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1 Introduction

The coupling of hydrodynamic systems to external sources through anomalous currents

gives rise to a variety of chiral transport effects [1–8]. These have been shown to be

relevant for the understanding of diverse physical phenomena, ranging from condensed

matter to cosmology. Due to the topological nature of anomalies, the effective action

for the long wavelength modes can be computed using differential geometry techniques,

from which the parity-violating terms in the fluid constitutive relations can be derived [9–

20]. By placing the system on a curved background stationary metric, and performing

dimensional reduction onto the compactified Euclidean time, it is possible to incorporate

physical effects such as vorticity and acceleration, which are sourced respectively by the

background Kaluza-Klein (KK) gauge field and the gradient of the time component of the

metric. Phenomena linked to the existence of mixed gauge-gravitational anomalies [21]

have been subject to direct detection in the laboratory [22].

Despite its absence in standard general relativity, torsion has been the focus of attention

in physics for almost a century, since this geometrical notion was first introduced in the

classical works of Élie Cartan [23–25]. An obvious motivation for these investigations has

been the possibility of our spacetime having a small albeit nonvanishing torsion, giving rise

to new physics (see [26, 27] for a review of different physical scenarios).

Together with the prospects of spotting fundamental microscopic torsion in high-energy

physics, torsional geometries provide a practical way of implementing physical effects in

condensed matter physics. Focusing on the physics at large distances, the vectors defining

the links at each node of the ion lattice build up an effective dreibein whose geometry models

lattice irregularities. For example, their curvature and torsion respectively implement
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lattice dislocations and disclinations [28]. In systems with linear dispersion relations, such

as the case of Weyl semimetals, this geometry provides a static nondynamical effective

background on which fermions propagate [29].

Torsion is also known to have an interplay with chiral anomalies in quantum field

theory [30–33]. The axial anomaly receives a contribution given by the so-called Nieh-Yan

term [34, 35], which comes from a bubble diagram with two axial-vector current insertions

and is quadratically divergent. As a consequence, the coefficient of the Nieh-Yan term

depends of the square of the cutoff, or any other relevant UV scale of the theory [36]. The

role of this term in condensed matter physics has been explored in a number of works (see,

for example, [28, 29, 37–39]).

In the context of chiral fluids, the interest in torsion arose in connection with the study

of Hall transport [40–43] (see [44] for a comprehensive review). The relation between the

Hall viscosity and the mean orbital spin per particle suggested a connection with the spin

current, which is sourced by the background torsion. In the relativistic setup, this link

was further studied in Ref. [45] by a first principles calculation of the effective action and

constitutive relations of a fermion gas on a (2 + 1)-dimensional spacetime with torsion.

The issue of torsional transport effects in four dimensions has also received some at-

tention lately [46]. Besides the sector associated to the Nieh-Yan anomaly1, the partition

function contains other contributions which are induced by the triangle diagrams associ-

ated with the effective axial-vector field encoding the antisymmetric part of the torsion.

In Ref. [48], transport phenomena induced by torsion were studied, both at zero and finite

temperature. The existence of a chiral magnetic and electric effects was found, resulting

from fermions minimally coupled to the antisymmetric part of the torsion tensor, which can

be recast in terms of its dual vector field. This external source couples to the fermionic sin-

glet axial-vector current, which is affected by a ’t Hooft anomaly. Torsional contributions

to spin transport were also recently studied in [49].

The effects associated with the ’t Hooft anomaly of the gauge field dual to the an-

tisymmetric part of the torsion can be readily computed using the standard differential

geometry methods employed in the analysis of anomalous fluids. In the present work, we

apply the techniques developed in [19, 20] to carry out a study of the linear effects of tor-

sion in hydrodynamics, with and without Nambu-Goldstone bosons. For a charged fluid

coupled to an external electromagnetic field, we verify the existence of torsional magnetic

and vortical effects. The axial-vector current, on the other hand, does not contain any

corrections linear in the torsion. This is also the case for the covariant spin energy po-

tential, which is written in terms of the covariant axial-vector current. The components

of the covariant energy-momentum tensor can be also expressed in terms of the covariant

axial-vector currents, but in this case the coefficients depend linearly on the torsion tensor.

Once written in terms of the torsion, they give rise to new torsion-induced contributions

to the constitutive relations from where the corresponding transport coefficients can be

obtained.

1It has recently been proposed, however, that there is no genuine torsional chiral dissipationless transport

in that sector [47].
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After analyzing the Abelian case, we focus our attention on the case of a two-flavor

hadronic superfluid in the presence of torsion, in the phase in which chiral symmetry

U(2)L×U(2)R is spontaneously broken to its vector subgroups. We compute the corrections

to the covariant currents and transport coefficients linear in the torsion tensor and find the

existence of a torsional chiral electric effect mediated by the two charged pions. The chiral

separation effects found in [20], on the other hand, do not receive any contributions linear

in the torsion.

The present article is organized as follows. Section 2 is devoted to the analysis of the

equilibrium partition function of a charged plasma in the presence of torsion, including

the computation of the covariant currents. This models is further elaborated in Section 3

with the calculation of linear torsional contributions to the spin energy potential and the

energy-momentum tensor. In Section 4, after a brief discussion of the linear coupling of

Nambu-Goldstone bosons to torsion in the Abelian case, we compute the linear torsional

corrections to the constitutive relations of a two-flavor hadronic superfluid. Finally, our

findings are summarized in Section 5. To make our presentation more self-contained, we

review in Appendix A some basic facts about geometric torsion, while in Appendix B we

list some expressions of Ref. [20] relevant to our discussion.

2 Equilibrium partition function and covariant currents with background

torsion

We begin with the discussion of the dynamics of massless Dirac fermions propagating on

a spacetime with torsion2. The action of a massless Dirac spinor minimally coupled to

gravity can be written as [26, 50, 51]

S =
1

2

∫
d4x (det e)

(
ψ
−→
∇/ ψ − ψ

←−
∇/ ψ

)
, (2.1)

where the left and right covariant derivatives inside the integral are defined respectively by

−→∇/ ψ = γAe µ
A ∂µψ +

1

4
γAγ[BγC]ωBCAψ,

ψ
←−∇/ = e µ

A ∂µψγ
A − 1

4
ψγ[BγC]γAωBCA, (2.2)

and the Dirac matrices verify the Minkowskian Clifford algebra {γA, γB} = 2ηAB
1. Writing

the full spin connection in terms of the auxiliary torsionless Levi-Civita connection and the

contorsion tensor as ωA
BC = ωA

BC + κABC , we get the following expression of the left

covariant derivative in terms of its Levi-Civita counterpart

−→∇/ ψ =
−→
∇/ ψ +

1

4
γCγ[AγB]κABCψ

=
−→
∇/ ψ +

1

4

(
γBηAC − γAηBC + iǫABCDγDγ5

)
κABCψ, (2.3)

