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The Kitaev model is a remarkable spin model with gapped and gapless spin liquid phases, which
are potentially realized in iridates and α-RuCl3. In the recent experiment of α-RuCl3, the signature
of a nematic transition to the gapped toric code phase, which breaks the C3 symmetry of the
system, has been observed through the angle dependence of the heat capacity. We here propose a
mechanism by which the nematic transition can be detected electrically. This is seemingly impossible
because Jeff = 1/2 spins do not have an electric quadrupole moment (EQM). However, in the
second-order perturbation the virtual state with a nonzero EQM appears, which makes the nematic
order parameter detectable by nuclear magnetic resonance and Mössbauer spectroscopy. The purely
magnetic origin of EQM is different from conventional electronic nematic phases, allowing the direct
detection of the realization of Kitaev’s toric error-correction code.

Introduction.— The Kitaev model [1] is a notable spin
model for quantum spin liquids (QSLs) with gapped and
gapless ground states. After pioneering work by Jack-
eli and Khaliullin [2], potential experimental realizations
were reported in iridates [3, 4] and α-RuCl3 [5]. In-
deed, those materials have d5 metal ions in the octa-
hedral ligand field forming the honeycomb lattice, which
results in unusual anisotropic interactions proposed by
Kitaev [1]. This Jackeli-Khaliullin mechanism is intrin-
sic to the Jeff = 1/2 magnetic moment with a strong
spin-orbit coupling (SOC), and makes the d5 materials
family, sometimes called Kitaev materials, a fascinating
platform for the physics of Majorana fermions. Espe-
cially, after the discovery of a field-revealed QSL phase
in α-RuCl3 [6, 7], various experimental techniques were
used to characterize this exotic phase under a magnetic
field [8–10]. However, the realization of Kitaev’s gapped
A phase, which is nothing but a toric code phase [11], was
only discussed in a complex structure in metal-organic
frameworks [12].

Kitaev’s A phase is the ground state of the Kitaev
model in the anisotropic limit. This is a gapped Z2 spin
liquid phase and is mapped to the toric code model in the
fourth order perturbation. The toric code is a topologi-
cal error correction code which is useful in fault-tolerant
quantum computing. We here discuss another route to-
wards the realization of this phase. This toric code phase
is potentially realized by a spontaneous breaking of the
C3 symmetry of the isotropic Kitaev model. If the or-
der parameter reaches a critical value, the system trans-
forms from B phase to A phase. This order parameter
consists of quadrupole operators, rather than usual mag-
netic dipoles, and in this sense we can regard it as a
nematic transition.

On the analogy of liquid crystals, a nematic phase is
discussed in various fields of condensed matter physics,
ranging from spin nematic phases in frustrated mag-
nets [13] to electronic nematic phases in quantum Hall

systems [14], ruthanates [15], unconventional supercon-
ductors [16], etc. Inspired by the previous numerical
studies [17, 18], we seek for a possibility of the nematic
transition in Kitaev materials. In Jeff = 1/2 Kitaev ma-
terials, it should be called spin-orbital nematic [19] with
properties of both spin nematic and electronic nematic.

Recently, O. Tanaka et al. [20] indeed observed such a
spin-orbital nematic transition from a gapped chiral spin
liquid phase to a different gapped phase characterized by
the broken threefold rotation (C3) symmetry, based on
the measurements of the angle dependence of heat capac-
ity under a strong magnetic field. It has been proposed
that this symmetry-broken phase could be the toric code
phase [21], as the half-quantized thermal Hall effect dis-
appears at the transition point [7]. However, the prop-
erty of this nematic transition is still obscure, and we
need a more sensitive local probe for this unusual phase
transition.

