefore obtained as

R̃(χ+ h) = − ψ̃(χ)

hΞ̃′(χ)
(1 + o(1)). (40)
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The asymptotic behaviour of the density of right-movers at the origin described in Eq. (30) can
be expressed as

lim
t→∞

U(t) = 1, with U(t) := ρ−1e−χtR(t). (41)

Applying the final-value theorem to the function U yields

Ũ(h) ∼
h→0+

1

h
. (42)

On the other hand, the Laplace transform of the function U is readily expressed in terms of the
Laplace transform of R:

Ũ(h) = ρ−1
∫ ∞
0

e−(χ+h)tR(t)dt = ρ−1R̃(χ+ h). (43)

Consistency between Eqs (40,42,43) yields

ρ = − ψ̃(χ)

Ξ̃′(χ)
. (44)

The prefactor ρ is positive because Ξ̃ is a decreasing function, and ψ̃ is positive (which is manifest
from Eq. (27) because ϕ is non-negative as a probability density). Moreover, ρ depends on the
initial condition ϕ through the numerator in the above expression.

6 Large-time behaviour of the spatial distribution of

right-movers

Let us come back to Eq. (25) satisfied by the density of right-movers ñ+(x, s). It is an affine
function of the Laplace transform of the density of right-movers at the origin (denoted by R̃(s)),
but the coefficients depend on both the coordinate x and the Laplace variable s. We can therefore
write

ñ+(x, s) = ν̃(x, s) + M̃(x, s)R̃(s), (45)

where the coefficients ν̃ and M̃ have been denoted as Laplace transforms. In Eq. (26) we used a
special version of this equation for x = 0, with coefficients given by the special values ψ̃(s) = ν̃(0, s)
and Ξ̃(s) = M̃(0, s). Inverting the Laplace transform maps the ordinary product to a convolution
in time:

n+(x, t) = ν(x, t) +

∫ t

0

M(x, t− l)R(l)dl. (46)

The first term ν(x, t) is the value of the density n+(x, t) if the fertility rate K is set to zero (in
this case the number of particles is conserved, and the density is bounded). If K is non-zero, the
second term in Eq. (46) dominates at large time because of the exponential growth of the density
R. If we compare the density of right-movers at position x to the density at the origin, and take the
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large-time limit, we therefore obtain the following equivalent (upon the change of variable defined
by z := t− l):

n+(x, t)

R(t)
∼
t→∞

1

R(t)

∫ t

0

M(x, z)R(t− z)dz ∼
t→∞

∫ t

0

M(x, z)e−χzdz = M̃(x, χ). (47)

The ratio of the density of right-movers at x to the density of particles at the origin therefore reaches
a stationary state. We can read it off by extracting the coefficient of R̃(s) from the following equation
(obtained by substituting the growth rate χ to the Laplace variable s in Eq. (45)):

ñ+(x, χ) = cosh(x
√
χ(χ+ 2))λ(χ) +

1√
χ(χ+ 2)

sinh(x
√
χ(χ+ 2))µ(χ)

+
1√

χ(χ+ 2)

∫ x

0

sinh
(

(x− y)
√
χ(χ+ 2)

)
g+(y, χ)dy.

(48)

We know from the definition of λ(s) and χ in Eqs (91) and (35), and from the decomposition of
λ(s) in Eq. (26) that the coefficient of R̃(s) contributed by λ(χ) in Eq. (48) equals 1. We need to
extract the coefficient of R̃(χ) in the integral term in Eq. (48). With the notations

I(x, s) :=

∫ x

0

sinh
(
(x− y)

√
σ
)
g+(y)dy

=k(s) + J(χ, x)R̃(s),

(49)

we express M̃ as

M̃(x, χ) = cosh
(
x
√
χ(χ+ 2)

)
+

1√
χ(χ+ 2)

sinh(x
√
χ(χ+ 2))ξ(χ) +

1√
χ(χ+ 2)

J(χ, x), (50)

where ξ(χ) is the coefficient of R̃(χ) in µ(χ) (worked out in Eq. (99) ), and J(χ, x) is worked out
in Eq. (101). Substituting these expressions into Eq. (50) yields

M̃(x, χ) = cosh
(
x
√
χ(χ+ 2)

)
+

K

2
√
χ(χ+ 2)

sinh(x
√
χ(χ+ 2))(χ−

√
χ(χ+ 2))Θ̃(χ+ 1 +

√
χ(χ+ 2))

+
K

2
√
χ(χ+ 2)

θ(x)[(−χ− 1 +
√
χ(χ+ 2))ex

√
χ(χ+2)

∫ x

0

e−y(χ+1+
√
χ(χ+2))Θ(y)dy

+ (χ+ 1 +
√
χ(χ+ 2))e−x

√
χ(χ+2)

∫ x

0

e−y(χ+1−
√
χ(χ+2))Θ(y)dy]

+
K

2
√
χ(χ+ 2)

