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Perspective:
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The quantum-mechanical expression for the polarization of a crystalline solid does not bear any resemblance to the

(trivial) expression for the dipole of a bounded crystallite; and in fact it has been proved via a conceptually different

path. Here I show how to alternatively define the dipole of a bounded sample in a somewhat unconventional way; from

such formula, the crystalline polarization formula—as routinely implemented in electronic-structure codes—follows

almost seamlessly.

I. INTRODUCTION

The dipole of a bounded and charge-neutral sample is a very

trivial quantity; the macroscopic polarization of a crystalline

solid, instead, has been a challenging problem for many years.

In quantum mechanics the dipole of a bounded sample is the

expectation value of the position operator r. The drawback

is that solid state physics requires Born-von-Kàrmàn periodic

boundary conditions (PBCs),1 which define the Hilbert space

where Schrödinger equation is solved. Unfortunately the mul-

tiplicative operator r is not a legitimate operator in the PBC

Hilbert space: it maps a state vector within the space into an

entity which does not belong to the same space.

The ultimate solution of this long-standing problem was

arrived at along the 1990s;2–6 by now, polarization theory

is a mature topic.7,8 The historical development of the the-

ory passed through abandoning the concept of polarization

“itself”, addressing instead a polarization difference, which

could be expressed as a time-integrated adiabatic current.2,3

Only afterwards it was realized4 that even polarization itself

can be defined, although by means of a change of paradigm:

bulk polarization is not a vector (as theretofore assumed), it is

a lattice. A counterintuitive corollary is that the polarization

P of an inversion-symmetric crystal is not necessarily zero.

Since inversion symmetry requires P = −P, the lattice must

be symmetric: this may happen even if P = 0 does not be-

long to the lattice. For a macroscopic bounded crystallite, the

lattice ambiguity is fixed only after the sample termination is

chosen.8,9

What is disturbing is that the two definitions of essentially

the same observable—dipole of a crystallite vs. polarization

of a crystal—do not bear any formal resemblance. A basic

tenet of statistical mechanics and condensed matter physics

requires instead that crystalline polarization can also be ex-

pressed as the large-sample limit of the dipole of a bounded

crystallite over its volume. In this work I am going to bridge

this conceptual gap; it will be shown that when the dipole of

a bounded sample is alternatively expressed in an unconven-

tional way, with no reference to the r operator, the crystalline

expression follows somewhat naturally.
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The paper is organized as follows. In Sec. II I show

how to recast the dipole of a bounded sample in an alterna-

tive way, where the r operator no longer appears: Eq. (5)

below. In Sec. III I show that the same expression can be

carried over to a PBC framework, after some logical adap-

tation, in insulators only. Sec. IV shows that in the three-

dimensional case one needs to exploit crystalline symmetry in

order to make P a uniquely defined multivalued observable.

The mean-field expression—as implemented in Hartree-Fock

and density-functional codes—is presented in Sec. V as a spe-

cial case of the general theory. Finally, in Sec. VI I draw some

conclusions.

II. BOUNDED CRYSTALLITE

We assume that N electrons are confined in a macroscopic

sample of volume V , together with a neutralizing background

of point-like classical nuclei. Let |Ψ̃0〉 be the singlet insulat-

ing ground eigenstate; the many-body wavefunction is square-

integrable over R3N and vanishes far away from the sample.

If the system is macroscopically homogeneous, the electronic

term in polarization has the pretty trivial expression

P(el) =−
e

V
〈Ψ̃0| r̂ |Ψ̃0〉, r̂ =

N

∑
i=1

ri; (1)

the nuclear classical contribution has to be added in order to

obtain a meaningful observable.

It is expedient to address the family of many-body Hamil-

tonians parametrized by the parameter κ :

Ĥκ =
1

2m

N

∑
i=1

(pi + h̄κ)2 + V̂ , (2)

where V̂ includes one-body and two-body potentials, and

whose ground eigenstate is |Ψ̃0κ 〉. In order to simplify no-

tations we will set Ĥ0 ≡ Ĥ and |Ψ̃n0〉 ≡ |Ψ̃n〉. The vector

κ , having the dimensions of an inverse length, generalizes

the Hamiltonian by including a constant vector potential: it

is therefore a pure gauge. The gauge-transformed eigenstates

are

|Ψ̃nκ 〉= e−iκ ·r̂|Ψ̃n〉. (3)
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We pause at this point to stress an important semantical is-

sue. The choice of the (arbitrary) κ value in Eq. (2) fixes the

gauge in the Hamiltonian. Once this fixed, there is an addi-

tional freedom in choosing the arbitrary phase factor in front

of each eigenstate: even this second choice goes under the

name of gauge choice. The expression of any physical ob-

servable must be gauge-invariant in both senses. I therefore

alert the reader that, in the following of this paper, it is essen-

tial to realize in which context the term “gauge” is used.

