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We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by
electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between
the theoretical and experimental MCPs. The theoretical MCPs were calculated using the KKR method with the
perturbative spin-polarized T-matrix fluctuation exchange approximation DMFT solver, as well as with the full
potential linear augmented planewave method with the numerically exact continuous-time quantum Monte Carlo
DMFT solver. We show that the total magnetic moment decreases with the intra-atomic Coulomb repulsion
U , which is also reflected in the corresponding MCPs. The total magnetic moment obtained in experimental
measurements can be reproduced by intermediate values of U . The spectral function reveals that the minority
X2 Fermi surface pocket shrinks and gets shallower with respect to the density functional theory calculations.

I. INTRODUCTION

The electron momentum distribution, through its depen-
dence on the ground state wavefunctions, is a powerful quan-
tity for understanding many-body effects in solids [1]. Comp-
ton scattering experiments, which involve measuring the en-
ergy distribution of inelastically scattered photons which have
impinged on electrons within the sample being studied, are
able to measure a projection (integration over two momentum
components) of the underlying electron momentum distribu-
tion [2]. Since the photons scatter from the occupied momen-
tum states, Compton scattering is sensitive to the Fermi sur-
faces of metals.

While other experimental techniques such as photoemis-
sion spectroscopy (PES, and its angle-resolved counterpart,
ARPES) give excellent insight into the many-body interac-
tions present, it is important to remember that the photoe-
mission process is a complex excitation of the whole system.
Indeed, any interaction of the photo-hole with the electron
quasiparticle would invalidate a claim to be a measurement
of the ground-state. Thus Compton scattering is a uniquely
powerful probe of the ground state many-body wavefunction
[3]. In recent years, Compton scattering has been used to re-
veal the electronic structure and Fermi surfaces [4] in elec-
tronically complex materials such as substitutionally disor-
dered alloys [5, 6] and compounds with high vacancy con-
centrations [7]. Most relevantly, Compton scattering is able
to probe the electron correlations within many complex mate-
rials [8–11]. Therefore, Compton scattering offers a valuable
and complementary perspective on electronic structure and,
in particular, a window onto electron correlations in different
regimes of composition, temperature and magnetic field from
those which other probes can reach.

When X-rays are inelastically scattered by the electrons
in solids, the scattered photon energy distribution is Doppler
broadened because of the electrons’ momentum distribution

ρ(p) [12, 13]. In practice this is measured through the dou-
ble differential scattering cross-section d2σ/dΩdω for a given
infinitesimal solid angle dΩ and energy dω of the scattered
photon, respectively. The incident energy of the monochro-
matic X-rays and the scattering angle are fixed during the ex-
periment, and the scattering cross-section is measured as a
function of the photon energy. If the scattering event is de-
scribed within the impulse approximation [14, 15], the scat-
tering cross-section is proportional to the Compton profile,
d2σ/dΩdω ∝ J(pz), which is the 1D projection of the elec-
tron momentum distribution, ρ(p), along the scattering vector
pz:

J(pz) =

∫∫
ρ(p)dpxdpy . (1)

If the incident photon beam has a component of circular po-
larization, the scattering cross-section contains a term which
is spin dependent. This term may be isolated from the charge
scattering by either flipping the direction of the sample mag-
netization or the photon helicity parallel and antiparallel with
respect to the scattering vector, resulting in a magnetic Comp-
ton profile (MCP), Jmag(pz) [16]. In analogy to the Compton
profile, the MCP is defined as the 1D projection of the spin-
polarized electron momentum density:

Jmag(pz) =

∫∫ [
ρ↑(p)− ρ↓(p)

]
dpxdpy . (2)

Electronic structure calculations are particularly useful for
the interpretation of MCPs and these can be calculated from
the spin-dependent momentum distributions. Density func-
tional theory (DFT) [17–20] is by far the most widely used
method with its immense success in predicting properties of
the solid state. However, treating electron correlation in an
effective one-particle framework results in notable discrep-
ancies with experiment even with the best available func-
tionals. Over the last decade, it has been demonstrated that
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within the combined DFT and dynamical mean-field theory
(DMFT) [21–23], the so called DFT+DMFT approach [24,
25], many of the electronic ground state properties of d-
metal elements, their alloys and compounds can be well de-
scribed [24–26]. Early developments of DFT+DMFT were
of the one-shot type of calculation in which a DFT com-
putation is first converged and the subsequent DFT Hamil-
tonian is supplemented with a local Coulomb interaction
for the correlated orbitals [24, 27–29]. Then, in a sepa-
rate step, the interacting problem is solved self-consistently
within DMFT. Fully charge self-consistent approaches have
been implemented [30–33] as well, in which both DFT and
DMFT are converged simultaneously. For some materials
the correlation-induced modification in the charge density
can be significant, while in others this was shown not to
be the case. However, to be consistent with the DFT con-
cepts, charge densities (ρ(r)), should be potential (V (r)) rep-
resentable (ρ� V ), which is only achieved by full self con-
sistency [20].

One of the most studied simple metallic system that
presents signatures of electronic correlations is the fcc itin-
erant ferromagnetic Ni. It is known that the DFT alone can-
not reproduce the dispersionless feature at a binding energy of
about 6 eV which is known as the “6 eV satellite” [34]. The
valence band photoemission spectrum of Ni shows a 3d-band
width that is about 30% narrower than the value obtained from
the DFT calculations. Similarly, the exchange splitting in both
the local spin-density approximation (LSDA) and the gener-
alized gradient approximations (GGA) [35] overestimates the
experimental splitting by approximately 50% [36–39]. The
combined DFT+DMFT describes the occupied 3d bandwidth
of Ni, reproduces the exchange splitting and the 6 eV satel-
lite structure in the valence band [40–42]. In addition to this,
DFT+DMFT has shown the consequences of the local mo-
ment in ambient and Earth-core-like conditions [43]. Further
information about the electronic structure of Ni can be ex-
tracted by using Compton scattering.

