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The hidden order in URu2Si2 remains a compelling
mystery after more than thirty years, with the order pa-
rameter still unidentified. One intriguing proposal for
the phase has been hastatic order: a symmetry breaking
heavy Fermi liquid with a spinorial hybridization that
breaks both single and double time-reversal symmetry.
Hastatic order is the first spinorial, rather than vecto-
rial order in materials, but previous work has not yet
found direct consequences of the spinorial nature. In this
paper, we revisit the hastatic proposal within Landau-
Ginzburg theory. Rather than a single spinorial order
parameter breaking double-time-reversal symmetry, we
find two gauge invariant vectorial orders: the expected
composite order with on-site moments, and a new quan-
tity capturing symmetries broken solely by the spinorial
nature. We address the effect of fluctuations and disor-
der on the tetragonal symmetry breaking, explaining the
absence of in-plane moments in URu2Si2 and predicting
a new transition in transverse field.

Introduction

URu2Si2 is an Ising heavy fermion material that un-
dergoes a phase transition into an unknown state, known
as ”hidden order” (HO) at THO = 17.5K[1–8]. While
the large entropy at the transition suggests a large order
parameter [1], no large moments have ever been found.
Translation symmetry is clearly broken [9–11], but other
broken symmetries [12, 13], particularly tetragonal sym-
metry are more controversial [14–19], with apparently
conflicting results. The problem has given rise to a num-
ber of fascinating theoretical proposals [13, 20–32], in
part driven by the difficulty in determining the appropri-
ate underlying microscopic model in actinide materials.

Hastatic order was proposed to explain HO as a sym-
metry breaking heavy Fermi liquid, where the order pa-
rameter is the hybridization gap itself, and the moments
are naturally suppressed by THO/D, where D is the con-
duction electron bandwidth. This hybridization is gener-
ated by valence fluctuations from a Γ5 non-Kramers dou-
blet ground state to an excited Kramers doublet [31, 33].
The order parameter may be treated as the condensa-
tion of a spinor of auxiliary bosons, 〈bjσ〉 represent-
ing the excited state occupation. The amplitude, 〈b†b〉
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gives an Ising anisotropic heavy Fermi liquid, captur-
ing hybridization gaps [5–8, 34] and heavy masses [1], as
well as the Ising anisotropic Fermi surface magnetization
[3, 11, 35, 36] and non-linear susceptibility [4]. The direc-
tion, 〈b†~σb〉 breaks symmetries, and the staggered basal
plane order of these excited moments is consistent with
HO. Several key open questions remain: experimentally,
hastatic order predicts tiny transverse moments, 〈b†~σ⊥b〉
that have not been found in neutrons [37–39], as well
as an associated broken tetragonal symmetry that re-
mains experimentally controversial [14–19, 40]; theoreti-
cally, hastatic order would be the first spinorial order in
materials, yet thus far all predicted signatures arise from
the vectorial composite order parameter, 〈b†~σb〉.

A B

A B

FIG. 1. (a) Hastatic order arises from valence fluctuations be-
tween the U4+ ground state Γ5 non-Kramers doublet and an
excited Γ+

7 Kramers doublet that lead to two-channel Kondo
physics, in which the finite excited state occupation (bσ)
breaks SU(2) channel symmetry. (b) As the order param-
eter is fundamentally a spinor, distinct spinor arrangements
(color) break different symmetries, even with identical mo-
ment structure (arrows). This can be seen in the two and four
sublattice antiferrohastatic phases, which break time-reversal
and inversion symmetries, respectively. (c) Generic phase di-
agram of antiferrohastatic order beyond mean-field theory.
The spinor amplitude can onset gradually with a coherence
temperature T ∗, followed by second order transitions for the
two possible order parameters, ~Ψ representing the moment
ordering and ~Φ representing RKKY hopping induced inter-
sublattice correlations, with three ordered phases: ~Ψ only
(II), ~Φ only (III) and mixed (IV ).
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We resolve these questions by developing the Landau-
Ginzburg theory for tetragonal hastatic order with Lan-
dau parameters motivated by microscopic theory [31, 41].

In addition to the on-site moments, 〈b†i~σbi〉, the spinorial
order generically requires a second order parameter asso-
ciated with intersite interference, ∼ 〈b†i~σbj〉 that captures
the double time-reversal symmetry breaking. We revisit
the tetragonal symmetry breaking to find three relevant
couplings with vastly different microscopic magnitudes
that reconcile the experimental literature, and show that
weak in-plane anisotropy leads to soft transverse fluctua-
tions that couple linearly to random strains. These lead
to an Imry-Ma-like loss of tetragonal symmetry break-
ing beyond a small critical disorder that explains why
neutrons find no basal plane moments, even as µSR and
NMR see disordered local fields [42, 43]. The fluctuations
can be stiffened by external strain or transverse magnetic
fields, predicting an additional ordering transition where
the transverse moments develop that should be observ-
able in neutrons or elastoresistivity under applied strain
or large transverse fields.

Results

The simplest microscopic model for tetragonal hastatic
order is the infinite-U two-channel Anderson model de-
picted in Fig. 1(a), where local Γ5 non-Kramers mo-
ments fluctuate to an excited Kramers doublet (Γ+

7 ) via
two channels of conduction electrons that lie in different
tetragonal irreducible representations, Γ6 and Γ−7 . As we
focus on the phenomenology, we take a schematic version
of this Hamiltonian that captures the essential details,

H =
∑

k εkc
†
kσαckσα + ∆E

∑
j b
†
jσbjσ +

∑
ij tf,ijf

†
iαfjα

+
∑
j c
†
jσαb

†
jσ (V6fjα + V7fj-α) +H.c.. (1)

The first term describes two bands of non-interacting
conduction electrons (ckσα) that can mix with the Γ5

non-Kramers doublet ground state of 5f2 U4+ (fjα) via
valence fluctuations to an excited Kramers doublet (5f1

or 5f3) at energy ∆E (bjσ). The original infinite-U
model is written in terms of Hubbard operators, which we
have already eliminated by introducing this representa-
tion of the excited Kramers doublet by a auxiliary boson
bjσ, and the non-Kramers ground state by a auxiliary
fermion, fjσ as derived in Ref. [31]. The development
of hastatic order is represented by the condensation of
the auxiliary bosons, which leads to the development of
hybridization gaps and heavy Fermi liquid physics, in ad-
dition to the symmetry breaking aspects discussed in this
work. This mean-field is exact in the large-N limit where
the SU(2) pseudospin of the ground state doublet (α) is
generalized to SU(N). Tetragonal symmetry leads to
two conduction electron channels (σ) that hybridize via
two different symmetries Γ6 and Γ−7 . We have included
an “f-electron hopping” term, tf that moves auxiliary

fermions between sites, but it is important to note that
this is not the bare hopping of the original f-electrons,
t0f . Rather it is a generic emergent term generated by
fluctuations. Theoretically, it can be straightforwardly
obtained by decoupling the RKKY interactions explicitly
in SU(N) mean-field theory [44, 45], as in U(1) spin liq-
uids [46]. Excitations are confined to the Hilbert space in

Fig. 1(a) by the constraint,
∑
σ b
†
jσbjσ +

∑
α f
†
jαfjα = 1.

A key consequence of this auxiliary particle represen-
tation is an emergent U(1) gauge symmetry:

bjσ → bjσe−iξj , fjα → fjαe−iξj , tf,ij → tf,ije
i(ξi−ξj).

(2)

In the large-N limit, there are two non-gauge-invariant
order parameters, bjσ and tf,ij . For simplicity, we always
chose a uniform tf,ij that breaks no symmetries on its
own. The hastatic order parameter is naively an SU(2)
spinor,

bj = |bj |eiχj
(

cos
θj
2 eiφj/2

sin
θj
2 e−iφj/2

)
. (3)

As the spinor is not gauge invariant, its spinorial nature is
washed out by gauge fluctuations for any finite N , which
also affects the gauge dependent tf . As real symmetries
are additionally broken, there are real order parameters,
but these must be gauge invariant combinations of the
original gauge dependent quantities.

