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We consider the spectrum of a U(1) quantum link model where gauge fields are realized as S = 1/2
spins and demonstrate a new mechanism for generating quantum many-body scars (high-energy
eigenstates that violate the eigenstate thermalization hypothesis) in a constrained Hilbert space.
Many-body dynamics with local constraints has attracted much attention due to the recent discovery
of non-ergodic behavior in quantum simulators based on Rydberg atoms. Lattice gauge theories
provide natural examples of constrained systems since physical states must be gauge-invariant.
In our case, the Hamiltonian H = Okin + λOpot, where Opot (Okin) is diagonal (off-diagonal)
in the electric flux basis, contains exact mid-spectrum zero modes at λ = 0 whose number grows
exponentially with system size. This massive degeneracy is lifted at any non-zero λ but some special
linear combinations that simultaneously diagonalize Okin and Opot survive as quantum many-body
scars, suggesting an “order-by-disorder” mechanism in the Hilbert space. We give evidence for such
scars and show their dynamical consequences on two-leg ladders with up to 56 spins, which may
be tested using available proposals of quantum simulators. Results on wider ladders point towards
their presence in two dimensions as well.

PACS numbers:

Introduction: Eigenstate thermalization hypothesis
(ETH) posits that individual energy eigenstates of
generic many-body systems have “thermal” expectation
values for local observables with temperature determined
by the energy density of the eigenstate [1–5]. It also pro-
vides an explanation for the local equilibration of such
systems under their own coherent dynamics [6, 7]. It
is equally interesting to ask when this paradigm fails so
that an interacting system may evade ergodicity. Two
well-known mechanisms are provided by integrability [8]
and many-body localization [9, 10]. In both cases, an ex-
tensive number of local integrals of motion emerge which
prevents the bulk of the eigenstates from following ETH.

An important question is whether violations of
ETH can occur in non-integrable systems without dis-
order [11]. Recently, quench experiments with a
kinematically-constrained chain of 51 Rydberg atoms [12]
exhibited persistent many-body revivals when initialized
in a Néel state while, in contrast, other high-energy initial
states thermalized rapidly. Subsequent theoretical inves-
tigations [13, 14] of a minimal model with a constrained
Hilbert space to incorporate strong Rydberg blockade,
the PXP model [13–16], showed this ergodicity-breaking
mechanism is due to the presence of some highly ather-
mal ETH-violating states, dubbed quantum many-body
scars (QMBS), embedded in an otherwise ETH-satisfying
spectrum. A flurry of theoretical research has now shown
QMBS to occur in a variety of other settings [17–42] (for
a review, see Ref. 43).

Constrained Hilbert spaces arise in Hamiltonian for-
mulations of lattice gauge theories (LGTs) [44] since
physical (gauge-invariant) states satisfy an appropriate
Gauss law. In fact, the archetypal model for scarring in
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FIG. 1: (Top panel) An electric flux configuration for a lad-
der geometry with (Lx, Ly) = (6, 4) with periodic boundary
conditions in both directions. An elementary plaquette with
clockwise (anticlockwise) circulation of flux is shown in blue
(red) while a non-flippable plaquette is shown in green. (Bot-
tom panel) The density of states ρ(E) as a function of E for
(Lx, Ly) = (10, 2) (left) and (6, 4) (right) at coupling λ = 0.

constrained Hilbert spaces, the PXP model, maps exactly
to a lattice Schwinger model where the gauge fields are
coupled with staggered fermions [45] in one dimension.
Persistent oscillations starting from the Néel state then

ar
X

iv
:2

01
2.

08
54

0v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  5

 J
un

 2
02

1



2

corresponds to a string inversion [45].
It is intriguing to ask whether QMBS can appear via

a completely different mechanism in other LGTs. In
this Letter, we answer this question in the affirmative
by considering a prototypical LGT but without any dy-
namical matter, a U(1) quantum link model (QLM) in
spin S = 1/2 representation [46, 47] on ladder geome-
tries. This U(1) QLM also arises as low-energy descrip-
tions of some paradigmatic quantum spin liquids [48, 49],
and displays novel crystalline confining phases [50]. We
show the presence of an exponentially large number (in
system size) of exact mid-spectrum zero modes in a
particular limit of this LGT. Turning on another non-
commuting gauge-invariant interaction lifts this massive
degeneracy but also creates certain special linear combi-
nation of these zero modes that are simultaneous eigen-
states of both the non-commuting terms in the Hamilto-
nian. These QMBS are much more localized in the Hilbert
space compared to the individual zero modes (which are
delocalized) and hence the mechanism is akin to “order-
by-disorder”, first introduced in the context of frustrated
magnets [51, 52] (where thermal or quantum fluctuations
lift the exponentially large degeneracy of classical ground
states and makes the system more ordered [53, 54]), but
in the Hilbert space. The number of such scars depends
sensitively on the ladder geometry with striking differ-
ences between ladders of width two and four.
U(1) QLM: We consider the U(1) QLM with the gauge