θ(−x)[ex
√
χ(χ+2)

∫ −x
0

e−y(χ+1−
√
χ(χ+2))Θ(y)dy

− e−x
√
χ(χ+2)

∫ −x
0

e−y(χ+1+
√
χ(χ+2))Θ(y)dy],

(51)

where θ denotes the Heaviside step function.
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7 Total density of particles

Let us consider the total density of particles, normalised by the density of right-movers at the origin.
It reaches a steady state denoted by N

N (x) := lim
t→∞

n+(x, t) + n−(−x, t)
R(t)

= M̃(x, χ) + M̃(−x, χ). (52)

By construction N goes to zero at both infinities. Moreover, it has an extremum at the origin:

N ′(0) =
∂M̃

∂x
(0, χ)− ∂M̃

∂x
(0, χ) = 0. (53)

The nature of this extremum depends on the sign of the second derivative of the stationary
density of right-movers at the origin:

N ′′(0) = 2
∂2M̃

∂x2
(0, χ). (54)

To work out the above derivative, we need a Taylor expansion of M̃(x, χ) around the origin.
The derivatives of the step function in the expression of M̃(x, χ) (Eq (51)) do not give rise to
singularities, because the corresponding Dirac masses are weighted by coefficients of the form Cα(0)
and C ′α(0), with the notation

Cα(x) =

∫ x

0

Θ(y)e−αydy, Cα(0) = 0, C ′α(0) = Θ(0) = 0, (55)

where α takes the values χ+ 1±
√
χ(χ+ 2). On the other hand,

C ′′α(0) = −αΘ(0) + Θ′(0) = 0, (56)

because the fertility function Θ is assumed to have a continuous first derivative (Eq. 6). Hence we
can Taylor expand around the origin the expression of M̃(x, χ) obtained in Eq. (51) and read off

N ′′(0) = 2χ(χ+ 2) > 0, (57)

as all the terms of order x2 come from the expansion of cosh(x
√
χ(χ+ 2)) (because of the local

properties of the integral terms displayed in Eqs (55,56)). The steady density profile of the total
number of particles therefore presents a minimum at the origin. The minimum is sharper when the
growth rate of the number of particles is larger. Moreover, the above results remain unchanged if
we just assume the fertility function to have a continuous first derivative (without necessarily being
infinitely differentiable).

Example: Gamma-distributed fertility function

The Gamma density

Θ(x) :=
1

Γ(k)ak
xk−1e−

x
a1(x ≥ 0) (58)
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has a continuous first derivative if k > 2. The Gamma density therefore satisfies the assumptions
we made on the fertility function. Moreover, it appeared in models of protein concentration in live
cells [21]. It represents the steady state of the probability distribution p(c) of the concentration
c of a given protein molecule in a population of cells. Processes such as cell growth and cell
division decrease the concentration, and production of molecules increases the concentration. The
production is modelled by random bursts (corresponding to the life cycle of an mRNA molecule
that gets translated until its degradation). If the burst does not depend on the number of protein
molecules initially present, the production term takes the form of an integral in the steady-state
equation:

∂

∂c
[cp(c)] + k

∫ c

0

(ν(c− c′)− δ(c− c′)) dc′ = 0. (59)

The coefficient k models cell-cyle processes (such as growth, division and degradation of protein
molecules), the δ-function accounts for the loss of probability at concentration, and the kernel
denoted by ν describe the distribution of burst sizes. In [21], burst sizes were modelled by an
exponential distribution

ν(y) :=
1

a
exp

(
−y
a

)
, (60)

motivated by measurements of burst sizes in bacterial cells [22, 23]. The convolution kerel in Eq.
(59) is therefore known, which allows for a solution in Laplace space. Transforming back to ordinary
space yields p(c) = Θ(c), with the expression displayed in Eq. (58).

In our model, the coordinate x is not a concentration but a spatial coordinate. However, we
may construct an analogy with the model of [21] in terms of a bath of active particles whose effect
on RTPs would give rise to Eq. (58). Consider another class of non-interacting active particles (not
the RTPs) on the half-line x > 0, which are drawn to the fertile site by a force −κx (with positive
κ), and subjected to a friction force −ζẋ (with positive ζ). Let there be a large and constant
number of these particles in the system. Without a random element, in the case of a strong friction
force, this would yield a current of particles towards the fertile site, corresponding to particles with
a velocity −ζ−1κx. Let us allow these particles to jump towards higher values of x, by random
amounts distributed exponentially according to Eq. (60), where a is now a fixed length scale, as in
Eq. (58). At steady state, the resulting current towards higher values of x compensates the current
towards the fertile site. The density of these additional particles will satisfy Eq. (59) on the positive
half-line (with k := ζκ−1). It will therefore be given by a Gamma density, where k summarises the
properties of the current towards the fertile site.

