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Boundary theories of static bulk topological phases of matter are obstructed in the sense that they
cannot be realized on their own as isolated systems. The obstruction can be quantified/characterized
by quantum anomalies, in particular when there is a global symmetry. Similarly, topological Floquet
evolutions can realize obstructed unitary operators at their boundaries. In this paper, we discuss
the characterization of such obstructions by using quantum anomalies. As a particular example,
we discuss time-reversal symmetric boundary unitary operators in one and two spatial dimensions,
where the anomaly emerges as we gauge the so-called Kubo-Martin-Schwinger (KMS) symmetry.
We also discuss mixed anomalies between particle number conserving U(1) symmetry and discrete
symmetries, such as C and CP , for unitary operators in odd spatial dimensions that can be realized
at the boundaries of topological Floquet systems in even spatial dimensions.
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I. INTRODUCTION

As the ground states of static, gapped Hamiltonians,
unitary time-evolution operators of quantum many-body
systems can be topologically distinct from each other or
may exhibit topological properties. For example, time-
evolution operators of periodically-driven systems (Flo-
quet systems) can give rise to Floquet Hamiltonians that
are topological much the same way as static topological
systems, and also novel out-of-equilibrium phases of mat-
ter that do not have static counterparts [1–7]. Floquet
topological systems have been experimentally realized in
synthetic systems, such as ultracold atoms, photonic, and
phononic systems – see for example [8–11].

Similar to static topological phases, some Floquet uni-
taries are topological even in the absence of any symme-
try, while others are topological in the presence of some
symmetry, i.e., their topological properties (topological
distinction) are protected by a symmetry. The examples
of the former include those that support unidirectional
quantum information flow at their boundaries, and are
characterized by the chiral unitary index (GNVW in-
dex) [12–15]. On the other hand, bosonic Floquet sys-
tems in d spatial dimensions with a symmetry group G
are classified by group cohomology Hd+1(G̃, U(1)) where

G̃ = G×Z or GoZ [16–19]. For non-interacting fermion
systems, non-trivial topological Floquet unitaries in the
ten Altland-Zirnbauer symmetry classes have been clas-
sified [20, 21].

In static topological phases, it is known that a bulk-
boundary correspondence holds. The boundary theory of
a bulk topological phase is anomalous, in that it cannot
be realized on its own as a local consistent theory. For
example, on the boundary of a bulk symmetry-protected
topological (SPT) phase protected by a global on-site
symmetry, the symmetry cannot act purely locally (i.e.,

ar
X

iv
:2

01
2.

08
38

4v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

5 
D

ec
 2

02
0



2

the symmetry action is neither on-site nor splittable);
the boundary theory suffers from a ’t Hooft anomaly. In
general, quantum anomalies at the boundary go hand in
hand with non-trivial bulk topology, and can be used as
a diagnosis of the corresponding bulk. Such anomalies
can often be detected by gauging, i.e., by subjecting the
boundary theory to a background gauge field associated
with the symmetry group [22–31]. One natural question
is whether a similar formalism is applicable to Floquet
topological phases.

In this paper, we discuss the anomalous (or topologi-
cal) properties of unitary time-evolution operators that
may appear on the boundary of topological Floquet uni-
tary operators. In one-spatial dimension for bosonic sys-
tems, these unitaries (locality-preserving quantum cel-
lular automata) can be expressed in terms of matrix-
product unitaries [32–38]. We consider these unitaries
in the presence of a global symmetry, including dis-
crete symmetries, such as time-reversal, parity (reflec-
tion), charge-conjugation, and combinations thereof. In
particular, we will develop gauging procedures, i.e., to
introduce background gauge fields, to detect anomalous
properties of these unitaries. As we will show, the bound-
ary unitaries of topological Floquet systems suffer from
quantum anomalies of discrete symmetries, similar to the
boundary states appearing in static topological phases.
The gauging procedure leads to explicit forms (formulas)
of (many-body) topological invariants that can be used
for arbitrary unitary operators with symmetries.

One convenient way to formulate our gauging pro-
cedure is to use the operator-state map (reviewed in
Sec. II), and regard unitary operators as short-range
entangled states in the doubled Hilbert space, which
may be viewed as unique ground states of some gapped
Hamiltonians. We can then use tools from the physics
of symmetry-protected topological phases to study the
mapped states; we can follow the gauging procedure for
static topological phases of matter. Section III is de-
voted to developing this idea. In particular, we will also
establish the connection between the gauging procedure
with temporal background gauge fields and the approach
in Ref. [16] that deals with anomalous operator algebras
appearing on boundaries of 1d topological Floquet sys-
tems. We will then generalize to incorporate spatial com-
ponents of background gauge fields.

Also in Sec. III, we will discuss how we can gauge time-
reversal symmetry. Specifically, as we will review in Sec.
II, in the Schwinger-Keldysh formalism or in thermofield
dynamics, time-reversal symmetry can be implemented
as a unitary on-site Z2 symmetry – this symmetry is the
so-called KMS (Kubo-Martin-Schwinger) symmetry [39–
41]. This symmetry can be gauged in much the same way
as unitary on-site symmetries in static topological phases
of matter, in order to diagnose topological/anomalous
properties of unitary operators.

We will apply the gauging procedure to diagnose
anomalous (topological) properties of matrix product
unitaries (Sec. IV), and boundary unitaries of Floquet

Majorana fermion systems (Sec. V). For the case of 1d
Majorana unitaries (realized at the boundaries of 2d Flo-
quet topological unitaries), the model of our interest can
be constructed by combining two copies of the Majorana
fermion model with opposite chiralities discussed in [14].
We will also discuss 2d time-reversal symmetric Majo-
rana unitaries that can be realized on the boundary of
3d bulk topological Floquet unitaries. Gauging the KMS
symmetry reveals the Z8 classification of these unitaries.

In Sec. VI, we will consider the boundary unitatires
of Floquet topological systems of charged fermions.
Namely, there is a U(1) charge Q which commutes with
these unitaries, eiθQUe−iθQ = U (θ ∈ [0, 2π]). The ex-
amples include the 1d boundary unitary of 2d Floquet
topological Anderson insulators [12, 42–46]. As shown
in [46] the 1d boundary unitaries suffer from a mixed
anomaly between U(1) and particle-hole symmetry. In
this paper, we extend this analysis to higher-dimensional
examples, and show that the anomalies are characterized
by the Chern-Simons forms. This is analogous to the
dimensional hierarchy of topological response theories of
topological insulators discussed in Refs. [22, 47]. We also
construct many-body topological invariants that can ex-
tract the Chern-Simons forms.

II. THE OPERATOR-STATE MAP AND KMS
CONDITION

In this section, we will go through the ingredients of
the operator-state map and the KMS symmetry that are
necessary for our analysis of unitary operators [48, 49].

A. The operator-state map

a. The reference state We begin by reviewing some
essential points of the operator-state map, which maps
operators acting on a Hilbert space H to the correspond-
ing states in the doubled Hilbert space H ⊗H – see be-
low. In broader contexts, one can apply the channel-state
map (the Choi-Jamio lkowski isomorphism) to arbitrary
quantum channels (trace-preserving completely positive
map), and associate them with quantum states (density
matrices) in the doubled Hilbert space.

We start from the identity operator I =
∑
i |i〉〈i|, and

normalize it as Ω =
∑
i |i〉〈i|/

√
N so that Tr [Ω†Ω] =

1. Here, N = dimH = Tr I is the dimension of the
Hilbert space. By “flipping” the bras in Ω, we define
a “reference state”, a maximally entangled state in the
doubled Hilbert space H⊗H∗:

|Ω〉〉 ≡ (1/
√
N )
∑
i

|i〉 ⊗ |i〉∗. (1)

Here, |i〉∗ = K|i〉 transforms as a conjugate represen-
tation where K is complex conjugation. Under a uni-
tary transformation V acting onH, |i〉 and |i〉∗ transform
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complementarily as

|i〉 → V |i〉 =
(∑

j

|j〉〈j|
)
V |i〉 =

∑
j

|j〉Vji,

|i〉∗ → KVK−1K|i〉 = KV |i〉 =
∑
j

|j〉∗V ∗ji, (2)

i.e., |i〉 and |i〉∗ transform as the fundamental and anti-
fundamental representations of U(N ), respectively. We
refer to these two Hilbert spaces as “out” and “in”
Hilbert spaces. Like the operator Ω, which is invariant
under a unitary transformation on H, Ω → V ΩV † =√
N−1∑

i V |i〉〈i|V † = Ω, the reference state |Ω〉〉 enjoys
the invariance under (2). The point here is that we con-
sider the product of two representations that are conju-
gate to each other. The resulting product representa-
tion always includes a singlet representation. (While we
use complex conjugation K here to pair up two Hilbert
spaces, in later examples, we will consider a physical an-
tiunitary symmetry operation, such as time-reversal or
time-reversal combined with a unitary symmetry, such
as CT , to define conjugate kets.)

b. The operator-state map We can now introduce
the operator-state map using the reference state |Ω〉〉. Let
us consider a unitary operator U acting on H. We intro-
duce a state |U〉〉 corresponding to U as

|U〉〉 = (U ⊗ I)|Ω〉〉. (3)

It is customary to represent the state-operator map dia-
gramatically as:

out

in

U

out in

−→ U

|Ω〉〉

Here, the reference state |Ω〉〉 appears as a “cup”.
Note that the overlap of two states corresponding to

unitaries U and U ′ can be written as

〈〈U |U ′〉〉 = (1/N )Tr
[
U†U ′

]
= Tr

[
U ′ρ0U

†] , (4)

where the trace is taken over the original (single) Hilbert
space H, and ρ0 = I/N is the infinite temperature state.
This overlap can be represented as a Schwinger-Keldysh
path-integral with the infinite temperature thermal state
as the initial state.

c. The shift property Using the invariance of the ref-
erence state under U , |Ω〉〉 = (U† ⊗ KU†K−1)|Ω〉〉, the
state |U〉〉 can also be written as

|U〉〉 = (U ⊗ I)(U† ⊗KU†K−1)|Ω〉〉
= (I ⊗KU†K−1)|Ω〉〉 (5)

I.e., one can “shift” U from the left (out) to right (in), by
conjugating with K. This reflects the fact that acting an

arbitrary operator O on Ω from the right and left give the

identical result, O = O ·Ω = Ω ·O =
√
N−1∑

iO|i〉〈i| =√
N−1∑

i |i〉〈i|O. The shift property of |Ω〉〉 can be rep-
resented pictorially as

U = KU†K−1

d. The modular conjugation In the language of
Tomita-Takesaki theory, the state operator map natu-
rally comes with an antiunitary operator acting on the
doubled Hilbert space, called the modular conjugation
operator, which we denote by J . Intuitively, J can be
understood as an operation that exchanges the system of
our interest and “heat bath”; in our case, it is an oper-
ation that exchanges the in and out Hilbert spaces. As
we will see, the KMS condition, within the framework of
the thermofield dynamics, can be stated by using J . For
the setting we are working with, J can be introduced as