Therefore, we propose an electric quadrupole moment
(EQM) as a direct probe for the topological nematic tran-
sition [21] of the Jeff = 1/2 magnetic moments. This
statement is very counterintuitive as the Jeff = 1/2 pseu-
dospin does not have an EQM in the cubic environ-
ment, differently from the Jeff = 3/2 case [22], where the
quadrupole moment is directly measurable. Interestingly,
however, holes with a Jeff = 1/2 pseudospin can hop to
the nearest-neighbor (NN) sites, and an virtual state with
two holes can possess an EQM. This is because via the
superexchange pathway involving the Cl p-orbitals the
Jeff = 1/2 state can be transformed into a state with a
nonzero quadrupole moment. This enables us to electri-
cally detect the nematic order parameter, which is origi-
nally written in terms of spin operators. We also discuss
that, although the Chern number is not measurable, its
change can be inferred from the careful analysis of the
derivative of the in-plane anisotropy parameter η.

In a real experimental setup, the most sensitive way
to measure the EQM is through the hyperfine interac-
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FIG. 1. (a) Honeycomb lattice where the Kitaev model is
defined. Red, green, and blue bonds represent bonds in the
x-, y-, and z-directions, respectively. (b) Idealized geometry
of α-RuCl3. Orange and yellow spheres represent Ru and Cl
ions, respectively. Bonds in the γ-direction are defined to be
perpendicular to the γ-axis of the cubic lattice. The figure is
generated by VESTA [28].

tion because the nuclear with a spin I ≥ 1 can feel the
electric field gradient (EFG), or the EQM. Especially,
nuclear magnetic resonance (NMR) and Mössbauer spec-
troscopy (MS) use a nuclear spin of Ru as a direct probe,
and they are highly sensitive to the symmetry of the lo-
cal environment. If the C3 symmetry of Ru forming the
honeycomb lattice is broken, it can potentially be de-
tected by 99/101Ru-NMR [23], or 99Ru-MS [24]. In NMR
and MS, the in-plane anisotropy is characterized by a
single dimensionless parameter η [25–27]. If the EFG or
EQM tensor has an anisotropy around the [111] axis, η
gets nonzero and the signal splits or shifts, which could
detect the existence of a nematic order.

In this Letter, we will prove that the in-plane
anisotropy η is directly connected to the nematic order
parameter in terms of Majorana fermions, which poten-
tially detects the transition to the toric code phase.

Quadrupole moment.— An electronic EQM is defined
for d-orbitals by

qαβ =
3

2
(LαLβ + LβLα)−L2δαβ , (1)

where L are L = 2 orbital angular momentum operators
of Ru d-orbitals and α = x, y, or z, and β = x, y, or
z. This rank-2 traceless symmetric tensor directly cou-
ples to the nuclear EQM of Ru, and the anisotropy of
qαβ is easily measurable. If the EFG from the surround-
ing ions is negligible as is the case for 99Ru-MS [24], we

can identify the effective EFG V αβeff to be proportional
to qαβ . Therefore, we will not distinguish between EFG
and EQM of Ru from now on.

The definition of η in terms of qαβ is as follows. Since
this tensor is symmetric, it can be diagonalized by or-
thogonal transformation. Here we denote the princi-
pal axis as abc, where we define the order of abc such
that |qcc| ≥ |qbb| ≥ |qaa|. In this case, η is defined as
η = (qaa − qbb)/qcc. If η = 0, it is apparent that EQM

is invariant under the rotation around the c-axis, and
thus it potentially detects the breaking of the C3 symme-
try of α-RuCl3. However, the connection between η and
the nematic order parameter is not evident in this form.
Differently from the “electronic” nematic order, where
η detects the distortion of surrounding ligands, the spin
nematic order is subtle without a detectable structural
transition.

Since the nematic transition of α-RuCl3 may be purely
magnetic as around the transition point H ∼ 10 T no
structural transition has been observed [20], we have to
think of a mechanism where a pure spin operator is trans-
formed into an electric quadrupole. Especially, in the
case where the position of Cl ligands is not distorted,
we have to consider a purely electronic origin for this
mechanism, which involves a microscopic structure of Ru
d-orbitals. From now on we set ~ = 1.