The MCPs of Ni have been calculated by using various
DFT implementations and their extensions. Features associ-
ated with the Fermi surface (as a consequence of bands cross-
ing the Fermi energy) seen in experiment [44] were gener-
ally reproduced with good agreement, notwithstanding the
distinct discrepancy at low momenta which points towards
some inaccuracies in the position of the spin-polarized bands
with respect to the Fermi level. It has been also shown that
the negative polarization of the itinerant s- and p-like band
electrons can be observed [45, 46] and the discrepancy with
respect to the theoretical predictions were attributed to the
insufficient treatment of correlations present in the standard
DFT exchange-correlation functionals at low momentum [45].
The directional Compton and magnetic Compton profiles have
also been computed in combination with DMFT [47–49]
which facilitated a discussion of the anisotropy of the elec-
tronic correlations of Ni as a function of the on-site Coulomb
interaction strength, U . Those theoretical comparisons with
the experimental data led to the conclusion that the theoreti-
cal MCPs improved when the local correlations are taken into
account, which also extends to the total Compton profiles.

In this work, we focus on the calculation of the momen-
tum distribution and related quantities within the framework
of many-body theory. We have used two approaches on
the DFT side, namely KKR [31, 50, 51] which is a spin-
polarized relativistic multiple-scattering theory implementa-
tion, and ELK [52] which is a full potential linear augmented
planewave (FP LAPW) implementation. For the many-body
solvers we used the perturbative SPT-FLEX [53, 54] in combi-
nation with KKR [31] and the numerically exact continuous-
time quantum Monte Carlo (CT-QMC) [55, 56] in combina-
tion with the ELK [52]. We show that while the experimental
magnetic moment can be obtained by varying U , the Ni MCP
shapes have a weak dependence on U . These results further
indicate the importance of the effects beyond the local approx-
imation of DMFT.

II. COMPTON AND MAGNETIC COMPTON PROFILES
WITH DFT+DMFT

Over the last few decades, substantial progress has been
made in the development of computational tools and libraries
that combine DMFT with electronic structure methods in the
framework of DFT+DMFT [24, 25]. All these implemen-
tations can be divided into two sub-groups according to the
employed schemes for constructing the local orbitals and the
definition of the so-called correlation subspace in which the
DMFT equations are solved. One of the sub-groups utilizes
the local atomic orbitals constructed from the atomic solutions
which cover a wide energy window of the DFT (Kohn-Sham)
wavefunctions, and is implemented in almost all existing elec-
tron codes with different flavors such as LMTO [57, 58],
EMTO [30, 59], KKR [31]. The other popular choice is the
set of localized Wannier wavefunctions, which is currently re-
alized as an independent interface in various codes, includ-
ing VASP [60], QUANTUM ESPRESSO [61], SIESTA [62],
ABINIT [63], WIEN2k [64], and ELK. The ELK code has
been interfaced with the TRIQS/DFTTools application [65,
66] to enable DFT+DMFT calculations with ELK and the
TRIQS library [67] (we refer to this as the ELK-TRIQS pack-
age). Prior to the description of the computational procedure
for the (magnetic) Compton profiles, we briefly present the
steps of the fully charge-self consistent DFT+DMFT calcula-
tion.

A. DFT(+DMFT) using KKR

The calculation scheme within the Korringa-Kohn-
Rostoker (KKR) method is based on the Green’s function
formalism of multiple-scattering theory [50]. The details of
the DFT+DMFT implementation within the fully relativistic
multiple-scattering KKR method have been reported previ-
ously [31]. It is important to note that the flexibility of KKR
lies in utilizing the Dyson equation to relate the Green’s func-
tion of a perturbed system to the Green’s function of a suitable
unperturbed reference system.
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In KKR, the central quantity is the multiple scattering path-
operator, τ̂ , which is used to compute the real-space Green
function. In the most general relativistic form, the scattering
path-operator is represented in the site basis with site-index
R, and the total angular momentum with combined index
Λ(κ, µ), with spin-orbit, κ, and magnetic, µ, quantum num-
bers. Electronic correlations can be included by supplement-
ing the scalar real-valued local single-particle potential pro-
vided by the DFT with a self-energy that is energy-dependent,
complex-valued, and non-local. The Dyson equation allows
for the computation of the single-particle Green’s function
G(r, r′, E) with respect to a reference system. The r and r′

are defined relative to the center of an atomic cell correspond-
ing to a specific site, and the reference system is described
by a one-electron Hamiltonian containing the DFT potentials
located on the regular lattice sites [31, 68]. The single-site
Dirac equation is solved and the wavefunction is matched to
the free-electron solution at the boundary of the atomic cell.
Subsequently, the single-site scattering matrix, tRΛΛ′(E) is ob-
tained, which in turn provides the expression for the scatter-
ing path operator, τRR

′

ΛΛ′ (E), connecting the sites R and R′.
Within this basis, employing the four-component wave func-
tions of the regular (ZR(×)

Λ (r, E)) and irregular (JR(×)
Λ (r, E))

solutions of the Dirac equation [69], the Green’s function can
be written as

G(r, r′, E) =
∑
ΛΛ′

ZRΛ (r, E)τRR
′

ΛΛ′ (E)ZR
′×

Λ′ (r′, E)

−
∑
Λ

[
ZRΛ (r, E)JR×Λ (r′, E)θ(r′ − r)

+ JRΛ (r, E)ZR×Λ (r′, E)θ(r − r′)
]
δRR′ ,

(3)

where θ(r) is the step function. Note that in the case of a
complex non-Hermitian self-energy, Σ(r, r′, E), one has to
distinguish between the left-and right-hand side solutions of
the single-site Dirac equation [69]. The left-hand side solu-
tions are denoted by the “×”-symbol as an upper index.