J
(
|i〉|j〉∗

)
= |j〉|i〉∗, (6)

i.e., J = K · SWAP , where K is complex conjugation
acting on Hout ⊗Hin , and SWAP exchanges the in and
out Hilbert spaces. Note that the reference state |Ω〉〉 is
invariant under J . The modular conjugation J acts on
|U〉〉 as

J |U〉〉 = J(U ⊗ I)J · J |Ω〉〉
= (I ⊗KUK−1)|Ω〉〉
= (U† ⊗ I)|Ω〉〉 = |U†〉〉. (7)

Here, we used the shift property of |Ω〉〉. Diagramatically,

U J→ KUK−1
= U†

e. Thermofield double states Important examples
of the state-operator map include thermofield double
(TFD) states used in the thermofield dynamics, where
a thermal density operator is mapped to a state (ther-
mofield double state) in the doubled Hilbert space. (For
our purpose of studying (boundary) unitary operators,
there is generically no (local) Hamiltonian, and hence
there is no simple finite temperature thermofield dou-
ble state. Nevertheless, thermofield double states still
serve as a useful example to introduce and discuss the
KMS condition.) In TFD states, states from the first
and second Hilbert spaces are paired up by using energy
eigenvalues:

|ρε〉〉 = (1/
√
Z)
∑
i

e−εEi |Ei〉|Ei〉∗, (8)

where |Ei〉 is the eigen state of the Hamiltonian H
with energy Ei, and |Ei〉∗ is the time-reversal part-
ner of |Ei〉, satisfying (KHK−1)|Ei〉∗ = Ei|Ei〉∗. They
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evolve in time according to +i ddt |Ei(t)〉 = H|Ei(t)〉 and

−i ddt |Ei(t)〉∗ = KHK−1|E(t)〉∗, respectively.
The TFD state |ρε〉〉 is a purification of the thermal

density matrix ρε = (1/Z)e−2εH at inverse temperature
2ε. While |ρε〉〉 is not maximally entangled between the
in and out Hilbert spaces for ε > 0, it can be used as
a reference state to invoke the operator-state map. In
the context of quantum many-body physics and quan-
tum field theory, the TFD state is a convenient reference
state, which provides a finite (but small) regularization
(cutoff) ε > 0. For example, the state corresponding to
the unitary evolution operator U(t) = exp(−itH) is given
by |Uε(t)〉〉 = (U(t)⊗ I)|ρε〉〉. Note that the state |Uε(t)〉〉
enjoys the shift property, |Uε(t)〉〉 = (U(t) ⊗ I)|ρε〉〉 =
(I ⊗KU(t)†K−1)|ρε〉〉.

In the context of TFD, the modular conjugation op-
erator is conventionally called the tilde conjugation [49].
The antiunitary modular conjugation operator J satisfies

J2 = 1, J |ρε〉〉 = |ρε〉〉, JAinJ = Aout , (9)

where Ain/Aout is the operator algebra acting on
Hin/Hout . Observing that |Uε〉〉 is stationary (invariant)
under U(t)⊗KU(t)K−1, we can introduce the modular
Hamiltonian by exp(−itH̄) = U(t)⊗KU(t)K−1,

H̄ = H ⊗ I − I ⊗KHK−1

= H ⊗ I − J(H ⊗ I)J, (10)

which generates a time-translation in the doubled Hilbert
space. The modular Hamiltonian satisfies

H̄|ρε〉〉 = 0, JH̄J = −H̄, ∆−itAin/out∆
+it = Ain/out .

(11)

where ∆ = exp(−βH̄) is the modular operator.

B. The KMS condition

Let us now review the KMS condition. It is the
statement characterizing states (density matrices), and
it reads:

〈AB(t)〉β = 〈B(t− iβ)A〉β (12)

for any two operators A and B, where B(t) :=
eitHBe−itH , and 〈· · · 〉β := Tr (· · · e−βH)/Tr (e−βH). 1

The KMS condition can be rephrased in the language of

1 For a finite-dimensional Hilbert space, the KMS condi-
tion follows simply from the cyclic property of the trace,
Tr
(
e−βHAeitHBe−itH

)
= Tr

(
e−βHei(t−iβ)HBe−i(t−iβ)HA

)
.

However, the KMS condition holds beyond the finite Hilbert
space setting. Note that the expression using the trace is mean-
ingful only when operators such as the density matrix e−βH be-
long to the trace class.

thermofield dynamics [49]; The KMS condition is nothing
but the statement

J∆1/2O|ρβ/2〉〉 = O†|ρβ/2〉〉, O ∈ Aout . (13)

To see the connection, we start from the TFD represen-
tation of the correlator, 〈AB(t)〉β = 〈〈ρβ/2|AB(t)|ρβ/2〉〉
(where on the RHS we write A ≡ A⊗ I,B(t) ≡ B(t)⊗ I
by abusing notation). Using (13),

〈AB(t)〉β =
(
J∆1/2A|ρβ/2〉〉, J∆1/2B†(t)|ρβ/2〉〉

)
=
(

∆1/2A|ρβ/2〉〉,∆1/2B†(t)|ρβ/2〉〉
)∗

= 〈〈ρβ/2|B(t)∆1/2 ·∆1/2A|ρβ/2〉〉, (14)

where we use (∗, ∗) to represent the inner product in the
doubled Hilbert space, and noted that J is anti-unitary.
Since |ρβ/2〉〉 = ∆−1/2|ρβ/2〉〉, we conclude the KMS con-
dition:

〈AB(t)〉β = 〈〈ρβ/2|∆−1/2∆−1/2B(t)∆A|ρβ/2〉〉
= 〈〈ρβ/2|∆−1B(t)∆A|ρβ/2〉〉
= 〈B(t− iβ)A〉β . (15)

The point is that the modular conjugation operator
J effectively implements the cyclic property of the trace,
without relying on the finite dimensionality of the Hilbert
space. For our later applications, what corresponds to
(13) is (7), J |U〉〉 = |U†〉〉, where the temperature is infin-
ity. At infinite temperature, the Schwinger-Keldysh trace
satisfies Tr [U†V ] = Tr [V U†] for two unitary operators
U and V , which is just the cyclicity of the trace. In the
state language, this follows from the existence of modular
conjugation operator. Following (14) with β = 0,

1

N Tr
[
U†V

]
=
(
JU†|Ω〉〉, JV †|Ω〉〉

)
=
(
U†|Ω〉〉, V †|Ω〉〉

)∗
=
(
V †|Ω〉〉, U†|Ω〉〉

)
=

1

N Tr
[
V U†

]
. (16)

The KMS condition also follows from the shift prop-
erty: We note that the inner product 〈〈U |V 〉〉 =
N−1

∑
i,j

(
U |i〉⊗K|i〉, V |j〉⊗K|j〉

)
= N−1Tr [U†V ] can

be computed by first using the shift property of |Ω〉〉:

〈〈U |V 〉〉 =
1

N
∑
i,j

(〈i|)⊗ (〈i|UK)(|j〉 ⊗KV †|j〉)

=
1

N
∑
i

(
KU†|i〉,KV †|i〉

)
=

1

N
∑
i

(
V †|i〉, U†|i〉

)
=

1

N Tr
[
V U†

]
. (17)

Thus, the shift property implies/is consistent with the
cyclicity of the trace: Tr [U†V ] = Tr [V U†].
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III. GAUGING SYMMETRIES

A. Review: Gauging static (topological) phases

Gauging a global symmetry is a useful framework
to detect non-trivial (symmetry-protected) topological
phases of matter (see, for example, [22–26, 31]). Here,
by gauging, we mean introducing a non-dynamical, back-
ground gauge field associated with the symmetry group.
In the following, our goal is to extend this paradigm to
unitary operators with symmetries; we will discuss the
gauging procedure for topological/anomalous unitary op-
erators.

Let us first recall a few essential points of the gauging
procedure for the case of static topological phases. To be
concrete, suppose we have a static gapped (topological)
phase described by the Euclidean path integral which is
given schematically by Z[X] =

∫
Dφ e−S[φ,X], where φ

symbolically represents the “matter” degrees of freedom,
and S[φ,X] is the Euclidean action on a closed (d + 1)-
dimensional spacetime manifold X. In the presence of a
background gauge field, we consider

Z[X,A] =

∫
Dφ e−S[φ,X,A]. (18)

(Here, for simplicity, we mainly focus on on-site unitary
symmetry. It is also possible to gauge spacetime sym-
metry, such as time-reversal, reflection, and other space
group symmetry, by considering, e.g., unoriented space-
time [24–26, 50].) For gapped phases (with the unique
ground state), the effective action − lnZ[X,A] is ex-
pected to be a local functional of A. It may also have a
pure imaginary, topological part, signaling a non-trivial
topological response of the ground state, Z[X,A] ∼
exp iStop [X,A]. The topological term Stop [X,A] can be
thought of as a topological invariant characterizing the
topological phase.

As an example, let us consider gapped phases in (1+1)
spacetime dimensions, protected by on-site unitary sym-
metry. We consider the Euclidean path integral on the
spacetime torus T 2. The non-trivial background gauge
field configurations are then characterized by holonomies
(Wilson loops) along the two non-contractible loops on
T 2. The effect of the background can be thought of as
twisting boundary conditions of the matter field φ along
the two non-contractible loops, φ(τ + T, x) = g · φ(τ, x)
and φ(τ, x+L) = h·φ(τ, x), where τ ∈ [0, T ] and x ∈ [0, L]
coordinatize the temporal and spatial directions, respec-
tively, and g and h are elements of the symmetry group.
We thus consider

Z[T 2, (g, h)] =

∫
φ(τ+T,x)=g·φ(τ,x),
φ(τ,x+L)=h·φ(τ,x)

Dφ e−S[φ,T 2]. (19)

The topological term, i.e., the phase of the partition func-
tion, is known to be classified by H2(G,U(1)) [23, 51, 52].

More generally, (especially in the case of orientation re-
versing symmetries), Stop [X,A] can be thought of as a
topological quantum field theory which depends only on
the cobordism class of [X,A] [24] (including spin struc-
tures in the case of fermions [26]), and is denoted by
Ωstr
d+1(BG). Here, str refers to the corresponding spin

(or pin) structure for fermions and BG is the classify-
ing space of G. When there is no symmetry, we simply
put a single point as BG, BG = pt. In this language,
the topological term may be viewed as a homomorphism
eiStop : Ωstr

d+1(BG)→ U(1). Hence, the torsion part of the

cobordism group Tor Ωstr
d+1(BG) can be used to provide

a classification of topological phases protected by a sym-
metry group G [24, 26, 53]. For instance, time-reversal
symmetric fermionic systems in (1+1) spacetime dimen-

sions with T 2 = 1 have a Ω
Pin−
2 (BG) = Z8 classification

and the partition function on RP 2 can be used as the
corresponding Z8 topological invariant.

Quite often it is also possible to extract the topolog-
ical term using the canonical (operator) formalism, in
particular, solely from the ground state. The partition
function (19) can be written in the operator formalism as
Z[T 2, (g, h)] = Trh

[
Vg e

−THh
]
. Here, Hh is the system’s

Hamiltonian with twisted spatial boundary condition by
h, and the trace is taken in the Hilbert space with the
twisted boundary condition; Vg implements the symme-
try operation g in the (h-twisted) Hilbert space. In the
zero-temperature limit T → ∞, the ground state domi-
nates the partition sum,

Z[T 2, (g, h)] = h〈GS |Vg |GS 〉h, (20)

where |GS 〉h is the ground state in the h-twisted sector.
Observe that the twisting boundary condition in the tem-
poral direction is implemented as the operator insertion
Vg within the trace.