This mapping provides a microscopic realisation of the process (described in Section 2) in which
RTPs pull on an elastic band after going through the fertile site, and produce new particles at a
rate Θ set by own internal stochastic process. Instead of relying on this description, we can imagine
that the system contains a second class of particles (“activators”). These activators are attracted
to the fertile site and subjected to a strong friction force, and may propel themselves further from
the fertile site, with exponentially-distributed jumps. An activator can interact with an RTP whose
velocity has a sign opposite to its own and has not switched velocity since going through the fertile
site. When it meets such an RTP, it triggers the birth of a new RTP. The fertility rate K describes
the concentration of activators in the system.
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Figure 1: The steady-state profile of the total density of particles, normalised by the density of
RTPs, normalised by the density of right-movers at the origin. The fertility function is a Gamma
density with a = 1 and k = 3. Larger fertility rates induces a faster growth of the total number of
particles, which results in a sharper minimum at the fertile site, and in a faster decay at infinity.

To obtain the steady-state density profile we need to evaluate the following integral (for positive
s and X):

Cs(X) =

∫ X

0

e−syΘ(y)dy =
1

Γ(k)ak

∫ X

0

yk−1e−y(s+a
−1)dy

=
1

Γ(k)ak (s+ a−1)k

∫ X(s+a−1)

0

zk−1e−zdz

=
1

Γ(k) (sa+ 1)k
γ(k,X(s+ a−1)),

(61)

where we denoted the incomplete Gamma function by

γ(k, Y ) =

∫ Y

0

xk−1e−xdx. (62)

To estimate the rate of growth of the number of particles we need the Laplace transform of the
Gamma density:

Θ̃(s) =
1

(sa+ 1)k
. (63)
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The growth rate χ is therefore given by the solution of

1 =
K

2

(√
1 +

2

χ
− 1

)
1(

[χ+ 1 +
√
χ(χ+ 2)]a+ 1

)k . (64)

The normalised density profile of RTPs decays exponentially at both infinities:

M̃(x, χ) ∼
|x|→+∞

e−
√
χ(χ+2)|x|, (65)

which is checked in Appendix C. For numerical illustration we picked a = 1 (which adjusts the scale
of the Gamma distribution to the average length travelled by an RTP from the fertile site without
switching velocity). The total density profile is illustrated in Fig. (1).

Low fertility rate

If the fertility rate K is close to zero, the rate χ is close to zero, which is intuitive, and necessary
for both sides of Eq. (36) to remain constant in the limit K � 1:

1 =
K√
2χ

Θ̃(1) + o(1). (66)

Hence the growth rate reads

χ '
K→0

(KΘ̃(1))2

2
=

K2

2(a+ 1)2k
. (67)

For low values of the fertility rate, the rate of exponential growth of the density of particles at the
origin is therefore quadratic in the fertility rate. This quadratic behaviour does not depend on the
choice of the fertility function (only the coefficient Θ̃(1)2 does). Moreover, the second derivative of
the stationary density profile of the total number of particles also goes to zero at low fertility rate:

N ′′(0) '
K→0

4χ ' 2K2Θ̃(1)2 =
2K2

(a+ 1)2k
. (68)

The power-law behaviour in the fertility rate is again independent of the choice of fertility fuction
in the model.

High fertility rate

If the fertility rate is high (for a fixed fertility function), the growth rate χ becomes large, using the
expression of the Laplace transform of the Gamma density in Eq. (63) yields

Θ̃(χ+ 1 +
√
χ(χ+ 2)) '

K�1

1

(2aχ)k
, (69)
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and Eq. 36 yields

1 ' K

2χ(2aχ)k
, i.e. χ ∼

K→∞

1

2a
k
k+1

K
1
k+1 , (70)

so that the second derivative of the normalised density profile at the origin becomes large at large
fertility, as

N ′′(0) '
K�a−1

K
1
k+1

2a
k
k+1

. (71)

8 Discussion

In this work we have proposed a model of a run-and-tumble particle with a fertile site. Singularities
were avoided by considering smooth initial conditions and a sufficiently regular fertility function
(on the other hand, solutions of the equations of motion for a single RTP worked out in [4, 9–11]
assume that the initial configuration is a Dirac mass). The model contains three parameters: the
fertility rate K, the fertility function Θ (a normalised density with continuous first derivative, whose
support is on the positive part of the real line), and the initial value ϕ of the density of particles (a
smooth, even probability density on the real line). Moreover, the symmetry of the initial conditions
induces parity symmetry and allows to solve the equations of motions for right-movers. The model
is considerably simplified by assuming that a particle loses the ability to emit new particles after
changing direction. We obtained the rate of exponential growth of the density of right-movers at
the origin as the unique solution of an equation involving the fertility rate and the fertility function.
This rate of growth is therefore independent of the initial probability density ϕ. On the other hand,
the equivalent of the density of righ-movers at large times contains a prefactor whose value does
depend on the initial conditions.