The DMFT solver used in the current implementation is the
relativistic version of the so-called Spin-Polarized T-Matrix
(SPT-) Fluctuation Exchange approximation (FLEX) [53, 54]
which is formulated on the complex (Matsubara) axis. In con-
trast to the original formulation of FLEX [70], the particle-
particle and the particle-hole channels are treated differ-
ently [53, 54]. The particle-particle processes renormalize
the effective interaction, which is added into the particle-hole
channel. The particle-hole channel itself describes the interac-
tion of electrons with the spin-fluctuations, which represents
one of the most relevant correlation effects in Ni. Here we
employed the SPT-FLEX solver which uses a rotationally in-
variant formulation for the interaction and is self-consist in
charge and self-energy [31]. Once the self-energy is com-
puted within the many-body solver it is returned directly into
the Dirac equation [31].

In order to compute the electron momentum density, the
momentum operator is diagonalized in the crystal basis set,
and its eigenfunctions are used to construct the Green func-
tion in the momentum representation, Gσ(p, E) [71]. The
spin-projected momentum density ρσ(p) can then be directly

computed as [71]:

ρσ(p) = − 1

π

EF∫
0

ImGσ(p, E)dE , (4)

where σ = ↑(↓) represents the spin projections. The energy
integration in Eq. (4) is performed in the complex plane along
the contour that encloses the poles of the one-particle Green’s
function. The corresponding Compton and magnetic Comp-
ton profiles are computed using Eqs. (1) and (2).

B. DFT(+DMFT) using ELK-TRIQS

The DFT+DMFT framework within the ELK-TRIQS pack-
age (which will be referred to as ELK+DMFT throughout)
starts with a self-consistent calculation at the DFT level. The
DFT density of states (DOS) is then used to identify an ap-
propriate “correlated” energy window that contains the de-
sired orbitals. For this selected energy window, the so-called
Wannier projectors [28, 65, 72] are constructed, which are
used to project the lattice Green’s function onto the localized
Wannier-orbitals representation. The resulting local Green’s
function serves as an input to the DMFT. Here we employ the
CT-QMC solver to obtain the self-consistent solution of the
DMFT equations. The self-consistently obtained self-energy
(with the double-counting removed) is then upfolded back
to the Bloch basis so that it is suitable to update the lattice
Green’s function.

The charge density matrix is obtained from the lattice
Green’s function by summing over the Matsubara frequencies.
This is then used to generate the total DFT+DMFT density
matrix which is generally non-diagonal in the Kohn-Sham ba-
sis. However, this total density matrix can be diagonalized
into the orthonormal Löwdin-type basis [73] with a new set of
diagonal DFT+DMFT occupations Nk,σ

ζ and wavefunctions
φσk,ζ(r), as described in Ref. 65, which are then used to up-
date the electron density by

ρ(r) = Trσ
∑
ζ,k

Nk,σ
ζ φσk,ζ(r)

(
φσk,ζ(r)

)†
. (5)

Here σ is the spin index, and ζ is the eigenstate index. The
DFT+DMFT results presented in this work are obtained by the
fully charge self-consistent method with spin-polarized DFT
inputs. Fully charge self-consistency is achieved by updating
ρ(r) from the DFT+DMFT occupations and wavefunctions.
Subsequently, the Kohn-Sham equations are solved once, and
the new Wannier projectors are generated for the next fully
charge self-consistent cycle.

In the current implementation of the DMFT framework,
the effective Anderson impurity problem corresponding to
the correlated many-body system is solved by the CT-QMC
method [55] using the TRIQS/CTHYB application [56]. The
CT-QMC methods have different formulations, namely the
interaction expansion (CT-INT) [74], the auxiliary-field (CT-
AUX) [75], and the hybridization expansion (CT-HYB) [76].
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We use the CT-HYB formulation for all finite temperatures.
CT-HYB operates on an imaginary time and frequency (Mat-
subara) axis. Therefore, analytical continuation is necessary
to produce spectral functions on the real-frequency axis. The
latter suffers from the finite-precision arithmetic, which tends
to amplify numerical noise, and produce unphysical artefacts.
These issues may be especially severe for multi-orbital prob-
lems with complicated spectral lines.