Our strategy to study the anomalous properties of uni-
tary operators is to map them to corresponding states in
the doubled Hilbert space (the operator-state map). In
particular, when the mapped states are short-range en-
tangled, which may be viewed as unique ground states
of some gapped Hamiltonians, we can use tools from
the physics of symmetry-protected topological phases to
study the mapped states; we can follow the gauging pro-
cedure outlined above for static topological phases of
matter. 2 For the rest of this section, we will develop
the gauging procedure for unitary and anti-unitary sym-
metries, by focusing first on the “temporal” component
of background gauge fields. In particular, we will observe
that, while time-reversal symmetry is antiunitary in the
original (single) Hilbert space, it can be implemented as

2 It is not entirely obvious for which Hamiltonian they are con-
sidered to be ground states. While not unique, such “par-
ent” Hamiltonian can be constructed formally as H = (Uout ⊗
Iin )H0(U†out ⊗ Iin ) where H0 is the gapped parent Hamiltonian
for |Ω〉〉.
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a unitary on-site symmetry (the KMS symmetry), and
can be gauged following the standard procedure. We will
also establish the connection between the temporal gaug-
ing procedure and the approach in Ref. [16] that deals
with anomalous operator algebras appearing on bound-
aries of 1d topological Floquet systems. In Sec. III E,
we will also discuss spatial gauging (turning on spatial
components of background gauge fields) – the idea will
be further developed in the following sections by taking
examples of various kinds. (While we use the language of
the operator-state map, and the doubled Hilbert space,
this may not be entirely necessary to develop the gaug-
ing procedure, although we find it is quite convenient in
many cases. We will mention the perspective without
using the operator-state map when possible.)

B. Gauging unitary symmetries

Let us consider a unitary time-evolution operator U
with symmetries. We denote a symmetry group by G .
For a given element g ∈ G , there is a unitary or an anti
unitary operator Vg acting on the (physical) Hilbert space
H. We say a unitary U is symmetric under G when

Vg UV
−1
g = eiφg(U)U, Vg : unitary (21)

Vg UV
−1
g = eiφg(U)U†, Vg : anti unitary. (22)

Here, note that we allow a projective phase in these
operator algebras. Such projective phases may appear
when unitary operators are realized on the boundary of
topologically non-trivial bulk (Floquet) unitaries: While
symmetry can be realized in the bulk without projective
phases, boundary unitaries can be anomalous and may
pick up projective phases when acted by symmetries [16].
As we will see momentarily, the projected phases can be
detected by introducing a temporal component of the
background gauge field.

Let us start with the case of unitary symmetry. To
discuss the gauging procedure, we begin by noting that
while symmetry g acts on U by conjugation, U →
Vg UV

−1
g , it acts on |U〉〉 as |U〉〉 →

[
Vg ⊗KVgK−1

]
|U〉〉.

Now, if we view |U〉〉 as a ground state (of a gapped par-
ent Hamiltonian), we consider, following the static case
(20),

Zg := 〈〈U |Vg ⊗KVgK−1 |U〉〉. (23)

This quantity can be interpreted as a partition function
in the spacetime manifold S1 ×M (where M is the spa-
tial part) in the presence of twisted boundary condition
by g in the temporal direction. Here, “time” is a fic-
titious one, and the time-evolution is generated by the
putative parent Hamiltonian; Vg ⊗ KVgK

−1 should be
the symmetry of the parent Hamiltonian. The phase of
this partition function may detect an anomaly (topologi-

cal information) of |U〉〉. Using the shift property of |U〉〉,

Vg ⊗KVgK−1|U〉〉 = VgU ⊗KVgK−1|Ω〉〉
= (VgUV

−1
g ⊗ I)|Ω〉〉

= |VgUV −1
g 〉〉, (24)

so the “partition function” (23) is nothing but the overlap
〈〈U |VgUV −1

g 〉〉. It can be further rewritten as

Zg = N−1Tr
[
U†VgUV

−1
g

]
. (25)

When U is symmetric in the sense that VgUV
−1
g =

eiφg(U)U ,

|VgUV −1
g 〉〉 = eiφg(U)|U〉〉, (26)

and the partition function is a pure phase quantity, Zg =

eiφg(U). The non-zero phase signals the anomalous nature
of the unitary operator. Note also that by construction,
|I〉〉 = |Ω〉〉 is invariant under Vg ⊗KVgK−1.

As mentioned around (4), we can also interpret Zg
in terms of the Schwinger-Keldysh path-integral (trace)
with a temporal background gauge field.

C. Gauging the KMS symmetry

Let us now turn to the case of antiunitary symmetry.
To be concrete, we will work with a time-reversal sym-
metric unitary,

TUT−1 = eiφT (U)U†. (27)

We note that in general T can be written as T = W ×
(complex conjugation) where W is a unitary matrix: In
the basis {|i〉}, T is defined by its action on {|i〉} as

T |i〉 =
∑
j

Wij |j〉, T iT−1 = −i, (28)

with Wij = 〈j|W |i〉. We note that the fact that time-
reversal squares to the identity, T 2 = I, possibly up to
the fermion number parity operator for fermionic sys-
tems, T 2 = (−1)F , imposes a restriction on the projective
phase (27). To see this, we first find the hermitian con-
jugate of (27), TU†T−1 = e−iφT (U)U , and then apply T ,
which gives T 2U†T−2 = eiφT (U)TUT−1 = e2iφT (U)U†.
Assuming U is fermion number parity even (odd), the
projective phase is quantized as e2iφT (U) = ±1.

To gauge time-reversal symmetry, we first need to dis-
cuss how time-reversal acts in the doubled Hilbert space,
as we did for the case of unitary symmetry. We should
note that antiunitary symmetry does not allow tensor
factorization in the doubled Hilbert space, in contrast
with unitary symmetry g, which acts on the doubled
Hilbert space as Vg ⊗KVgK−1. Nevertheless, the time-
reversal T can be naturally extended to the doubled
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Hilbert space as

T |i〉|j〉∗ =
∑
i′j′

Wii′(W
†)j′j |i′〉|j′〉∗

=
∑
i′j′

Wii′(Wjj′)
∗|i′〉|j′〉∗. (29)

Here we recall that {|i〉∗} is the conjugate representation
of {|i〉}. T is an antiunitary operator on Hout ⊗Hin .

One can check easily T |Ω〉〉 = |Ω〉〉. The symmetry
condition TUT−1 = eiφT (U)U† is translated into T |U〉〉 =
|TUT−1〉〉 = eiφT (U)|U†〉〉 (c.f., (26)). Then, analogously
to (25), we can consider the overlap

〈〈U†|T |U〉〉 = 〈〈U†|TUT−1〉〉
= N−1Tr

[
UTUT−1

]
= eiφT (U). (30)

As in (23) this overlap can be interpreted as the parti-
tion function on S1×M with twisted temporal boundary
condition by some symmetry. The relevant symmetry is
TJ – the composition of time-reversal and modular con-
jugation – which we will call the KMS symmetry. This
symmetry is unitary, while both J and T are antiunitary.

To see this, we can first verify that the combined op-
eration TJ is a symmetry of |U〉〉,

TJ |U〉〉 = T (U† ⊗ I)|Ω〉〉 = (TU†T−1 ⊗ I)T |Ω〉〉
= e−iφT (U)(U ⊗ I)|Ω〉〉 = e−iφT (U)|U〉〉, (31)

where we recall that JA|Ω〉〉 = A†|Ω〉〉. Namely, nei-
ther J nor T are a symmetry in the doubled Hilbert
space (they do not leave |U〉〉 invariant), but JT is
(JT leaves |U〉〉 invariant up to possibly a phase factor
e−iφT (U)). In other words, the KMS condition, once
combined with time-reversal, can be “promoted” to a
unitary symmetry in the doubled Hilbert space. The
KMS symmetry, here identified by using the operator-
state map, also has its counterpart in the Schwinger-
Keldysh path integral language. In the path-integral lan-
guage, Ref. [39] (see also [54]) proposed a symmetry of
the Schwinger-Keldysh path integral under ψσ(t, r) →
ψ∗σ(−t + iσβ/2, r), ψ∗σ(t, r) → ψσ(−t + iσβ/2, r), as
the KMS condition. Here, ψσ(t, r) schematically repre-
sents quantum fields in the Schwinger-Keldysh path in-
tegral where σ = ± represents the forward and backward
branches. Note that the KMS symmetry can be defined
(and gauged) at finite temperature, although in this pa-
per we set temperature to be infinite.

Now, the KMS symmetry, being unitary on-site sym-
metry in the doubled Hilbert space, can be gauged in
a straight forward way. Following the static case (20),
we consider the partition function with twisted temporal
boundary condition by the KMS symmetry,

ZKMS = 〈〈U |(TJ)|U〉〉. (32)

Using (31) ZKMS is nothing but (the complex conjugate
of) (30),

ZKMS = 〈〈U |TU†T−1〉〉 = e−iφT (U). (33)

D. Unitarity condition and chiral symmetry in the
doubled Hilbert space

In the forthcoming sections, we will study the anoma-
lous properties of unitary operators using the gauging
procedure outlined above. It should be noted however
that it is not entirely obvious if all anomalous (topologi-
cal) properties of unitaries can be detected this way. For
example, we should note that the state-operator map can
be applied to any operator acting on the original Hilbert
space, not just unitaries. Hence, we need to narrow our
focus down to the set of states in the doubled Hilbert
space that correspond to unitary operators in the origi-
nal Hilbert space. 3

As an illustration, let us consider one of the simplest
examples, Floquet unitaries in one spatial dimension with
on-site unitary Z2 symmetry. Such unitaries are known
to be classified by Z2 [16]. On the other hand, once such
unitaries are mapped to states, we are to consider short-
range entangled states with on-site unitary Z2 symmetry.
Since H2(Z2, U(1)) = 0, there is no non-trivial topologi-
cal phase. This disagreement presumably comes from the
fact that the set of short-range entangled states (with Z2

symmetry) in the doubled Hilbert space includes states
which do not correspond to unitaries.

For matrix product unitaries, the unitarity condition
(requirement) can be taken into account by using the
standard form of matrix product unitaries [32, 33]. More-
over, the chiral unitary index (GNVW index), a ratio-
nal number that characterizes asymmetric quantum in-
formation flow, can be introduced to classify unitaries.
[14, 15, 32, 33]. For the case of non-interacting fermionic
systems (Gaussian unitaries), we can impose an addi-
tional symmetry, the so-called chiral symmetry, in the
doubled Hilbert space, to limit our focus to states corre-
sponding to unitary operators (and enforce the quantiza-
tion of the Berry phase) [20, 21, 46]. (In the context of
free fermion systems (Gaussian unitaries), the operator-
state map is called the hermitian map.)