2The basics of geometric torsion, as well as the notation used in the following, are summarized in

Appendix A.
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where we indicate by a bar all geometric quantities referred to the Levi-Civita connection

and have used the gamma matrices identity

γAγ[BγC] = γCηAB − γBηAC + iǫABCDγDγ5. (2.4)

A similar calculation for the right covariant derivative in Eq. (2.2) gives

ψ
←−∇/ = ψ

←−
∇/ − 1

4
ψγ[AγB]γCκACB

= ψ
←−
∇/ − 1

4
ψ
(
γAηBC − γBηAC + iǫABCDγDγ5

)
κABC . (2.5)

Plugging these results into the action (2.1), we arrive at the expression

S =
1

2

∫
d4x (det e)

[
ψ
−→
∇/ ψ +

1

4
ψ
(
γBηAC − γAηBC + iǫABCDγDγ5

)
ψκABC

−ψ
←−
∇/ ψ +

1

4
ψ
(
γAηBC − γBηAC + iǫABCDγDγ5

)
ψκABC

]
. (2.6)

The important point here is that the term proportional to (γBηAC − γAηBC)κABC , which

contains the symmetric components of the contorsion in the two last indices, cancels out.

This means that fermions only couple to its antisymmetric piece, κA[BC], which as shown

in Appendix A [see Eq. (A.9)] is given by the components of the torsion tensor

S =
1

2

∫
d4x (det e)

(
ψ
−→
∇/ ψ − ψ

←−
∇/ ψ +

i

4
ψγDγ5ψǫ

BC
DA TA

BC

)
. (2.7)

This form of the action suggests the introduction of the effective vector field

SA = −1

8
ǫ CD
AB TB

CD, (2.8)

to write

S =
1

2

∫
d4x (det e)

(
ψ
−→
∇/ ψ − ψ

←−
∇/ ψ − 2iψγAγ5ψSA

)
. (2.9)

Thus, the whole effect of background torsion on the dynamics of the fermion is codi-

fied through its axial-vector coupling to an external effective gauge field, which, following

Ref. [48], we call screw torsion. The minimal coupling to gravity selects only one among

all possible dimension-four operators coupling Dirac fermions to torsion [52].

Before proceeding any further, some clarification on the action (2.1) is in order. At

face value, the theory it describes seems to be equivalent to that of a Dirac fermion axially

coupled to an external gauge field. The crucial difference, however, is that this external

gauge field S is a “composite” expressed as the Hodge dual of the antisymmetric part of

the torsion components, which is the “fundamental” external source. This is important,

because once expressed in a coordinate basis the components of this gauge field depend not

only on the torsion, but on the metric tensor as well. As a result, the energy-momentum

tensor and the spin energy potential of the theory include contributions that would be
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absent in the theory of a “fundamental” gauge field axially coupled to a Dirac fermion (see

Sec. 3). These new terms are associated with novel transport coefficients in the constitutive

relations for the corresponding energy-momentum and spin covariant currents.

In addition to the couplings shown in Eq. (2.1), the authors of Ref. [48] considered an

additional coupling of the Dirac fermion to an external Abelian vector gauge field. This

so-called edge torsion vector field is proportional to the torsion vector TB
BA and mixes for

many practical purposes with the electromagnetic field. In what follows we stick to the

minimal coupling prescription (2.1) and only consider the coupling to the screw torsion, in

the understanding that in all our results the edge torsion would be reabsorbed by a shift

in the physical electromagnetic field.

Remarks on gauge invariance. We have seen how the action of a Dirac fermion mini-

mally coupled to gravity only depends on the fully antisymmetric components of the torsion

tensor TABC ≡ T[ABC], which can be used to define the three-form3

T =
1

3!
TABCe

AeBeC . (2.10)

Its four independent components are encoded in the screw-torsion according to Eq. (2.8),

which can be written using the Hodge star operator as

Sµ = −1

8
ǫ αβ
µν T ν

αβ =⇒ S =
3

4
⋆ T . (2.11)

The field strength of the Abelian screw torsion, FS = dS, can be written then as

FS =
3

4
d ⋆ T = −3

4
⋆ δT , (2.12)

where δ ≡ − ⋆ d⋆ denotes the codifferential acting on a three-form. In components, this

equation reads

Sµν = −3

8
∇σT σ

αβǫ
αβ

µν . (2.13)

Looking at Eq. (2.11) above, we see that the gauge variation of the screw torsion vector

field S by an exact one-form, S → S + dα, corresponds to the following transformation of

the torsion three-form T

T −→ T + δβ, (2.14)

with β ∼ ⋆α a four-form. The nihilpotency of the codifferential, δ2 = 0, guarantees the

gauge invariance of the screw torsion field strength (2.12).

The equilibrium partition function. In the context of hydrodynamics, the coupling of

the background torsion to the microscopic fermionic degrees of freedom gives the prescrip-

tion for the construction of the effective functional describing the long-range excitations of

a fluid [9, 10]. Here we are going to employ the differential geometry methods introduced in

3Unlike in Refs. [19, 20], here no −i is factored out of the components of differential forms.
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[19, 20] to build the equilibrium partition function for fluids with torsion. In the following,

we study the case of a fluid coupled to an external Abelian vector source in the presence of

background torsion on a generic static background geometry. After this, the more general

case of a two flavor hadronic (super)fluid will be analyzed in Section 4.

Besides its coupling to torsion through S, we also assume that the microscopic fermionic

degrees of freedom are coupled to an external vector Abelian gauge field V, which remains

anomaly-free and will be eventually associated to the electromagnetic field. In four dimen-

sions, the (nonlocal) anomalous part of the effective action can be computed in terms of

the Chern-Simons form (see, for example, [19]). Keeping only terms linear in the torsion,

we have

ω̃0
5(S,FV ,FS) = 6SF2

V , (2.15)

where FV = dV is the vector field strength. This gives the Bardeen form of the anomaly,

which explicitly preserves vector gauge transformations. The properly normalized Chern-

Simons nonlocal effective action encoding the linear effects of torsion is then given by

Γ[V,S]CS =
1

4π2

∫

D5

SF2
V , (2.16)

where D5 is a five-dimensional manifold whose boundary is identified with the Euclidean

four-dimensional physical spacetime. To compute the equilibrium partition function from

the Chern-Simons effective action, we take the metric of the four-dimensional spacetime