The computation of the electron momentum density, ρ(p),
however, does not involve analytical continuation. It is for-
mally derived from the Fourier transformed real space wave-
functions ψσk,η(r), and in practice is determined by using the
tetrahedron interpolation method for the discrete k-mesh [77].
The calculated electron momentum density has the form

ρσ(p) =
∑
k,η

nσk,η

∣∣∣∣∣∣
∫
V

exp(−ip · r)ψσk,η(r)dr

∣∣∣∣∣∣
2

, (6)

where nk,η are occupation functions with eigenstate index
η. The electron momentum density within the DFT for-
malism is computed using the Kohn-Sham wavefunctions
and occupation functions. Eq. (6) can also be used in
the DFT+DMFT formalism but now with the corresponding
DFT+DMFT wavefunctions and occupation functions. By do-
ing so, the direct impact of the non-physical artifacts of the an-
alytical continuation on the electron momentum density can
be circumvented. The occupations, as well as other observ-
ables, are implicitly dependent on the wavefunctions. The
changes in these quantities are coupled to those in the wave-
functions and are hard to disassociate. Once the electron mo-
mentum density has been calculated, J(pz) and/or Jmag(pz)
can be determined by Eqs. (1) and (2).

III. COMPUTATIONAL DETAILS AND RESULTS

Both KKR and ELK self-consistent computations were per-
formed with the same parameters for the crystal structure
(a = 3.52 Å) and the same parametrization for the DFT
exchange-correlation potential, LSDA [78]. The ELK DFT
calculations used a 20×20×20 k-mesh, which proved to be
sufficient for the k-point convergence of the self-consistent
calculation. The KKR calculations within atomic sphere ap-
proximation were performed on a 57×57×57 k-mesh, and a
semicircular complex contour was used with 40 energy points
enclosing the one-particle poles of the Green’s function. The
minor differences in density of states and spectral functions
can be attributed to the different approaches within ELK and
KKR.

Sightly more significant differences are expected to ap-
pear at the DFT+DMFT level. Both approaches use a rota-
tionally invariant form for the interacting Hamiltonian. The
multi-orbital interaction has been parameterized by the aver-
age screened Coulomb interactionU and the Hund’s exchange
coupling J . The values of U and J are sometimes used as fit-
ting parameters, although recent developments allow the com-
putation of the dynamic electron-electron interaction matrix

elements exactly [79]. It was shown [80] that the static limit
of the screened energy-dependent Coulomb interaction led to
the U parameter being in the energy range of 2 and 4 eV for
all 3d transition metals. Previous DMFT calculations showed
that these U and J parameters provide the best description
of the ground state properties related to the structure and dif-
ferent spectroscopic measurements for many of the 3d met-
als [40, 53, 81, 82]. In a considerable number of studies of
bulk fcc Ni the excellent agreement with the experimental re-
sults were obtained by setting J = 0.9 eV [40, 47–49, 83],
the value which we also use here. Besides, these U and J
parameters are in line with constrained random-phase approx-
imation (cRPA) calculations of 3d transition metals [80, 84].
Note, however, that the multi-orbital interacting Hamiltonian
is formulated in different basis sets. In KKR+DMFT, the lo-
cal atomic basis set is used [31, 68], and consequently, the
many-body problem is formulated within the d-block. Corre-
lation effects are felt by other orbitals only through the self-
consistency cycle. In contrast, with the ELK+DMFT, the
Wannier projectors are constructed such that the Ni-d states,
which are completely within the used correlated energy win-
dow of [−10, 3] eV, are captured. Further essential param-
eters for the CT-QMC computation [56]) are the number of
4.2×108 sweeps and the inverse temperature β of 40 eV−1.
In both methods the spin-polarized around-mean-field double-
counting term (AMF) [85, 86] was employed.

The ELK+DMFT spectral function presented in Sec. III C
was calculated by analytically continuing the DMFT self-
energy using the LineFitAnalyzer technique of the maximum
entropy analytic continuation method implemented within the
TRIQS/Maxent application [87].

The different descriptions of the potentials, full poten-
tial in ELK and the atomic sphere approximation (ASA) in
KKR, also lead to the difference in the calculated chemi-
cal potentials. Within the KKR+DMFT method, the self-
energy is added into the Kohn-Sham-Dirac equation [31, 68],
and the chemical potential is updated to conserve the num-
ber of valence electrons similarly as in the DFT loop. The
ELK+DMFT, using the Wannier projectors instead, updates
the electron density from which a new set of Kohn-Sham
eigenvalues and eigenvectors are generated and the corre-
sponding chemical potential is obtained. The difference in
the DFT+DMFT chemical potential with respect to the DFT
values is at most a few tenths of an eV. The different solvers
produce slightly different values for the real parts of the self-
energies at the chemical potential. An important point here
is the double counting and even though the functional form is
the same for both KKR+DMFT and ELK+DMFT, the slightly
different values in the occupation matrix produce slightly dif-
ferent double counting values.

A. U -dependent spin and orbital magnetic moments

To identify the optimal value of U , or at least to narrow
the ab-initio interval, we first analyzed the behavior of the Ni
ferromagnetic spin magnetic moment with respect to the on-
site Coulomb interaction, U and fixed Hund’s rule coupling,
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FIG. 1. Spinms(µB) and orbitalm`(µB) magnetic moment as func-
tion of the intra-site Coulomb potential U . Blue plus signs and black
crosses represent results of ELK(+DMFT) and KKR(+DMFT) spin
magnetic moment calculations, respectively. On the right axis we
plot the KKR (red asterisks) orbital magnetic moment (ml). In all
calculations, the Hund’s rule coupling parameter J = 0.9 eV was
used. The data points for U = 0.0 eV represent the DFT calcula-
tions.

J = 0.9 eV.
The ferromagnetic spin (ms) and orbital (m`) magnetic mo-

ment as a function of the on-site Coulomb interaction U are
shown in Fig. 1. Both the ELK+DMFT and KKR+DMFT re-
sults show a similarly decreasing spin magnetic moment with
increasing U , in quite close correspondence to each other.