In the following, we will deal with 1d examples with
time-reversal symmetry, for which the chiral unitary in-
dex vanishes. Following the case of on-site unitary sym-
metries for (bosonic) 1d unitaries [32, 35], we expect that
the anomalies (group cohomology class) associated with
the KMS symmetry (together with other symmetries) are
enough to classify these unitaries.

3 To illustrate this point, let us consider the Berry phase of
mapped states in the doubled Hilbert space, when we have
unitaries |U(R)〉〉 parameterized by adiabatic parameters R =
(R1, R2, · · · ). Noting that the Berry connection is given explic-
itly by Ai = i〈〈U |(∂/∂Ri)|U〉〉 = iTr [U†(∂U/∂Ri)], the Berry
phase associated to any closed loop in the parameter space is
quantized to an integer multiple of 2π,

∮
AidRi = 2π × integer .

Clearly, this is not the case for generic states in Hout⊗Hin . This
is one of the consequences of the unitarity condition.
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E. Spatial gauging

The spatial component of the background gauge field
can also implemented in the unitary operator. For exam-
ple, the spatial component of the background KMS gauge
field can be introduced by twisting the spatial boundary
condition. To do this, we need to have a closer look
at the local (spatial) structure of unitaries. As we will
discuss in the next section, once a unitary is given as
a matrix product unitary, the spatial component of the
background gauge field can be introduced, following the
gauging procedure of matrix product states [52]. (See
below around (40)). Another way to introduce spatial
gauging is to make use of a parent Hamiltonian that
has |U〉〉 as its ground state. If it exists, we can intro-
duce the background gauge field by minimally coupling
it to matter degrees of freedom in the parent Hamilto-
nian. We will discuss this in the forthcoming sections
by using examples, see Secs. V and VI. Finally, we also
note that it is known that torus partition functions with
twisted boundary conditions (topological invariants) can
be computed solely by using ground state wave functions
(without using Hamiltonians) by using the partial swap
operator [52, 55].

In the presence of a spatial component of a gauge field,
the operator algebra (21) can be generalized as

Vg U(Ah)V −1
g = eiφg(U(Ah))U(Ah)s(g), (34)

where s(g) = 1 or s(g) = −1 = † when Vg is a uni-
tary or anti-unitary symmetry, respectively, and Ah is
the background h gauge field. (Here, we are assuming g
is a non-spatial symmetry. When g is a spatial symmetry,
e.g., parity, the gauge field Ah also has to be transformed
– see (78).) Correspondingly, we can consider the overlap

Zg(Ah) := 〈〈U(Ah)sg |Vg ⊗KVgK−1 |U(Ah)〉〉
= N−1Tr

[
(U†(Ah))sgVgU(Ah)V −1

g

]
, (35)

which can be interpreted as a partition function on S1×
M with twisted temporal boundary condition by g, and
spatial background gauge field Ah on M .

IV. MATRIX PRODUCT UNITARIES

All locality-preserving 1d unitaries (in bosonic sys-
tems) can be represented in the form of a matrix product
unitary [32, 33]. In this section, we discuss how we can
gauge the KMS symmetry in matrix product unitaries.
A matrix product unitary U is expressed as

U =
∑
{i,j}

Tr
(
Ai1j1 · · ·AiLjL

)
|i1 · · · iL〉 〈j1 · · · jL| , (36)

where {|i1 · · · iL〉} is the basis of the total Hilbert space
of the 1d chain consisting of L sites, given as a tensor
product of basis states {|i〉} of the local Hilbert space

at each site; A is a χ × χ dimensional matrix where χ
is the “bond-dimension” of the auxiliary space. By the
operator-state map, the corresponding state in the dou-
bled Hilbert space is

|U〉〉 =
∑
{i,j}

Tr
(
Ai1j1 · · ·AiLjL

)
|i1 · · · iL〉 |j1 · · · jL〉∗ .

(37)

Once written in this form, we can apply results from
matrix product states, in particular their classification.
However, this does not fully capture the full classification
of unitaries. The reason is that we have not included the
unitarity requirement, and the chiral unitary index. (See
Sec. III D.) References [32, 33] introduced the standard
form of matrix product unitaries that takes into account
the unitarity requirement, and defined the chiral unitary
index. Using the standard form, symmetry protected in-
dices can also be introduced for on-site unitary symmetry
[35]. The gauging procedure we introduced in the previ-
ous section is agnostic about the unitarity condition, and
hence, in particular, cannot capture the chiral unitary in-
dex. We however note that for unitaries of our interest,
namely, those that are invariant under time-reversal, the
chiral unitary index always vanishes. At this stage, it is
unclear if the gauging procedure misses other topologi-
cal/anomalous aspects of unitary operators. Neverthe-
less, topological invariants (quantum anomalies) derived
from the gauging procedure provides a bona fide diag-
nostic of anomalous unitary operators.

Let us now assume the unitary U is time-reversal sym-
metric in the sense that TUT−1 = U† (up to a projec-
tive phase) where T is time-reversal, which, as in (28),
can be written as T = WK with some unitary W . The
time-reversal T can be naturally extended to the dou-
bled Hilbert space as in (29). Together with the antiuni-
tary modular conjugation operator, J(|i〉|j〉∗) = |j〉|i〉∗,
J |U〉〉 = |U†〉〉, we can construct the KMS symmetry JT ,
which is a unitary, on-site, Z2 symmetry. For the matrix
product unitary, JT acts on |U〉〉 as

JT |U〉〉 =
∑

{i,j,i′,j′}

Tr
(
Aj1i1 · · ·AjLiL

)
×Wi1i′1

(Wj1j′1
)∗ · · ·WiLi′L

(WjLj′L
)∗ |i′1 · · · i′L〉 |j′1 · · · j′L〉

∗
.

(38)

The invariance under JT implies that each matrix A
transforms as [56–58]∑

ij

AjiabWii′(Wjj′)
∗ = eiθ

∑
a′b′

(M†)aa′A
i′j′

a′b′Mb′b (39)

with some matrix M and phase eiθ. In one spatial di-
mension, a unitary on-site Z2 symmetry alone does not
lead to non-trivial SPT phases, as H2(Z2, U(1)) = 0.
(This is consistent with [32].) 4 However, in the presence

4 Note that in Ref. [32] unitaries satisfying U = U† are called
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of other symmetries, we can discuss the discrete torsion
phase with KMS symmetry.

We can gauge the state |U〉〉 by the KMS symmetry;
the state under the twisted boundary condition by the
KMS symmetry is given by [59]

|U〉〉KMS =
∑
{i,j}

Tr
(
Ai1j1 · · ·AiLjLM

)
|i1 · · · iL〉 |j1 · · · jL〉∗ .

(40)

Let us now imagine that U is symmetric under an addi-
tional unitary symmetry X, XUX−1 = U (up to possibly
a phase factor). The torus partition function (20) can be
computed, in the presence of another symmetry gener-
ator X, KMS 〈〈U |X|U〉〉KMS , which extract a topological
invariant (cocycle). Note that once the matrix product
operator form is given, it is not necessary to use the par-
ent Hamiltonian to gauge symmetries.

Using the operator-state map, we can map |U〉〉KMS

back to an operator UKMS ,

UKMS =
∑
{i,j}

Tr
(
Ai1j1 · · ·AiLjLM

)
|i1 · · · iL〉 〈j1 · · · jL| .

(41)

This can be thought of as the gauged unitary operator, in
the presence of background KMS gauge field. When U is
symmetric under an additional unitary on-site symmetry
X, X induces an action on the auxiliary space by a uni-
tary matrix MX , as in (39). Then, the operator algebra
between X and UKMS is given by

X UKMS X
−1 = eiφX,KMS UKMS , (42)

where we note that

X UKMS X
−1 =

∑
{i,j}

Tr
(
Ai1j1 · · ·AiLjLMXMM†X

)
× |i1 · · · iL〉 〈j1 · · · jL| (43)

and eiφX,KMS is the group cohomology phase, MXM =
eiφX,KMSMMX . Thus, (the phase of) the torus partition
function and the anomalous phase that appears in the op-
erator algebra between the gauged unitary operator and
symmetry generator is equivalent.

a. Example: the CZX model. As a simple example,
let us consider the CZX model [32, 60]. It is defined
on a one-dimensional lattice with two-dimensional local
Hilbert space at each site, {|0〉 , |1〉}. The explicit matrix
product unitary form is given as

A01 = |0〉 〈+| , A10 = |1〉 〈−| , A00 = A11 = 0, (44)

“time-reversal symmetric”. Here, we stick with time-reversal
which is realized as a antiunitary operation in the physical
Hilbert space, as Wigner’s symmetry representation theorem.
Ref. [32] also studied unitaries satisfying U = UT , which corre-
sponds (up to possibly a unitary operation) to our definition of
time-reversal symmetry. For the latter case, Ref. [32] showed that
there is no non-trivial unitary, consistent with H2(Z2, U(1)) = 0.

with two-dimensional internal (auxiliary) Hilbert space,
and |±〉 = |0〉±|1〉. The chiral unitary index is trivial for
the CZX model. The CZX unitary U is invariant under
time-reversal KUK−1 = U†. Hence, under JT , A’s are
transformed as Ajiab = eiθ(W †)aa′A

ij
a′b′Wb′b. It is easy to

check that we can take W = σy, Aij = −σyAjiσ†y.
Now, let us consider an additional Z2 symmetry. We

can consider, for example, X =
∏odd
i sxi , which commutes

with time-reversal. (Here, sxi is the x-component of a
physical spin 1/2 operator at site i.) It is convenient to
“block”, i.e., take two adjacent spins as a single degrees of
freedom; at each site, we now have a four-dimensional lo-
cal Hilbert space spanned by {|00〉 , |01〉 , |10〉 , |11〉}. Un-
der blocking, we consider the matrix product unitary
with

A0101 = A01A01 = |0〉 〈+| , A0110 = A01A10 = |0〉 〈−| ,
A1001 = A10A01 = |1〉 〈+| , A1010 = A10A10 = − |1〉 〈−| .

(45)

Under symmetry X, Aijkl → Aīj̄kl (where 0̄ = 1 and
1̄ = 0). One can check that the invariance under X can

be implemented by Aijkl → Aīj̄kl = σxA
ijklσ†x. Now,

while the JT and X commute when acting on the physi-
cal Hilbert space, in the two-dimensional auxiliary space,
σyσx = −σxσy, implying that the CZX model is pro-
tected by time-reversal and X.

V. MAJORANA FERMION MODELS

In this section, we consider unitary time-evolution op-
erators in Majorana fermion systems in one spatial di-
mension without/with time-reversal symmetry. As a spe-
cific model, we consider the boundary unitaries which are
realized at the boundary of topological Floquet drives
without/with time-reversal symmetry. We first consider
the model without time-reversal symmetry (“the single
copy theory”) on the boundary of the 2d topological chi-
ral Floquet drive considered in [14]. The time-reversal
symmetric model (“the two copy theory”) can then be
constructed from two copies of the above model with
opposite chiralities. We will then discuss non-trivial 2d
time-reversal symmetric unitaries that can be realized at
the boundary of 3d topological Floquet systems.