The fertility rate is zero at the fertile site, which is a consequence of the smoothness of the
fertility function. In the example of the gamma distribution, the fertility function becomes positive
immediately after the particle has left the fertile site. To model a refractory period, one could
also assume that the fertility rate is zero on an interval containing the fertile site (other models of
a refractory period have been proposed in [24]). The second derivative of the stationary density
profile at the origin is positive (the probability density of a single RTP was shown to present a
minimum at the origin in a transient regime in [4]). The value of this second derivative depends
only on the rate of exponential growth of the density of right-movers at the origin. Moreover, it goes
to zero quadratically with the fertility rate K, for low values of K, with a prefactor that depends
on the choice of the fertility function (through a single value of its Laplace transform). A Gamma-
distributed fertility function can be described as resulting from the interaction of RTPs with a bath
of active particles that are attracted to the fertile site by a harmonic potential, subjected to a strong
friction, and allowed to jump farther from the fertile site.

We took the Laplace transform of the equations of motion w.r.t. the time variable, which calcu-
lation yielded the stationary density of particles (normalised by the exponentially-growing number
of particles at the origin), without the need for Laplace inversion. This stationary density profile
does not depend on the initial conditions. From a formal perspective, the rate of exponential growth
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of the density of right-movers at the origin was obtained from an integral equation, which resembles
the renewal equations used to extract the steady state of systems under resetting (see [9–11,24–32]
for examples, as well as [33] and references therein for a review). The Laplace transform of the
equations of motion was also observed to yield the stationary probability density of a single run-
and-tumble particle subjected to resetting in [9].

There is some intuitive analogy between the present model at large times and a system with
a fixed number of particles subjected to resetting. Indeed, when the number of particles becomes
large in a system with a fertile site, the evolution of the system is driven by large numbers of newly
created particles that are going to flip direction after their creation. The change of direction hap-
pens at a characteristic unit distance from the origin, and directs the particles towards the fertile
site. This situation is intuitively equivalent to the resetting of a large fraction of the system to
the origin. However, the steady state we identified at large times is not the one of the system, as
the number of constituents grows indefinitely, but a normalised version, because we divided by the
exponentially-growing density of particles at the origin. This feature was also observed in [12] for
diffusive particles on a lattice. Taking interactions into account could yield insights on the forma-
tion of clusters, as in the crowded model of swimmers in [16]. Intuitively, the clusters could grow
from the position of the two peaks observed in the density.

In our model, each new particle inherits the velocity of its parent and starts moving immediately
after it has been produced. Several modifications of this prescription can be proposed. For example
the velocity state of the new particle could be a centered binary variable. This would make the
dynamics of each new particle independent of the one of its parent. The creation terms in the
equations of motion would be replaced with the average of the two creation terms we wrote in Eq.
(4). Moreover, single-cell observations of swimming and growth properties of E. coli [34] revealed
that a prolonged pause is taken by cells before division (the duration of pausing is typically an
order of magnitude larger than the duration of tumble events). To model this behaviour, we have
to modify the RTP behaviour. At the level of simplification of our model, a tractable modification
consists in inserting the pause after the cell division. Let us keep the RTP description of parent
particles, and let each new particle take a pause before it starts its run-and-tumble motion. The
new particles stay where they have been created (with zero velocity), for some random time. This
random time is again a refractory period, after which each new particle draws its initial velocity
state from a centered binary distribution and starts its RTP dynamics. The probability density
W of the refractory period would be a new parameter of the model (the previous modification in
which the velocity state is drawn at the time of creation corresponds to setting W to a Dirac mass
at zero). Technically, the corresponding creation terms at time t would correspond to a creation
event at time t− τ (by a particle of positive or negative velocity), followed by a refractory period τ ,
for some τ in [0, t]. Following the reasoning of [24], the creation terms in the equations of motion
would be replaced with the convolution of the probability density W and the average of the two
creation terms in Eq. (4). As this convolution is in the time variable, the Laplace transform maps
the convolution to a product with the Laplace transform W̃ (s). The Laplace transform of the
equations of motion would then contain the average of the creation terms in Eq. (12), weighted by
W̃ (s). As the parity of the model is not broken by these modifications (Eq. (9) still holds), every
step in the derivation could be followed in a straightforward way.
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It would be interesting to generalise the model to higher dimensions, as in [10,11], to see whether
the exponential growth of constituents persists. However, one-dimensional models of active particles
are physically relevant in situations where the motion is confined to narrow channels. Models of
active Brownian particles (subjected to both translational and rotational diffusion, as well as to
an active force) have been proposed [35], yielding estimates of the emptying time of a channel.
External biases such as gravity have been considered. One could model an internal bias by setting
a fertile site in the channel. Intuitively a strong fertility rate would block the channel, but there
could be a a critical value of the fertility rate below which emptying times stay finite. It would also
be interesting to see whether a confining potential, or an additional zero-velocity state (as in [36])
could qualitatively modify the density profile at large time. Moreover, adding interactions and noise
to one-dimensional models of RTPs is known to lead to collective phenomena such as the formation
of high-density, slow-moving domains [37]. It would be interesting to see how these phenomena are
changed when a fertile site with small fertility rate is added. Introducing a non-zero death rate of
the RTPs could lead to a bounded number of constituents, or to a slower total growth. Collective
behaviour of active constituents such as the formation of bacterial colonies [38,39] would be biased
by the presence of a fertile site modelling a particularly rich spot in the substrate.