As is well-known, the Jeff = 1/2 pseudospin cannot
possess an EQM in the cubic environment, thus we have
to perturb the Jeff = 1/2 wavefunction in some way to
get a nonzero expectation value of EQM. One simple way
is by the ligand field effect of the lattice distortion, but
it only produces a static contribution. A more exotic an-
swer is to perturb the Jeff = 1/2 wavefunction via the
superexchange mechanism. Especially, in the case of the
low-spin d5 configuration, it is well-known as the Jackeli-
Khaliullin mechanism that the Jeff = 1/2 state is trans-
formed into Jeff = 3/2 state with a nonzero quadrupole
moment, which produces the following Kitaev Hamilto-
nian for Jeff = 1/2 pseudospins:

HKitaev = −K
∑

〈ij〉∈γ
Sγi S

γ
j , (2)

where Si is a pseudospin on the ith site of α-RuCl3, K >
0 is a Kitaev interaction, and 〈ij〉 ∈ γ means an NN bond
〈ij〉 in the γ-direction with γ = x, y, and z. The bond
direction is defined as illustrated in Fig. 1(a). Assuming
the 0-flux ground state, the Hamiltonian can be recast
into the tight-binding model of Majorana fermions.

HMajorana =
K

4

∑

〈ij〉
icicj , (3)

where ci is an itinerant Majorana fermion on the ith site.
We note that in this Letter we do not antisymmetrize
Majorana fermion operators.

Similarly to the Jackeli-Khaliullin mechanism, we can
compute an effective quadrupole moment produced by
the virtual state, and it can potentially have a form of
Sγi S

γ
j . This is how the pure spin operator Sγi S

γ
j can

be transformed into an electric quadrupole qγγ in the
second-order perturbation.
Second-order perturbation.— Following Jackeli and

Khaliullin [2], we will do the perturbation inside the t2g-
orbitals assuming a large octahedral ligand field. The
discussion also follows Refs. [29–31]. Especially, the idea
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is related to the one discussed in Ref. [32]. We first note
that t2g-orbitals (dyz, dxz, and dxy) possess an effective
angular momentum operator leff with leff = 1. This ef-
fective moment has a relation L = −leff inside the t2g-
manifold, but we cannot simply use this relation in the
calculation of qαβ . The computation of qαβ involves in-
termediate eg-orbitals, which brings about a nonzero cor-
rection. Details are included in Supplemental Material
(SM) [33].

We take the following basis set to write down the
Hamiltonian:

d†i =
(
d†i,yz,↑, d

†
i,yz,↓, d

†
i,xz,↑, d

†
i,xz,↓, d

†
i,xy,↑, d

†
i,xy,↓

)
, (4)

where d†i,α,σ denotes a hole creation operator for a dα-
orbital with a spin σ =↑, ↓ with α = yz, xz, and xy.
We sometimes identify yz, xz, and xy with x, y, and z,
respectively.

The Hamiltonian H consists of the following terms:

H = Hhop +HSOC +HLF +HHubbard, (5)

which is the sum of the kinetic hopping term, the SOC,
the ligand field splitting, and the Hubbard term. The ki-
netic hopping term can be written generically as follows:

Hhop = −
∑

〈ij〉∈γ

[
d†i (T

γ ⊗ 112)dj + H.c.
]
, (6)

where 11n is the n×n identity matrix, and T γ with γ = x,
y, and z are

T x =




0 0 0
0 0 t2
0 t2 0


 , T y =




0 0 t2
0 0 0
t2 0 0


 ,

T z =




0 t2 0
t2 0 0
0 0 0


 , (7)

where t2 is the main contribution coming from the path-
way via Cl p-orbitals. Of course, we can consider a more
generic form including ti (i = 1, . . . , 4) [29, 30].

The SOC Hamiltonian is HSOC = (λ/2)
∑
i,α d

†
i (l

α ⊗
σα)di, where λ > 0, (lα)βγ = −iεαβγ , and σα are

Pauli matrices with α = x, y, and z. HLF =
∆
∑
i d
†
i

[
(l · n̂)2 ⊗ 112

]
di with n̂ = (1, 1, 1)/

√
3, assum-

ing the preserved C3 symmetry of the lattice.
HHubbard is a multiorbital Hubbard interaction term.