A. The single copy theory

Let us first have a closer look at the single copy the-
ory. At the boundary of 2d topological chiral Floquet
drive [14], discrete time-evolution is given by a boundary
unitary S, which is a lattice translation operator (or shift
operator):

SλxS
† = λx+1. (46)

Here {λx} is the set Majorana fermion operators defined
on sites x located at the boundary of the 2d system,
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{λx, λx′} = 2δxx′ . Throughout this section, we impose
the periodic boundary condition. The translation opera-
tor S can be written down explicitly as [61]

S := eiδλ1
1 + λ1λ2√

2
· · · 1 + λL−1λL√

2
. (47)

The phase can be chosen such that the translation opera-
tor S satisfies SL = 1 where L is the total number of sites.
The phase factor satisfies eiδ = 1 when L/2 = 4, 5, 8, 9
while eiδ = eiπL when L/2 = 2, 3, 6, 7 (mod 8).

This shift operator is characterized by non-zero chi-
ral unitary index (GNVW index) [14, 15]. The chiral
unitary index can be defined without referencing to any
symmetry, and hence the topological Floquet drive does
not require any symmetry for its stability/existence. As
mentioned briefly in Sec. III D, for Gaussian unitaries, we
can impose chiral symmetry to discuss the chiral unitary
index. This puts the system in symmetry class BDI (in
the doubled Hilbert space) – see around (56).

As we will see, to discuss the chiral unitary index, we
can impose the unitarity condition on states in the dou-
bled Hilbert space.

Beside the chiral unitary index, we can also discuss
an anomaly associated with the fermion number par-

ity, (−1)F =
∏L/2
n=1(iλ2n−1λ2n). (With the conserva-

tion of the fermion number parity, the relevant Altland-
Zirnbauer symmetry class is class D.) We can verify that
the shift operator is odd under the fermion number parity
[62],

(−1)FS(−1)F = −S, (48)

and hence, the partition function twisted by the fermion
number parity is

N−1Tr
[
(−1)FS(−1)FS†

]
= (−1). (49)

The Z2 phase (minus sign) on the RHS is indicative of a
Z2 quantum anomaly, occurring at the boundary of the
bulk 2d Floquet system. The Z2 anomaly is independent
of the chiral unitary index, and provides an additional
characterization.

Let us now have a closer look at how the operator-state
map works in this problem. We will be slightly generic
and consider an arbitrary Gaussian unitary operator U .
It transforms Majorana fermion operators {λa} (satisfy-
ing {λa, λb} = 2δab) as

UλaU
† = Qabλb (50)

where Q is a real orthogonal matrix. To deploy the state
operator map, we introduce the doubled Hilbert space by
considering the two sets of Majorana fermion operators
{λi,x} and {λo,x} acting on the in and out Hilbert spaces,
respectively. The construction of the reference state pro-
ceeds in a way slightly different than the bosonic case
reviewed in Sec. II. As the reference state (1), we need to
look for a maximally entangled state in the (Z2-graded)
fermionic Hilbert space, which satisfies the shift property,

and is invariant under a properly defined modular con-
jugation operator. Conveniently, the reference state can
be taken as a ground state of the parent Hamiltonian

H0 = i
∑
x

λi,xλo,x. (51)

We identify the modular conjugation operator as5

Jλi,xJ
−1 = λo,x, Jλo,xJ

−1 = λi,x. (52)

One can check easily that JH0J
−1 = H0 and hence

J |Ω〉〉 ≡ |Ω〉〉. We consider the state |U〉〉 = (Uo ⊗ Ii)|Ω〉〉,
which can be thought of as a ground state of

H = i
∑
xy

λi,xQxyλo,y. (53)

The shift property of |Ω〉〉 can be read off from H as

H = i
∑
xy

λi,x(Qxyλo,y) = i
∑
xy

(Q−1
yx λi,x)λo,y (54)

where we noted Qyx = Q−1
xy . Hence, |U〉〉 = (Uo ⊗

Ii)|Ω〉〉 ∝ (Io ⊗ U†i )|Ω〉〉. We observe that H is not in-
variant under J , while H0 is, as expected.

Let us now consider the unitary in (46). Then, the
parent Hamiltonian is

H = i
∑
x

λi,xλo,x+1. (55)

This is essentially the Hamiltonian of the Kitaev chain
in its topologically non-trivial phase. The ground state
is characterized by the Z2 topological invariant of sym-
metry class D in one spatial dimension, consistent with
the Z2 anomaly (48).

On the other hand, the topological classification of 2d
Majorana Floquet drives is Z for the non-interacting case.
For interacting case, the (fermionic version of) chiral uni-
tary index classifies gapped (many-body localized) Flo-
quet derives. Either way, the Z2 topological invariant of
symmetry class D seems not to match with these classi-
fications. As mentioned in the previous section, the key
to realize is that there is more than class D symmetry,
which arises because of the doubling. While H is not in-
variant under J , H is invariant under the combination of
J and swap R:

(JR)λi,x(JR)−1 = λi,x, (JR)λo,x(JR)−1 = (−1)λo,x,
(56)

5 Generically, the modular conjugation operator should satisfy
[JAinJ,Ain ] = 0, while for the J operator defined here, JλiJ
and λi anticommute. The J operator here is actually the tilde
conjugation in the thermofield dynamics [48]. While for bosonic
systems the modular conjugation and the tilde conjugation are
equivalent, for ferminoic systems, they differ by a Klein factor
(Jordan-Wigner string) [49].
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where Rλi,xR
−1 = λo,x, Rλo,xR

−1 = (−1)λi,x. Since
JR is antiunitary and (JR)2 = 1, imposing this sym-
metry puts the parent Hamiltonian in symmetry class
BDI. At least at the non-interacting level, we then repro-
duce the known Z classification [20]. With interactions,
the topological classification of symmetry class BDI is

Ω
Pin−
2 (pt) = Z8 [63, 64], which “misses” (fails to detect)

unitaries with non-zero chiral unitary index. We however
do not dig into this issue further, as our main focus in
this paper is on unitaries with time-reversal symmetry,
for which the chiral unitary index vanishes. As we will
see, JR symmetry does not seem to play any role for the
case of the time-reversal symmetric model.

B. The two copy theory with time-reversal
symmetry

The shift operator S is odd under time-reversal sym-
metry. In order to construct a time-reversal symmetric
model of our interest, we introduce two copies of the 2d
chiral topological Floquet model with opposite chiralities.
We use ↑ / ↓ to label these two copies. At the boundary,
this time-reversal symmetric model realizes the boundary

unitary U = S↑S
†
↓, where S↑/↓ is the shift operator that

acts exclusively on the first/second copy. The bound-
ary unitary U acts on the boundary Majorana fermion
operators as

Uλ↑xU
† = λ↑x+1, Uλ↓xU

† = λ↓x−1. (57)

The model is symmetric under the following time-
reversal,

Tλ↑xT
−1 = λ↓x, Tλ↓xT

−1 = ελ↑x, T 2 = εF . (58)

where (−1)F =
∏
x(iλ↑xλ↓x) is the total fermion num-

ber parity operator; ε = ±1 distinguishes two cases,
symmetry class DIII (BDI) with ε = −1(+1). Then,
the unitary is time-reversal symmetric in the sense that

TUT−1 = TS↑T
−1 ·TS†↓T−1 = εS↓S

†
↑ = ε(S↑S

†
↓)
† = εU†.

In particular, when ε = −1 (DIII), the operator algebra
between U and T is non-trivial, while it is trivial when
ε = +1 (BDI).

Below, we will try to detect the non-triviality (quan-
tum anomaly) of the above time-reversal symmetric uni-
tary when ε = −1 (DIII). At the non-interacting level,
Floquet unitaries in symmetry class DIII are classified by
Z2 [20]. When we enforce time-reversal symmetry of class
DIII (ε = −1), by the operator-state map, we consider a
short-range entangled state in the doubled Hilbert space.

The relevant symmetry group is G = Zf2 × Z2 where Zf2
represents the fermion number parity conservation, and
Z2 is the KMS symmetry (JT symmetry). Such short-
range entangled states in (1+1)-dimensions are classified

by ΩSpin2 (BZ2) = Z2
2 [65]. In the following, we will show

explicitly that the above unitary is a non-trivial element

of this group. Additionally, we also study the opera-
tor entanglement spectrum of U . We then find two zero
modes which form a doublet under the KMS symmetry.

Let us start by applying the operator-state map to the
unitary (57). We denote the Majorana fermion operators
acting on the in and out Hilbert spaces by {λi/o,↑/↓,x}.
In the doubled Hilbert space, we introduce time-reversal
T acting on the fermion operators as

T ΛT−1 = [12 ⊗ (iσ2)⊗ 1L] Λ, (59)

where Λ = (λi↑x, λi↓x, λo↑x, λo↓x)
T

is a 4L component
vector with x taking values from 1 to L. 12, iσ2,1L act on
in/out, spin and position degree of freedoms, respectively.

We choose, as the reference state |Ω〉〉, the ground state
of the quadratic Hamiltonian:

H0 = i
∑
x

(λi↑xλo↑x − λi↓xλo↓x)

=
i

2
ΛT
(

0 (σ3 ⊗ 1L)
−(σ3 ⊗ 1L) 0

)
Λ. (60)

One can check easily TH0T
−1 = H0. We next construct

the state |U〉〉. Let U be a generic Gaussian unitary op-
erator that acts on the fermion operators as

U

(
λ↑
λ↓

)
U† = Q

(
λ↑
λ↓

)
(61)

where Q is a 2L × 2L real orthogonal matrix, acting on
“in” and “out” space in the same way. When U is time-
reversal symmetric, Q satisfies (−iσ2)Q(iσ2) = QT . The
state |U〉〉 can then be thought of as the ground state of
the parent Hamiltonian

H =
i

2
ΛT KΛ, K =

(
0 (σ3 ⊗ 1L)Q

−QT (σ3 ⊗ 1L) 0

)
.

(62)

For the case of our interest, this reduces to

H = i
∑
x

(λi,↑,xλo,↑,x+1 − λi,↓,xλo,↓,x−1) . (63)

The parent Hamiltonian is invariant under the following
unitary operation:

(JT ) Λ (JT )−1 =

[(
0 σ1

σ1 0

)
⊗ 1L

]
Λ (64)

as one can check easily:[(
0 σ1

σ1 0

)
⊗ 1L

]
· K ·

[(
0 σ1

σ1 0

)
⊗ 1L

]
= K, (65)

by using the time-reversal symmetry of Q. This opera-
tion can be understood as the composition of the modular
conjugation

J Λ J−1 =

[(
0 −σ3

−σ3 0

)
⊗ 1L

]
Λ, (66)



12

and time-reversal. We can check that J leaves H0 invari-
ant, JH0J

−1 = H0. (Also, while H is not invariant under
T nor J , as we checked, JT is a symmetry of H.) Finally,
an antiunitary operation

(JR) Λ (JR)−1 =

[(
12 0
0 −12

)
⊗ 1L

]
Λ, (67)

leaves H invariant, and acts as chiral symmetry,[(
12 0
0 −12

)
⊗ 1L

]
· K ·

[(
12 0
0 −12

)
⊗ 1L

]
= −K.