9 Appendix A

Let us solve Eq. (23) by varying the constant:

Y (x) =: exMA(x), (72)

where A(x) is a vector-valued function of x. This definition implies

exMA′(x) = F (x), (73)

which can be solved if the spectrum of the matrix M is known.

The matrix M can be diagonalised as follows:

M = U−1DU,

D :=

[√
σ 0

0 −
√
σ

]
, U :=

1

2

√
1 +

1

σ

[ √
σ 1

−
√
σ 1

]
, U−1 =

1√
1 + σ

[
1 −1√
σ
√
σ

]
.

(74)

The matrix xM is therefore exponentiated as follows:

exM = U−1exDU, exM = U−1e−xDU, exD =

[
ex
√
σ 0

0 e−x
√
σ

]
. (75)

Calculating the matrix products yields

exM =

[
cosh(x

√
σ) 1√

σ
sinh(x

√
σ)√

σ sinh(x
√
σ) cosh(x

√
σ)

]
. (76)
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A(x) = A(0) +

∫ x

0

U−1e−yDUF (y)dy, Y (x) = exMA(0) + U−1
(∫ x

0

e(x−y)DUF (y)dy

)
. (77)

Coming back to the original problem of Eq. (18), we have to fix a vector A(0) with two
components. We can then extract the first component of the solution from Eq. (77) to read off
ñ+(x, s) in terms of the unknown vector A(0):

ñ±(x, s) =
[
exMA(0)

]
[1] +

[∫ x

0

e(x−y)MG+(y, s)dy

]
[1],

∂xñ+(x, s) =
[
exMA(0)

]
[2] +

[∫ x

0

e(x−y)MG+(y, s)dy

]
[2],

(78)

where the arguments in square brackets [1] and [2] respectively denote the first and second compo-
nents of a vector. The vector G+ is defined by substituting the function g+ (defined in Eq. (19))
to the function f in the vector F defined in Eq. (23):

G+(y, s) :=

[
0

g+(y, s)

]
. (79)

Let us denote the two components of the vector-valued integration constant A(0) by λ(s) and
µ(s):

A(0) =:

[
λ(s)
µ(s)

]
. (80)

The relevant matrix product in Eq. (78) is readily expressed using the exponentiated matrix of Eq.
(76). It reads

exMA(0) =

[
cosh(x

√
σ)λ(s) + 1√

σ
sinh(x

√
σ)µ(s)√

σ sinh(x
√
σ)λ(s) + cosh(x

√
σ)µ(s)

]
. (81)

Let us fix the constants λ(s) and µ(s) by imposing the limit the Laplace transform of the density
of right movers at both spatial infinities:

lim
|X|→∞

ñ+(X, s) = 0. (82)

Consider X > 0. There are terms in Eq. (81) that grow exponentially with X:

[
eXMA(0)

]
(1) ∼

X→+∞

(
λ(s) +

µ(s)√
σ

)
eX
√
σ

2
,

[
eXMA(0)

]
(1) ∼

X→−∞

(
λ(s)− µ(s)√

σ

)
e−X

√
σ

2
.

(83)
We have to extract the analogous terms from the integral term in Eq. (77):∫ X

0

e(X−y)MG+(y, s)dy =

∫ X

0

[
cosh((X − y)

√
σ) 1√

σ
sinh((X − y)

√
σ)√

σ sinh((X − y)
√
σ) cosh((X − y)

√
σ)

] [
0

g+(y, s)

]
dy. (84)
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The first component of the above vector grows exponentially with X:[∫ X

0

e(X−y)MG+(y, s)dy

]
[1] =

1√
σ

∫ X

0

sinh
(
(X − y)

√
σ
)
g+(y, s)dy ∼

X→+∞

eX
√
σ

2
√
σ
I++, (85)

with the following notation:

I++ :=

∫ ∞
0

exp(−y
√
σ)g+(y, s)dy. (86)

Consider X < 0. The same reasoning yields the following equivalent of the integral terms when
|X| becomes large∫ X

0

e(X−y)MG+(y)dy =

∫ X

0

[
cosh((X − y)

√
σ) 1√

σ
sinh((X − y)

√
σ)√

σ sinh((X − y)
√
σ) cosh((X − y)

√
σ)

] [
0

g+(y, s)

]
dy. (87)

[∫ X

0

e(X−y)MG+(y, s)dy

]
(1) =

1√
σ

∫ X

0

sinh
(
(X − y)