degrees of freedom being quantum spins S = 1/2 living
on the links r, µ̂ connecting two neighboring sites r and
r+µ̂ (with µ̂ = î, ĵ) of a ladder of width Ly and length Lx
(where Lx and Ly are both even), and periodic boundary
conditions in both directions (Fig. 1, top panel). A U(1)
quantum link, Ur,µ̂ = S+

r,µ̂ is a raising operator of the
electric flux Er,µ̂ = Szr,µ̂, and the Hamiltonian is

H = Okin + λOpot

= −
∑

�

(
U� + U†�

)
+ λ

∑

�

(
U� + U†�

)2
, (1)

where U� = Ur,̂iUr+î,ĵU
†
r+ĵ,̂i

U†
r,ĵ

and � denotes an ele-

mentary plaquette. Okin acts on closed loops of electric
flux around elementary plaquettes, flipping them from
clockwise (anti-clockwise) to anti-clockwise (clockwise),
while annihilating all other configurations. Opot counts
the number of such flippable plaquettes. The Hamilto-
nian has a local U(1) symmetry generated by the Gauss
law Gr =

∑
µ(Er,µ̂ − Er−µ̂,µ̂). The physical states |ψ〉

satisfy Gr|ψ〉 = 0 which implies that in- and out-going
electric fluxes add up to zero at each site, thus providing
a constrained Hilbert space (Fig. 1, top panel).

The spectrum of H (Eq. 1) is calculated using large-
scale exact diagonalization (ED). The total electric flux
winding around the lattice in a given periodic direc-
tion is a conserved quantity, related to a U(1) cen-
ter symmetry, and causes the Hilbert space to break
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FIG. 2: The bipartite entanglement entropy with equal par-
titions, SL/2, shown for all energy eigenstates of the lad-
der (Lx, Ly) = (10, 2) at couplings λ = −0.5 (green) and
λ = −1 (red) (top panel) and for ladders of width Ly = 2 and
Lx = 12, 10, 8 (red, blue, green) at λ = −1 for momentum
(kx, ky) = (0, 0) (bottom panel).

up into distinct topological sectors, characterized by a
pair of integer winding numbers (Wx,Wy). We hence-
forth restrict ourselves to the largest such sector with
(Wx,Wy) = (0, 0). Furthermore, translations by one
lattice spacing in both directions, point-group symme-
tries like appropriate 180◦ rotations and reflections, and
charge conjugation (which reverses all electric fluxes) are
discrete symmetries. These symmetries do not mutu-
ally commute and for ED, we use translation symme-
try together with the U(1) center symmetry to reach
system sizes of up to (Lx, Ly) = (14, 2) (56 spins) and
(Lx, Ly) = (8, 4) (64 spins) for ladders of width Ly = 2
and Ly = 4, respectively (see [55] for more details).

We calculate the bipartite entanglement entropy
SL/2 = −Tr[ρA ln ρA] for each energy eigenstate |Ψ〉
where the reduced density matrix ρA = TrB|Ψ〉〈Ψ| is
obtained by partitioning the ladder into two equal parts
A and B (see [55] for more details), the Shannon en-

tropy S1 = −∑α |ψα|2 ln |ψα|2 where |Ψ〉 =
∑N
α=1 ψα|α〉

when the eigenstate is expressed in a given basis |α〉
with N basis states and the electric flux correlator
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1
Lx

∑
x〈Eĵ(x)Eĵ(x + î)〉 where Eĵ(x) =

∑
y Er,ĵ . It is

sufficient to study λ ≤ 0 since a unitary transformation
relates H(λ) and H(−λ) [56]. The energy level spac-
ing distribution of the U(1) QLM with weak disorder (to
remove global symmetries) follows the Gaussian orthogo-
nal ensemble prediction [57] strongly indicating that the
model (Eq. 1) is non-integrable when |λ| . O(1) (see [55]
for more details).