Order parameters

The broken symmetries are captured by gauge invari-
ant order parameters bilinear in bj . These are vectorial,
but carry unmistakable fingerprints of their spinorial ori-
gin. As these break different symmetries, they may de-
velop in stages beyond mean-field theory [see Fig. 2(a)].

• nb,i = 〈b†ibi〉 is the on-site excited state occupa-
tion, which breaks no symmetries and mimics the
single-channel Kondo effect, reproducing the heavy
Fermi liquid signatures above THO [1, 7, 34].

• ~Ψi = 〈b†i~σbi〉 are the on-site moments of the ex-
cited doublet, which correspond to the SO(3) com-
posite order parameter of the two-channel Kondo
model [47–50]. The arrangement of ~Ψi may break
spatial symmetries, leading to ferrohastatic (FH)
or antiferrohastatic (AFH) order. In tetragonal

symmetry, ~Ψ is reducible, with ~Ψ = Ψz ⊕ ~Ψ⊥ =
mΓ+

2 ⊕mΓ+
5 . mΓ+

i labels the different irreducible
representations (irreps) that preserve inversion (+),
translation (Γ) and break time-reversal (m); here
these are the dipolar moments, 〈Jz〉 (mΓ+

2 ) and

〈 ~J⊥〉 (mΓ+
5 ).
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• ~Φij = tf,ij〈b†i~σbj〉 captures additional symme-
tries broken by the arrangement of the spinors,
which generate interference between different sites,
as shown in the diagram in region III of Fig. 1(c).

This interference is described by the complex ~Φ,
whose real and imaginary parts have different sym-
metries. ~Ψ is contained in Re~Φ ⊗ Im~Φ, allowing
a third order coupling. ~Φ is absent for FH order,
but is generic for AFH order, although it was not
present in previous studies due to the conduction
band choice [31]. tf is required for gauge invari-

ance, and consequentially ~Φ is smaller than ~Ψ by
tf/D, where D is the conduction electron band-
width. Note that the emergent tf is proportional
to THO.

Broken symmetries and moments

Now we discuss these order parameters in the context
of URu2Si2. The hidden order is thought to have the
same wave-vector as the antiferromagnetism found un-
der pressure, as the Fermi surfaces found in de Haas-van
Alphen change very little. This order is staggered be-
tween the planes, with Q = Z = [001]. We similarly

stagger ~Ψ, with ~Ψ = mZ+
2 ⊕mZ

+
5 , which indicates that

these moments are staggered by Q. This ~Ψ order cor-
responds to multiple spinor arrangements differentiated
by ~Φ, see Fig. 1(b) for two examples. Here, we con-
sider two examples that are also uniform in the plane,
but with different ĉ axis behaviors. First we consider
the naive two sublattice (2SL) case, with the spinors
on the two sublattices defined as bA and bB = θbA,
where θ = iσ2K is the time-reversal operator, with K
indicating complex conjugation. As these are spinors,
θ2bA = −bA, this order is not invariant under time-
reversal followed by translation (or any symmetry oper-
ation). To preserve a time-reversal-like symmetry, four
sublattices (4SL) are required, with bC = θ2bA = −bA
and bD = θ3bA = −bB . Both 2SL and 4SL orders are
plausible, with one breaking time-reversal uniformly and
the other breaking inversion. Analogues of both appear
in cubic hastatic order [51]. ~Ψ and ~Φ are then,

~Ψ = 〈b†A~σbA〉 − 〈b
†
B~σbB〉, ~Φ = tf 〈b†A~σbB〉. (4)

We identify ~Φ2SL = (mΓ+
2 ⊕mΓ+

5 )⊕Z+
5 , and ~Φ4SL =

(mZ−2 ⊕mZ
−
5 )⊕ Γ−5 , where the first (second) terms are

the real (imaginary) components. Again, Γ and Z indi-
cate uniform or c-axis staggered moments, m indicates
moments that break time-reversal, and ± indicates mo-
ments even or odd under inversion symmetry.

Table I gives the four possible order parameters and
associated moments in region IV (where both ~Ψ and ~Φ
are nonzero); regions II and III have subsets of these, as
~Φ or ~Ψ are zero, respectively.

Ψz = mZ+
2

~Ψ⊥ = mZ+
5

staggered mz staggered ~m⊥

2SL [Im~Φ = Z+
5 ] Re~Φ = mΓ+

2 Re~Φ = mΓ+
5

staggered (Qxz, Qyz) uniform ~m⊥ uniform mz

4SL [Im~Φ = Γ−5 ] Re~Φ = mZ−5 Re~Φ = mZ−2
uniform ~p⊥ staggered ~Ω⊥ staggered Ωz

TABLE I. Possible AFH phases and associated moments in re-
gion IV of Fig. 1. In region II, only ~Ψ moments are present,
while in region III only Re~Φ or Im~Φ moments are nonzero.
m, p,Ω refer to magnetic, electric and toroidal dipoles, re-
spectively, while Q indicates electric quadrupoles. In-plane
moments are susceptible to being washed out by disorder.
The full set of primary and secondary order parameters is
given in the supplementary information (SI) [52].

As all region IV phases have an in-plane dipolar
component, tetragonal symmetry breaking is ubiquitous
when both ~Ψ and ~Φ are nonzero, even for ~Ψ along ĉ.
These moments are all susceptible to being washed out by
disorder, and so we highlight the robust consequences of
~Φ in the ~Ψ⊥ phase, where uniform magnetic dipoles, mz

or staggered toroidal dipoles, Ωz are expected in 2SL and
4SL, respectively. Microscopic theory suggests that these
moments are tiny, ∼ THOtf/D

2. Fortunately, Kerr ef-
fect or second harmonic generation measurements should
be sufficiently sensitive, and Kerr measurements tantaliz-
ingly suggest that mz develops slightly above THO [12].

Antiferrohastatic Landau theory

Having understood the symmetries, we now turn to
the Landau theory to discuss the thermodynamic and
other responses. As tf/D suppresses the effects of ~Φ,

we focus on the ~Ψ transition from region I to II. The
additional transition to region IV is also second order,
but is practically undetectable, as the specific heat jump
is suppressed by ∼ (tf/D)2 compared to the first jump,
and is expected to be within the experimental noise, <∼
3mJ mol−1K−1 (see Methods). We therefore consider,

FΨ =α⊥(T − T⊥c )|~Ψ⊥|2 + αz(T − T zc )Ψ2
z + u⊥|~Ψ⊥|4

+ uzΨ
4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2. (5)

FΨ describes two independent order parameters, Ψz and
~Ψ⊥ that couple quadratically, and Ψ2

Γ4
= 2ΨxΨy.

The parameter choices are guided by the microscopic
calculations [33, 41], as discussed in the SI [52]. We know
that T⊥c = T zc ≡ THO and that the order parameters re-
pel (v2 � 1). A first order transition between Ψz and
~Ψ⊥ can be induced by varying uz−u⊥ = u(p−p0

c); pres-
sure tunes V6/V7, which induces just such a transition
microscopically. The sign of v1 determines the pinning
of φ and nature of the tetragonal symmetry breaking.