√
σ
)
g+(y, s)dy ∼

X→−∞
−e
−X
√
σ

2
√
σ
I−+, (88)

where the coefficient is again expressed in integral form

I−+ :=

∫ −∞
0

exp(+y
√
σ)g+(y, s)dy = −

∫ +∞

0

exp(−y
√
σ)g+(−y, s)dy. (89)

The limits we imposed in Eq. (82) therefore yield the two equations

λ(s) +
1√
σ
µ(s) +

I++√
σ

= 0,

λ(s)− 1√
σ
µ(s)− I−+√

σ
= 0,

(90)

hence

λ(s) =
1

2
√
σ

(−I++ + I−+) =
1

2
√
σ

[∫ ∞
0

exp(−y
√
σ) (−g+(y)− g+(−y)) dy

]
,

µ(s) = −1

2
(I++ + I−+) =

1

2

[∫ ∞
0

exp(−y
√
σ) (−g+(y) + g+(−y)) dy

]
.

(91)

The corresponding integrals are worked out in Appendix B.

10 Appendix B

Let us work out the integrals that appear in the solution of the equations of motion (Eq. (25)),
where we treated R̃(s) as a parameter. They are affine functions of R̃(s), because of the structure
of the function g+ defined in Eq. (19)

g+(y, s) =−
(s

2
+ 1
)
ϕ(x) +

1

2
ϕ′(x)

+KR̃(s)
[
−2(s+ 1)e−(s+1)xΘ(x)− e(s+1)xΘ(−x) + e−(s+1)xΘ′(x)

]
.

(92)
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The integral I++ . We will only need the coefficient of the unknown parameter KR̃(s). Denoting
by j++(s) the value of I++ at zero fertility rate (whose explicit expression we will need to work out
the prefactor in Eq. 91), we obtain

I++ =

∫ +∞

0

exp(−y
√
s(s+ 2))g+(y, s)dy

= j++(s) +KR̃(s)

∫ +∞

0

e−y
√
s(s+2)

[
−2(s+ 1)e−(s+1)yΘ(y)− e(s+1)yΘ(−y) + e−(s+1)yΘ′(y)

]
dy

= j++(s) +KR̃(s)
[
−2(s+ 1)Θ̃(s+ 1 +

√
s(s+ 2)) + Θ̃′(s+ 1 +

√
s(s+ 2))

]
= j++(s) +KR̃(s)

(
−s− 1 +

√
s(s+ 2)

)
Θ̃(s+ 1 +

√
s(s+ 2)),

(93)

where we used the assumption Θ(0) = 0 when working out the Laplace transform of Θ′. The term
j++(s) reads

j++(s) =

∫ ∞
0

e−y
√
s(s+2)

[
−
(s

2
+ 1
)
ϕ(y) +

1

2
ϕ′(y)

]
dy. (94)

Similarly, denoting by j−+(s) the value of I−+ at zero fertility rate, we obtain

I−+ =

∫ −∞
0

exp(+y
√
s(s+ 2))g+(y, s)dy = −

∫ +∞

0

exp(−y
√
s(s+ 2))g+(−y, s)dy

= j−+(s)−KR̃(s)

∫ +∞

0

e−y
√
s(s+2)

[
−2(s+ 1)e(s+1)yΘ(−y)− e−(s+1)yΘ(y) + e(s+1)yΘ′(−y)

]
dy

= j−+(s)+KR̃(s)Θ̃(s+ 1 +
√
s(s+ 2)),

(95)

j−+(s) =

∫ −∞
0

ey
√
s(s+2)

[
−
(s

2
+ 1
)
ϕ(y) +

1

2
ϕ′(y)

]
dy

=−
∫ ∞
0

e−y
√
s(s+2)

[
−
(s

2
+ 1
)
ϕ(−y) +

1

2
ϕ′(−y)

]
dy

=−
∫ ∞
0

e−y
√
s(s+2)

[
−
(s

2
+ 1
)
ϕ(y)− 1

2
ϕ′(−y)

]
dy,

(96)

where we used the parity of the function ϕ (which implies that ϕ′ is odd).

From the definitions in Eq. (91) we therefore obtain

λ(s) =
1

2
√
s(s+ 2)

(−j++(s) + j−+(s)) +
KR̃(s)

2
√
s(s+ 2)

(
s+ 2−

√
s(s+ 2)

)
Θ̃(s+ 1 +

√
s(s+ 2)),

(97)

The function ψ̃(s) and Ξ̃(s) introduced in Eq. (26) can be read off as reported in Eqs (27) and (28).
Indeed

ψ̃(s) =
1

2
√
s(s+ 2)

(−j++(s) + j−+(s)) =
1

2
√
s(s+ 2)

∫ ∞
0

e−y
√
s(s+2)(s+ 2)ϕ(y)dy. (98)
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Moreover,

µ(s) = −1

2
(I++ + I−+)

= −1

2
(j++(s) + j−+(s)) +

KR̃(s)

2
(s−

√
s(s+ 2))Θ̃(s+ 1 +

√
s(s+ 2)).