Exact zero modes at λ = 0: At λ = 0, the Hamil-
tonian anti-commutes with the operator C =

∏
r,µ̂Er,µ̂

where only the horizontal (vertical) links on even x (y)
contribute to the product and thus each elementary pla-
quette contains precisely one such link. This implies that
any eigenstate with energy E 6= 0 has a partner at −E
(C|E〉 = |−E〉). For any λ, H also commutes with space
reflections about the axes Sx,Sy (Fig. 1, top panel). This
point-group symmetry commutes with C. Remarkably,
any Hamiltonian with these properties has exact zero-
energy eigenstates whose number scales exponentially in
the system size due to an index theorem [58]. Since the
spectrum is symmetric around E = 0, these protected
zero modes are mid-spectrum states of the Hamiltonian
and not low-energy states bound to topological defects
or arising from supersymmetry for which there are well-
known examples [59–64]. The presence of a large number
of mid-spectrum zero modes is clear from the density of
states ρ(E) as a function of energy E, which shows a
sharp spike at E = 0 from the (momentum unresolved)
data generated for both (Lx, Ly) = (10, 2) and (6, 4)
(Fig. 1, bottom panel). Despite there being manifestly no
level repulsion between them, the behavior of the Shan-
non entropy, S1, for the zero modes indicates that these
are not anomalous when compared to other neighboring
eigenstates [58] (see [55] for more details). Thus, generic
linear combinations of such zero modes are expected to
be delocalized in the Hilbert space and have volume-law
entanglement.

QMBS at λ 6= 0: At a non-zero λ, C no longer anti-
commutes with the Hamiltonian and hence the manifold
of zero modes is not protected and mix with the non-
zero modes to form new high-energy eigenstates. The
only possible exception are special linear combinations
of the zero modes which are also eigenstates of Opot, and
hence of H. Remarkably, these linear combinations also
show localization in the Hilbert space and anomalously
low entanglement. Such eigenstates clearly violate ETH
since they remain unchanged as the coupling λ is varied
in spite of the energy level spacing in their neighborhood
being exponentially small in LxLy.

Ladders with Ly = 2: Using ED for linear dimension
8 ≤ Lx ≤ 14, we show the presence of 4 QMBS, one
each at momenta (kx, ky) = (0, 0), (π, π), (π, 0) and (0, π)
where each of these scars is a simultaneous eigenfunction
ofOpot (with eigenvalueNp/2, Np being the total number
of plaquettes) and Okin (with eigenvalue 0).

A defining property of QMBS is that they have a much

FIG. 3: The Shannon entropy, S1, (top panel) and
the electric flux correlator (bottom panel) for all energy
eigenstates of (Lx, Ly) = (14, 2) at momenta (kx, ky) =
(0, 0), (π, π), (π, 0), (0, π) (shown in red, blue, green, orange)
with coupling λ = −1.

lower entanglement entropy compared to their neighbor-
ing energy eigenstates and thus show up as entropy-
outliers in SL/2. This is demonstrated in the momentum-
unresolved data for SL/2 at Lx = 10 where the 4 QMBS
are clearly visible as outliers (each with a double degen-
eracy) at both λ = −0.5 and λ = −1 (Fig. 2, top panel).
All 4 scars have the energy E = λNp/2. Restricting
to (kx, ky) = (0, 0) and comparing the data of SL/2 for
Lx = 12, 10, 8 at λ = −1 (Fig. 2, bottom panel) shows
that while the other mid-spectrum eigenstates seem to
follow a volume law scaling for SL/2 as expected from
ETH, the scar state has a much lower SL/2 that scales
anomalously.

Further evidence for scarring is provided by the be-
havior of the Shannon entropy S1 and the electric flux
correlator at Lx = 14. In Fig. 3 (top panel), we show the
S1 for the momentum-resolved eigenstates at momenta
(kx, ky) = (0, 0), (π, π), (π, 0) and (0, π) from which it is
clear that while the neighboring eigenstates with similar
energies are delocalized amongst the basis states as ex-
pected of high-energy states, the 4 QMBS have a much
lower S1 indicating their localization in the Hilbert space.
The electric flux correlator for the QMBS have markedly
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FIG. 4: (Top left panel) Unitary dynamics for (Lx, Ly) =
(14, 2) with three simple initial states |init1, 2, 3〉 (|init1〉 has
a finite overlap with the QMBS at (kx, ky) = (0, 0), while
|init2, 3〉 has zero overlap) showing the behavior of the elec-
tric flux correlator at λ = −1 as a function of time. (Top right
panel) Late-time value of the electric flux correlator for the
6433 initial states with (kx, ky) = (0, 0) and average energy
λNp/2 at (Lx, Ly) = (14, 2). (Bottom panel) A simple refer-
ence state that generates momentum eigenstates with finite
overlap with QMBS for Lx = 8, 10, 12, 14.