We here ignore the Hund coupling JH for simplicity as
JH is much smaller than the Hubbard interaction U .
HHubbard = (U/2)

∑
i ni(ni − 1), where ni = d†i · di is

a number operator for each site.
Let us begin with the case without a ligand field split-

ting by setting ∆ = 0. In the atomic limit without a
kinetic term, the system has exactly one hole per site.
The states for a single hole are split into Jeff = 3/2 and
Jeff = 1/2, and the atomic ground state consists of de-
generate Jeff = 1/2 pseudospins as λ > 0, which is de-
noted by Si. The effective operator form of qαβ in terms
of pseudospins Si can be derived from the second-order
perturbation in the kinetic term. This is achieved by per-
turbing a magnetic state |φm〉 into |ψm〉 up to the first
order and by computing

[
qαβeff

]
mn

= 〈ψm|qαβ |ψn〉 . (8)

|ψm〉 is

|ψm〉 = α |φm〉+
1− P
E0 −H0

Hhop |φm〉 , (9)

where α ∼ 1 is a renormalization constant, P is a pro-
jection operator onto unperturbed states, and H0 is an
unperturbed Hamiltonian with an energy E0 for |φm〉.
Since the original Jeff = 1/2 state |φm〉 does not have an
EQM, the effective operator can finally be written

qαβeff = PHhop
1− P
E0 −H0

qαβ
1− P
E0 −H0

HhopP. (10)

The contribution of the 〈ij〉 bond to the ith site can also
be written as

qαβij = PHi→jhop

1− P
E0 −H0

qαβi
1− P
E0 −H0

Hj→ihop P, (11)

where Hj→ihop = d†i (T
γ ⊗ 112)dj when 〈ij〉 ∈ γ.

From now on, an NN site of i is denoted by iγ for the
γ-direction. When γ = z, the direct calculation leads to
the following effective EQM:

qiiz =
t22

(U + 3
2λ)2




4
3 (Sxi S

x
iz
− Syi Syiz ) + 4Szi S

z
iz

− 4
3 (Sxi S

y
iz

+ Syi S
x
iz

) − 16
3 S

x
i S

z
iz

− 4
3 (Sxi S

y
iz

+ Syi S
x
iz

) 4
3 (Syi S

y
iz
− Sxi Sxiz ) + 4Szi S

z
iz
− 16

3 S
y
i S

z
iz

− 16
3 S

x
i S

z
iz

− 16
3 S

y
i S

z
iz

−8Szi S
z
iz


 , (12)

up to a trivial constant. Though it looks complicated,
the main contribution is simple. In the spirit of Kitaev’s
perturbative treatment of the magnetic field, we can re-

gard the first contribution to be the one which does not
change the flux sector. In qαβiiz , such a contribution is
only the Szi S

z
iz

term in the diagonal element, which can
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FIG. 2. (a) Phase diagram of the Kitaev model [1]. Cyan
regions represent A phase, and a white region represents B
phase. A black solid line represents the Kx = Ky line, which
is parametrized by θ as depicted. (b) η with respect to the
model parameter θ. ∆ = 10 meV, λ = 150 meV, and U = 1.5
eV are used. t2 takes 150, 200, and 250 meV. Kitaev’s gapped
A phase is shown by a cyan shaded region.

be written, assuming that i is on the even sublattice, as

P0qiizP0 =
t22

(U + 3
2λ)2



−iciciz 0 0

0 −iciciz 0
0 0 2iciciz


 ,

(13)
where P0 is a projection operator onto the 0-flux sector.

By summing up all the contributions from the three
bonds surrounding the ith site, the total EQM in the
second order becomes

P0qiP0 =
t22

(U + 3
2λ)2




3icicix 0 0
0 3iciciy 0
0 0 3iciciz




− t22
(U + 3

2λ)2
(icicix + iciciy + iciciz )113, (14)

which is nothing but a nematic order parameter as two
terms cancel out when 〈icicix〉 = 〈iciciy 〉 = 〈iciciz 〉 and
the C3 symmetry around the ith site is preserved. Thus,
we have shown that EQM of Ru is directly connected
to the nematic order parameter of Majorana fermions.
Especially, a nematic Kitaev spin liquid (NKSL) where
the ground state remains the 0-flux sector but breaks
the C3 symmetry by a nematic order parameter can be
detected through the measurement of this EQM directly
by Ru-NMR or Ru-MS. However, such an effect could
compete with a static EQM coming from the trigonal
distortion, so we should be careful about whether η is
detectable if we include both of the contributions.