∂D5 to be the generic static line element

ds2 = −e2σ(x)
[
dx0 + ai(x)dx

i
]2

+ gij(x)dx
idxj , (2.17)

and take all fields to be independent of x0. We implement dimensional reduction onto the

compatified Euclidean time by setting D5 = S1 × D4, where the length of the S1 equals

the inverse of the equilibrium temperature T0. Vector fields are then written in terms

of components that remain invariant under KK transformations [20], acting according to

x0 → x0 + φ and ai → ai − ∂iφ,

V ≡ Vµdxµ = V − e−σV0u,

S ≡ Sµdxµ = S − e−σS0u, (2.18)

where we have introduced the four-velocity one-form u given by

u = −eσ
(
dx0 + aidx

i
)
≡ −eσ

(
dx0 + a

)
, (2.19)

and the KK-invariant spatial one-forms are defined by

V =
(
Vi − V0ai

)
dxi ≡ Vidxi,

S =
(
Si − S0ai

)
dxi ≡ Sidxi. (2.20)
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A similar electric-magnetic decomposition can be written for the vector field strength

FV ≡ B + uE

= dV − d
(
e−σu

)
V0 + ue−σdV0 (2.21)

=
(
FV + V0da

)
+ ue−σdV0,

where FV ≡ dV and we have used that d(e−σu) = −da. The electric E and magnetic

B components of the field strength will be later identified with the electric and magnetic

fields [cf. (2.36)]. The equivalent expression for the field strength associated to the screw

torsion reads

FS ≡ BS + uES

=
(
FS + S0da

)
+ ue−σdS0, (2.22)

with FS = dS.

Finally, we implement the dimensional reduction on the three-form (2.10) as well by

decomposing it as

T = TB + uTE. (2.23)

In a coordinate basis, the electric and magnetic components are respectively given by

TE =
1

3!
e−σ

[
2giℓT

ℓ
0j + e2σ

(
T 0

ij − 2aiT
0
0j

)
+ e2σaℓ

(
T ℓ

ij − 2aiT
ℓ
0j

)]
dxjdxk,

TB =
1

3!
gjℓ

(
T ℓ

kn − 2akT
ℓ
0n

)
dxjdxkdxn. (2.24)

Being a four-form, the gauge function β in Eq. (2.14) does not have any magnetic compo-

nent, β = uβE . As a consequence, only the electric part of T transforms under (2.14)

TE −→ TE + δ⊥βE ,

TB −→ TB, (2.25)

where δ⊥ = ∗d∗, with ∗ the three-dimensional Hodge dual (not to be confused with its

four-dimensional couterpart denoted by ⋆). Since under four-dimensional Hodge duality

the electric and magnetic components interchange

⋆T = − ∗ TE − u ∗ TB, (2.26)

we find from Eqs. (2.11) and (2.18)

S0 =
3

4
eσ ∗ TB,

S = −3

4
∗ TE. (2.27)
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We see that the gauge invariance of TB implies the same property for S0, whereas S

undergoes the standard gauge transformation generated by the zero-form ∗βE . Using in

addition Eq. (2.24), we can write the screw torsion field in terms of the components of the

torsion tensor as

S0 =
1

8
eσǫijkgiℓ

(
T ℓ

jk − 2ajT
ℓ
0k

)
, (2.28)

S = −1

8
e−σǫijkgmi

[
2gℓjT

ℓ
0k + e2σaℓ

(
T ℓ

jk − 2ajT
ℓ
0k

)
+ e2σ

(
T 0

jk − 2ajT
0
0k

)]
dxm.

This dependence of the screw torsion gauge field on the metric and torsion components

is what distinguishes our theory from that of a Dirac fermion coupled to an external

gauge field through the axial-vector current. As already pointed out, this has important

consequences for the constitutive relations of the energy-momentum and spin currents.

Having arrived at this parametrization of the effective screw torsion, we proceed to

compute the terms in the effective action induced by the ’t Hooft anomaly affecting the

gauge invariance (2.25) and coming from triangle diagrams4. As shown in [11, 19], the

dimensionally-reduced effective action splits into a local anomalous and a nonlocal invariant

piece, respectively given by [19]

W [V0,S0,V ,S, da]anom =
1

4π2T0

∫

S3

(
2V0FV + daV20

)
S, (2.29)

and

W [V0,S0,V ,S, da]inv =
1

4π2T0

∫

D4

[
S0F 2

V + 2V0FV FS (2.30)

+ daV0
(
V0FS + 2S0FV

)
+ (da)2S0V20

]
.

In the second expression, we have introduced the components of the field strength associ-

ated with S

FS = dS ≡ 1

2
Sijdx

idxj . (2.31)

The covariant currents can be now computed from the invariant part of the partition

function [11, 19, 20]. We begin with the one associated with the vector current

〈JV 〉cov = T0
δ

δFV
W [V0,S0,V ,S]inv

=
1

2π2

[
S0
(
FV + daV0

)
+ V0FS

]
, (2.32)

whereas for the one corresponding to the torsional axial-vector gauge field, the result is

〈JS〉cov = T0
δ

δFS
W [V0,S0,V ,S]inv

=
1

2π2

(
V0FV +

1

2
daV20

)
. (2.33)

4As stated above, in this work we do not consider the sector associated with the Nieh-Yan anomaly.
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In both cases, the zero components vanish, 〈JV 0〉cov = 〈JS0〉cov = 0. We observe that,

unlike the vector current, 〈JS〉cov does not pick any linear dependence on the torsion.

These covariant currents will be very relevant in the following.

In addition, the corresponding Bardeen-Zumino (BZ) currents are given by [19]

〈JV 〉BZ =
1

2π2
SFV ,

〈JS〉BZ =
1

6π2
SFS . (2.34)

The second equation is quadratic in the screw torsion field, so that the BZ current does

not have any correction at linear order in the torsion. For the BZ vector current, on the

other hand, after dimensional reduction we find

〈JV 0〉BZ =
1

2π2

(
FV + V0da

)
S,

〈JV 〉BZ =
1

2π2

[
S0
(
FV + V0da

)
+ SdV0

]
. (2.35)

Notice that only the magnetic part of the vector field strength enters in these expres-

sions [see Eq. (2.21)].

To connect with physics, we need to identify the electric and magnetic fields. These

are naturally given by the electric and magnetic parts in the decomposition (2.21) of the

vector field strength. Thus, we have5

eEi = e−σ∂iV0,

eBi = ǫijk
(
∂jVk + V0∂jak

)
, (2.36)

with e the elementary electric charge. We also define the screw magnetic field as the

three-dimensional Hodge dual of the magnetic component of BS in (2.22)

Bi
S = ǫijk

(
∂jSk + S0∂jak

)
. (2.37)

In addition, we introduce the vorticity vector

ωi = −1

2
eσǫijk∂jak, (2.38)

and the electromagnetic and torsional chemical potentials

µ ≡ e−σV0,

µS ≡ e−σS0. (2.39)

5Our definition of the physical magnetic field follows [11] and differs from the one used in [19, 20].