different values from the neighboring energy eigenstates
(Fig. 3, bottom panel).

That special linear combinations of the exact zero
modes are responsible for the creation of these QMBS can
be verified by diagonalizing Opot only in the zero mode
subspace. While most of the resulting eigenvalues are
non-integers, which indicate that these states must mix
with non-zero modes at finite λ (since Opot is a counting
operator), there is one eigenvector at each of the mo-
menta (kx, ky) = (0, 0), (π, π), (π, 0) and (0, π) with an
integer eigenvalue of Opot that equals Np/2. We have
also checked that the corresponding eigenvectors have ex-
actly the same wavefunctions as the QMBS generated at
finite λ (see [55] for more details).

Expressing any of these QMBS in terms of the zero
modes shows that they appear to be a pseudo-random
superposition of all the zero modes (see [55] for more
details). However, these states have a much smaller S1

compared to any of the individual zero modes (see [55]
for more details) showing that they are much more local-
ized in the Hilbert space. The Opot term thus induces a
subtle order-by-disorder mechanism in the exponentially
large subspace of the zero modes to pick out a few special
linear combinations and generate the QMBS at λ 6= 0.

These QMBS also leave an imprint on the unitary dy-
namics starting from simple high-energy initial states.
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FIG. 5: (Left panel) The Shannon entropy, S1, for all the
eigenstates for (Lx, Ly) = (6, 4). The 46 (12) eigenstates with
eigenvalues (Np/2, 0) ((5Np/12, 0)) for (Opot,Okin) are shown
in green (blue) for λ = −1.1. (Right panel) The same data
shown in the vicinity of E = λNp/2 (dotted line).

Consider the class of all (kx, ky) = (0, 0) initial states
generated from any reference electric flux state withNp/2
flippable plaquettes. For (Lx, Ly) = (14, 2), there are
6433 such initial states with identical average energy of
λNp/2. Out of these, only 18 initial states have a non-
zero overlap with the QMBS at (kx, ky) = (0, 0). In
Fig. 4 (top left panel), we consider λ = −1 and |init1〉,
an initial state with a finite overlap with the QMBS while
|init2〉, |init3〉 have zero overlap. While the latter two ini-
tial states, even with very different starting values of the
electric flux correlator, converge to very similar values at
late times indicating ETH-guided thermalization, |init1〉
instead converges to a very different (subthermal) value
showing that the state retains memory of its overlap with
the scar at late times. The late-time value of the electric
flux correlator for all these 6433 initial states (Fig. 4 (top
right panel)) clearly shows that the 18 initial states with
non-zero overlap with the QMBS converge to markedly
different values compared to the rest. Finally, the data
for Lx = 8, 10, 12, 14 shows that a simple initial reference
state with a 2 × 2 unit cell (Fig. 4, bottom panel) al-
ways generates 2 momentum eigenstates with finite over-
lap with 2 of the QMBS (at momenta (π, 0), (0, π) for
Lx = 14, 10 and (0, 0), (π, π) for Lx = 12, 8).

Ladders with Ly = 4: We consider Ly = 4 ladders
to approach closer to the two-dimensional limit. The
momentum-unresolved data for all the 32810 eigenstates
at Lx = 6 strikingly shows that the number of QMBS is
sensitive to the width of the ladder with there being 46
such anomalous eigenstates with the eigenvalue (Np/2, 0)
and 12 with eigenvalue (5Np/12, 0) for (Opot,Okin), re-
spectively (Fig. 5 (left panel)) (see [55] for data at Lx = 8
for (kx, ky) = (0, 0), (π, π), (π, 0) and (0, π) and evidence
of QMBS therein). As shown in Fig. 5 (right panel), these
46 eigenstates are degenerate with E = λNp/2 and have
a lower value of S1 compared to that of other neighbor-
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ing eigenstates which have E 6= λNp/2. Diagonalizing
Opot in the zero mode subspace also yields exactly 46
(12) eigenvectors with the right integer eigenvalues Np/2
(5Np/12) with the other eigenvalues being non-integers.