By taking the κ derivative of Eq. (3) one transforms Eq. (1)

into

P(el) =−
ie

V
〈Ψ̃0κ |∂κ Ψ̃0κ 〉, (4)

at any κ-value; in view of the subsequent developments, we

set κ = 0 in the following:

P(el) =−
ie

V
〈Ψ̃0|∂κ Ψ̃0〉. (5)

In this seemingly innocent transformation, I have “swept un-

der the rug” an issue of overwhelming importance. We start

noticing that Eq. (5) has not the standard form of an observ-

able: it is not the expectation value of an operator, at variance

with Eq. (1). It is expressed in terms of the ground state only,

as a function of κ; in fact the real quantity i〈Ψ̃0|∂κ Ψ̃0〉 is, in

the language of quantum geometry, a Berry connection evalu-

ated at κ = 0. Since Eq. (2) at two different κ’s yields two dif-

ferent Hamiltonians, an equally acceptable gauge-transformed

eigenstate would be

|Ψ̃nκ 〉= eiφ(κ)e−iκ ·r̂|Ψ̃n〉, (6)

with an arbitrary φ(κ). The physical observable obtains from

Eq. (5) when the gauge of Eq. (3) is enforced; it is not allowed

to adopt therein the most general gauge of Eq. (6).

The gauge dependence of Berry connections is a textbook

fixture of quantum geometry.8 In the present case Eq. (5) ac-

quires its physical meaning only after the above specific gauge

fixing. I stress that here is the conceptual novelty of the

present work: a definition of the dipole of a bounded sam-

ple where no use is made of the position operator r. The same

definition and the same gauge fixing—Eq. (9) below—can be

exported to the PBC crystalline case.

III. UNBOUNDED CRYSTAL

We adopt the same Hamiltonian as in Eq. (2), but now

within the PBC Hilbert space: the many-body wavefunction

is periodic in the cubic “supercell” of side L in each elec-

tronic variable independently, and normalized to one therein.

Each Cartesian coordinate is then equivalent to the angle

ϕi = 2πxi/L, and analogously for yi and zi. The potential V̂

enjoys the same periodicity: this means that the macroscopic

field E inside the sample vanishes. We will indicate the eigen-

states as |Ψnκ 〉 without a tilde, in order to distinguish them

from those of the bounded crystallite; as stressed above, the

multiplicative r̂ operator is “forbidden” in the PBC Hilbert

space.6

In order to address polarization, we need to ensure before-

hand that the ground state is insulating. The many-body ve-

locity operator is

v̂κ =
1

m

N

∑
i=1

(pi + h̄κ) =
1

h̄
∂κ Ĥκ , (7)

hence by Hellmann-Feynman theorem the macroscopic cur-

rent density is

jκ =−
e

h̄L3
〈Ψ0κ |∂κ Ĥκ |Ψ0κ 〉=−

e

h̄L3
∂κE0κ , (8)

where E0κ is the ground-state energy. Given that an insulator

does not sustain a dc current, the ground-state energy is κ-

independent (the opposite is true in metals).

The Hamiltonian of Eq. (2) was first introduced in 1964

in a milestone paper by W. Kohn, who noticed that PBCs vio-

late gauge-invariance in the conventional sense.10 If we try the

same transformation as in Eq. (3), the quantity e−iκ ·r̂|Ψ0〉 is

a solution of Schrödinger equation with energy E0, but it does

not obey PBCs and therefore does not belong to the Hilbert

space. At an arbitrary κ , the genuine PBC eigenstates |Ψnκ 〉
have a nontrivial κ-dependence. There is, however, a discrete

set of special κ vectors for which

|Ψ0κ 〉= e−iκ ·r̂|Ψ0〉 (9)

obeys PBCs and yields therefore the ground eigenstate of Ĥκ :

κ = 2π
L
(ℓ,m,n), with integer (ℓ,m,n).

In order to define polarization, we proceed by adopting the

analogue of Eq. (5), and in the analogous gauge. We start from

the identity

∂κ ln 〈Ψ0|Ψ0κ 〉=
〈Ψ0|∂κ Ψ0κ 〉

〈Ψ0|Ψ0κ 〉
, (10)

which holds at any κ value; since 〈Ψ0|∂κ Ψ0〉 is purely imag-

inary, a leading-order expansion in κ yields

i〈Ψ0|∂κ Ψ0〉 ·κ ≃−Im ln 〈Ψ0|Ψ0κ 〉. (11)

We pause to observe that multivaluedness debuts here. In fact

Eq. (11) relates two phase angles: a differential angle on the

left, and a finite angle difference on the right. While a differ-

ential angle is single valued, a finite angle is defined modulo

2π ; upon replacing the former with the latter we are going

to define a multivalued observable. We stress once more that

multivaluedness is not a mathematical artifact; it is a neces-

sary feature of polarization within PBCs.8

Next we pick a vector κ1 in the special set: κ1 =
2π
L
(1,0,0),

and we replace the derivative in Eq. (5) with a finite difference,

in the large-sample limit:

P
(el)
x =

e

2πL2
Im ln 〈Ψ0|Ψ0κ1

〉. (12)

As it stands, Eq. (12) is gauge-dependent and cannot express

an observable: it is in fact a discretized Berry connection.