Trigonal distortion.— Even if we introduce a small
trigonal distortion ∆ 6= 0, the ground state remains a
Kramers doublet in the atomic limit and the effective
spin-1/2 description is valid. The effective operator form
of EQM can be obtained almost in the same way as before
up to the first order in ∆/λ.

P0qiP0 =




3it22
(U+ 3

2λ)2
cicix − 4∆

3λ − 4∆
3λ

− 4∆
3λ

3it22
(U+ 3

2λ)2
ciciy − 4∆

3λ

− 4∆
3λ − 4∆

3λ
3it22

(U+ 3
2λ)2

ciciz




− t22
(U + 3

2λ)2
(icicix + iciciy + iciciz )113

+O(∆2,∆t22, t
4
2). (15)

By diagonalizing this tensor, we can calculate the value
of η. Since usually ∆/λ > t22/U

2, the principal a-axis is
nearly perpendicular to the (111) plane. b- and c-axes
are inside this plane, detecting the C3 symmetry of the
system.

In order to show the relevance of our theory to detect
NKSL, we try to check the size of η for the ansatz state.
In the mean-field level, the ansatz state of NKSL should
be the ground state for the following ansatz Hamiltonian.

HNKSL = −
∑

〈ij〉∈γ
KγSγi S

γ
j , (16)

where Kγ > 0 is an effective Kitaev interaction for the
γ-direction. On the Kx = Ky line shown in Fig. 2(a),
Lieb’s theorem [34] is applicable and the expectation
value of EQM becomes

〈ΨGS|qi|ΨGS〉 = 〈ΨGS|P0qiP0|ΨGS〉 , (17)

for any ground state |ΨGS〉. We then compute η for
the ground state of HNKSL along the line Kx = Ky.
The results are shown in Fig. 2(b), where θ is defined as
tan θ = Kz/Kx. The calculation method is included in
SM [33].

From the isotropic point θ = π/4 with η = 0, the value
of η gradually grows, and continuously changes around
θ = θc with tan θc = 2, where the topological transition
between Kitaev’s B and A phases occurs. In the gapped
A phase (cyan shaded region), η reaches 0.1–0.2. Thus,
the topological nematic transition should result in O(0.1)
change of the value of η, which is definitely detectable in
the Ru-NMR or Ru-MS measurement.

Though the transition is continuous, the derivative of η
has a cusp at the transition point (see Fig. S2 in SM [33]).
Experimentally, the B phase and the A phase can be dis-
tinguished by the presence of a cusp in the derivative, and
the critical value can be determined by its position. The
consequence of an applied magnetic field is also discussed
in SM [33].

Other contributions.— In this Letter, we have only con-
sidered the onsite d-orbital contribution to EFG. Usually,
the interaction with EFG is divided into onsite and offsite
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contributions [35] as Hel = Hon
el +Hout

el with

Hon
el = − e2Q

2I(2I − 1)
〈r−3〉 〈L||α||L〉 I q↔I,

Hout
el = (1− γ∞)

eQ

2I(2I − 1)
I
↔
V outI, (18)

where e is the elementary charge, Q is the quadrupole
moment of the nucleus, I are nuclear spin operators
where I depends on the isotope, 〈r−3〉 is the expectation
value of r−3 for Ru 4d-electrons, 〈L||α||L〉 is a constant
defined in Ref. [35], γ∞ is the Sternheimer antishielding

factor, and
↔
V out is the EFG tensor caused by the sur-

rounding ions.