As tetragonal symmetry is generically broken, we con-
sider secondary ferroquadrupolar order parameters, RΓ3

,
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RΓ4
and ~RΓ5

that couple linearly to strain as shown in
Methods:

εx2−y2 =
g3RΓ3

c11−c12
, εxy=

g4RΓ4

2c66
, (εxz, εyz)=

g5
~RΓ5

2c44
. (6)

RΓ3 and RΓ4 occur naturally in the Γ5 doublet, and

couple to bilinears of ~Ψ⊥: Ψ2
Γ3

= Ψ2
x − Ψ2

y and Ψ2
Γ4

=

2ΨxΨy, while ~RΓ5
shear strain couples to Ψz

~Ψ⊥. These
give,

FR =
∑

i=3,4,5

(
α

(i)
R R2

Γi + u
(i)
R R4

Γi

)
,

FΨ−R =γ3RΓ3Ψ2
Γ3

+ γ4RΓ4Ψ2
Γ4

+ γ5Ψz
~Ψ⊥ × ~RΓ5

. (7)

Finally, we consider the coupling to magnetic field, ~h,
which has mΓ+

2 ⊕mΓ+
5 symmetry, like FH order. Bilin-

ears of ~h⊥ also break tetragonal symmetry: h2
Γ3

= h2
x−h2

y

and h2
Γ4

= 2hxhy. The additional free energy terms are,

FΨ−h =u
(1)
h h2

zΨ
2
z + u

(2)
h |~h⊥|

2Ψ2
z + u

(3)
h h2

z|~Ψ⊥|2 (8)

+ u
(4)
h |~h⊥|

2|~Ψ⊥|2 + v
(3)
h h2

Γ3
Ψ2

Γ3
+ v

(4)
h h2

Γ4
Ψ2

Γ4
.

The ferroquadrupolar orders also couple to ~h via FR−h,
given in the SI [52].

The physics of AFH order can be explored by fixing a
set of parameters and minimizing the free energy to ob-
tain temperature, pressure and transverse/longitudinal
field phase diagrams, as well as thermodynamic responses
across the various transitions [52]. These quantities com-
pare favorably to the experimental literature on URu2Si2,
where the HO may be identified with AFH⊥ (~Ψ⊥) order,
and the antiferromagnet (AFM) identified with AFHz

(Ψz) order. Remember, symmetry-wise, ~Ψ and AFM or-
ders are identical, but the microscopic origins give vastly
different parameter sets. Notably, the calculated U 5f2

moments in the AFHz phase are ∼ .5µB , consistent with
neutron measurements [53, 54], while the AFH ~Ψ⊥ phase
has much smaller in-plane U 5f3 moments <∼ .01µB for a
fairly substantial mixed valency (∼ 20%) [31, 41].

Tetragonal symmetry breaking in URu2Si2.

There are two distinct in-plane AFH orders, AFHx2−y2

and AFHxy, with Ψ2
Γ3

Ψ2
Γ4

nonzero, respectively. This
tetragonal symmetry breaking actually has three ex-
perimental manifestations with different Landau coeffi-
cients: the coupling to the lattice via ferroquadrupo-
lar order parameters (γ3,4); the coupling to magnetic

field (v
(3,4)
h ) that yields anisotropic magnetic suscepti-

bilities; and the coupling to an electronic nematic order
parameter affecting the resistivity (ζ3,4, not shown; see
(52). The connection to microscopics is particularly use-
ful here, as the induced electric quadrupolar moments,

R3,4 = γ3,4Ψ2
Γ3,4

are tiny, even when Ψ2
Γ3,4

is relatively
large, suggesting that the coupling constants are of order

(THO/D)2 ∼ .001. The anisotropic field couplings, v
(3,4)
h

are similarly suppressed [33], although typically found to
be an order of magnitude larger microscopically [41]. At
the same time, the tetragonal symmetry breaking near
the Fermi surface is of order one, which would give sub-
stantial resistivity anisotropy signatures. As we discuss
below, the tetragonal symmetry breaking may be washed
out by disorder, but the signals at and above the transi-
tion remain, and tetragonal symmetry breaking may be
restored by applied field or strain.

The coupling to the lattice (γ3,4) manifests both as
tiny jumps in the relevant elastic coefficients that have
not been seen [18], and tiny directional jumps in the
thermal expansion or magnetostriction [52]; higher or-
der terms like R2

Γi
|Ψ|2, neglected here are not necessarily

small and give kinks in all elastic coefficients [18]. Below
the transition, the small ferroquadrupolar moments lead
to a orthorhombic distortion. The experimental evidence
here is mixed. One x-ray experiment [15] has observed a
Γ4 (=B2g = Fmmm space group) distortion, but other
results do not find a distortion in the HO region, but in-
stead find the opposite (Γ3 = B1g = Immm) distortion
at higher pressures, with TR � THO [17, 40] develop-
ing rapidly near the critical pressure between the HO
and AFM. As an aside, we can straightforwardly con-
sider this additional orthorhombicity, shown in Fig. 2(a)
by giving RΓ3

a transition temperature TR3(p) that van-
ishes at p = pR. This independent orthorhombic transi-
tion leads to additional transitions within the ~Ψ⊥ phase
where φ changes; specific heat and structural signatures
are weak due to the near constant |~Ψ⊥| and small γ3,4,
respectively, but the transition would be visible in elas-
toresistivity. The close coincidence of orthorhombic and
AFM transitions in pressure would be accidental in this
scenario.

Unlike the small coupling to the lattice, the large cou-
pling to electronic nematicity gives significant jumps in
the elastoresistivity at THO, in m11−m12 (Ψ2

Γ3
), or m66

(Ψ2
Γ4

) [16, 19, 52]; and Γ4 nematicity captures the cy-
clotron mass anisotropy with heavier masses along [110]
[55].

The coupling to magnetic field allows the magnetic
susceptibility to break tetragonal symmetry, with either
χxx − χyy or χxy nonzero for Ψ2

Γ3,4
[52], respectively, as

found in torque magnetometry measurements [14]. The
magnetic susceptibility [14] and elastoresistivity [16] data
suggest that Γ4 symmetry breaking is favored by v1 > 0.

Finite field behavior: field locking transition and torque
magnetometry

To properly understand the torque magnetometry, we
must consider finite transverse magnetic fields in the ab-
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FIG. 2. Transitions in the in-plane moment direction due to
field or independent orthorhombic order parameters. (a) T−p
phase diagram including the onset of independent orthorhom-
bicity (RΓ3) at p ≈ 0.5; white dashed lines correspond to the
original transitions. (b) T−hx phase diagram at p = 0, show-
ing the field-locking transition. (c) Magnetic torque curves
for different in-plane fields at T/T⊥c = 0.4, with and with-
out small external εΓ4 strain. (d) Thermal expansion coeffi-
cients are sensitive to both transitions, at main hastatic tran-
sition (THO) and the field-locking transition for hx/h

d
x = 0.1

(T ′c ≈ 0.96THO). Parameters for all plots are given in the SI
[52].

sence of disorder. As the pinning is weak, it is possi-

ble to reorient ~Ψ⊥ via the quadratic coupling v
(3,4)
h . If

the zero-field order is Γ4 (AFHxy), ~h = hxx̂ favors the
“field-locked” Γ3 (AFHx2−y2) at temperatures and fields
beyond T ′c(hx). Above T ′c, only Ψ2

Γ3
is present and Ψ2

Γ4

turns on via a second order transition, as shown in Fig.
2 (b). T ′c can be estimated to lowest order in hx (see
Methods),

T ′c
THO

=1−
v

(3)
h h2

x

α⊥T⊥c

(
1 +

4u⊥
|v1|

)
≈ 1−

(
hx
hcz

)2

. (9)

We can estimate the O(1) prefactor from the micro-

scopics, as 4u⊥/|v1| ∼ (D/THO)2, while v
(3)
h /(α⊥T

⊥
c ) ∼

v
(3)
h /[u

(3)
h (hcz)

2] ∼ (THO/D)2. This critical field is thus
proportional to the c-axis critical field, hcz ≈ 35T [56],
and hx ≥ 10T is likely required to distinguish the transi-
tions. As the components of ~Ψ⊥ change in compensating
ways at T ′c, the ratio of heat capacity jumps at T ′c and
THO, ∆C|T ′c/∆C|THO = |v1|/4u⊥ ≈ (THO/D)2 is very
small, meaning ∆C|T ′c/T

′
c
<∼ 0.2mJ mol−1 K−2 is within

experimental noise [57, 58]. Properties sensitive to either
Ψ2

Γ3
or Ψ2

Γ4
, like elastoresistivity will have larger jumps

at both transitions; there will be a jump in m11 − m12

at THO and in both m11 − m12 and m66 at T ′c. These
behave similarly to the thermal expansion shown in Fig.
2(c). Note that the thermal expansion itself is likely dif-
ficult to detect due to the smallness of ferroquadrupolar
couplings (γ3,4 ∼ (THO/D)2) and the possibility of multi-
domain cancellation.