Conclusions and outlook: We have considered a U(1)
QLM on finite ladders and demonstrated a new mech-
anism for the formation of QMBS. For the limit when
the Hamiltonian only contains off-diagonal terms in the
electric flux basis, there is an exponentially large (in sys-
tem size) manifold of exact zero modes due to an index
theorem. This massive degeneracy is lifted by applying
another gauge-invariant interaction, diagonal in the elec-
tric flux basis, but some special linear combinations of
the zero modes that simultaneously diagonalize both the
non-commuting terms in the Hamiltonian survive and
form QMBS. These also leave an imprint on the coher-
ent dynamics of this LGT and leads to the absence of
thermalization from a class of simple initial states, in
particular one that can be generated from a reference
state with a 2 × 2 unit cell. This effect can, in princi-
ple, be verified on quantum simulators based on super-
conducting qubits or Rydberg arrays using existing pro-
posals [65, 66]. One possible way is to use the duality
transformation to rewrite the Hamiltonian as a quantum
Ising spin model. The disallowed plaquette flips can then
be forbidden via Rydberg blockade to realize a gauge in-
variant interaction [66].

Several open issues arise from our work. Whether this
mechanism survives in higher dimensions is an obvious
question given our results on wider ladders. Do QMBS
arise in non-Abelian QLMs is another interesting direc-
tion to explore. An analytic understanding of the alge-
braic properties of the zero modes and these special linear
combinations is highly desirable to address whether such
scarring survives in the thermodynamic limit. Finally,
adding further interactions to models with an exponen-
tially large manifold of mid-spectrum zero modes may
provide yet another route to QMBS.
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SUPPLEMENTARY MATERIAL FOR
“QUANTUM SCARS FROM ZERO MODES IN
AN ABELIAN LATTICE GAUGE THEORY ON

LADDERS”

ASPECTS OF EXACT DIAGONALIZATION

(Lx, Ly) Gauss law (Wx,Wy) = (0, 0) (kx, ky) = (0, 0)

(8, 2) 7074 2214 142

(10, 2) 61098 17906 902

(12, 2) 539634 147578 6166

(14, 2) 4815738 1232454 44046

(16, 2) 43177794 10393254 324862

(4, 4) 2970 990 70

(6, 4) 98466 32810 1384

(8, 4) 3500970 1159166 36360

(6, 6) 16448400 5482716 152416

The unconstrained Hamiltonian with S = 1/2 links on
a (Lx, Ly) ladder contains 22LxLy configurations. Since
gauge-invariant states have the added constraint that
in- and out-going electric fluxes add up to zero at each
site, this dramatically decreases the number of allowed
states in the Hilbert space. Furthermore, restricting to
the largest topological sector with (Wx,Wy) = (0, 0) re-
duces the number of allowed configurations even further.
Lastly, using the additional global symmetries of trans-
lations in both directions, allows access to bigger system
sizes as shown in the table for the largest momentum
block of (kx, ky) = (0, 0) for various (Lx, Ly). We are
able to obtain the full spectrum of Hamiltonians with
upto ∼ 75000 states, while real-time dynamics is possi-
ble for Hamiltonians with upto ∼ 50000 states.

CALCULATION OF BIPARTITE
ENTANGLEMENT ENTROPY

Ly

Lx

LBLA

FIG. 6: A ladder of dimension (Lx, Ly) is divided into two
subsystems of dimensions LA and LB along its length for
calculating the bipartite entanglement entropy.

We outline computation for the bipartite entanglement
entropy in the ladder geometry (Lx, Ly). Let nD denote
the total of gauge invariant basis states in a given sector

http://arxiv.org/abs/2010.02044
http://arxiv.org/abs/2011.09486
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(Wx,Wy), where we represent the basis as:

{|e〉} = {|ek〉; k = 1, · · · , nD} , (2)

and a wavefunction in this sector can be written as a
linear superposition

|ψ〉 =

nD∑

k=1

ck|ek〉. (3)

To compute the bipartite entanglement entropy SA for
the partition of the system into two subsystems, as
sketched in Fig 6, we first denote the basis states span-
ning the two partitions by

{
|e(A)〉

}
and

{
|e(B)〉

}
. Note

that
{
|e(A,B)〉

}
are gauge invariant at all points in the

bulk regions A and B respectively, but represent surface
charges at the boundaries.