Contrary to the decreasing spin moment over the en-
tire U range, the orbital moment m` obtained in relativis-
tic KKR+DMFT calculations, increases with the U values,
passing the maximum value at U ≈ 2.3 eV, and decreases
upon further increasing the value of U . Even for the largest
value of U (U = 3.0 eV in the presented calculations), the
KKR+DMFT orbital magnetic moment is larger than the cor-
responding DFT value by about 30%. Similar results have
also been reported previously in Ref. 88 and were interpreted
as a correlation-induced orbital moment enhancement.

Despite the different descriptions, it is satisfying to see the
good agreement between the results obtained with both meth-
ods. For U = 2.0 eV, the calculated spin moment matches
best with experiment ≈ 0.56 µB for both DFT+DMFT meth-
ods and is within the ab-initio predictions for the 3d tran-
sition elements. These U = 2.0 eV and J = 0.9 eV values
are in agreement with that used in the previous spin-polarized
Ni ACAR study [83]. The experimental spin moment origi-
nates from the polarized neutron diffraction measurements by
Ref. 89. The total (spin + orbital) measured magnetic mo-
ment, which the analysis relied on, was subsequently revised
by Ref. 90 to 0.616µB , and with which our KKR+DMFT
U = 2.0 eV calculation has excellent agreement. Our cho-
sen U and J values for ferromagnetic fcc Ni have a higher
J /U ratio compared to previous (DFT+)DMFT studies in the
paramagnetic phase [91]. For other values of J two different
values of U are required to match either spin or orbital mo-
ments, where as for J = 0.9 eV and U = 2.0 eV we obtain an
excellent agreement of both. Magnetic Compton scattering,

however, does not directly provide information concerning the
orbital moments, but when combined with a SQUID measure-
ment of the total magnetic moment, the orbital contribution
can be inferred [92].

B. Magnetic Compton profiles

In the KKR(+DMFT), the magnetic Compton profiles
are calculated from the spin-resolved momentum density
ρσ(p) which in turn is obtained as a contour integral of the
Green’s function in the momentum representation, Eq. 4. In
the ELK+DMFT the electron momentum densities (and the
MCPs) are computed through the wavefunctions and occupa-
tion functions across the Brillouin zone on the imaginary fre-
quency axis. The method of obtaining the wavefunctions and
occupation functions in ELK-TRIQS are described in Ref. 65.
In both methods, the MCPs were calculated within a sphere
of radius 16 a.u. (|p| 6 16 a.u.), and then renormalized such
that their areas were equal to the corresponding spin magnetic
moment.

To analyze the effects of correlation on the MCPs, we cal-
culated MCPs with the DFT+DMFT method for a series of on-
site interaction valuesU and Hund’s rule coupling J = 0.9 eV
by employing both KKR+DMFT and ELK+DMFT. Fig. 2
shows the Ni MCPs along the cubic high symmetry direc-
tions, obtained using the KKR(+DMFT) (Figs. 2 (a)-(c)), and
the ELK(+DMFT) (Figs. 2 (d)-(f)) in the momentum range
0 6 pz 6 8 a.u.. The theoretical MCPs have been convoluted
with a Gaussian with a full-width-at-half-maximum (FWHM)
of 0.43 a.u. to represent the experimental resolution.

Starting with the presented DFT results, the MCPs show
good agreement with the experiment for pz > 2 a.u. but these
MCPs do not match the low-momentum region for any of
these high symmetry directions. Our DFT results are in good
agreement with those previously presented in Ref. 44. The
MCP peak structures within the first Brillouin zone are due
to the exchange splitting, which in turn causes the majority
and minority spin bands to cross the Fermi level at different
kF values (see Fig. 4 and Fig. 5). These peaks are periodi-
cally repeated in the MCPs as these are the umklapp contri-
butions from higher zones (i.e., k + G where G is the recip-
rocal lattice vector). One of the advantages of the effective
one-particle framework of DFT calculations is the possibility
to decompose the total MCP into the contributions originat-
ing from individual bands [44–46, 93]. The dip in this low-
momentum region has been attributed partly to the contribu-
tion of the so-called negative polarization of the s- and p-like
bands with respect to the positive contribution of the d-bands.
At the same time, Refs. 44 and 93 note that another source of
discrepancy may be due to the d-like fifth band (band number-
ing according to Ref. 44), where Ref. 93 attributes the shape
of the contribution of this band to the inconsistencies between
the theoretical and the true Fermi surface. These interpreta-
tions, based on the DFT band structures, raise some interest-
ing unsolved questions about the origin of the discrepancy at
low momentum. From the DFT results, the predicted negative
polarization contributions are not sufficient to explain the low
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FIG. 2. The Ni magnetic Compton profiles (MCPs) at [100], [110], and [111] high symmetry directions (indicated on each plot) for several
intra-site Coulomb potential U and fixed Hund’s rule coupling J = 0.9 eV. The KKR+DMFT MCPs results are shown in the (a), (b) and
(c) panels (upper row). The ELK+DMFT MCPs are presented in the (d), (e) and (f) panels (lower row). The areas of each MCP have been
normalized to their corresponding spin magnetic moment results given in Fig. 1. The DFT+DMFT results are complemented by the LSDA
results from the respective ELK and KKR codes (dashed curves) and the experimental measurements from Dixon et al. (dots with error bars)
[44]. For clarity, the error bars are shown for every tenth data point. The computed results have been convoluted with a Gaussian with a
full-width-at-half-maximum (FWHM) of 0.43 a.u. to represent the experimental resolution.

momentum dip seen in the experimental results. Dixon et al.,
Ref. 44, suggested that it was the deficient representation of
the d-electron correlations in LSDA (and GGA), not just the
negative polarization from the s- and p-electrons, which was
the potential cause for the low momentum experiment-theory
disagreement [44]. Artificial shifts of the bands around the
Fermi level [94] showed improved agreement with the low
momentum MCP region. As correlation effects lead to the
shift of those bands naturally, improved theoretical descrip-
tion of the Ni MCPs can be obtained by taking them into
account. Recent studies [47–49] also demonstrated that in-
cluding the local correlations through the DMFT framework
reduces the discrepancy between theoretical and experimental
MCPs of Ni.