Usually, Hon
el is the main contribution as Ru 4d-orbitals

are strongly localized, and thus we have ignored the effect
ofHout

el so far. However, because the C3 symmetric struc-

ture of ligands is stable in α-RuCl3, the effect of
↔
V out is

just renormalizing the value of ∆. Therefore, our theory
is qualitatively valid even if we include the contribution
from the surrounding ions. Whether or not it gives a
nonnegligible change quantitatively will be discussed in
the future.

Discussion.— We have shown that the nematic transi-
tion in α-RuCl3 is detectable by NMR and MS through
the measurement of η. Experiments should be combined
with the high-resolution X-ray diffraction to exclude the
possibility of a lattice distortion. While the conclusion
is modified when the external magnetic field is applied,
the first-order contribution vanishes and η still serves as
a nematic order parameter. The mechanism of the de-
tection itself is different from conventional electronic ne-
matic phases. Although the expression of q given by the
bilinear form of the spin operators is not limited to Ki-
taev systems, its highly anisotropic form is a consequence
of the strong SOC.

Our theory can be generalized to the three-dimensional
extensions of the Kitaev model [36, 37]. Especially, the
spin-Peierls instability expected in the hyperoctagon lat-
tice [38] is potentially detectable in our scheme based on
NMR and MS.

In the case of NMR, not only static quantities like
EFG, but also dynamical quantities can be observed. Es-
pecially, the nuclear spin-lattice relaxation rate divided
by temperature 1/T1T would also be a good probe for the
time scale of the nematic transition. We would remark
that the anisotropy of 1/T1T can be another signature of
the existence of a nematic order [39].

We thank K. Ishida, Y. Matsuda, T. Shibauchi,
S. Suetsugu, and Y. Tada for fruitful discussions. This
work was supported by the Grant-in-Aids for Scientific
Research from MEXT of Japan (Grant Nos. JP17K05517
and JP21H01039), and JST CREST Grant Number JP-
MJCR19T5, Japan.
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CONTRIBUTION FROM THE eg-ORBITALS

We quickly discuss the nonnegligible contribution from the eg-orbitals. In this section, we ignore a spin index for
simplicity. In the basis set for the d-orbitals with

d† =
(
d†yz, d

†
xz, d

†
xy, d

†
3z2−r2 , d

†
x2−y2

)
, (S1)

the angular momentum operator L can be written as follows:

Lx = d†




0 0 0 −
√

3i −i
0 0 i 0 0
0 −i 0 0 0√
3i 0 0 0 0
i 0 0 0 0




d, Ly = d†




0 0 −i 0 0

0 0 0
√

3i −i
i 0 0 0 0

0 −
√

3i 0 0 0
0 i 0 0 0




d, Lz = d†




0 i 0 0 0
−i 0 0 0 0
0 0 0 0 2i
0 0 0 0 0
0 0 −2i 0 0




d. (S2)

Though the up-left 3× 3 part coincides with −leff, there are offdiagonal elements in L [1]. Thus, the product of the
two has a nontrivial contribution from the eg-orbitals.

COMPUTATION OF THE ANISOTROPY PARAMETER

In a nematic Kitaev spin liquid (NKSL), the anisotropy parameter η can be computed as follows. First, we consider
the case without a magnetic field. In this case, the Hamiltonian is HNKSL in the main text and the ground state is
exactly solvable by introducing Majorana fermions [2].

|ΨGS〉 = Pphys |Ψ〉 , (S3)

where Pphys is a projection onto the physical subspace, and |Ψ〉 is the ground state of the itinerant Majorana fermions
ci. Thus,

〈icicj〉 = 〈ΨGS|icicj |ΨGS〉 = 〈Ψ|PphysicicjPphys|Ψ〉 (S4)

Meanwhile, HNKSL obeys

〈ΨGS|HNKSL|ΨGS〉 =
∑

〈ij〉∈γ

Kγ

4
〈Ψ|PphysicicjPphys|Ψ〉 , (S5)

assuming that the ground state is in the 0-flux sector. Thus, from the Hellmann-Feynman theorem 〈icicj〉 for the
γ-direction can be computed by