Expressions in these two references can be adapted to our definition by the replacement B
i
→ B

i + 2µωi.
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With all these definitions in hand, we take the Hodge duals of the covariant currents (2.32)

and (2.33) to write the electromagnetic and axial-vector covariant current components

〈J i
em〉cov =

1

2π2

(
µSeB

i + µBi
S + 2µµSω

i
)
,

〈J i
5〉cov =

µ

2π2

(
eBi + µωi

)
. (2.40)

As argued in [11, 14, 19, 20], covariant currents are the ones relevant for the analysis of

transport. Thus, the conclusion to be extracted from our result is the existence of torsional

chiral magnetic and vortical effects, both mediated by the torsional chemical potentials,

together with a nondissipative transport of charge driven by the screw torsion magnetic

field (2.37). The right-hand side of the second expression, on the other hand, gives the

standard result for the axial-vector current of an Abelian anomalous fluid, corresponding

to the magnetic and vortical separation effect without any torsional corrections at linear

order. Notice that here we have identified the current J i
S with the axial-vector current, J i

5.

We also give the components of the vector BZ currents by taking the dual of the

expressions in Eq. (2.35) and recasting them in term of electric and magnetic fields

〈Jem 0〉BZ =
e

2π2
eσB

iSi,

〈J i
em〉BZ =

e

2π2

(
µSB

i + ǫijkSjEk

)
. (2.41)

This BZ current was identified in Ref. [48] as the electromagnetic current associated with

charge transport in flat spacetime. It differs however from the covariant current computed

above by the consistent current

〈J i
em〉cons ≡ 〈J i

em〉cov − 〈J i
em〉BZ =

1

2π2
∂j
(
V0ǫijkSk

)
, (2.42)

whose divergence vanish identically due to the presence of the Levi-Civita tensor.

3 The spin energy potential and the energy-momentum tensor

The knowledge of the covariant current associated to the screw torsion allows the calcu-

lation of torsional contributions to other covariant physical quantities, most notably the

spin energy potential and the energy-momentum tensor. These are obtained by taking

variations of the invariant part of the partition function (2.31) and isolating its local con-

tribution [11, 19, 20]. In doing this, we have to keep in mind that the screw torsion is a

composite field that depends not only on the torsion tensor, but on the metric components

as well. Thus, in computing variations with respect to the metric functions we should con-

sider, in addition to the explicit dependence of the invariant action on these sources, also

the implicit dependence in the screw torsion. This latter contribution can be generically
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written as

δW [V0,S0,FV ,FS]inv =

∫

D4

[
δWinv

δFS
dδS +

δWinv

δS0
δS0
]

=

∫

S3

δWinv

δFS
δS +

∫

D4

[
−d
(
δWinv

δFS

)
δS +

δWinv

δS0
δS0
]
. (3.1)

Using the definition of the covariant current in Eq. (2.33), we write this variation as

δW [V0,S0,FV ,FS ]inv =
1

T0

∫

S3

〈JS〉covδS + bulk terms. (3.2)

The previous expression can be made more explicit by writing 〈JS〉cov in terms of its dual

one-form current, defined as

1

T0
〈JS〉cov =

1

2!
ǫijkgjℓgkm〈Ji〉S,covdxℓ ∧ dxm. (3.3)

With this, Eq. (3.2) takes the form

δW [V0,S0,FV ,FS]inv =

∫

S3

d3x
√
g gij〈Ji〉S,covδSj . (3.4)

This expression will be utilized next to evaluate the torsional covariant contributions to

the spin energy potential and the energy-momentum tensor.

The spin energy potential. The covariant spin energy potential is defined as [26]

δWinv = 2

∫

S3

d3x
√
g〈Ψ νσ

µ 〉covδT µ
νσ. (3.5)

All dependence of the invariant effective action on the torsion tensor is included in the screw

torsion field, so we only have to care about the implicit dependence. Using Eq. (2.28), we

write

δSm = −1

8
eσǫijkgmiaℓδT

ℓ
jk −

1

4
e−σǫijk

(
gℓj − e2σaℓaj

)
δT ℓ

0k

− 1

8
eσǫijkgmiδT

0
jk +

1

4
eσǫijkgmiajδT

0
0k, (3.6)

so the left-hand side of (3.5) can be computed using (3.4), to give

δWinv = −1

4

∫

S3

d3x
√
geσǫijkaℓ〈Ji〉S,covδT ℓ

jk

− 1

4

∫

S3

d3x
√
ge−σǫijk

(
gℓj − e2σaℓaj

)
〈Ji〉S,cov

(
δT ℓ

0k − δT ℓ
k0

)
(3.7)

− 1

4

∫

S3

d3x
√
geσǫijk〈Ji〉S,covδT 0

jk +
1

4

∫

S3

d3x
√
geσǫijkaj〈Ji〉S,cov

(
δT 0

0k − δT 0
k0

)
,
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plus bulk terms that we omit. This allows the identification of the covariant components

of the spin energy potential in terms of the covariant screw-torsion current as

〈Ψ jk
ℓ 〉cov = −1

4
eσǫijkaℓ〈Ji〉S,cov,

〈Ψ 0k
ℓ 〉cov = −1

4
e−σǫijk

(
gℓj − e2σaℓaj

)
〈Ji〉S,cov,

〈Ψ jk
0 〉cov = −1

4
eσǫijk〈Ji〉S,cov, (3.8)

〈Ψ 0k
0 〉cov =

1

4
eσǫijkaj〈Ji〉S,cov.

Notice, however, that only one of these quantities is KK-invariant. We therefore define the

physical KK-invariant combinations

〈Ψ jk
ℓ 〉cov ≡ 〈Ψ

jk
ℓ 〉cov − aℓ〈Ψ

jk
0 〉cov,

〈Ψ 0k
ℓ 〉cov ≡ 〈Ψ 0k

ℓ 〉cov − aℓ〈Ψ 0k
0 〉cov + aj

(
〈Ψ jk

ℓ 〉cov − aℓ〈Ψ
jk

0 〉cov
)
,

〈Ψ jk
0 〉cov ≡ 〈Ψ

jk
0 〉cov, (3.9)

〈Ψ 0k
0 〉cov ≡ 〈Ψ 0k

0 〉cov + aj〈Ψ jk
0 〉cov,

which are found to be

〈Ψ jk
ℓ 〉cov = 0,

〈Ψ 0k
ℓ 〉cov = −1

4
e−σǫijkgℓj〈Ji〉S,cov,

〈Ψ jk
0 〉cov = −1

4
eσǫijk〈Ji〉S,cov, (3.10)

〈Ψ 0k
0 〉cov = 0.

This shows that all dependence of the spin energy potentials on the torsion comes through

the components of the covariant current associated to the screw torsion. Thus, using

Eq. (2.33), we conclude that there are no linear torsional corrections to the spin energy po-

tential. Notice that this quantity is nonzero even for backgrounds with vanishing torsion6.