(99)

The integral term in the expression of the density of right-movers in Eq. (25) reads as follows
(in the notations of Eq. 49 we denote by k(s) the value of the integral at zero fertility rate, and we
are interested in the coefficient of R̃(s), denoted by J(χ, x)):

I(x, s) =

∫ x

0

sinh
(
(x− y)

√
σ
)
g+(y)dy

=k(s)

+KR̃(s)
ex
√
σ

2

∫ x

0

e−y
√
s(s+2)

[
−2(s+ 1)e−(s+1)yΘ(y)− e(s+1)yΘ(−y) + e−(s+1)yΘ′(y)

]
dy

−KR̃(s)
e−x
√
σ

2

∫ x

0

e+y
√
s(s+2)

[
−2(s+ 1)e−(s+1)yΘ(y)− e(s+1)yΘ(−y) + e−(s+1)yΘ′(y)

]
dy

=k(s)

+KR̃(s)θ(x)(
ex
√
σ

2

∫ x

0

e−y
√
s(s+2)

[
−2(s+ 1)e−(s+1)yΘ(y) + e−(s+1)yΘ′(y)

]
dy

− e−x
√
σ

2

∫ x

0

e+y
√
s(s+2)

[
−2(s+ 1)e−(s+1)yΘ(y) + e−(s+1)yΘ′(y)

]
dy)

+KR̃(s)θ(−x)(
ex
√
σ

2

∫ x

0

e−y
√
s(s+2)

[
−e(s+1)yΘ(−y)

]
dy

− e−x
√
σ

2

∫ x

0

e+y
√
s(s+2)

[
−e(s+1)yΘ(−y)dy

]
),

(100)

where θ, the Heaviside step function, has been used to deal separately with the case of positive and
negative x (using the fact that value of the fertility function Θ(x) is zero for negative x).
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I(x, s) =k(s)

+KR̃(s)θ(x)(
ex
√
σ

2

[
e−x(

√
σ+s+1)Θ(x) + (−s− 1 +

√
s(s+ 2))

∫ x

0

e−y(s+1+
√
s(s+2))Θ(y)dy

]
− e−x

√
σ

2

[
e+x(

√
σ−s−1)Θ(x) + (−s− 1−

√
s(s+ 2))

∫ x

0

e−y(s+1−
√
s(s+2))Θ(y)dy

]
)

+KR̃(s)θ(−x)(+
ex
√
σ

2

∫ −x
0

e−y(s+1−
√
s(s+2))Θ(y)dy

− e−x
√
σ

2

∫ −x
0

e−y(s+1+
√
s(s+2))Θ(y)dy)

=k(s)

+KR̃(s)θ(x)(
e−(s+1)x

2
Θ(x) + (−s− 1 +

√
s(s+ 2))

ex
√
σ

2

∫ x

0

e−y(s+1+
√
s(s+2))Θ(y)dy

− e−(s+1)x

2
Θ(x) + (s+ 1 +

√
s(s+ 2))

e−x
√
σ

2

∫ x

0

e−y(s+1−
√
s(s+2))Θ(y)dy)

+KR̃(s)θ(−x)(+
ex
√
σ

2

∫ −x
0

e−y(s+1−
√
s(s+2))Θ(y)dy

− e−x
√
σ

2

∫ −x
0

e−y(s+1+
√
s(s+2))Θ(y)dy)

(101)

Taking the limit of large and positive x, we notice that the coefficient of KR̃(s) in I(x, σ) is

equivalent to (−s−1+
√
s(s+ 2)) e

x
√
σ

2
Θ̃(s+1+

√
s(s+ 2)), which is consistent with the expression

of the coefficient of KR̃(s) in the expression of I++ in Eq. (93), and the equivalent displayed in
Eq. (85). Similarly, for large and negative x, the coefficient of KR̃(s) in I(x, σ) is equivalent to

− e−x
√
σ

2
Θ̃(s+ 1 +

√
s(s+ 2)), which is consistent with the equivalent displayed in Eq. (85).

11 Appendix C

It will be convenient to introduce

D(s, x) :=

∫ ∞
x

e−syΘ(y)dy, (102)

in order to make use the properties of the growth rate (Eq. 35). Indeed with this notation

Cs(x) =

∫ x

0

e−syΘ(y)dy = Θ̃(s)−D(a, x). (103)

We will again use the notation σ, but for the particular value

s := χ, σ =
√
s(s+ 2). (104)
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Large and positive x

Consider x� σ−1. Because of the sign constraint, Eq. (51) becomes

M̃(x, χ) = cosh (σx) +
K

2σ
sinh (σx) (χ− σ)Θ̃(χ+ 1 + σ)

+
K

2σ
(−χ− 1 + σ)eσx

(
Θ̃(χ+ 1 + σ)−D(χ+ 1 + σ, x)

)
+
K

2σ
(χ+ 1 + σ)e−σx

(
Θ̃(χ+ 1− σ)−D(χ+ 1− σ, x)

) (105)

The dominant term in the expression of M̃(x, χ) in Eq. (105) is proportional to eσx, but the
coefficient should vanish. It is followed by terms proportional to e−σx, and terms proportional to
eσxD(χ+ 1 + σ, x), and subdominant terms.