〈icicj〉γ =
4

Nunit

∂

∂Kγ
〈ΨGS|HNKSL|ΨGS〉 , (S6)

whereNunit is the number of unit cells [3]. We here note that in the thermodynamic limit physical states and unphysical
states have the same energy and the same expectation value for physical observables [4]. Thus, we can ignore Pphys

and use |Ψ〉 directly to calculate observables, as long as the thermodynamic limit can be taken analytically.
The direct computation gives

E = 〈Ψ|HNKSL|Ψ〉 = − 1

16π2

∫ 2π

0

dk1

∫ 2π

0

dk2εk, (S7)
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(a) (b)

FIG. S1. (a) 〈icicj〉 for each bond direction. The definition of θ is included in the main text. A cyan shaded region represents
Kitaev’s A phase. (b) Honeycomb lattice with a direction of the NNN bonds shown in black dashed arrows.

where εk = |Kxeik1 +Kyeik2 +Kz|. Thus,

〈icicj〉x = − 1

4π2

∫

BZ

d2k
(Kx cos k1 +Ky cos k2 +Kz) cos k1 + (Kx sin k1 +Ky sin k2) sin k1

εk
, (S8)

〈icicj〉y = − 1

4π2

∫

BZ

d2k
(Kx cos k1 +Ky cos k2 +Kz) cos k2 + (Kx sin k1 +Ky sin k2) sin k2

εk
, (S9)

〈icicj〉z = − 1

4π2

∫

BZ

d2k
Kx cos k1 +Ky cos k2 +Kz

εk
, (S10)

where the numerical integration is done in the whole Brillouin zone (BZ), 0 ≤ k1 ≤ 2π and 0 ≤ k2 ≤ 2π. The
expectation values of icicj are plotted in Fig. S1(a). We also plot the derivative of η in the same strategy as shown
in Fig. S2.

The same strategy applies to the case without a time-reversal symmetry. For simplicity, we only consider the case
where Kx = Ky = Kz = K. The Hamiltonian considered here is

Hmag = −K
∑

〈ij〉∈γ
Sγi S

γ
j − κ

∑

〈ijk〉αβγ
Sαi S

β
j S

γ
k , (S11)

where κ is a real time-reversal breaking parameter. 〈ijk〉αβγ means nearest-neighbor (NN) pairs, where 〈ij〉 and 〈jk〉
are on the α- and γ-directions, respectively, and β is the component which is neither α nor γ.

As is well-known, the κ term is nothing but a next-nearest-neighbor (NNN) hopping term for Majorana fermions.
Thus, we can compute the expectation value of NNN hopping terms from the derivative about κ. The final expression
becomes

〈icicj〉NN = − 1

12π2

∫

BZ

d2k
K|eik1 + eik2 + 1|2

εk
, (S12)

〈icicj〉NNN = − 1

12π2

∫

BZ

d2k
κ[sin k1 − sin k2 + sin(k2 − k1)]2

εk
, (S13)

where 〈icicj〉NN is a bond expectation value for NN bonds, 〈icicj〉NNN is a bond expectation value for NNN bonds,

and εk =
√
K2|eik1 + eik2 + 1|2 + κ2[sin k1 − sin k2 + sin(k2 − k1)]2. As for NNN bonds, the bond direction is defined

as illustrated in Fig. S1(b), where the arrow points from j to i. These formulae will be used in the next section.

MAGNETIC FIELD EFFECT

.
In the main text, we have assumed the existence of a time-reversal symmetry, but in real NMR or MS experiments

an external magnetic field is usually applied. First, we modify the ansatz Hamiltonian as follows:

HZeeman = −
∑

〈ij〉∈γ
KγSγi S

γ
j − h ·

∑

i

Si, (S14)
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FIG. S2. Derivative of η. A cyan shaded region represents Kitaev’s A phase. As clearly seen, dη/dθ has a cusp at the transition
point θ = θc between the B phase and the A phase.