Torsional contributions to the energy-momentum tensor. To evaluate the com-

ponents of the (covariant) energy-momentum tensor, we take variations with respect to the

metric functions σ, ai and gij parametrizing the static line element (2.17). In doing this,

it is very important to keep track of all dependence of the effective action on the metric.

Concerning the torsion, the definition of the T µ two-form indicates that the components

T µ
νσ are metric-independent [26, 45, 50, 51]. The same can be said of the contorsion tensor

κµ[αβ], while its symmetric part κµ(αβ) depends on the metric since its computation requires

6Other contributions to the spin current in the absence of torsion have been recently computed in [53].
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raising and lowering indices of the metric-independent torsion components [cf. (A.10)]. An-

other important point to take into account is thatWinv explicitly depends on the KK vector

ai, whereas the dependence on the other two functions comes exclusively through the screw

torsion.

We begin varying the invariant effective action with respects to σ, which gives the

components 〈Θ00〉cov of the energy-momentum tensor as [cf. (3.4)]

−
∫

S3

d3x
√
g e−2σ〈Θ00〉cov =

∫

S3

d3x
√
g gij〈Ji〉S,covδσSj. (3.11)

Using (2.28), the variation of the screw torsion with respect to σ appearing on the right-

hand side is given by

δσSm =

(
Sm +

1

2
e−σǫijkgimgjℓT

ℓ
0k

)
δσ, (3.12)

so we arrive at the result

〈Θ00〉cov = −e2σ
(
Si +

1

2
e−σǫijkgjℓT

ℓ
0k

)
〈Ji〉S,cov. (3.13)

The mixed components 〈Θ i
0 〉cov are evaluated next. As pointed out above, in this case

we have also a contribution coming from the explicit dependence of the effective action

on ai. This can be computed from the invariant part of the effective action using [19, 20]

〈Θ〉explcov = T0

[
δ

δ(da)
− V0

δ

δFV
− S0

δ

δFS

]
W [V0,S0,V ,S, da]inv. (3.14)

This is a spatial two-form, whose three-dimensional Hodge dual gives the sought compo-

nents

〈Θ i
0 〉explcov = − 1

4π2
e−σǫijk

(
2S0V0∂jVk + V20∂jSk + S0V20∂jak

)

= − 1

4π2
eσ
(
2µµSB

i + µ2Bi
S + 4µ2µSω

i
)
. (3.15)

The implicit contribution, on the other hand, is readily computed using
∫

S3

d3x
√
g e−σ〈Θ i

0 〉impl
cov δai =

∫

S3

d3x
√
g gij〈Ji〉S,covδaSj, (3.16)

where the variation of the screw torsion with respect to the KK gauge field has the form

δaSm = −1

8
ǫijkgmi

(
T ℓ

jk − 2ajT
ℓ
0k

)
δaℓ +

1

4
ǫijkgmi

(
T 0

0k + aℓT
ℓ
0k

)
δaj

= −1

8
gmi

[
ǫijk
(
T ℓ

jk − 2ajT
ℓ
0k

)
− 2ǫiℓk

(
T 0

0k + ajT
j
0k

)]
δaℓ. (3.17)

This leads to

〈Θ i
0 〉impl

cov = −1

8
eσ
[
ǫℓjk
(
T i

jk − 2ajT
i
0k

)
+ 2ǫiℓk

(
T 0

0k + ajT
j
0k

)]
〈Jℓ〉S,cov. (3.18)
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This expression has to be added to the explicit contribution computed in Eq. (3.15).

Finally, we evaluate the spatial components of the energy-momentum tensor

1

2

∫

S3

d3x
√
g 〈Θij〉covδgij =

∫

S3

d3x
√
g gij〈Ji〉covδgSj, (3.19)

where the variation on the right-hand side of this equation takes the form

δgSm =

(
Skδ

(i
k δ

j)
m −

1

2
gijSm +

1

4
e−σgmℓǫ

ℓk(iT
j)
0k

)
δgij . (3.20)

Thus, we arrive at

〈Θij〉cov =

(
2S(igj)ℓ − gijSℓ +

1

2
e−σǫℓk(iT

j)
0k

)
〈Jℓ〉S,cov. (3.21)

The current 〈Ji〉S,cov appearing on the right-hand side of Eqs. (3.13), (3.18), and (3.21) is

the one given in the second line of (2.40), which does not depend on the torsion. After

substituting the explicit expressions of the KK-invariant components of the axial-vector

effective field given in Eq. (2.28), a number of new terms appears in the constitutive

relations of the energy-momentum currents which are linear in the torsion.

In section 2 we discussed how, out of the 24 independent components of the torsion

tensor Tµνα, the microscopic Dirac field only couples to four of them contained in its anti-

symmetric part T[µνα] defining the three-form (2.10). They are codified in the screw torsion

gauge field Sµ, whose components are given in terms of the torsion tensor in Eq. (2.28).

The antisymmetric components of the torsion tensor are the only ones appearing in both

the gauge currents and the spin energy potential tensor, which are fully written in terms

of S0 and Si. In the case of the energy-momentum tensor, however, an inspection of our

results (3.13), (3.18), and (3.21) shows that they contain additional components of the

torsion besides the four included in the equilibrium partition function. In particular, the

components T00i enter the energy-momentum tensor through

T i
0j = gik

(
Tk0j − akT00j

)
, (3.22)

while they cancel out from the expression of the screw torsion in (2.28). This state of affairs

is not a consequence of dimensional reduction, but a result of taking a variation with respect

to the metric components. A similar situation was found also in 2 + 1 dimensions [45].

It is known that in the presence of torsion the Ricci tensor acquires extra terms that

render it nonsymmetric. This has important consequences for the Einstein equations,

which force to correct the metric energy-momentum tensor by a Belinfante-Rosenfeld term

depending on the spin energy potential [26, 50]

〈T µν
(can)〉cov = 〈Θµν〉cov−

∗
∇α 〈Ψαµν〉cov, (3.23)

where the modified covariant derivative is given by

∗
∇µ= ∇µ + Tα

αµ (3.24)

– 14 –



The form of the Einstein equations is then preserved, provided its right-hand side is given

by this new canonical nonsymmetric energy-momentum tensor, instead of the metric one.

A relevant question here is whether the canonical energy momentum-tensor (3.23) plays

any role at all in our analysis of torsional fluids. In deciding this, we should not forget that

in condensed matter applications the background spacetime geometry is nondynamical, but

a way of incorporating certain microscopic features of the system into the effective theory

of the long wavelength modes. As no field equations have to be satisfied by the background

fields, the metric energy-momentum tensor and the spin energy potential can be regarded as

two independent currents, which provide the response to the external sourcesGµν and T
µ
αβ .