The pinning also affects the torque magnetometry at
lower fields, which is used to measure the magnetic sus-
ceptibility matrix elements. We numerically simulate
torque curves with our full ~Ψ free energy using:

~τ = ~M × ~h = −∂F
∂~h
× ~h, (10)

with results shown in Fig. 2(c). For a system with
a system with pure Z4 pinning, hysteretic behavior is
found for hx < hdx(T ). For larger fields, above the field-
locking critical field there is no longer a two-fold com-
ponent of the torque and the torque curves are entirely
four-fold in character as the order parameter ”follows”
the field. Experiments, however, have shown a substan-
tial, but smooth two-fold anisotropic response, although
only in small crystals, where it has been attributed to the
Z2 pinning effects of surface strains. We include these
strains as an external Γ4 strain (εextxy ) that couples as
δF extε = −λxyεextxy Ψ2

Γ4
and replaces the hysteresis by a

two-fold anisotropic response similar to the experiment.

Fluctuations and disorder

While the weak pinning already affects the mean-field
physics, it is even more important when discussing fluc-
tuations. The in-plane moments are governed by a 3D
XY model with weak Z4 pinning [59], where we estimate
the pinning for URu2Si2, v1/u⊥ ∼ (THO/D)2 ∼ .001
for THO/D ∼ 1/30 [31, 41]. The 3D XY model is well
known to be disordered by infinitesimal random fields
that couple linearly to the massless transverse fluctua-
tions [60, 61], and our AFH ~Ψ⊥ does couple linearly to
random strains: the fluctuations of Γ4 order (AFHxy)
couple to uniform Γ3 strains, and vice versa for Γ3

(AFHx2−y2) order. Thus, we expect the in-plane order
to be lost if disorder is stronger than the pinning [62–64].
It is important to note that hastatic order itself survives,
even in the XY limit, as the moments are not pre-formed,
like in the pure XY spin model. Instead, the hastatic mo-
ment magnitude develops (〈b†b〉) and choose to lie in the

XY plane (|~Ψ⊥|) at Tc, with large barriers for out of plane
fluctuations. Even the barriers for translation symmetry
breaking are large, and so the AFH nature is also robust.

Therefore, most signatures of hastatic order will re-
main, with only the tetragonal symmetry breaking
washed out by disorder.

The transverse in-plane fluctuations (δΨt) acquire a
small mass with finite pinning, mt � m, where m is



6

the mass for longitudinal in-plane (δΨl) and c-axis (δΨz)
fluctuations. This finite mt leads to a small, but finite
critical disorder strength (αc ∼ m2

t ) beyond which the
tetragonal order is washed out. If samples are sufficiently
disordered, α > αc the in-plane moments will be disor-
dered, consistent with neutron measurements [37–39] and
the absence of χxy and similar signals in larger samples
[14]. Moreover, the remaining random local fields would
be consistent with µSR [65] and NMR [42]. Most inter-
estingly, mt and thus αc can be enhanced substantially
by external strain (εi) or transverse field (~h⊥), making
it possible to increase αc > α. This increase causes a
transition where ~Ψ⊥ itself orders, always breaking more
symmetries than were applied. We label this transition
with TI(εi,~h⊥) This transition is likely difficult to ob-
serve with non-symmetry-breaking signals, just like the
field locking transition, but should be visible in torque
magnetometry, elastoresistivity and neutron diffraction,
although the staggered moments remain very small.

The fluctuations are treated in a simplified Landau-
Ginzburg theory in external strain and transverse field,

L =c⊥

∣∣∣∇~Ψ⊥∣∣∣2 + r|~Ψ⊥|2 −
∑
i=3,4

(
λiεΓi + v

(i)
h h2

Γi

)
~Ψ2

Γi

+ u⊥|~Ψ⊥|4 − v1(Ψ2
Γ4

)2, (11)

where r = α⊥(T − THO). We are interested in the
fluctuations within the ordered phase (for φ = π/4),
~Ψ = (Ψ0 + δΨl + δΨt,Ψ0 + δΨl − δΨt, δΨz), which we
analyze in detail in the Methods. We find two “heavy”
fluctuations: a longitudinal (δΨl) and an out of plane
transverse fluctuation (δΨz) with masses ml ≈ mz. In
the absence of external tetragonal symmetry breaking,
the in-plane transverse fluctuations, δΨt are quite light:

mt

ml
=

√
|v1|

4u⊥ − |v1|
≈

√
|v1|
4u⊥

∼ O
(
THO
D

)
. (12)

These fluctuations have large coherence lengths, ξt/ξl =
ml/mt ∼ O(D/THO) ∼ 100 unit cells [66].

The light transverse fluctuations couple linearly to Γ3

strain (see Methods), as

LδΨt−εΓ3
= 4λ3Ψ0εΓ3

δΨt. (13)

Following the original argument of Imry and Ma [60], we
consider how random strains can disorder the in-plane or-
der. While the overall mean 〈εΓ3

〉 = 0, the local average
over any finite region of volume Ld is nonzero and scales
as 〈∆ε2Γ3

〉 ∼ α2Ld, where α parameterizes the disorder
strength. This finite region can therefore gain an energy
aLd/2 (with a ∼ λ3Ψ0α) by forming a domain where δΨt

aligns with the average local random field. Domain walls
of length L cost an energy cLd−1, where c ∼ m2

t , giving
an overall domain cost, ∆Ed(L) = −aL3/2 + cL2, where
we set d = 3. As long as disorder is sufficiently weak, for

L < L0 ∼ (a/c)2, the transverse fluctuations, δΨt align
with the local average strain and order is lost on these
shorter length scales, where L0 acts as a new, larger co-
herence length. For stronger disorder, the full random
field four-state clock model should be treated [63]; we
simply assume that the tetragonal ordering temperature,
TI(α) decreases monotonically from THO for α = 0 to
zero at αc, where αc ∼ c ∼ m2

t . Therefore, as exter-

nal Γ4 or h[110] are applied, mt increases and TI(~h⊥) can
rise from zero beyond a critical field to eventually meet
THO, as shown in Fig. 3. Note that the field-locking
transition previously discussed is completely washed out
if the zero-field ground state is disordered, as the smaller
barrier does not increase with field.

FIG. 3. (Top) A cartoon phase diagram in transverse field
(hx) with random strain disorder (α) strong enough to wash
out the zero-field tetragonal symmetry breaking. In-plane
moments form at THO, where most hastatic signatures onset,
but do not order until the magnetic field sufficiently increases
the largest barrier between minima in F (φ), which occurs at
TI(hx). (Bottom) Sketches of the free energy dependence as
a function of φ for different hx, showing the evolution of the
barrier heights.

Discussion

In this paper, we showed that AFH order supports
not a single, spinorial order parameter, 〈bjσ〉 but three
conventional order parameters: the scalar amplitude, nb
that develops as a crossover and induces a heavy Fermi
liquid; the on-site moment, ~Ψ that breaks symmetries
like an AFM, but with significantly different Landau pa-
rameters; and intersite interference terms, ~Φ that isolate
the signatures of the underlying spinorial nature. We
discussed how the weak coupling of ~Ψ to the lattice com-
pared to electronic quantities reconciles disparate exper-
imental measurements of tetragonal symmetry breaking
at the transition. Finally, we argued that weak pinning
leads to soft transverse fluctuations that couple linearly
to random strains and may disorder the in-plane mo-
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ments, without totally destroying the order. We predict
that the moments can be restored by stiffening the fluc-
tuations via transverse field, with a new transition visible
in elastoresistivity and neutron diffraction.