The calculation of
{
|e(A,B)〉

}
is straightforward: for

each k in {|ek〉}, we split the links along the vertical dot-
ted line shown in the figure and sort them into

{
|e(A)〉

}

and
{
|e(B)〉

}
respectively, depending on whether they fall

into the region A or B. Then, we remove the duplicates
and obtain:

{
|e(A)〉

}
=
{
|e(A)
iA
〉, iA = 1, · · · , DA

}

{
|e(B)〉

}
=
{
|e(B)
iB
〉, iB = 1, · · · , DB

} (4)

Now, for a general energy eigenstate |ψ〉,

|ψ〉 =

nD∑

k

ck|ek〉

=

DA∑

iA

DB∑

iB

χiA,iB |e(A)
iA
〉 ⊗ |e(B)

iB
〉

=

nχ∑

`

χ`|ẽ(A)
` 〉 ⊗ |ẽ

(B)
` 〉

(5)

First, the individual basis vectors from the two subsys-
tems are ”patched” with each other: for example the
iA from |e(A)〉 is patched with iB from |e(B)〉 to form
the corresponding matrix element χ(iA, iB). Clearly, this
makes χ a rectangular matrix of dimensions DA × DB .
To go from the second to the third step, one does
Schmidt decomposition, which yield the real and non-
negative Schmidt values χ`, ` = 1, · · · , nχ, where nχ =
min(DA, DB).

The (von-Neumann) entanglement entropy for this
sub-partition of the state |ψ〉 when LA = LB then given
by

SL/2 = −
nχ∑

i=1

|χi|2ln
(
|χi|2

)
(6)

and is shown in the main text.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.00

0.25

0.50
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2.00

P
(r

)

GOE

Poisson

λ = 0

λ = −0.5

λ = −1

FIG. 7: The probability distribution, P (r), obtained from
the ratio of consecutive energy gaps for the weakly disordered
U(1) QLM on a ladder of dimension (Lx, Ly) = (12, 2) for
λ = 0,−0.5,−1.0 matches well with the prediction from the
Gaussian orthogonal ensemble (thick curve), and not the Pois-
son statistics expected for integrable systems (dotted curve).

LEVEL SPACING DISTRIBUTION FOR
WEAKLY DISORDERED U(1) QLM

To show that the U(1) QLM on ladders is non-
integrable in the topological sector (Wx,Wy) = (0, 0),
we take a ladder of dimension (Lx, Ly) = (12, 2) and
weakly disorder the λ term in Eq. 1 of main text to
λi = λ(1 + αri) (λi = αri) for non-zero (zero) λ where
α = 0.1 and ri is a random number chosen with uniform
probability between [−1/2, 1/2] on the ith elementary
plaquette. The small α ensures that the global symme-
tries of translations and point-group symmetries of re-
flections and 180◦ rotations are lifted. We then resolve
the energy eigenstates in the only remaining (internal)
symmetry of charge conjugation and focus on the block
with eigenvalue of +1 (the other block has eigenvalue −1)
which gives 73789 energy eigenvalues (denoted by En).
We then obtain the probability distribution P (r), with r
being the ratio of two consecutive energy gaps,

r =
min(sn, sn+1)

max(sn, sn+1)
∈ [0, 1]

sn = En+1 − En (7)

For a system satisfying ETH, this distribution is expected
to converge to the Gaussian orthogonal ensemble, where

PGOE(r) =
27

4

r + r2

(1 + r + r2)5/2
. (8)

This indeed seems to be the case for the weakly disor-
dered U(1) QLM for λ = 0,−0.5,−1.0 (Fig. 7). On the
other hand, the level statistics for an integrable system
should follow Poisson statistics with P (r) = 2/(1 + r)2

(also shown for reference in Fig. 7).
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FIG. 8: (Left panel) The behavior of Shannon entropy, S1,
for the energy eigenstates with momentum (kx, ky) = (0, 0)
shown at coupling λ = 0 for ladder dimension of (Lx, Ly) =
(14, 2). The horizontal line equals the value of S1 for the
QMBS at finite λ. (Right panel) The same data of S1 shown
in the vicinity of E = 0. The zero modes are indicated in blue
for both panels.