Finally, it should be pointed out that although our analysis includes the linear effects

of torsion, it does not incorporate the contribution to the partition function of the mixed

gauge-gravitational anomaly in the background (2.17). This is the reason why we can

restrict our attention to the consistent energy-momentum tensor without having to consider

the gravitational BZ term.

4 Torsional chiral effects in a two-flavor hadronic superfluid

The results of Sec. 2 make it easy to compute the interplay of torsion with the dynamics

of Nambu-Goldstone boson for the symmetry breaking pattern U(1)L × U(1)R → U(1)V .

Our theory is characterized by three Abelian gauge fields: a vector (V0,V ) and two axial-

vectors, the auxiliary (A0,A) and the screw torsion (S0,S). Since the axial-vector and

screw torsion fields couple in the same way to the fundamental fermions, they always

appear in the combination (A0 + S0,A + S) in the effective action. Setting A = 0 at the

end of the calculation, the linear couplings of the single Nambu-Goldstone boson α in the

local WZW action takes a particularly simple form [19]

W [α, . . .]WZW ≡
(
W [. . . ,A+ S, . . .]anom −W [. . . ,A+ S + dα, . . .]anom

)∣∣∣
A=0

= . . . − 1

6π2T0

∫

S3

A0

(
FS + S0da

)
dα, (4.1)

where the ellipsis in the second line indicates the torsion-independent coupling of the

Nambu-Goldstone boson to the background fields V0, V , and A0. We see that the Nambu-

Goldstone boson couples linearly to BS , the magnetic component of the screw torsion field

strength defined in Eq. (2.22). Expressed in components, the relevant term in the WZW

action reads

W [α, . . .]WZW = . . . −
∫

S3

d3x
√
g

µ5
6π2T

Bi
S∂iα, (4.2)

where Bi
S was defined in Eq. (2.37) and we also introduced the local temperature T = e−σT0

and the chiral chemical potential µ5 = e−σA0.

After this brief discussion of the Abelian case, we turn our attention to the analysis of

torsional chiral effects in the two-flavor hadronic superfluid studied in Ref. [20], where we
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refer the reader for details. This fluid couples to a vector and an axial-vector external gauge

fields, respectively denoted by V and A, transforming in the flavor group U(2)L×U(2)R.
The values of these background fields are restricted to the Cartan subalgebra generated by

t0 =
1

2
1, t3 =

1

2
σ3. (4.3)

We assume the system undergoes spontaneous symmetry breaking to its vector subgroups,

U(2)L×U(2)R → U(1)V × SU(2)V , generating in the process a triplet of Nambu-Goldstone

bosons π0, π± encoded in the matrix

U = exp

[
i
√
2

fπ

(
1√
2
π0 π+

π− − 1√
2
π0

)]
. (4.4)

The first issue to address is how to incorporate the torsional vector fields into our

analysis. The left Dirac operator, including the vector, axial, and screw-torsion fields,

takes the form

−→
D/ ψ =

(−→
∇/ − iV/ − iA/ γ5 − iS/1γ5

)
ψ

=
{−→
∇/ − i

(
V/ 0t0 + V/ 3t3

)
− i
[(
A/ 0 + 2S/

)
t0 +A/ 3t3

]
γ5

}
ψ, (4.5)

and similarly for the right operator. The structure of these terms shows that, to take into

account the effect of torsion in the analysis of Refs. [20], it is enough to implement the

replacement

A0µ −→ A0µ + 2Sµ, (4.6)

while leaving all remaining fields unchanged.

With all this in mind, we can compute the linear torsional corrections to the covariant

gauge currents at leading order in the derivative expansion. To avoid cumbersome expres-

sions, here we only give the terms in the currents depending linearly on the torsion, that

we denote by 〈∆J µ
aV 〉cov and 〈∆J µ

aA〉cov. These should be added to the expressions found

in Ref. [20] for the corresponding currents. The results are

〈∆J µ
0V 〉cov = − Nc

8π2
ǫµναβSνV0αβ,

〈∆J µ
3V 〉cov = − Nc

24π2
ǫµναβ

[(
H+ 3

)
SνV3αβ − ∂α

(
SνTβ

)]
,

〈∆J µ
0A〉cov = − Nc

24π2
ǫµναβ

(
SνA0αβ + 2A0ν∂αSβ

)
, (4.7)

〈∆J µ
3A〉cov =

Nc

24π2
ǫµναβ∂ν

(
SαIβ

)
,
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where we have used the tensor structures introduced in [20]

H ≡ Tr
[(
U−1QU −Q

)
Q
]
,

Iµ ≡ Tr
[(
Rµ + Lµ

)
Q
]
, (4.8)

Tµ ≡ Tr
[
Q
(
Rµ − Lµ

)]
+ 2V3µTr

[(
U−1QU −Q

)
Q
]
,

with Rµ = iU−1∂µU and Lµ = i∂µUU
−1, while the charge matrix is given by

Q =
1

3
t0 + t3. (4.9)

The first thing to be noticed here is that the torsional couplings of the pions are restricted

to the three-flavor components of the vector and axial-vector covariant currents.

In order to compute the longitudinal and transverse components of these currents, and

write the constitutive relations of the hadronic superfluid, we need to introduce a number

of scalar and vector structures, in addition to those used in Ref. [20]7. They represent the

linear coupling of the Nambu-Goldstone bosons to torsion. To the five scalar ones, we add

S6 = ǫµναβuµ∂ν
(
SαIβ

)
,

S7 = ǫµναβuµ∂ν
(
SαTβ

)
, (4.10)

while for the vector structures we extend the notation P
µ
1,a and P

µ
3,a to include a = S, and

add a new term P
µ
5

P
µ
1,S = ǫµναβuνIα∂β

(µS
T

)
,

P
µ
3,S = ǫµναβuνTα∂β

(µS
T

)
, (4.11)

P
µ
5 = ǫµναβuνSα∂βH.

Here we have used the screw torsion chemical potential (2.39), as well as the local temper-

ature T = e−σT0.