Our Landau-Ginzburg theory is consistent with previ-
ous experiments on URu2Si2, and additionally predicts:

• If ~Φ orders, we expect small, but robust uniform
magnetic dipoles, mz or staggered toroidal dipoles,
Ωz in the HO, for 2SL and 4SL orders, respectively;
these could be seen with Kerr effect or second har-
monic generation. They may onset above or below
THO, and may be sample dependent, as the barriers
between 2SL and 4SL are weak [41, 51].

• We predict new transitions within the HO phase
for large transverse fields. If the disorder is strong
enough to wash out the tetragonal symmetry break-
ing at zero field, there will generically be an or-
dering temperature, TI where the applied Z2 pin-
ning overcomes the Imry-Ma disordering mecha-
nism. Alternately, if the disorder is not so strong,
for applied strain, [100] perpendicular to the pre-
ferred [110] orientation, there will be a field-locking
transition, Tm above which the moments align with
the field and below which they take an intermedi-
ate angle. Both transitions break symmetries, and
give the strongest signals in elastoresistivity, not
traditional thermodynamic probes.

Hastatic order is theoretically fascinating, as the spinor
order breaks not only single, but double-time-reversal.
Signatures of double-time-reversal symmetry breaking
were absent in previous work, but are now captured by
~Φ. Future work may explore the interplay of double-time-
reversal symmetry breaking with superconductivity and
defects [50].

Methods

Angular dependence of order parameters. In the
large-N , mean-field limit, the angular dependence of the order
parameters can be written explicitly:

~Ψ = |b|2(sin θ cosφ, sin θ sinφ, cos θ)

Re~Φ = tf |b|2(cos θ cosφ, cos θ sinφ,− sin θ)

Im~Φ = tf |b|2(sinφ,− cosφ, 0). (14)

These are mutually orthogonal, although this condition may
be relaxed for finite N , where they may also develop at dif-
ferent temperatures. The triple product of these is an angle-
independent scalar, and there are in fact two distinct third
order invariants (Γ+

1 ) that can be constructed in tetragonal

symmetry: Ψz(Re~Φ⊥× Im~Φ)z and ReΦz(~Ψ⊥× Im~Φ)z, which
are relevant for either the Z or XY phases respectively. These
third order terms cause the hastatic order transition to be
first order at the multicritical point, but do not generically

lead to first order transitions and have no other qualitative
effects.

Specific heat jump upon transition to region IV.
We mainly consider the signatures of TΨ and neglect signa-
tures at TΦ. Here we justify this. If we assume TΨ > TΦ,
the second specific heat jump associated with TΦ is expected
to be reduced by at least a factor of (tf/D)2, as ∆CV =
α2

Ψ,ΦTHO/uΨ,Φ = αΨ,Φ(Ψ,Φ)2
T=0, and we know ΦT=0 ≈

tf
D

ΨT=0. We roughly estimate tf/D ≈ THO/D ≈ 1/30 for
URu2Si2, which means ∆CV |TΦ

<∼ .001∆CV |TΨ ≈ 3mJ/mol
K, within the experimental noise. The moments are also sup-
pressed, but may be detected by more sensitive techniques.

Strains and thermal expansion. The ferroquadrupo-
lar order parameters used throughout the paper are pro-
portional to the elastic strain, which we show here in de-
tail. The strain components in tetragonal symmetry are[
εz2 , εx2−y2 , εxy,~ε = (εxz, εyz)

]
which transform as Γ1g(A1g)⊕

Γ3g(B1g)⊕Γ4g(B2g)⊕Γ5g(Eg) and are described by the Lan-
dau free energy,

Fel =
c11 − c12

2
ε2x2−y2 + c66ε

2
xy + c44|~ε|2 − g3εx2−y2RΓ3

− g4εxyRΓ4 − g5~ε · ~RΓ5 , (15)

where we omit the bulk (volume) terms. After integrating
out the strains from the elastic free energy we find the corre-
sponding ferroquadrupolar orders:

εx2−y2 =
g3RΓ3

c11 − c12
, εxy =

g4RΓ4

2c66
, ~ε =

g5
~RΓ5

2c44
, (16)

which interact with the order parameter, ~Ψ and external field,
~h and are described by the Landau theory in the results sec-
tion. Note that third order terms in R are allowed by sym-
metry, but we drop the biquadratic couplings and anisotropic
fourth order terms in Eq. (7). Although allowed by symme-
try, they do not qualitatively affect the physics of interest.

We can express anisotropic thermal expansion coefficients
(α) in terms of quadrupolar order parameters (up to dimen-
sionful constants):

α100 =
1

L

∆L

dT

∣∣∣∣
x

− 1

L

∆L

dT

∣∣∣∣
y

∝ ∂RΓ3

∂T

α110 =
1

L

∆L

dT

∣∣∣∣
[110]

− 1

L

∆L

dT

∣∣∣∣
[110]

∝ ∂RΓ4

∂T
. (17)

Numerical results for thermal expansion as well as linear and
non-linear susceptibility can be found in the results section
(Fig. 2 (b)) and the SI [52]. We also explored the mag-
netostriction tensor, but found that it involved higher order
effects that make it a much less sensitive probe.

Field-locking transition. We estimate the field-locking
transition temperature and model response functions using
the simplified free energy,

Fm =α⊥(T − T⊥c )|~Ψ⊥|2 + u⊥|~Ψ⊥|4

− v1(Ψ2
Γ4

)2 − v(3)
h h2

Γ3
Ψ2

Γ3
. (18)
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The order parameters are given by,

Ψ(0)
x |x2−y2 =

√
−
α⊥(T − T⊥c )− v(3)

h h2
x

2u⊥
, Ψ(0)

y |x2−y2 = 0,

(19)

for the high temperature field-locked phase, and

Ψ(0)
x |⊥,mix =

√√√√
−
α⊥(T − T⊥c )− v(3)

h h2
x

(
u⊥
v1
− 1
)

4u⊥ − v1
,

Ψ(0)
y |⊥,mix =

√√√√
−
α⊥(T − T⊥c ) + v

(3)
h h2

x

(
u⊥
v1
− 1
)

4u⊥ − v1
, (20)

for the low temperature mixed phase. The second order tran-

sition occurs when Ψ
(0)
y becomes nonzero, for

T ′c
T⊥c

=1−
v

(3)
h h2

x

α⊥T⊥c

(
1 +

4u⊥
|v1|

)
≈ 1−

(
hx
hcz

)2

, (21)

as shown in the main text. It is important to note that the
overall magnitude of |Ψ| across the phase transition is almost
perfectly smooth, despite large changes in Ψx,y (for numerical
results refer to [52]). Standard bulk probes, like specific heat,
are therefore unlikely to detect this transition. Indeed, the
specific heat jumps at two transitions are given by, in the
simplified model,

∆C|THO =

(
−T

∂2Fm|x2−y2

∂T 2

)
Tc

,

∆C|T ′c =

(
−T

∂2
(
Fm|⊥,mix − Fm|x2−y2

)
∂T 2

)
T ′c

, (22)

which reduces to:

∆C|T ′c
∆C|Tc

=
v1

4u⊥ − v1
≈ v1

4u⊥
, (23)

and gives a (THO/D)2 reduction of heat capacity jump at T ′c.
Directionally dependent quantities will be sensitive to the

tetragonal symmetry breaking. To treat these analytically,
we include the ferroquadrupolar terms,

δFm = α
(3)
R R2

Γ3
+ α

(4)
R R2

Γ4
+ γ3RΓ3Ψ2

Γ3
+ γ4RΓ4Ψ2

Γ4
, (24)

and calculate the thermal expansion coefficients according to
Eq. (17) to leading order in γ3 and γ4. Using Eq. (19)-(21),
we find jumps of the same magnitude (but opposite sign) in
α100 at both the main transition and at the field-locking one:

∆α100|THO,T ′c ≈
γ3

α
(3)
R

(
∂Ψ2

Γ3

∂T

)
THO,T

′
c

≈ ± γ3

α
(3)
R

α⊥
2u

, (25)

while α110 shows a (T ′c − T )−1/2 divergence only below the
field-locking transition,

∆α110|THO =0, α110|T→T ′c+ = 0, (26)

α110|T→T ′c− ≈
γ4

α
(4)
R

(
∂Ψ2

Γ4

∂T

)
T→T ′c−

≈ γ4

α
(4)
R

α⊥

2
√

2u

√
T⊥c − T ′c
T ′c − T

.