Eq. (12) only acquires physical meaning when we fix the
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gauge by adopting the one of Eqs. (3) and (9) (with no ex-

tra phase factor):

P
(el)
x =

e

2πL2
Im ln 〈Ψ0|e

−iκ1·r̂ |Ψ0〉

=
e

2πL2
Im ln 〈Ψ0|e

−i 2π
L ∑xi |Ψ0〉. (13)

We have thus arrived at the main message of the present work:

the bounded-crystallite formula, Eq. (5), and the crystalline

formula, Eq. (13), are essentially the same formula, within

the same gauge, in two different frameworks.

The replacement of |Ψ0κ1
〉 in Eq. (12) with e−iκ1·r̂|Ψ0〉 in

Eq. (13) is allowed in insulators only. We remind that |Ψ0κ 〉
obtains by following the ground state |Ψ0〉 when the κ vec-

tor in Ĥκ is adiabatically turned on; in the metallic case—as

shown by Kohn10—the energy E0κ of such state does depend

on κ , and therefore |Ψ0κ1
〉 is orthogonal to e−iκ1·r̂|Ψ0〉. We

have shown above that in the insulating case the state |Ψ0κ1
〉

has instead the same energy as e−iκ1·r̂|Ψ0〉, and therefore the

two states may be identified.

The well known Eq. (13), sometimes dubbed “single-point

Berry phase”, was originally obtained in Ref 6 by consider-

ing a many-body Hamiltonian which is adiabatically varied

in time, and showing that the time derivative of Eq. (13) co-

incides with the macroscopic current density j
(el)
x (t) which

flows through the insulating sample. Here I have derived the

same result via a different logic: polarization itself obtains

without addressing currents at all, starting instead from an un-

conventional definition of the dipole of a bounded sample.

Finally, the nuclear term in polarization can be added to

Eq. (13) in a very compact form. If the nuclei of charge Zℓ sit

at sites Rℓ in the supercell, the expression is

Px =
e

2πL2
Im ln 〈Ψ0|e

i 2π
L (∑ℓ ZℓXℓ−∑i xi) |Ψ0〉, (14)

where Xℓ = Rℓ,x. Owing to charge neutrality, polarization is

invariant by translation of the coordinate origin (as it must

be). It is argued that Eq. (14) also holds when the quantum

nature of the nuclei is considered.

IV. MULTIVALUED POLARIZATION IN CRYSTALS

Bulk polarization is a lattice, not a vector, and in fact the

main entry of Eqs. (13) and (14) is the multivalued function

“Im ln”. But it is also clear that for a three-dimensional sys-

tem these equations cannot be accepted as they stand in the

large-sample limit: the prefactor goes in fact to zero. It has

been shown in Ref. 5 that, by exploiting crystalline symmetry,

Eqs. (13) and (14) eventually yield an uniquely defined multi-

valued observable; I take the present occasion for providing a

somewhat more intuitive proof.

By definition, whenever a material is crystalline, a uniquely

defined lattice can be associated with the real sample. The lat-

tice is a “mathematical construction”,1 uniquely defined—by

means of an appropriate average—even in cases with corre-

lation, finite temperature, quantum nuclei, chemical disorder

(i.e. crystalline alloys, a.k.a. solid solutions), where the actual

wavefunction may require a supercell (multiple of the primi-

tive lattice cell).

We consider—without loss of generality—a simple cubic

lattice of constant a, where the supercell side L is an integer

multiple of a: L = Ma. Suppose the potential V̂ in the Hamil-

tonian is adiabatically varied in time; we define the phase an-

gle

γx(t) = Im ln 〈Ψ0(t)|e
i 2π

L (∑ℓ ZℓXℓ−∑i xi) |Ψ0(t)〉, (15)

where |Ψ0(t)〉 is the adiabatic ground eigenstate. The current

flowing across a section of area L2 normal to x is

Ix(t) = L2Ṗx(t) =
e

2π
γ̇x(t). (16)

Owing to cristalline periodicity, The current Ix(t) is the sum

of M2 identical currents, each flowing through a microscopic

section of area a2; one can therefore define a reduced crys-

talline phase angle γ
(crystal)
x such that γ̇x(t) = M2 γ̇

(crystal)
x (t).