where h = (hx, hy, hz) represents the normalized external field.
In the first-order in h, the wavefunction can be approximated as

|Ψ(1)〉 ∼ |ΨGS〉 −
1− P0

−∆flux
h ·
∑

i

Si |ΨGS〉 , (S15)

where ∆flux ∼ 0.26K/4 is a flux gap energy for two neighboring vortices. In the first order, only the contribution that
creates or annihilates two neighboring vortices survives. This condition holds for Sxi S

z
iz

and Syi S
z
iz

in Eq. (12) in the
main text, for example, which results in the following NNN hopping operators, after summing up three surrounding
bonds around the ith site:

P0qiP0 =



3it22
(U+ 3

2λ)2
cicix − 4∆

3λ +
4it22h

z

3(U+ 3
2λ)2∆flux

(cizcix + ciyciz ) − 4∆
3λ +

4it22h
y

3(U+ 3
2λ)2∆flux

(ciyciz + cixciy )

− 4∆
3λ +

4it22h
z

3(U+ 3
2λ)2∆flux

(cizcix + ciyciz )
3it22

(U+ 3
2λ)2

ciciy − 4∆
3λ +

4it22h
x

3(U+ 3
2λ)2∆flux

(cizcix + cixciy )

− 4∆
3λ +

4it22h
y

3(U+ 3
2λ)2∆flux

(ciyciz + cixciy ) − 4∆
3λ +

4it22h
x

3(U+ 3
2λ)2∆flux

(cizcix + cixciy )
3it22

(U+ 3
2λ)2

ciciz




− t22
(U + 3

2λ)2
(icicix + iciciy + iciciz )113. (S16)

All new terms are NNN hopping operators breaking the time-reversal symmetry, so their contribution vanishes
in the computation of 〈ΨGS|qi|ΨGS〉 = 〈ΨGS|P0qiP0|ΨGS〉, as long as |ΨGS〉 is time-reversal symmetric. Thus, the
magnetic field effect is negligible in the first order.

Though we have shown that the time-reversal breaking effect is negligible in the first-order perturbation, there
could be another effect which produces a nonzero expectation value for NNN bonds. For example, if the Γ′ term
coming from the trigonal distortion is included in the magnetic Hamiltonian, the gap opening by the time-reversal
breaking can occur in the first-order in h [5, 6]. This type of effects can be included by adding a so-called κ term to
the Hamiltonian by hand.

Heff = −
∑

〈ij〉∈γ
KγSγi S

γ
j − κ

∑

〈ijk〉αβγ
Sαi S

β
j S

γ
k − h ·

∑

i

Si. (S17)

The κ term explicitly breaks the time-reversal symmetry and 〈icicj〉 for NNN bonds no longer vanish [7]. Again we
use the first-order perturbation in h and now the magnetic field effect becomes nontrivial. Even in the case where
Kx = Ky = Kz without a nematic order, η does not always vanish unless the magnetic field is perpendicular to the
(111) plane. A careful treatment is necessary to detect a nematic order through η.

Fortunately, however, this effect is very small when we apply an in-plane magnetic field. This is because the first-
order contribution of h for κ(hx, hy, hz) vanishes when hx + hy + hz = 0, assuming the complete C3 symmetry of the
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FIG. S3. Field angle dependence of η. The magnetic field is applied in the (111) plane with an angle φ. A typical ansatz of
κ/K = 0.1 and |h|/K = 0.1 is used. ∆ = 10 meV, λ = 150 meV, t2 = 200 meV, and U = 1.5 eV are used.

original electronic Hamiltonian. κ is effectively expanded from the third order in h, and we can assume that κ to be
O(h3), which is consistent with experiments [8].

We plot the angle dependence of η with respect to an azimuth angle φ of the applied magnetic field in Fig. S3 in
the isotropic case Kx = Ky = Kz = K. As is clearly seen, a small but nonzero η appears due to the applied magnetic
field. It has a tiny angle dependence with a period of 120◦. Thus, we can say that experiments should be done by
comparing φ = 0◦ with 120◦ to avoid this field effect.

To sum up, in reality η is not exactly 0 even in the isotropic case, so we should be careful about the actual
experimental setup to determine the critical point of the nematic transition. Experiments should be combined with a
measurement of an anisotropy of the relaxation rate 1/T1T , which is compared between φ = 0◦ and 120◦, for example.
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