(68)

a. Gauging the KMS symmetry Let us now gauge
the KMS (JT ) symmetry. Specifically, we can introduce
the background KMS gauge field, such that we twist the
temporal and/or spatial boundary conditions. As for the
temporal twisting, we note, TUT−1U = (−1) and hence

〈〈U |(JT )|U〉〉 = (−1). (69)

This quantity can be interpreted as a partition function
on T 2 with the twisted temporal direction by the KMS
symmetry, and periodic spatial boundary condition. This
confirms that the unitary is a non-trivial element of the

ΩSpin2 (BZ2) = Z2
2 classification.

Similarly, the spatial boundary condition can also be
twisted by the KMS symmetry. To this end, it is conve-
nient to go to the basis that diagonalizes JT ; we intro-
duce

η± = λi↑ ± λo↓, ξ± = λi↓ ± λo↑ (70)

The action of JT on these rotated Majorana operators
are diagonal:

(JT )η±(JT )−1 = ±η±, (JT )ξ±(JT )−1 = ±ξ±. (71)

In terms of these operators, the parent Hamiltonian is
written as

H ∝ i
∑
x

(η+,x+1ξ+,x − η−,x+1ξ−,x) . (72)

Then, twisting spatial boundary condition by JT affects
only the minus sector. In other words, combined with
the fermion number parity (−1)F , we can give different
boundary conditions to each sector independently. The
state |U〉〉 can be factorized as |U〉〉pq = |U+〉〉p|U−〉〉q,
where p, q denote the spatial boundary condition for
each sector, and can be either periodic boundary condi-
tion (“Ramond” boundary condition, r), or anti-periodic
boundary condition (“Neveu-Schwarz” boundary condi-
tion, ns). The state in the sector twisted by the KMS
symmetry is |U〉〉JT = |U+〉〉r|U−〉〉ns . Then, we see, for

example,

JT 〈〈U |(−1)F |U〉〉JT
= r〈〈U+|(−1)F+ |U+〉〉r · ns〈〈U−|(−1)F− |U−〉〉ns
= Z[T 2, (r, r)] · Z[T 2, (r,ns)] = −1,

JT (−1)F 〈〈U |(−1)F |U〉〉JT (−1)F

= ns〈〈U+|(−1)F+ |U+〉〉ns · r〈〈U−|(−1)F− |U−〉〉r
= Z[T 2, (r,ns)] · Z[T 2, (r, r)] = −1, (73)

where Z[T 2, (a, b)] is the torus partition function of
(1+1)d topological superconductors (the Kitaev chain in
its non-trivial phase) in the presence of temporal and
spatial boundary conditions (a, b); Z[T 2, (a, b)] = −1 for
(a, b) = (r, r), and Z[T 2, (a, b)] = 1 otherwise [66]. We
once again confirm that the state |U〉〉 is non-trivial in the
presence of time-reversal. The above example represents

the non-trivial element (−1,−1) ∈ ΩSpind (BZ2) = Z2
2

[26].
b. Boundary analysis The anomalous properties of

U can also be detected by studying the boundary ex-
citations or entanglement spectrum of |U〉〉. Here, we
follow [64] to analyze symmetry actions on the bound-
ary excitations. When the system (parent Hamiltonian)
is cut, excitations at the boundary are built out of un-
paired Majorana fermion operators: λi,↓, λo,↑. We can
then study the algebra of symmetry operators within the
boundary Hilbert space. For example, JR, which sends
λi↓ → +λi↓ and λo↑ → −λo↑, can simply be identified
as the complex conjugation, JR = K, if we construct
the Fock space by forming the fermion creation (annihi-
lation) operator λi↓ ± iλo↑ [64]. JR does not show any
anomalous behaviors, (JR)2 = 1, as expected since the
unpaired Majorana fermion modes λi,↓ and λo,↑ carry
opposite topological charges. Proceeding to JT and the
fermion number parity, they can be constructed explicitly
as (see [67, 68] for similar analysis)

JT =
eiδ√

2
(λi,↓ + λo,↑), (−1)F = (iλi,↓λo,↑), (74)

where the phase eiδ can be chosen such that (JT )2 = 1,
e2iδ = 1. Now, the commutator between JT and the
fermion number parity is

(−1)F (JT )(−1)F = (−1)(JT ). (75)

The projective phase factor (−1) indicates a Z2 anomaly.

C. Two spatial dimensions

One can analyze unitary operators of higher-
dimensional Majorana fermion systems with time-
reversal. As an example, let us consider 2 spatial dimen-
sions, and impose time-reversal symmetry which squares
to (−1)F (class DIII). Let us once again assume the uni-
tary condition (JR symmetry) does not play any role.
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Then, with the operator-state map, the relevant symme-
try group is Zf × Z2, where Z2 is the KMS symmetry
(JT ). Non-trivial fermionic SPT phases with this sym-

metry are classified by ΩSpin3 (BZ2) = Z8 [66, 69, 70]. The
generating manifold is RP 3. The corresponding topolog-
ical invariant can be constructed by using partial sym-
metry transformation acting on a finite subregion of the
space [66]. Specifically, we can consider the partial KMS
symmetry, combined with π spatial rotationRπ, that acts
only on a sub region of the total system, which we take
as a disk D. Therefore, the following expectation value

〈〈U |(JT ·Rπ)D|U〉〉 ∼ e
2πνi

8 , ν ∈ Z, (76)

detects the Z8 classification. Diagramatically it can be
represented as

U

U†

In terms of the original unitary operator, this quantity
may be obtained by taking the partial transpose of the
unitary with respect to the disk D,

Tr
[
U† · (Rπ)DU

TD (R−1
π )D

]
(77)

where ATD represents the partial transpose of an op-
erator A with respect to D. (Here, we need to use
partial transpose for fermionic systems, as explained in
[30, 71, 72].)

We close this section with one remark. There is an
isomorphism (Smith isomorphism) between ΩSpin

d+1 (BZ2)

and Ω
Pin−
d (pt). This means the classification of boundary

unitary in DIII in d + 1 spacetime dimension (= classi-
fication of topological Floquet unitary in DIII in d + 2)
is equivalent to the classification of static SPT phases in
BDI in d spacetime dimension. This is consistent since
the “Bott clock” differs by two (· · · AI, BDI, D, DIII
· · · ).

VI. ANOMALOUS UNITARY OPERATORS
WITH U(1) AND DISCRETE SYMMETRIES

A. Generalities

In this section, we consider topological/anomalous uni-
tary time-evolution operators of charged fermion sys-
tems. This means that we have particle number conserv-
ing symmetry U(1) symmetry, eiθQUe−iθQ = U where Q
is the U(1) charge. In addition, we also discuss various

discrete symmetries; they act on unitaries as in (21) and
(22).

The U(1) symmetry can be gauged, and we can con-
sider unitary operators in the presence of background
U(1) gauge field, U(A). In this paper, we focus on time-
independent, spatial components of the U(1) gauge fields,
Ai(r) [46]. To detect topological/anomalous properties of
the unitary operator, we will consider the operator alge-
bra among the unitary symmetries in the presence of the
background gauge field,

Vg U(A)V −1
g = eiφg(A)U(g ·A)s(g), (78)

analogous to (21) and (22). Here, s(g) = 1 or s(g) =
−1 = † when Vg is a unitary or anti-unitary symme-
try, respectively, and again we allow a possible “pro-
jective” phase factor. g · A represents the background
gauge field transformed by symmetry g. For example,
g ·Ai(r) = −Ai(r) for particle-hole or time-reversal sym-
metry. As before (c.f., Sec. III C), when an antiuni-
tary symmetry squares to the identity (possibly up to
the fermion number parity (−1)F ), the projective phase
eiφg(A) obeys a condition, eiφg(g·A) = e−iφg(A)eiγ , where
γ = π when V 2

g = (−1)F , and U(A) is fermion number
parity odd, and γ = 0 otherwise.

In addition to the algebraic relation (78), another
closely-related object of our interest is the Schwinger-
Keldysh trace:

Z(A1, A2) = N−1Tr
[
U(A2)†U(A1)

]
= 〈〈U(A2)|U(A1)〉〉. (79)

Z(A1, A2) is the effective response theory (partition func-
tion) obtained by integrating over matter degrees of free-
dom. The Schwinger-Keldysh trace satisfies a couple of
constants/conditions, such as

• Schwinger-Keldysh symmetry:

Z(A,A) = 1 (80)

• Reality condition:

Z(A1, A2)∗ = Z(A2, A1) (81)

These conditions follow directly from (79). There are
also other conditions, in particular, in the presence of
symmetries [73]. From (78),

Tr
[
Vg U(A1)U(A2)†V −1

g

]
= ei[φg(A1)−φg(A2)] Tr

[
U(g ·A1)s(g)U(g ·A2)−s(g)

]
,

(82)

we read off

Z(A1, A2) = eis(g)[φg(A1)−φg(A2)] Z(g ·A1, g ·A2). (83)

The phase factor ei[φg(A1)−φg(A2)] is an anomaly in the
sense that it represents the violation of the naive relation
Z(A1, A2) = Z(g·A1, g·A2) expected from the symmetry.
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In what follows, we discuss some examples. We con-
sider a series of unitaries in odd spatial dimensions,
which, roughly speaking, realize chiral (Weyl) fermions
in their single-particle quasi-energy spectrum in momen-
tum space. For example, their single-particle unitaries
are given as U(kx) = eikx (1d), U(k) ∼ eik·σ (3d), etc.
These unitaries can be realized as boundary unitaries of
bulk topological Floquet unitaries in one higher dimen-
sions. The Schwinger-Keldysh trace for these unitaries is
given in terms of topological terms, such as Chern-Simons
terms (boundary) and theta terms (bulk). One of the key
questions here is the interplay of these topological terms
and discrete symmetries.

B. Example 1: (1+1)d with C

Let us start with the (1+1)d anomalous unitary, which
is simply a lattice translation operator. We consider a
one-dimensional lattice. At each site x on the lattice,
we consider complex fermion creation/annihilation oper-
ators, which satisfy the canonical anticommutation rela-
tion, {ψx, ψ†y} = δxy. The unitary operator of our inter-
est is the shift operator:

UψxU
−1 = ψx+1. (84)

The unitary respects the particle number conserving
U(1) symmetry, eiθQUe−iθQ = U (θ ∈ [0, 2π]), where
Q =

∑
x ψ
†
xψx is the total charge. This unitary arises

as a boundary unitary of a topologically non-trivial 2d
Floquet drive [12]. 6

As noted in [46], the unitary operator is invariant un-
der particle-hole symmetry which is a unitary on-site
symmetry defined by

CψxC
−1 = ψ†x. (85)

(The relevant Altland-Zirnbauer symmetry class is D, but
this case should be distinguished from superconductor
realizations of symmetry class D).

In Ref. [46], it was noted that the (bulk and bound-
ary) unitary operators are symmetric under particle-hole
symmetry C, CUC−1 ≡ U , up to a projective phase
for the boundary unitary. In the presence of the back-
ground U(1) gauge field, we expect that CU(A)C−1 is
equivalent to U(−A), CU(A)C−1 ≡ U(−A). While for
the bulk without a boundary there is no projective phase
CUbulk (A)C−1 = Ubulk (−A), one can verify by a direct
calculation that a projective phase exists for the bound-
ary unitary, and it is given by the one-dimensional Chern-
Simons term (Wilson loop),

C U(A)C−1 = eiCS1(A) U(−A),

CS 1(A) =

∮
dxAx(x) =

∮
A.