Effective Landau-Ginzburg theory and light trans-
verse fluctuations. Considering only the ~Ψ terms, we have
the following Landau-Ginzburg theory,

L =c⊥

∣∣∣∇~Ψ⊥∣∣∣2 + cz (∇Ψz)
2 + r⊥|~Ψ⊥|2 + rzΨ

2
z

+ u⊥|~Ψ⊥|4 + uzΨ
4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2, (27)

where r⊥ = α⊥(T − T⊥c ) and rz = αz(T − T zc ). We expand

around the AFHxy ground state, where we write ~Ψ = (Ψ0 +

δΨl + δΨt,Ψ0 + δΨl − δΨt, δΨz), with Ψ0 =
√
− r⊥

4u⊥−v1
.

Here, we have decomposed the fluctuations into longitudinal
(δΨl), in-plane transverse (δΨt) and out of plane transverse
(δΨz). Note that expanding around the AFHx2−y2 state will
give similar results. We now expand to second order in the
fluctuation fields, using∣∣∣~Ψ⊥∣∣∣2 ≈2Ψ2

0 + 2(δΨl)
2 + 2(δΨt)

2 + 4Ψ0δΨl,∣∣∣~Ψ⊥∣∣∣4 ≈4Ψ4
0 + 24Ψ2

0(δΨl)
2 + 16Ψ3

0δΨl + 8Ψ2
0(δΨt)

2,

(Ψ2
Γ4

)2 ≈Ψ4
0 + 6Ψ2

0(δΨl)
2 − 2Ψ2

0(δΨt)
2 + 4Ψ3

0δΨl. (28)

The three fluctuation fields completely decouple, L =
L[δΨz] + L[δΨl] + L[δΨt], with

L[δΨz] =cz (∇δΨz)
2 +

(
rz − 2v2

r⊥
4u⊥ − v1

)
(δΨz)

2,

L[δΨl] =c⊥(∇δΨl)
2 − 2r⊥(δΨl)

2,

L[δΨt] =c⊥(∇δΨt)
2 − r⊥v1

4u⊥ − v1
(δΨt)

2. (29)

The masses of the fluctuation fields can be read off directly,
using that an action with c(∇φ)2 +βφ2 corresponds to scalar

field of mass m[φ] =
√
β/c. We find two “heavy” fluctuation

fields with comparable masses (δΨz and δΨl) and one “light”
field (δΨt), with mass ratios,

mz

ml
=

√√√√∣∣∣rz − 2v2
r⊥

4u⊥−v1

∣∣∣
|2r⊥|

c⊥
cz
≈

√(
2v2

4u⊥ − |v1|
− 1

2

)
c⊥
cz
∼ O(1),

mt

ml
=

√
|v1|

4u⊥ − |v1|
≈
√
|v1|
4u⊥

∼ O
(
THO
D

)
. (30)

Note that a similar analysis can also be done in the AFHz
phase including ~Φ, where ~Φ breaks tetragonal symmetry and
has similarly light transverse in-plane fluctuations. Thus, the
Imry-Ma story also applies to the in-plane ~Φ moments in the
AFHz phase.

Next we consider the coupling of these light transverse fluc-
tuations to strain,

LΨ−ε = λ3εΓ3Ψ2
Γ3

+ λ4εΓ4Ψ2
Γ4
. (31)

Expanding in terms of light fluctuations using Ψ2
Γ3
≈ 4Ψ0δΨt

and Eq. (28) for Ψ2
Γ4

, we find the result quoted in Eq. (13),
to leading order in δΨt. Thus, for [110] pinning, we find that
the light transverse fluctuations couple linearly to random εΓ3

strain, but quadratically to random εΓ4 strain; the situation
is reversed for [100] pinning.
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Supplementary Information: “Landau-Ginzburg Theory of Tetragonal Hastatic Order”

In this supplementary information, we give more details of the antiferrohastatic Landau-Ginzburg theory of tetrag-
onal hastatic order. In the first two sections, we further discuss the full Landau theory with ~Ψ and ~Φ, including the
momentum space derivation of the order parameters and a full table of all secondary order parameters that can be
used to construct the full Landau theory. The next sections focus on the ~Ψ Landau theory, where we indicate the
numerical parameters used in the plots in the main text and show some of the more straightforward consequences of
antiferrohastatic order, as well as giving more details relevant to field locking transitions. This is followed by the final
two sections discussing the interpretation of relevant resonant ultrasound and elastoresistivity nematicity experiments
in the light of hastatic order theory.

A. Momentum space order parameters

In the main text, we derived the antiferrohastatic (AFH) order parameters in real space, but it is often convenient to
derive them instead in momentum space, where the Q of the order can easily narrow down plausible order parameters.
We begin with the real space gauge invariant quantities, ~Ψi = 〈b†i~σbi〉 and ~Φij = tf,ij〈b†i~σbj〉 and Fourier transform:

~Ψq =
1

Ns

∑
k

〈b†k+q~σbk〉 =
1

Ns

∑
i

〈b†i~σbi〉e
iq·Ri , (32)

~Φq =
1

N2
s

∑
k1,k2

tf,k1k2〈b
†
k1+q~σbk2〉 =

1

N2
s

∑
i,j

tf,ij〈b†i~σbj〉e
iq·Ri , (33)

where ~Ri denotes the real space lattice vectors, Ns the number of sites, and we used the Fourier transforms,

bk =
1√
Ns

∑
i

eik·Ribi tf,k1k2 =
1

Ns

∑
i,j

ei(k1·Ri−k2·Rj)tf,ij . (34)

For simplicity, we assume that tf,ij = tf
∑
η δ(Ri+η−Rj) is uniform and only nonzero between nearest-neighbors

indicated by η. This makes tf,k1,k2
= tf

∑
η e−ik1·ηδ(k1 − k2), and

~Φq =
tf
Ns

∑
k,η

〈b†k+q~σbk〉e−ik·η. (35)

Now we turn to the specific case of URu2Si2, where we assume that the spinor is uniform in the plane and modulated
along ẑ as shown in Fig. 1 in the main text. Knowing that Q = [001], we expect that only 〈b0〉 is nonzero for uniform,
ferrohastatic (FH) order [67], while for the two sublattice (2SL) AFH order, 〈b0〉 and 〈bQ〉 are nonzero and for the four
sublattice (4SL) AFH, 〈b±Q/2〉 are nonzero (with 〈b0〉 and 〈bQ〉 vanishing due to the preservation of time-reversal).
In simplifying the expressions, we use 2Q = 0. It is convenient to rewrite these non-zero Fourier components in terms
of the real space bA and bB = θ̂bA for the 2SL/4SL cases:

b0 =
1√
2

(bA + bB) , bQ =
1√
2

(bA − bB) , bQ
2

=
1√
2

(bA + ibB) , b−Q
2

=
1√
2

(bA − ibB) . (36)

Now we can evaluate the nonzero order parameters ~Ψq and ~Φq. For the FH case, only ~Ψ0 = 〈b†A~σbA〉 is nonzero, as
expected. The nonzero contributions for 2SL order are:

~Ψ2SL = Re〈b†Q~σb0〉, Re~Φ2SL = tf

(
〈b†0~σb0〉 − 〈b†Q~σbQ〉

)
, Im~Φ2SL = tf Im〈b†Q~σb0〉, (37)

which are equivalent to real space ~Ψ = 〈b†A~σbA〉−〈b
†
B~σbB〉, Re~Φ = Re〈b†A~σbB〉 and Im~Φ = Im〈b†A~σbB〉, respectively.