The crystalline polarization is thus expressed in terms of

γ
(crystal)
x as

Px =
e

2πa2
γ
(crystal)
x ; (17)

the case of independent electrons is presented in detail in the

next Section.

A generic lattice is dealt with by means of a coordinate

transformation;12 the bulk value of P is then ambiguous mod-

ulo eR/Vcell, where R is a lattice vector and Vcell is the vol-

ume of a primitive cell. The quantity eR/Vcell goes under the

name of polarization “quantum”. By definition a primitive cell

is a minimum-volume one:1 this choice is mandatory in order

to make P an unambiguously defined multivalued observable.

Finally we observe that the modulo ambiguity is only removed

when the termination of the bounded sample is specified; it is

also required that even the surfaces, as well as the bulk, are

insulating.8 Insofar as the crystalline system is unbounded the

modulo ambiguity cannot be removed.

V. SINGLE-DETERMINANT WAVEFUNCTION

Within mean field (either Hartree-Fock or Kohn-Sham) the

ground eigenstate |Ψ0〉 in the Schrödinger representation is

a Slater determinant of N/2 doubly occupied orbitals; in the

crystalline case translational symmetry allows choosing the

orbitals in the Bloch form. For the sake of simplicity we get

rid of trivial factors of two, by considering a Slater deter-

minant of singly occupied orbitals (so-called “spinless elec-

trons”); furthermore we consider the contribution to P
(el)
x of a

single occupied band.

In the simple cubic case, as dealt with above, the Bloch

vectors are:

km =
2π

Ma
(m1,m2,m3), ms = 0,1, . . . ,M − 1, (18)

where m ≡ (m1,m2,m3). The Bloch orbitals |ψkm〉 =
eikm·r|ukm〉 are normalized over the crystal cell of volume
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a3. It is expedient to define the auxiliary Bloch orbitals

|φkm〉 = ei 2π
L x|ψkm〉, and |Φ0〉 as their Slater determinant; we

also define q = ( 2π
Ma

,0,0). Then

〈Ψ0|e
i∑i q·ri |Ψ0〉= 〈Ψ0|Φ0〉=

1

M3N
det S , (19)

where S is the N ×N overlap matrix of the orbitals, in a dif-

ferent normalization:

Smm′ = M3〈ψkm |φkm′ 〉= M3〈ukm |e
i(q+km′−km)·r |ukm′ 〉 (20)

= M3〈ukm |ukm′ 〉δq+km′−km = M3〈ukm |ukm−q〉δmm′ .

The normalization factors cancel: we have in fact

〈Ψ0|e
i 2π

L ∑i xi |Ψ0〉=
1

M3N
det S =

M−1

∏
m1,m2,m3=0

〈ukm |ukm−q〉,

(21)

γ
(crystal)
x =

1

M2
Im ln 〈Ψ0|e

−i 2π
L ∑i xi |Ψ0〉

=−
1

M2

M−1

∑
m2,m3=0

Im ln
M−1

∏
m1=0

〈ukm |ukm−q〉. (22)

This is indeed the single-band version of the dis-

cretized Berry-phase formula routinely implemented in ab-

initio electronic-stucture codes for computing macroscopic

polarization;8 the classical nuclear term has to be added.

VI. CONCLUSIONS

The theory of polarization in condensed matter was devel-

oped along the 1990s2–6 and is now a staple of electronic

structure theory. The relevant formulas adopt concepts from

quantum geometry,8 and have no relationship to the (trivial)

formula for the dipole of a bounded sample; this owes to the

fact that the multiplicative position operator r is no longer a

legitimate quantum-mechanical operator when the boundary

conditions of condensed matter physics are adopted.6

Here I show that it is possible to alternatively express the

dipole of a bounded sample, making no use of the r oper-

ator: such expression has the virtue of being adoptable al-

most as such even in the case of an unbounded crystalline

sample. The resulting formula defines bulk crystalline polar-

ization as a multivalued observable. I also show that, in the

special case of a single-determinant many-body wavefunction

(either Hartree-Fock or Konhn-Sham), one retrieves the al-

gorithm currently implemented in several electronic-structure

codes.8

Finally, it is worth observing that—when the large-

crystallite limit is ideally taken—one obtains the value of

crystalline polarization only if the limit is taken in the ap-

propriate way. The reason is that the crystalline formula

assumes by construction zero macroscopic field, while in-

stead a nonzero macroscopic field (depolarization field) is

in general present inside a polarized—either pyroelectric or

ferroelectric—macroscopic sample in vacuo.
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