(86)

6 It can also be viewed as an example of topologically non-trivial
non-hermitian Hamiltonian with a point gap.

(Possibly up to a phase that is independent of A – see
below.) We will provide the derivation of the projec-
tive phase shortly. By taking the trace and using the
operator-state map, the anomalous relation (86) leads to

eiCS1(A) = N−1Tr
[
CU(A)C−1U†(−A)

]
= 〈〈U(A)|C |U(−A)〉〉. (87)

This can be interpreted as the path integral on two-
dimensional spacetime with twisted temporal boundary
condition by C.

The anomalous algebra (86) also leads to, for the ratio
of the Schwinger-Keldysh partition functions,

Z(−A1,−A2)

Z(A1, A2)
= e−i

∮
(A1−A2) 6= 1, (88)

consistent with the result in Ref. [46]. Furthermore, in
Ref. [46] it was found that the partition function of the
corresponding bulk dynamics, defined on an open spa-
tial manifold with a boundary, also picks up a phase un-
der particle-hole symmetry but this has opposite sign:
Zbulk ,open(−A1,−A2)/Zbulk ,open(A1, A2) = ei

∮
(A1−A2).

The total partition function is therefore invariant under
C. This is the anomaly inflow for the mixed anomaly be-
tween the particle-hole and U(1) symmetries. This con-
sideration extends to the p, q drives studied in Ref. [46],
in which case (88) becomes Z(−A1,−A2)/Z(A1, A2) =

e−iθp,q/2π
∮

(A1−A2), where θp,q is an integer multiple of π
and depends only on p/q. Note also that the anomalous

relation (86) leads to TrU(A)/TrU(−A) = ei
∮
A, which

was also verified in Ref. [46]. 7

The relation (86) can be verified by a direct calcula-
tion for the boundary unitary of the Floquet topological
Anderson insulator, or by using the operator-state map
and computing 〈〈U(A)|C |U(−A)〉〉.

The following results depend on the total number of
lattice sites (= L) being even or odd. We note that when
we consider the 2d topological Floquet system defined
on a cylinder, with two circular boundaries at its two
ends, the number of boundary sites per boundary is al-
ways even. The number of boundary sites can be odd if
we consider different geometries, e.g., a finite 2d square
lattice with a single boundary around it. In the latter
case, the boundary unitary is not a simple shift operator
near the corners of the square lattice.

7 We also note that the Schwinger-Keldysh trace itself (not the
ratio) was computed in Ref. [46] both for (2+1)d bulk and (1+1)d
boundary. In long-wave length limit, the bulk trace is given by

Zbulk (A1, A2) ∼ exp

[
iθ

2π

∫
d2x εij∂i(A1j −A2j)

]
, (89)

with θ = π. There is no such limit for the boundary trace,
being the dynamics on the boundary nonlocal. Clearly the above
expression is consistent with the ratio presented in the main text.
While (89) is valid for long wave lengths, the ratio presented in
the main text for the bulk partition function (as well as (88)) is
exact.
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1. Direct calculation

Let us first have a look at the direct calculation. Fol-
lowing the case of Majorana fermions, we can construct
U explicitly: U = SλSγ(−1)F where ψx = (λx + iγx)/2
and Sλ and Sγ are the shift operators for λx and γx,
respectively. Explicitly,

U = eiδλ1γ1Π12Π23 · · ·ΠL−1,L(−1)F ,

Πx,x′ = 1 + (ψ†xψx′ − ψ†x′ψx)− (nx − nx′)2.
(90)

(As before, the phase must be chosen such that UL = 1.)
We can then consider to gauge the U(1) symmetry. This
amounts to ψ†xψx′ → eiAx,x′ψ†xψx′ . In addition, we also
consider

ei(A1,2+A2,3+···+AL−1,L)ψ†1ψ1 ≡ ei
∮
Aψ†1ψ1 , (91)

to construct the operator

U(A) = eiδei
∮
Aψ†1ψ1λ1γ1Π12(A) · · ·ΠL−1,L(A)(−1)F ,

(92)

as the gauged version of the translation operator. We
can verify that the gauged version of (84) is given by

U(A)ψx U(A)−1 = eiAx,x+1 ψx+1. (93)

The unitary particle-hole transformation C, which acts
on the Majorana operators as CλC−1 = λ and CγC−1 =
−γ, can also be constructed explicitly:

C = (iγ1γ2)(iγ3γ4) · · · (iγL−1γL). (94)

One can readily check that the following identities hold,

CUC−1 = (−1)L+1U,

N−1Tr [CUC−1U†] = (−1)L+1.
(95)

The minus sign is indicative of a Z2 anomaly. Now, in
the presence of the background gauge field,

C U(A)C−1 = (−1)L+1 ei
∮
AU(−A). (96)

2. Calculation via operator-state map

Next, let us use the operator-state map, and calculate
〈〈U(A)|C |U(−A)〉〉. As in the case of Majorana fermion
systems discussed in Sec. V, the construction of the refer-
ence state proceeds slightly differently from the bosonic
case. Here, the reference state |Ω〉〉 can be conveniently
defined as the ground state of the parent Hamiltonian

H0 = −
∑
x

(
ψ†i,xψo,x + ψ†o,xψi,x

)
, (97)

where we denote the fermion creation/annihilation oper-

ators acting on the in and out Hilbert spaces as ψ†i,a/ψi,a

and ψ†o,a/ψo,a, respectively. Explicitly, the reference
state is given by

|Ω〉〉 =
∏
x

1√
2

(
ψ†i,x + ψ†o,x

)
|0〉〉. (98)

Note that |Ω〉〉 is given as a superposition of states of the
form |nin〉i|L−nin〉o = |nin〉i(C|nin〉o) with nin being the
occupation number for “in” fermions. Consequently, |Ω〉〉
is invariant under “vectorial” U(1) rotations generated
by exp[iθ(Qi + Qo)], while it is not under “axial” U(1)

rotations exp[iθ(Qi−Qo)]. Here, Qi/o =
∑
a ψ
†
i/o,aψi/o,a

is the total U(1) charge for the in/out Hilbert space, and
θ ∈ [0, 2π]. Alternatively, we could work with a different
reference state |Ω〉〉, which is invariant under axial U(1)
but not under vectorial U(1). These two choices are sim-
ply related by particle-hole transformation ψo,a ↔ ψ†o,a.
We can introduce a modular conjugation operator J as:

Jψi,aJ
−1 = ψ†o,a, Jψo,aJ

−1 = −ψ†i,a,
J |0〉〉 = |full〉〉 =

∏
x

(
ψ†i,xψ

†
o,x

)
|0〉〉, JiJ−1 = −i. (99)

One can easily check |Ω〉〉 is invariant under J .
To construct the mapped state |U〉〉 for the shift op-

erator (84), we note that |U〉〉 is the ground state of the
parent Hamiltonian

H = −
∑
x

(
ψ†i,xψo,x+1 + ψ†o,x+1ψi,x

)
. (100)

Explicitly, |U〉〉 is given by

|U〉〉 =
∏
x

1√
2

(
ψ†o,x+1 + ψ†i,x

)
|0〉〉. (101)

Particle-hole transformation (85) can be properly ex-
tended to act on the doubled Hilbert space,

Cψx,iC
−1 = ψ†x,i, Cψx,oC

−1 = −ψ†x,o,
C|0〉〉 = |full〉〉.

(102)

Note that the parent Hamiltonians are invariant under
C, CH0C

−1 = H0, and CHC−1 = H, and so are their
ground states. One can check explicitly C|Ω〉〉 = |Ω〉〉 and
C|U〉〉 = (−1)L+1|U〉〉, consistent with (95).

To study the mixed anomaly, we introduce the back-
ground U(1) gauge field via U†oψo,xUo → ψo,x+1e

iAx,x+1 ,
and consider the parent Hamiltonian

H(A) = −
∑
x

(
ψ†i,xψo,x+1e

iAx,x+1 + ψ†o,x+1ψi,xe
−iAx,x+1

)
.

(103)

The ground state is given by

|U(A)〉〉 =
∏
x

1√
2

(
ψ†o,x+1e

−iAx,x+1 + ψ†i,x

)
|0〉〉. (104)

One can then verify explicitly (96), C|U(A)〉〉 =

(−1)L+1e−i
∮
A|U(−A)〉〉.
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C. Example 2: (3+1)d with CP

Let us now discuss the (4+1)d bulk topological Floquet
unitary [59, 74] and its (3+1)d boundary. The boundary
unitary has a single Weyl point (or multiple Weyl points
with non-vanishing total chiralities) in its single-particle
quasi-energy spectrum. We can discuss CP symmetry,
which leaves the boundary unitary invariant, as seen from
CP : k · σ → σ2(k · σ)Tσ2 = −k · σ, where P sends
r → −r (inversion). The following discussion using CP
applies also to CR symmetry, where R sends x → −x
(reflection).

Guided by the 1d case (86), we postulate the anoma-
lous operator algebra relation with the three-dimensional
Chern-Simons term CS 3(A),

(CP)U(A) (CP)−1 = eiCS3(A) U(Ã),

CS 3(A) =
1

4π

∫
d3x εijkAi∂jAk =

1

4π

∫
AdA,

(105)

where Ã = CP ·A is given by Ãi(r) = Ai(−r). As before,
by taking the trace and using the operator-state map,

eiCS3(A) = N−1Tr
[
(CP)U(A)(CP)−1U(Ã)†

]
= 〈〈U(A)|(CP)|U(Ã)〉〉, (106)

where CP is properly extended so that it acts on the
doubled Hilbert space. In addition, analogously to (88),
(105) leads to

Z(A1, A2)

Z(Ã1, Ã2)
= ei[CS3(A1)−CS3(A2)] 6= 1. (107)

Here, we note the Chern-Simons term CS 3(A) flips
its sign under CP ,

∫
d3x εijkAi(−r)∂jAk(−r) =

−
∫
d3x εijkAi(r)∂jAk(r). (This is also the case for CR.)

We note that (105) is consistent with the Schwinger-
Keldysh trace for (4+1)d bulk topological Floquet uni-
taries (put on a closed spatial manifold) and their (3+1)
boundary unitaries, which are given, in the long-wave
length limit, as [46]

Zbulk (A1, A2) ∼ exp

[
iθ

8π2

∫
(dA1dA1 − dA2dA2)

]
,

Zbdry(A1, A2) ∼ exp

[
i

8π

∫
(A1dA1 −A2dA2)

]
. (108)

While Zbulk (A1, A2)/Zbulk (Ã1, Ã2) = 1 for the (4+1)
bulk systems, as inferred from the effective action (108),
this naive relation is violated at the boundary, (107).