The 4SL order parameters are instead:

~Ψ4SL = Re〈b†
−Q

2

~σbQ
2
〉, Re~Φ4SL = tf Im〈b†Q

2

~σbQ
2
〉, Im~Φ4SL = tf Im〈b†

−Q
2

~σbQ
2
〉, (38)

which again correspond exactly to the real space ~Ψ = 〈b†A~σbA〉 − 〈b
†
B~σbB〉, Re~Φ = Re〈b†A~σbB〉 and Im~Φ =

Im〈b†A~σbB〉, respectively. Thus, the real space and momentum space analyses agree.
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B. Secondary order parameters and moments

The primary order parameters (~Ψ and ~Φ) and the associated broken symmetries and moments were discussed in

the main text. Here we report the secondary order parameters coming from ~Ψ ⊗ ~Ψ, ~Φ ⊗ ~Ψ and ~Φ ⊗ ~Φ, which could
be used to construct a more general AFH free energy. Table II contains all of the secondary order parameters, their
symmetries and associated moments, for the FH, simple AFH (tf = 0), 2SL and 4SL phases. There are no new

symmetries that can be constructed from three or more order parameters. Note that ~Φ is expected to be smaller than
~Ψ by a factor of tf/D, which also suppresses the secondary moments and makes them more difficult to detect.
~Ψ ⊗ ~Ψ contains only non-time-reversal symmetry breaking electric quadrupole moments that capture the broken

tetragonal symmetry, and have been substantially discussed in the main text.
~Ψ ⊗ ~Φ is substantially redundant with ~Φ itself, however, in the XY AFH phases, there are additional moments.

Particularly, for the 2SL XY phase, the uniform time-reversal symmetry breaking is additionally indicated by mΓ+
1

(a dotriacontapolar order parameter) and tetragonal symmetry breaking octupolar moments, mΓ+
3,4. For the 4SL

XY phase, the inversion symmetry breaking is indicated by staggered magnetic quadrupoles that both break (mZ−3,4)

and preserve (mZ−1 ) tetragonal symmetry. These higher order moments might be useful signatures of the inversion
symmetry breaking, as the uniform electric dipole moments, pz of the phase will be screened in a metal.
~Φ ⊗ ~Φ contains the smallest secondary order parameters, suppressed by (tf/D)2, but are particularly interesting

in the 2SL/4SL Z phases, which would correspond to the large moment antiferromagnet. Here, the ~Φ ⊗ ~Φ moments

break tetragonal symmetry even though ~Ψ does not, with the same uniform quadrupole moments as contained in
~Ψ⊗ ~Ψ for the XY phases. Note that these moments are also susceptible to the Imry-Ma disordering mechanism, and
are unlikely to be detectable.

C. Free energy parameter choices and details of the hastatic transitions

In this section we present the details of the free energy used for numerical calculation of phase diagrams and
thermodynamic response across the AFH transitions. Particular emphasis is given to the parameter choices made
with microscopic results [33, 41] in mind. We also show additional details of the hastatic order transitions, including
the field-locking transition.

Here, we repeat the free energy given in the main text:

F = FΨ + FR + FΨ−R + FΨ−h + FR−h, (39)

which governs the response of the order parameter, Ψ and ferroquadrupolar order parameters, R, with:

FΨ = α⊥(T − T⊥c )|~Ψ⊥|2 + αz(T − T zc )Ψ2
z + u⊥|~Ψ⊥|4 + uzΨ

4
z − v1(Ψ2

Γ4
)2 + v2Ψ2

z|~Ψ⊥|2, (40)

FR =
∑

i=3,4,5

(
α

(i)
R R2

Γi + u
(i)
R R4

Γi

)
, FΨ−R = γ3RΓ3

Ψ2
Γ3

+ γ4RΓ4
Ψ2

Γ4
+ γ5Ψz

~Ψ⊥ × ~RΓ5
, (41)

while the couplings to external field are,

FΨ−h =u
(1)
h h2

zΨ
2
z + u

(2)
h |~h⊥|

2Ψ2
z + u

(3)
h h2

z|~Ψ⊥|2 + u
(4)
h |~h⊥|

2|~Ψ⊥|2 + v
(3)
h h2

Γ3
Ψ2

Γ3
+ v

(4)
h h2

Γ4
Ψ2

Γ4
,

FR−h =γ
(3)
hRh

2
Γ3
RΓ3

+ γ
(4)
hRh

2
Γ4
RΓ4

+ γ
(5)
hRhz

~h⊥ × ~R5g. (42)

In order to facilitate relevant discussion for the physics of hidden order in URu2Si2, our parameter choices for
numerical optimization of free energy were heavily influenced by microscopic theories [33, 41].

First, we discuss the parameters for FΨ, as given in Eq. (40). We chose parameters to reproduce the temperature-
pressure phase diagram of URu2Si2, which is one of many microscopic possibilities. However, once chosen, we use
these parameters for the rest of our calculations. As such, we fix:

• α⊥ = αz = 1, u⊥ = 4 and uz = u⊥ + u′(p − pc), with T⊥c = 1 and T zc = T⊥c + δ(p − p′c)3, where u′ = 1.,
δ = .1, p0

c = 2 and p′c = 1.5. These choices reproduce the pressure dependence of the transition temperatures,
with p′c < p0

c necessary to reproduce the rightward curvature of the XY/Z transition at higher temperatures. A
large value of v2 = 12 ensures that the transition between XY and Z orders is first order, with no coexistence.
Microscopically, the pressure dependence can be induced by tuning the ratio V6/V7, which tunes the relative
energy of XY and Z orders.
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• v1 tunes the tetragonal symmetry breaking, where v1 > 0 gives the [110] in-plane pinning consistent with
experiment. The pinning can be calculated in the microscopic theory, where v1

4u⊥
∼ (THO/D)2 ∼ .001. However,

this small value makes numerical calculations difficult, and so we have chosen the unphysically large value v1 = 1
for convenience.

The parameters for the ferroquadrupolar components were chosen:

• α
(4)
R = .5 and α

(3)
R = α

(4)
R + δR(T − TR tan−1[10(p − pR)]), where δR = 0 except when we considered the

independent Γ3 orthorhombic order, with δR = .5, pR = .5 < p0
c and TR = 5, where these parameter choices

give a very sharp second order transition to the RΓ3 6= 0 order at pQ. Additionally, we took u
(3,4)
R = 16.

• While we included ~RΓ5 for completeness, it is only relevant if there is XY and Z phase coexistence, which is not
found experimentally (and rarely found microscopically). As such, we drop these contributions entirely.

• The coupling between strain and Ψ2
Γ3,4

is given by γ3,4, which is found microscopically to manifest as tiny

quadrupolar moments proportional to (THO/D)2 ∼ .001. As with v1, this small value would make numerical
calculations difficult, and so we have chosen γ3,4 = −.5.

Finally, the field coupling parameters were chosen primarily based on the relatively weak coupling of perpendicular
compared to c-axis fields, as the c-axis field splits the non-Kramers doublet linearly, while the perpendicular fields
only split it quadratically. Previous microscopic calculations [33] found that the in-plane couplings were suppressed
by (THO/D)2 compared to the out of plane couplings.

• The longitudinal field (hz) coupling to Ψz, u
(1)
h = 3.3 is slightly larger than the coupling to ~Ψ⊥, u

(3)
h = 3.

This difference reproduces the experimental phase diagram in hz, where the hidden order phase is favored over
the local moment antiferromagnet [68, 69]. This phase diagram was also generically obtained in microscopic
calculations [41].

• The isotropic in-plane field couplings were both chosen to be an order of magnitude smaller, u
(2,4)
h = .1.

The difference between them is not important for any of the interesting physics. The anisotropic couplings,

v
(3,4)
h = −.3 give a Z2 pinning of the hastatic spinor in transverse field, which governs the maximum magnitude

of the torque magnetometry. Again, we have chosen these parameters to be an order of magnitude larger than
expected from the microscopics for ease of numerical calculations, where based on the torque results [14], we

expect |vh|/u(1)
h ∼ χxy/χzz >∼ .01. Note that this is likely an overestimate, as the Landau theory is only valid

near the transition and the linear component of χxy in (THO − T ) should be extracted.