Moving onto the DFT+DMFT results, the large dips near
pz = 0 a.u. in the high symmetry directions are better repro-
duced by the DFT+DMFT MCP for U > 2.3 eV. On the other
hand, for high-momentum, pz > 2 a.u., region U < 2.3 eV is
a better choice. Although we are able to produce improved
agreement (with respect to the DFT MCPs) with the exper-
iment at low momentum, pz < 1 a.u., DFT+DMFT fails to
reproduce the experimental MCP for the [100] and [110] di-
rections (see Fig. 2 (a),(d) and (b),(e)). Along the nearest-
neighbor direction [110], noU value was found to suppress the
peak at around pz = 0.6 a.u.. Although the general low mo-
mentum disagreement is the case for both implementations,
there are some notable differences between the ELK+DMFT
and KKR+DMFT results. Along [100] direction, Jmag(pz) for
pz < 1 a.u calculated with ELK+DMFT for increasing val-

ues of U matches the experimental MCP better than those ob-
tained with KKR+DMFT. The latter visibly overestimates the
Jmag(pz) (by almost the same amount) for all U values con-
sidered. The opposite happens for the [111] direction. In this
case, Jmag(pz) obtained with KKR+DMFT matches the ex-
perimental values in pz . 2 a.u. region for U > 2.3 eV, while
ELK+DMFT results overestimate the experimental values for
pz . 1 a.u for all considered values of U .

Although in general the low momentum is better described
with higherU values (see Fig. 2), the costs of this is the poorer
agreement with the experiment from 1 a.u. to about 5 a.u..
This is because the area under the MCP, which is equal to
the corresponding spin moment for each U value in Fig. 1,
reduces with increasing U and is less than the experimental
value for about U > 2.0 eV. Therefore, for the different U
values, an improvement in one momentum region of the MCP
causes another region to worsen in order to conserve the area.

We did not find a single U value, within the ab-initio range
of U values, which would simultaneously match both, low-
and high-momentum regions of experimental profile within
its error. On the other hand, in the previous section, we
identified that the DFT+DMFT calculation with U = 2.0 eV
and J = 0.9 eV produces the best match between the calcu-
lated and experimental magnetic moment. To see how well
the DFT+DMFT MCPs for U = 2.0 eV match the experi-
mental MCPs from Ref. 44, and also to compare the results
obtained by two different packages and two distinct frame-
works in Fig. 3, we show the corresponding MCPs. Al-
though the MCPs calculated in the DFT+DMFT framework
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FIG. 3. The comparison of the experimental Ni magnetic Compton
profiles (MCPs) from Dixon et al. [44] (dots with error bars) with the
DFT results (solid and dashed curves) and the DFT+DMFT results
for the chosen U = 2.0 eV and J = 0.9 eV (dash-dotted and dotted
curves). For clarity, the error bars are shown for every tenth data
point. The (a), (b) and (c) panels show the MCPs for the [100], [110]
and [111] high symmetry directions. The computed results have
been convoluted with a Gaussian with a full-width-at-half-maximum
(FWHM) of 0.43 a.u. to represent the experimental resolution. The
areas of each MCP have been normalized to their corresponding spin
magnetic moments given in Fig. 1.

for U = 2.0 eV deviate from the experimental results in the
momentum range 0 < pz < 1 a.u., extending DFT with the
DMFT framework significantly improves the description of
the experiment in the range 1 < pz < 2 a.u.. For U = 2.0 eV,
the structure of the MCPs is well reproduced in all three high
symmetry directions in this region where the dominant contri-
butions are made. DFT+DMFT results also stay in reasonably
good agreement with the experiment for higher values of pz ,
from pz = 2 a.u. onwards, but they tend to slightly underesti-
mate the tails, although they are within the experimental error.
This is also a consequence of the calculations overestimating
the low momentum region.

Overall, dynamic correlations improve the agreement with
the experimental data beyond the LSDA results. The results
including dynamic correlations also show the correct trend for
low momentum region pz . 2 a.u. where better MCPs are
obtained in comparison to the LSDA. LSDA overestimates
MCP values almost in the entire region. As mentioned earlier,
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FIG. 4. The comparison of the unconvoluted high symmetry direc-
tion ([100], [110], and [111]) MCPs from the DFT (solid and dashed
curves) and the DFT+DMFT with U = 2.0 eV, J = 0.9 eV (dash-
dotted and dotted curves) calculations. The profiles in this figure are
the unconvoluted counterparts of the MCPs which are in Fig. 3

since the areas under the MCPs directly equal the spin mo-
ment (ms), the areas reduce with increasing U as per Fig. 1.
Nevertheless, since DFT+DMFT also overestimates the ex-
perimental MCP values in the pz . 1 a.u. region, the conse-
quence is that the tails (high-momentum region) are underesti-
mated — after all, the areas beneath the MCP and U = 2.0 eV
DFT+DMFT curves are almost equal. The current results,
however, do not allow us to infer the optimal value for the on-
site Coulomb interaction necessary to obtain the best agree-
ment with the experimental measurements. Nevertheless, we
see that U values in the range [1.7, 2.3] eV describe the on-site
Coulomb interaction reasonably well (almost exactly within
experiment error bars in the 1 . pz . 2 a.u. range), in agree-
ment with positron annihilation measurements [83]. Similar
conclusions have been drawn in previous papers reporting the
correlation effects upon the MCP of Ni [47–49].