The longitudinal and transverse components of the covariant vector and axial-vector

currents are now written in terms of these quantities. The new torsional nondissipative

chiral transport coefficients can be read from the resulting expressions. We start with the

0-flavor vector current

uµ〈∆J µ
0V 〉cov =

Nc

4π2
SµBµ0 ,

Pµ
σ〈∆J σ

0V 〉cov =
Nc

4π2

[
µSBµ0 + TǫµναβuνSα∂β

(µ0
T

)]
, (4.12)

where we have introduced the magnetic field

Bµa =
1

2
ǫµναβuνVaαβ a = 0, 3. (4.13)

7For the reader’s convenience, these are summarized in Appendix B.
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The longitudinal and transverse components of the 3-flavor vector current, on the other

hand, read

uµ〈∆J µ
3V 〉cov =

Nc

24π2

[
2
(
H+ 3

)
SµBµ3 − S7

]
,

Pµ
σ〈∆J σ

3V 〉cov =
Nc

24π2

[
2
(
H+ 3

)
µSBµ3 +

(
H+ 6

)
TǫµναβuνSα∂β

(µ3
T

)

− µSPµ
4 + TPµ

3,S + µ3Hǫ
µναβuν∂αSβ − µ3Pµ

5

]
. (4.14)

In the case of the axial-vector currents, we have

uµ〈∆J µ
0A〉cov =

Ncµ5
6π2
Sµωµ,

Pµ
σ〈∆J σ

0A〉cov =
Ncµ5
12π2

(
− 2µSω

µ + ǫµναβuν∂αSβ
)
, (4.15)

for the 0-flavor components, whereas in the case of the 3-flavor the result is

uµ〈∆J µ
3A〉cov =

Nc

24π2
S6,

Pµ
σ〈∆J σ

3A〉cov = − Nc

24π2

(
µSP

µ
2 − TP

µ
1,S

)
. (4.16)

Let us stress once more that all the expressions given here only represent the linear torsional

contributions to the longitudinal and transverse components of the covariant currents, that

should be added to the respective nontorsional terms found in [20]. As already pointed

out, torsion couples to Nambu-Goldstone bosons only through the 3-flavor currents. The

torsional contributions to the 0-flavor covariant vector and axial-vector currents are just

given by the corresponding terms of the BZ currents linear in the torsion. This implies

that there are no linear torsional contributions to the 0-flavor component of the consistent

currents and, as a consequence, no linear torsional terms in the WZW action depending

on V0i or A0i.

To find the expression of the covariant currents in terms of the physical electromagnetic

fields, we expand the KK-invariant components of the vector field in terms of the charge

matrix Q defined in (4.9) and the generator t3 according to (see [20])

V0µt0 + V3µt3 = 3V0µQ+
(
V3µ − 3V0µ

)
t3. (4.17)

As usual, the unbroken U(1)V factor is identified as the one coupling to the Q matrix,

whereas the field coupling to t3 is set to zero, which implies Vµ ≡ 3V0µ = V3µ. We write

now the torsional terms in the covariant electromagnetic current

〈J µ
em〉cov =

e

3
〈J µ

0V 〉cov + e〈J µ
3V 〉cov, (4.18)
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in terms of the pion fields as

〈∆J i
em〉cov = − e2Nc

12π2f2π
ǫijkSjEkπ

+π− − µe2Nc

12π2f2π
Bi

Sπ
+π−

− ieNc

12π2f2π
Tǫijk∂k

[µS
T

(
π+∂jπ

− − π−∂jπ+
)]
− e2Nc

6π2f2π
TǫijkVj∂k

(µS
T
π+π−

)

+
µe2Nc

12π2f2π
ǫijkSj∂k

(
π+π−

)
+

5e2Nc

18π2

(
µSB

i + ǫijkSjEk

)
+O(π3), (4.19)

where the electric and magnetic fields are defined in Eq. (2.36) and Bi
S is given in (2.37), all

fields here being KK-invariant. The last, pion-independent term is the BZ electromagnetic

current of the unbroken theory, and replicates the structure found in Eq. (2.41) for the

Abelian case. We see that there is no torsion-mediated electromagnetic coupling to the

neutral pion. There exits nonetheless a torsional pion-dependent contribution to the chiral

electric effect given by the first term in Eq. (4.19), this time induced by the T-odd spatial

screw-torsion field.

As for the transverse axial-vector currents, we see that the only coupling of torsion to

pions arises from the 3-flavor component

〈∆J i
3A〉cov = − Nc

12π2fπ
Tǫijk∂jπ

0∂k

(µS
T

)
+O(π3). (4.20)

There is therefore no torsional corrections to the pion-mediated chiral electric, magnetic,

and vortical separation effects found in [20]. Interestingly, the coupling showed in Eq. (4.20)

is the only torsion-induced term involving the neutral pion in the constitutive relations at

this order.

5 Closing remarks

In this paper we have analyzed the linear effect of background torsion in the partition func-

tion of a charged fluid minimally coupled to gravity. The terms studied are those induced

by the ’t Hooft anomaly associated with the screw torsion, dual to the antisymmetric part

of the torsion tensor. In the Abelian case, our results show the existence of magnetic and

vortical chiral torsional effects, whereas the axial-vector current does not have any linear

torsional corrections.

In this same model, the covariant spin energy potential and energy-momentum tensor

have been computed in terms of the axial-vector covariant current, with coefficients that

only depend on the metric functions. Since the axial-vector current has been shown not

to depend on the torsion at linear order, we conclude that the spin energy potential does

not exhibit linear torsional contributions. The situation is quite different in the case of the

covariant energy-momentum tensor. Although its components are also written in terms of

the covariant axial-vector currents, the coefficients now do depend linearly on the torsion

tensor. Thus, we find linear torsional corrections to the energy-momentum tensor, which

actually include components of the torsion tensor that do not appear in the effective action.
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This latter situation is analogous to the one already found in 2 + 1 dimension [45]. It is

important to stress that the torsional contributions to the energy-momentum tensor and

the spin energy potential are associated with the implicit dependence of the effective axial-

vector gauge field on both the metric and the torsion components. This is what makes the

torsional theory genuinely different from the theory of a Dirac fermion axially coupled to

an external gauge field, as it is reflected in the constitutive relations.

We have also studied linear torsional chiral effects in a two-flavor hadronic superfluids

studied in Ref. [20]. We found that no new couplings of the Nambu-Goldstone bosons to

torsion emerge from the 0-flavor components of the covariant vector and axial-vector cur-

rents. The analysis of the electromagnetic transverse current, on the other hand, shows the

existence of torsional chiral electric effect mediated by the two charged Nambu-Goldstone

bosons π±, whereas no torsional vortical effect appears. Interstingly, there are no torsional

corrections to the pion-mediated electric, magnetic, and vortical chiral separation effects

that were found in [20].

In this paper we have exploited the analogy between background torsion and axial-

vector couplings to compute the linear effects of torsion, which come from triangle diagrams

with an axial-vector current coupled to the background screw torsion field. A different

sector is the one associated with the Nieh-Yan anomaly [34, 35], which explicitly depends

on the UV cutoff scale of the theory. This Nieh-Yan term has been shown to be relevant

in condensed matter, where this cutoff arises naturally. It would be interesting to further

explore the physical implications of this anomaly along the lines followed in the present

paper for the triangle contributions. This issue will be addressed elsewhere.
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A Basics of spacetime torsion

In this appendix, we give a brief overview of the main mathematical features of spacetimes

with torsion. The focus will lie on the basic differential geometric aspects, with further

details being available in a number of reviews (see, for example, [26, 27, 50, 51, 54, 55]).