• The coupling of field to ferroquadrupolar orders was fixed to be γ
(3,4)
hR = −.5 and has little qualitative effect.

The parameters given above reasonably reproduce the experimental phase diagrams in pressure and c-axis field,
as shown in Fig. 4(a) and (b). We have also explored several characteristic response functions across the hastatic
transitions, mainly anisotropic thermal expansion coefficients (α) and linear and nonlinear magnetic susceptibility
matrix elements (χ and χ(3)), as well the magnetostriction tensor, but found that magnetostriction involved higher
order effects that make it a much less sensitive probe. While thermal expansion coefficients were defined in Methods
section, the susceptibilities are defined as follows:

χxx − χyy = −∂
2F

∂h2
x

+
∂2F

∂h2
y

, χxy = − ∂2F

∂hx∂hy
, χ(3)

xxxx = −∂
4F

∂h4
x

, χ(3)
zzzz = −∂

4F

∂h4
z

.

The thermal expansion coefficients are a proxy for the elastic tetragonal symmetry breaking response and with the
[110] pinning of the order parameter, there is a jump in α110, as shown in Fig. 4 (c). As already noted in the main
text, the jump is difficult to detect, due to (THO/D)2 suppression of the elastic couplings (γ3,4) and effects of multiple
domains. The tetragonal symmetry breaking is also seen by the onset of χxy linear susceptibility, shown in Fig. 4
(d), however torque magnetometry measurements of χxy are more subtle and treated in the main text. Finally, the
nonlinear susceptibility coefficients are shown in Fig. 4 (e), and exhibit a large Ising anisotropy due to the anisotropic
field couplings, as has been observed experimentally [4].

The prediction of a thus far unobserved field-locking transition in large transverse fields provides a key experimental
test for hastatic order. In Methods section we treat the transition in a simplified model and here we show additional
numerical results obtained by the optimization of the full free energy from Eq. (40)-(42) in Fig. 5.
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FIG. 4. Antiferrohastatic phase diagrams in pressure and c-axis field, and thermodynamic responses across the AFHxy transi-
tion. (a) Temperature versus pressure phase diagram in zero external field, where the dashed (solid) lines indicate second (first)
order phase transitions. The AFHxy phase captures the hidden order behavior, while the AFHz phase behaves like the local
moment antiferromagnet. (b) hz field suppresses the c-axis AFHz order in favour of AFHxy order. (c) Thermal expansion
jumps across T⊥c . (d) The basal plane susceptibility acquires a linear χxy below the transition. (e) The nonlinear susceptibility
jumps show a large anisotropy, which is actually expected to be significantly larger for more realistic parameter choices.

D. Discussion of elastic coefficients and resonant ultrasound spectroscopy

Recent resonant ultrasound (RUS) experiments [18] set limits on the existence of two-component order parameters
in URu2Si2 through the absence of observable jumps in symmetry breaking elastic coefficients. In this section, we
argue that our two-component order parameter, ~Ψ⊥ lies comfortably within these limits and as such is not excluded
as a hidden order candidate by RUS experiments.

As shown in [18], while any OP has jumps in the compressional (Γ1) elastic moduli, only multi-component OPs
lead to jumps in (Γ3, Γ4) shear moduli. The magnitudes of elastic moduli jumps (∆ci) expected are proportional to
the square of OP elastic couplings (γ3,4 in our theory), more precisely from [18]:

∆cΓ1
∼ γ2

1

u⊥
, ∆cΓ3

∼ γ2
3

v1
, ∆cΓ4

∼ γ2
4

u⊥
. (43)

The denominator in the expressions above is closely related to the mass of the fluctuation field that couples linearly
to the relevant strain component, thus Γ3 strain has the weak transverse pinning, v1 in the denominator.

From the microscopic theory, we expect that in the basal plane phases, γ3,4/γ1 ∼ (THO/D)2, and v1/u⊥ ∼
(THO/D)2. While ∆cΓ4

/∆cΓ1
∼ (THO/D)4, due to small in-plane pinning, ∆cΓ3

/∆cΓ1
∼ (THO/D)2. ∆cΓ3

=
∆(c11 − c12) is therefore the largest predicted jump in our theory, but it is still suppressed by (THO/D)2 ∼ .001,
corresponding to relative RUS frequency shifts of at best 10−8, while detected Γ1 jumps are 10−5 − 10−6 and the
level of noise is at least 10−7. Thus, even though the hastatic order parameter has multiple components, the weak
coupling to the lattice ensures the absence of observable jumps in the shear elastic moduli.
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FIG. 5. (a) p-T phase diagram in hx field. The high temperature in-plane phase is field-locked (AFHx2−y2), thus fully Ψ2
Γ3

,

while the low temperature phase (AFH⊥,mix) is characterized by the onset of Ψ2
Γ4

component in a second order transition.
(b) Order parameter components (Ψx and Ψy) show changes across both primary hastatic and field-locking transitions, while
the overall magnitude changes changes significantly only for the main hastatic transition, with important consequences on bulk
thermodynamic properties. (c) Susceptibility matrix elements showing divergence across field-locking transition. The change
of slope of χxx − χyy across the main transition is hard to distinguish due to the small size and originally non-zero χxx − χyy
in the presence of external hx field. Parameters used for obtaining plots are standard quoted in the SI[52].

E. Nematic susceptibility

The nematic susceptibility associated with our two component in-plane order parameter has already been considered
by [16], and so here we simply reproduce their calculations and discuss how it applies to our particular system. The
nematic order parameter is the electronic manifestation of the broken tetragonal symmetry, and can generically be
treated by adding the free energy,

FN =
aN
2

(T − TN )N 2 +
bN
4
N 4 − ηN εΓ4

− ζNΨ2
Γ4

(44)

Here, we have chosen the Γ4 nematic order parameter associated with Ψ2
Γ4

. It has an independent transition

temperature, TN that arises from fluctuations of ~Ψ⊥; in principle, TN can be larger or smaller than THO, but here we
assume that it is smaller. The relevant component of the elastoresistivity is proportional to the nematic susceptibility,
∂N/∂εΓ4

, which contains a jump at THO. The nematic susceptibility is calculated by first solving ∂F/∂Ψx,y = 0 for
~Ψ⊥ as a function of N and εΓ4 . This solution is inserted into the total free energy, and we then take ∂F/∂N = 0,
and take ∂/∂εΓ4

implicitly to solve for ∂N/∂εΓ4
. As in [16], we find,

χnem =
∂N
∂εΓ4

=


η

aN (T−TN ) T > THO
η+

2γ4ζ
4u⊥−v1

aN (T−TN )− 2ζ2

4u⊥−v1

T = T−HO
. (45)

Below T−HO, the nematic order parameter, N also comes into the denominator and affects the temperature dependence,
however, we are mainly interested in the jump. We can use the mean-field specific heat jump results, ∆CV =
α2
⊥/(8u⊥ − 2v1)THO (or jump in ∂Ψ2

Γ4
/∂T equivalently) to rewrite the jump in the nematic susceptibility to second

order in γ4 and ζ as,

∆χnem =
4∆CV

α2
⊥THOaN (T − TN )

[
γ4ζ +

ηζ2

aN (T − TN )

]
+O(γ2

4ζ
2, ζ3). (46)
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While the microscopics suggested that γ4 is suppressed by (THO/D)2, the electronic nematic order parameter associ-

ated with ~Ψ⊥ is expected to be of order one, as estimated by the tetragonal symmetry breaking distortion of the Fermi
surface [41]. Therefore the second term gives a significant jump in the elastoresistivity at THO that is significantly
enhanced if TN is close to THO. Note that this analysis is only for the main transition; the behavior will be different
at the field-locking transition, for example, where the jump is no longer proportional to the (tiny) specific heat jump,
but it is still related to the behaviour of ∂Ψ2

Γi
/∂T .
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