A direct comparison between the methods can be seen in
Fig. 4, where we plot the theoretical MCPs which have not
been convoluted with the experimental resolution. The results
produced with the two DFT+DMFT implementations are in
excellent agreement. Therefore, we are confident that the ef-
fect of the resolution on the MCPs does not hide any glaring
disagreements between the implementations.
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Finally, we conclude that neither implementation produces
results (for all U values) that have a better overall agreement
with the experimental data than the other (within the experi-
mental error). The level of experiment-theory agreement be-
tween the MCPs from both implementations varies in differ-
ent regions of momentum. Overall, the results from the two
implementations are in good agreement with minor discrep-
ancies due to the aforementioned differences discussed at the
beginning of Sec. III.

C. Spectral function

Features in the MCPs can be traced back to the form of the
spectral function which, for the non-interacting case, is repre-
sented by the band structure. Fig. 5 shows the DFT band struc-
ture together with the DFT+DMFT k-resolved spectral func-
tion along the high symmetry direction in the Brillouin zone
from the ELK and ELK+DMFT calculations. In the present
DFT calculation, we confirm that the bands 5 and 6 of Fig. 5
only give a positive contribution to the MCPs whereas bands
1-4 have negative contributions to the MCPs at low momen-
tum.

In a many-body picture, however, such a band-resolved in-
terpretation is not possible. The spectral function in Fig. 5
shows the quasi-particle dispersion. The self-energy affects
the two spin channel spectral functions differently. A signifi-
cant part of the energy dependence of the self-energy is related
to the different occupations of the spin-polarized d-states, on
which the MCPs are also dependent. Scattering processes in-
volving s-electrons may be neglected as the corresponding or-
bitals are almost completely filled [95].

Within the DMFT approximation, the self-energy matrix
is diagonal in the angular momentum representation and is
independent of k. It is the orbital dependence of the self-

energy that produces a coupling between the terms of the d8-
multiplets [95], where the neglected k-dependence of the self-
energy amounts to disregarding the hopping processes of the
two holes bound to the same Ni-site. The CT-HYB impu-
rity solver captures the self-energy contributions relevant for
the strong ferromagnetic state such as repeated scattering of
paired holes, hole-hole and hole-electron interactions as these
processes enter in the fully rotationally invariant formulation
of the Hubbard model and parameterized by the U and J pa-
rameters [82]. As Ni has a relatively large band width, the
atomic multiplet structure is extended in the energy range
around −6 eV. Therefore, the expected satellite in our treat-
ment is a broad feature instead. The prominent correlation
effect of the DFT+DMFT k-resolved spectral function is to
renormalize the position and width of the d-bands and signif-
icantly reduce the exchange splitting to about 0.3 eV at the
L-point (which we measured as the difference between the
majority and minority band centers). These are direct conse-
quences of the presence of the real part of the DMFT self-
energy having a negative slope at EF . These features are in
good agreement with experiments [38, 39] and are in line with
previous studies [40, 41, 43]. We observe that the crossing of
the bands at the Fermi level hardly changes for the majority
spin channel (see the left panel in Fig. 5). In the minority
bands, however, there are subtle changes around the X-point,
where two X-hole pockets reside (see the inset in the right
panel in Fig. 5). These changes are less significant for the
MCPs but are relevant in other experiments such as de Haas-
van Alphen and ARPES [96, 97]. Previous experiment-theory
comparisons [96, 97] have shown that DFT predicts a sec-
ond shallow minority hole pocket around X. This is referred
to as the minority X2 hole pocket (related to minority band
3 in Fig. 5) but there is no strong evidence of its presence
in the experiments. The present DFT+DMFT calculation with
U = 2.0 eV shows that the size of the minority X2 hole pocket
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shrinks and also becomes shallower as compared to DFT re-
sults, but it does not vanish. These may indicate that other
correlation effects are required to suppress this band below the
Fermi level, or that the large effective mass of X2 hole pocket
due to the shallowness of the corresponding band around X
(see the inset in the right panel in Fig. 5) might have made its
observation more challenging.

Contrary to previous interpretations based on the one-
particle description it is not obvious that the negative polar-
ization contributions to the MCP (by the s- and p-electrons)
is the cause for the disagreement between the experiment and
the DFT and DFT+DMFT computations. The low momen-
tum disagreement is likely the consequence of the other miss-
ing correlation effects beyond DFT+DMFT, such as screen-
ing. As screening is a genuine many-body effect, it requires
methods like quasiparticle GW (QSGW). Such a calculation
for Ni has been performed recently by L. Sponza et al. [98].
The QSGW calculations produce an enhanced value for the
magnetic moment and exchange splittings. Nonetheless, in
supplementing the computations with DMFT in the combined
QSGW+DMFT, the values for the magnetic moment and ex-
change splitting are in good agreement with the experiment.
We expect that a QSGW+DMFT calculations would likely im-
prove the MCPs, as these incorporate non-local and screening
effects.