Directly confirming (105) along the line of Sec. VI B 1
is rather difficult, unfortunately. Alternatively, similar
to what we did in Sec. VI B 2, we can use the operator-
state map and compute the overlap 〈〈U(A)|(CP)|U(Ã)〉〉
in (106). In particular, we numerically check that

〈〈U(Φxy = 2π, γz)|CP |U(Φxy = 2π, γ̃z)〉〉 ∼ eiγz (109)

holds for a lattice implementation of |U〉〉 (See Ap-
pendix A for more details). Here, |U(Φxy = 2π, γz)〉〉 is
the mapped state in the presence of the unit background
magnetic flux piercing the xy plane Φxy =

∮
Fxy =

2π and the Wilson loop γz =
∮
Az along z-direction.

Note that γ̃z = −γz as a result of CP transformation.
This background gauge field configuration gives rise to
CS 3(A) = γz. In the limit γz = π, the quantity (109)
is essentially the same as the Z2 many-body topological
invariant for fermionic short-range entangled states pro-
tected by CP (or CR) symmetry in (3+1) dimensions
(topological insulators in symmetry class A + CR with
(CR)2 = 1), introduced in [72].

D. Comments

Let us close this section with some comments.
– First of all, while we focused here on the anoma-

lous unitaries preserving U(1) in one and three spa-
tial dimensions (with C and CP symmetries, respec-
tively), we expect that the pattern continues to all higher
odd spatial dimensions. The anomalous operator alge-
bras in higher dimensions signifying a mixed anomaly
between U(1) and a discrete symmetry involve higher-
dimensional Chern-Simons terms,

∫
AdA · · · dA. This is

analogous to the “primary series” of topological insula-
tors/superconductors in even (odd) spatial dimensions
that are classified/characterized by an integral topolog-
ical invariant and the response Chern-Simons terms (θ
terms) [22, 47]. For a given spatial dimension, they
belong to one of the ten Altland-Zirnbauer symmetry
classes.

– There are also topological states that are outside
of the primary series, and are classified by Z2 topologi-
cal invariants – they are obtained from the topological
states in the primary series by dimensional reduction
(called “(first/second) descendants” in [47]). For anoma-
lous unitaries, we also expect that there are similar “de-
scendants”. For example, let us consider unitaries in two
spatial dimensions respecting U(1) and CR symmetries.
Following [72], we can construct the Z2 topological in-
variant as

〈〈U(Φxy = 2π)|CR|U(Φxy = 2π)〉〉
〈〈U(Φxy = 0)|CR|U(Φxy = 0)〉〉 = ±1. (110)

Here, the background gauge field configuration is invari-
ant under CR. An anomalous unitary for which this
topological invariant is non-trivial should have an even
number of Weyl points in its quasi-energy spectrum.

– There is a close connection between the ef-
fective Schwinger-Keldysh functional Z(A1, A2) =
〈〈U(A1)|U(A2)〉〉 and the Berry phase

∮
〈〈U(A)|U(A +

dA)〉〉. The relations like (108) can be guessed from (or
at least consistent with) the Berry phase of the short-
range entangled state |U(A)〉〉. For a short-range entan-
gled state |U(A)〉〉 in the presence of a spatial background
gauge field A, it is known that that the Berry phase is
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related to the response effective action [72]. For example,
for U(k) ∼ eik·σ, the Berry phase is related to the θ term
in the effective response action,∮
dA i〈〈U(A)| d

dA
|U(A)〉〉 =

iθ

8π2

∫
dtd3x εµνκλ∂µAν∂κAλ

(111)

with θ = π. specializing to the configuration for which
εij∂iAj (i, j = x, y) is time-independent, but changing
Az adiabatically in time, and further discretizing the
(adiabatic) time, ∂tAµ → A1µ −A2µ, (111) suggests

〈〈U(A1)|U(A2)〉〉 ∼ 1 +
iθ

4π2

∫
d3x (A1z −A2z)εij∂iAj

(112)

where Ay = A1y = A2y = (A1y +A2y)/2. This is consis-
tent with (108). To summarize, we can use the operator-
state map and the Berry phase to “guess” the Schwinger-
Keldysh response effective action Z(A1, A2) when A1 and
A2 are close enough.

VII. CONCLUSION

In this paper, we discuss the characterizations of
anomalous unitary time-evolution operators, that may
be realized on the boundary of bulk topological Floquet
systems. Much the same way as the boundaries of static
topological phases that can be characterized, detected,
and classified by quantum anomalies, we identified quan-
tum anomalies for boundary unitaries.

We close by listing a few open questions and interesting
directions to explore.

– First, while we focused on quantum anomalies on
boundary unitaries, it is interesting to ask if there is a
corresponding bulk topological field theory. This prob-
lem was explored already in [46] for the case of back-
ground U(1) gauge field. For the case of time-reversal
symmetric boundary unitaries, it is interesting to ask if
one can write down a topological field theory for the KMS
gauge field.

– As mentioned in Sec. III B, anomalous boundary uni-
taries are characterized by their algebraic relations with
symmetry generators. In the presence of U(1) symmetry,
we considered gauged versions of the anomalous opera-
tor algebra in Sec. VI. Instead of gauging U(1) symme-
try, it would be interesting to consider the Lieb-Schultz-
Mattis type twist operator, which has been useful in var-
ious Lieb-Schultz-Mattis type theorems and can be un-
derstood in terms of quantum anomalies.

– It is interesting to apply/extend the framework de-
veloped in this paper to other symmetries. For example,
in Sec. VI, we discussed the mixed anomaly between U(1)
and discrete symmetric, C and CP . It would be interest-
ing to discuss mixed anomalies between U(1) and other
discrete symmetries.

– It is also interesting to study “exotic” symmetries,
such as OUO−1 = U† where O is a unitary opera-
tor. The symmetry is called “many-body spectral reflec-
tion symmetry” or “unitary time-reflection symmetry”
[32, 75, 76]. By combining with time-reversal, we can also
consider O′UO′−1 = U where O′ is an antiunitary oper-
ator. In the doubled Hilbert space, when U = OU†O−1,
the composition of the modular conjugation J with O is
an antiunitary symmetry, OJ |U〉〉 = O|U†〉〉 ≡ |U〉〉. JO
can be gauged, by putting the system on an unoriented
spacetime, RP 2. It would be interesting to see if the
associated topological invariant (the partition function
on RP 2) is related to the corresponding matrix-product-
operator index discussed in [32].

– Finally, while our focus in this paper is on unitaries
with symmetries, it is interesting to see if one can under-
stand the chiral unitary index of 1d unitaries, in terms
of quantum anomalies. A natural candidate is a gravita-
tional anomaly.
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Appendix A: Numerical verification of manybody
topological invariant in Eq. (109)

In this appendix, we consider a lattice Hamiltonian in
the doubled Hilbert space and numerically show that the
relation (109) holds.

Recall that the shift operator as a boundary unitary of
(2+1)d Floquet topological is given by Eq. (84). The cor-
responding transformation in momentum space is then
UψkU

−1 = eikψk, where ψk =
∑
x ψxe

−ikx. Thus, the
(3+1)d generalization of this boundary unitary becomes

UψkU
−1 = eik·σψk, (A1)

where ψk is a two-component fermionic field. Our system
is furnished with a CR symmetry which acts as

(CR)ψ(r)(CR)−1 = ψ†(Rr), (A2)

where Rr = (x,−y, z) involves a reflection with respect
to xz plane. The corresponding transformation in mo-
mentum space reads as

(CR)ψk(CR)−1 = ψ†−Rk. (A3)

where −Rk = (−kx, ky,−kz). It is easy to check that the
unitary (A1) is invariant under CR.

To construct the mapped state |U〉〉 we use the refer-
ence state (98) which is the ground state of the Hamilto-
nian (97). Hence, the state |U〉〉 can be obtained as the
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ground state of the following Hamiltonian

H = −
∫
d3k Ψ†k

(
0 e−ik·σ

eik·σ 0

)
Ψk, (A4)

where Ψ†k = (ψ†o,k, ψ
†
i,k). The proper CR transformations

in the doubled Hilbert space are given by

(CR)ψi,k(CR)−1 = ψ†i,−Rk,

(CR)ψo,k(CR)−1 = −ψ†o,−Rk,

(CR)|0〉〉 = |full〉〉. (A5)

In order to calculate the quantity (109), we need to
find the ground state in the presence of magnetic field in
xy-plane and twisted boundary condition in z direction.
This requires a real-space implementation of the Hamil-
tonian. It is more convenient to consider the following
Hamiltonian on a cubic lattice

Hlatt =
1

2

∑
r

s=1,2,3

[
Ψ†(r + x̂s)(itαs − rβ)Ψ(r) + H.c.

]
+m

∑
r

Ψ†(r)βΨ(r), (A6)

which shares the same low-energy Hamiltonian as that of
Eq. (A4). Here, the Dirac matrices are given by

αs = τy ⊗ σs =

(
0 −iσs
iσs 0

)
, (A7)

β = τx ⊗ I =

(
0 I
I 0

)
, (A8)

where τ acts on in/out degrees of freedom and σ acts on
the inner degrees of freedom.

For simplicity, we set t = r = 1. Furthermore, the lat-
tice Hamiltonian is also invariant under CR symmetry
defined in Eq. (A5). We should note that the ground
state of the lattice Hamiltonian with a mass term in
the range 1 < |m| < 3 is topologically equivalent to the
mapped unitary |U〉〉.

To compute the ground state |GS (Φxy = 2π, γz)〉, we
modify the hopping terms in the lattice Hamiltonian
(A6), which we call Hlatt(Φxy = 2π, γz), as follows: A
simple way to prepare a 2π magnetic flux with uniform
magnetic field is to set

Ax(x, y) = − 2πy

LxLy
,

Ay(x, y) =

{
0 (y = 1, . . . , Ly − 1)
2πx
Lx

(y = Ly)
, (A9)

where Lx, Ly are the number of sites. This gauge con-
figuration leads to a uniform magnetic flux F (x, y) =
Ax(x, y) + Ay(x + 1, y) − Ax(x, y + 1) − Ay(x, y) =
2π/(LxLy) inserted per unit cell. The twisted boundary
condition in z direction is implemented as usual via mul-
tiplying the hopping amplitudes by a phase factor. It is
important to note that the quantity (109) is well-defined
since under CR symmetry we have

(CR) Hlatt (Φxy, γz)(CR)−1 = Hlatt(Φxy,−γz). (A10)
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FIG. 1. Manybody topological invariant for CR-symmetric
(3 + 1)d boundary unitary (Sec. VI C). The invariant was
computed via (A11) for the ground state of the lattice Hamil-
tonian (A6) in the doubled Hilbert space. The topological
phase of the lattice Hamiltonian (i.e., when 2 < m < 3) is
topologically equivalent to |U〉〉.

Figure 1(a) shows how the argument of the following
quantity

T (γz) = 〈GS (Φxy = 2π, γz)|CR|GS (Φxy = 2π,−γz)〉,
(A11)

varies as a function of γz. We plotted two values for the
mass term in the topological phase and one in the trivial
phase. It is evident that in the former case arg T = γz
while in the latter arg T = 0. We further check that the
linear behavior arg T = γz is valid within the topological
phase (away from the transition pointm = 3 where finite-
size effects dominate) in Fig. 1(b).

Given the topological equivalence between the topolog-
ical phase of Hlatt and the ground state of H, we deduce
Eq. (109).
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