Let us consider a four-dimensional curved manifold and an orthonormal tetrad basis {eA =

eAµdx
µ}

ηABe
A
µe

B
ν = gµν , (A.1)

with ηAB the flat Lorentz metric and gµν the spacetime metric8. The spin connection ωA
B

defines the notion of parallel transport, allowing the construction of the covariant derivative

8In this work, Lorentz indices are denoted by capital Latin letters, while spacetime indices are indicated

by Greek letters. Lowercase Latin indices are reserved for spatial components. To make notation lighter,

we omit the wedge (∧) to denote exterior products.
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operator, that in the particular case of p-form tensor of the type τAB takes the form

∇τAB = dτAB + ωA
Cτ

C
B + (−1)p+1τACω

C
B . (A.2)

In what follows, we assume the connection ωA
BC to be metric compatible, ∇ηAB = 0.

Torsion is defined by the first Cartan structure equation

TA = deA + ωA
Be

B , (A.3)

while the second one gives the curvature

RA
B = dωA

B + ωA
Cω

C
B . (A.4)

Both torsion and curvature are geometrical quantities related to the behavior of vectors

under (infinitesimal) parallel transport.

The torsion two-form can be expanded in the tetrad basis as

TA =
1

2
TA

BCe
BeC , (A.5)

where the components on the right-hand side are antisymmetric in the lower two indices,

TA
(BC) = 0. To parametrize torsion, it is convenient to introduce an auxiliary torsionless

connection ωA
B associated with the same tetrad basis eA and satisfying

deA + ωA
Be

B = 0. (A.6)

This auxiliary connection is also metric compatible, ∇ηAB = 0, where here and elsewhere

in the paper we indicate all quantities associated with this Levi-Civita connection by an

overline. The contorsion one-form is defined by

κAB ≡ ωA
B − ωA

B, (A.7)

which, being the difference of two connections, transforms as a tensor under local Lorentz

transformations. Combining Eqs. (A.3) and (A.6), we write the torsion two-form TA in

terms of the contortion one-form as

TA = κABe
B = −κABCe

BeC , (A.8)

where in the second equality we have expanded κAB = κABCe
C . This identity shows that

the antisymmetric part of the contorsion in the two lower indices is determined by the

components of the torsion tensor

κA[BC] = −
1

2
TA

BC . (A.9)

Using metric compatibility, the symmetric piece can be computed in terms of the torsion

components as

κA(BC) =
1

2
T A
B C +

1

2
T A
C B . (A.10)

Similar expressions are obtained using a coordinate basis, with the torsion being identified

with the antisymmetric part of the connection according to

T µ
νσ = −2Γµ

[νσ] = −2κ
µ
[νσ]. (A.11)
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B A summary of expressions from Ref. [20]

For the sake of completeness, we list in this Appendix the scalar and tensor structures

introduced in Ref. [20] to write the constitutive relations for the two-flavor chiral hadronic

superfluid studied in Section 4. In the case of the longitudinal components of the currents,

these are expressed in terms of the following five scalar structures

S1,a ≡ ǫµναβIµuν∂αVaβ = IµBµa (a = 0, 3),

S2 ≡
1

2
ǫµναβIµuν∂αuβ = Iµω

µ,

S3 ≡ ǫµναβuµ
[
V3ν∂αIβ −

i

3
Tr
(
LνLαLβ

)]
, (B.1)

S4,a ≡ ǫµναβTµuν∂αVaβ = TµBµa (a = 0, 3),

S5 ≡
1

2
ǫµναβTµuν∂αuβ = Tµω

µ,

where the magnetic field is defined in Eq. (4.13), and Iµ and Tµ are given in Eq. (4.8),

whose expansions in terms of the pion fields are given by

H = − 2

f2π
π+π− +O(π4),

Iµ = − 2

fπ
∂µπ

0 +O(π3), (B.2)

Tµ =
2i

f2π

(
π+∂µπ

− − π−∂µπ+
)
− 4

f2π
π+π−V3µ +O(π3).

Finally, the transverse components of the covariant currents found in [20] are expressed in

terms of the four tensor structures

P
µ
1,a ≡ ǫµναβuνIα∂β

(µa
T

)
(a = 0, 3),

P
µ
2 ≡ ǫµναβuν∂αIβ,

P
µ
3,a ≡ ǫµναβuνTα∂β

(µa
T

)
(a = 0, 3), (B.3)

P
µ
4 ≡ ǫµναβuν∂αTβ.

These expressions have been written in terms of the chemical potentials

µa = e−σVa0. (B.4)
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[19] J. L. Mañes, E. Meǵıas, M. Valle and M. A. Vázquez-Mozo, Non-Abelian Anomalous

(Super)Fluids in Thermal Equilibrium from Differential Geometry, JHEP 11 (2018) 076

[1806.07647].

– 23 –

https://doi.org/10.1103/PhysRevD.78.074033
https://arxiv.org/abs/0808.3382
https://doi.org/10.1016/j.physletb.2011.02.041
https://arxiv.org/abs/1010.1550
https://doi.org/10.1007/JHEP09(2011)011
https://arxiv.org/abs/1106.3576
https://doi.org/10.1103/PhysRevD.86.025021
https://arxiv.org/abs/1203.6312
https://arxiv.org/abs/1209.5064
https://arxiv.org/abs/1210.2186
https://doi.org/10.5506/APhysPolB.47.2617
https://arxiv.org/abs/1610.04413
https://doi.org/10.1007/JHEP09(2012)046
https://arxiv.org/abs/1203.3544
https://doi.org/10.1103/PhysRevLett.109.101601
https://arxiv.org/abs/1203.3556
https://doi.org/10.1007/JHEP05(2014)134
https://arxiv.org/abs/1310.7024
https://doi.org/10.1007/JHEP02(2013)088
https://arxiv.org/abs/1207.5824
https://doi.org/10.1007/JHEP05(2014)110
https://arxiv.org/abs/1311.2935
https://doi.org/10.1007/JHEP03(2014)034
https://arxiv.org/abs/1312.0610
https://doi.org/10.1103/PhysRevD.91.125033
https://arxiv.org/abs/1410.4833
https://doi.org/10.1103/PhysRevD.93.065007
https://arxiv.org/abs/1509.05777
https://doi.org/10.1103/PhysRevD.93.105020
https://arxiv.org/abs/1509.04718
https://doi.org/10.1007/JHEP01(2019)043
https://arxiv.org/abs/1710.03768
https://doi.org/10.1007/JHEP11(2018)076
https://arxiv.org/abs/1806.07647
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