IV. CONCLUSION AND OUTLOOK

To conclude, we have presented results of two different
DFT+DMFT implementations to calculate the spin-resolved
momentum distributions ρσ(p), and the magnetic Compton
profile Jmag(pz). Both of these implementations show excel-
lent agreement with each other considering the differences in
their approaches to applying both DFT and DMFT and the
different challenges that these contribute to the calculations.

The DFT+DMFT spin moment calculations have the same
U dependence in both setups, the slight difference in magni-
tude likely being due to the details of the implementations.
Although the spin moment improves to be comparable with

the experimental value, the shape of the MCP has a weak U
dependence, features in the profile such as umklapp peaks,
remain relatively unchanged and only the MCP contributions
are redistributed compared to the calculated DFT profiles.

For the U = 2.0 eV calculation, which reproduces the ex-
perimental spin (and total) magnetic moments, the corre-
sponding spectral function reveals that the minority X2 pocket
shrinks and gets shallower with respect to the DFT calcula-
tions, but nevertheless still survives. This small X2 pocket is
likely to have a large effective mass and this may explain why
it was not observed in the de Haas-van Alphen experiment.

According to our combined DFT+DMFT approaches, some
arguments in previous DFT studies built upon the existence
of negative polarization description are not sufficient to ex-
plain the discrepancy between the theoretical and experimen-
tal MCP and low-momentum region. Instead, theories in-
cluding a non-local description of interaction and retarda-
tion effects (i.e., energy-dependent screening) such as cluster-
DMFT, GW (QSGW) and beyond might be more suitable to
deliver a better description of the MCP in ferromagnetic met-
als such as Ni. To truly resolve the intricacies which may
arise between the aforementioned theoretical frameworks, it
would be essential to remeasure the Ni MCPs with a higher
resolution. This will lead to further valuable understanding of
the many-body groundstate properties probed in momentum
space.
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A. Katanin, A. Toschi, and G. Sangiovanni, Local magnetic mo-
ments in iron and nickel at ambient and earth’s core conditions,
Nature communications 8, 1 (2017).

[44] M. A. G. Dixon, J. A. Duffy, S. Gardelis, J. E. McCarthy, M. J.
Cooper, S. B. Dugdale, T. Jarlborg, and D. N. Timms, Spin den-
sity in ferromagnetic nickel: A magnetic Compton scattering
study, Journal of Physics: Condensed Matter 10, 2759 (1998).

https://doi.org/10.1103/PhysRevLett.74.2252
https://doi.org/10.1103/PhysRevLett.74.2252
https://doi.org/https://doi.org/10.1524/zpch.2001.215.11.1353
https://doi.org/https://doi.org/10.1524/zpch.2001.215.11.1353
https://doi.org/https://doi.org/10.1140/epjb/e2018-90121-x
https://doi.org/https://doi.org/10.1038/srep12428
https://doi.org/https://doi.org/10.1038/srep12428
https://doi.org/10.1103/PhysRev.85.636
https://doi.org/10.1103/PhysRev.85.636
https://doi.org/10.1103/PhysRev.85.686
https://doi.org/10.1088/1742-6596/443/1/012011
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/https://doi.org/10.1063/1.1712502
https://doi.org/https://doi.org/10.1063/1.1712502
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.80.315
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.69.245101
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.90.235103
https://doi.org/10.1103/PhysRevB.67.235106
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.72.045125
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevB.84.054529
https://doi.org/10.1103/PhysRevLett.39.1632
https://doi.org/10.1103/PhysRevB.44.2923
https://doi.org/10.1103/PhysRevLett.40.1514
https://doi.org/10.1103/PhysRevLett.40.892
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevLett.44.95
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevLett.87.067205
https://doi.org/10.1103/PhysRevLett.97.227601
https://doi.org/10.1103/PhysRevLett.97.227601
https://doi.org/10.1103/PhysRevB.85.205109
https://doi.org/10.1103/PhysRevB.85.205109
https://doi.org/https://doi.org/10.1038/ncomms16062
https://doi.org/10.1088/0953-8984/10/12/014


11

[45] Y. Kubo and S. Asano, Magnetic Compton profiles of iron and
nickel, Phys. Rev. B 42, 4431 (1990).

[46] D. N. Timms, A. Brahmia, M. J. Cooper, S. P. Collins,
S. Hamouda, D. Laundy, C. Kilbourne, and M. C. S. Lager,
Spin dependent anisotropy in the momentum density of ferro-
magnetic nickel metal, Journal of Physics: Condensed Matter
2, 3427 (1990).

[47] D. Benea, J. Minár, L. Chioncel, S. Mankovsky, and H. Ebert,
Magnetic Compton profiles of Fe and Ni corrected by dynami-
cal electron correlations, Phys. Rev. B 85, 085109 (2012).

[48] L. Chioncel, D. Benea, H. Ebert, I. Di Marco, and J. Minár,
Momentum space anisotropy of electronic correlations in fe and
ni: An analysis of magnetic compton profiles, Phys. Rev. B 89,
094425 (2014).

[49] L. Chioncel, D. Benea, S. Mankovsky, H. Ebert, and J. Minár,
Static corrections versus dynamic correlation effects in the va-
lence band Compton profile spectra of Ni, Phys. Rev. B 90,
184426 (2014).

[50] H. Ebert, Fully relativistic band structure calculations for mag-
netic solids - formalism and application, in Electronic Struc-
ture and Physical Properties of Solids, Vol. 535, edited by
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