Let us check that the coefficient of eσx vanishes. It reads

1

2
+
K

4σ
(χ− σ)Θ̃(χ+ 1− σ) +

K

2σ
(−χ− 1 + σ)Θ̃(χ+ 1− σ)

=
1

2

[
1 +

K

2

−χ− 2 + σ

σ
Θ̃(χ+ 1− σ)

]
=

1

2

[
1 +

K

2

(
1−

√
χ+ 2

χ

)
Θ̃(χ+ 1− σ)

]
,

(106)

which is zero thanks to Eq. (36).

Moreover, for a Gamma-distributed fertility function, the function we denoted by D is expressed
in terms of the upper incomplete Gamma function:

D(s, x) =
1

Γ(k)(sa+ 1)k

∫ ∞
x(s+a−1)

zk−1e−zdz. (107)

The asymptotic behaviour of the upper incomplete Gamma function

Γ(k, x) :=

∫ ∞
x

yk−1e−ydy ∼
x→+∞

xk−1e−x (108)

induces the following equivalent:

D(s, x) ∼
x→+∞

1

Γ(k)akx(s+ a−1)
e−x(s+a

−1). (109)

We can therefore compare eσxD(χ+ 1 + σ, x) to e−σx through

eσxD(χ+ 1 + σ, x) ∼
x→+∞

1

Γ(k)akx(χ+ 1 + σ + a−1)
e−x(χ+1+a−1). (110)

Starting from
χ(χ+ 2) < (χ+ 1)2, hence σ < χ+ 1, (111)
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we obtain
σ < χ+ 1 + a−1, hence eσxD(χ+ 1 + σ, x) �

x→+∞
e−σx. (112)

The expression of Eq. (117) therefore decays exponentially at large and positive x

M̃(x, χ) ∼
x→+∞

[
1

2
+
K

2σ

(
−1

2
(χ− σ)Θ̃(χ+ 1 + σ) + (χ+ 1 + σ)Θ̃(χ+ 1− σ)

)]
e−
√
χ(χ+2)x.

(113)

Large and negative x

Consider a large and negative value of x, i.e. |x| � σ−1. Because of the sign constraint, Eq. (51)
becomes

M̃(x, χ) = cosh (σx) +
K

2σ
sinh (σx) (χ− σ)Θ̃(χ+ 1 + σ)

+
K

2
√
χ(χ+ 2)

[ex
√
χ(χ+2)

∫ −x
0

e−y(χ+1−
√
χ(χ+2))Θ(y)dy

− e−x
√
χ(χ+2)

∫ −x
0

e−y(χ+1+
√
χ(χ+2))Θ(y)dy]

= cosh (σx) +
K

2σ
sinh (σx) (χ− σ)Θ̃(χ+ 1 + σ)

+
K

2
√
χ(χ+ 2)

[eσxΘ̃(χ+ 1− σ)− eσxD(χ+ 1− σ,−x))

− e−σxΘ̃(χ+ 1 + σ) + e−σxD(χ+ 1 + σ,−x)].

(114)

The dominant term in the expression of M̃(x, χ) in Eq. (105) is proportional to e−σx, but the
coefficient should vanish. It is followed by terms proportional to e+σx, and terms proportional to
e−σxD(χ+ 1 + σ,−x), and subdominant terms.

Using the equivalent of D in Eq. (109) yields

e−σxD(χ+ 1− σ,−x) ∼
x→−∞

− 1

Γ(k)akx(χ+ 1− σ + a−1)
e+x(χ+1+a−1) (115)

Using again σ < χ+ 1 + a−1 yields

e−σxD(χ+ 1− σ,−x) �
x→+∞

e+σx (116)

The expression of Eq. (117) therefore decays exponentially at large and negative x:

M̃(x, χ) ∼
x→+∞

[
1

2
+
K

2σ

(
1

2
(χ− σ)Θ̃(χ+ 1 + σ) + Θ̃(χ+ 1− σ)

)]
e+
√
χ(χ+2)x. (117)
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Let us check that the coefficient of e−σx vanishes. From Eq. (114) t reads

1

2
− K

4σ
(χ− σ)Θ̃(χ+ 1 + σ)− K

2σ
Θ̃(χ+ 1 + σ)

=
1

2

[
1 +

K

2σ
(−χ+ σ − 2)Θ̃(χ+ 1 + σ)

]
=

1

2

[
1 +

K

2

(
1− χ+ 2

σ

)
Θ̃(χ+ 1 + σ)

]
,

(118)

which matches the coefficient found in Eq. 106 and therefore equals zero.
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