SHANNON ENTROPY OF ENERGY
EIGENSTATES AT λ = 0

The Shannon entropy, S1, of the energy eigenstates at
λ = 0 with momentum (kx, ky) = (0, 0) is shown in Fig. 8
(left panel) for a ladder of dimension (Lx, Ly) = (14, 2).
The S1 for the QMBS at λ 6= 0 is also shown as a hori-
zontal line from which it is clear that the QMBS is much
more localized in the Hilbert space. Fig. 8 (right panel)
shows the same data for S1 at λ = 0 in the vicinity of
E = 0 with the zero modes indicated in blue, which shows
that the zero modes are as delocalized in the Hilbert
space as the non-zero modes in the neighborhood and
do not have an anomalously low S1 like the QMBS (that
emerges at finite λ).

QMBS FOR (kx, ky) = (0, 0), (π, π), (π, 0), (0, π) FOR
LADDERS OF WIDTH (Lx, Ly) = (8, 4)

Unlike the case of Ly = 2 where the ladders
have 4 QMBS, one each at momenta (kx, ky) =
(0, 0), (π, π), (π, 0), (0, π), the wider ladder of width Ly =
4 have multiple scars at each of these four momenta
(10 for (kx, ky) = (0, 0) and (π, π) respectively and 9
for (kx, ky) = (π, 0) and (0, π) respectively). This is
seen clearly from the behavior of the Shannon entropy
S1 (Fig. 9, top left panel) and the electric flux corre-
lator (Fig. 9, bottom panel) for a ladder of dimension
(Lx, Ly) = (8, 4) at λ = −1 where the data shows out-
liers at E = λNp/2. As shown in Fig. 9 (top right panel)
for (kx, ky) = (0, 0), these 10 scars are degenerate with
energy λNp/2 and have a lower value of S1 compared to
that of other neighboring eigenstates with E 6= λNp/2.

FIG. 9: The Shannon entropy, S1, (top left panel) and the
electric flux correlator (bottom panel) for all energy eigen-
states of (Lx, Ly) = (8, 4) at (Wx,Wy) = (0, 0), and for the
momenta (kx, ky) = (0, 0), (π, π), (π, 0), (0, π) (shown in red,
blue, green, orange) with coupling λ = −1. The top right
panel shows the same data for S1 for (kx, ky) = (0, 0) in the
vicinity of λNp/2.

QMBS FROM ZERO MODES

The QMBS at momentum (kx, ky) = (0, 0) obtained at
λ 6= 0 for the ladder of dimension (Lx, Ly) = (14, 2) is a
very particular linear combination of the mid-spectrum
zero modes at λ = 0 that also diagonalizes Opot. How-
ever, from Fig. 10 (top panel), the QMBS appears to be a
pseudo-random superposition of all the zero modes which
is, remarkably, stabilized at any finite λ. We have also
verified that the matrix for Opot, when expressed in the
basis of the zero modes at momentum (kx, ky) = (0, 0),
has a single eigenvalue which is an integer (that equals
Np/2). This wavefunction (Fig. 10 (bottom panel)) is
identical to the one obtained directly from the ED data
for the (kx, ky) = (0, 0) QMBS at λ = −1 (Fig. 10 (mid-
dle panel)). Only 18 out of the 44046 basis states have
non-zero coefficients while the other coefficients are (es-
sentially) zero within numerical resolution. The number
of basis states that contribute to the QMBS at momenta
(0, 0), (π, π), (π, 0), (0, π) for (Lx, 2) with 8 ≤ Lx ≤ 14
is given below. The table immediately shows that these
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FIG. 10: (Top panel) The QMBS at momentum (kx, ky) =
(0, 0) expressed in terms of the zero modes for a ladder of
dimension (Lx, Ly) = (14, 2). The amplitude of the QMBS
expressed in the basis states of momentum (kx, ky) = (0, 0)
where the the middle plot is directly obtained from the wave-
function of the QMBS at λ = −1 while the bottom plot is
obtained from the eigenvector with integer eigenvalue of Opot

in the subspace of the zero modes at λ = 0.

eigenstates are localized in the Hilbert space and have a
low value of Shannon entropy S1.

Lx Basis states Basis states Basis states Basis states

in (0, 0)/(π, π) in QMBS in (π, 0)/(0, π) in QMBS

8 142 5 141 4

10 902 6 891 7

12 6166 13 6163 12

14 44046 18 43989 19
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