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Abstract. Maxwellian-type rheological models of inelastic effects of creep type at large strains are
revisited in relation to inelastic-strain gradient theories. In particular, we observe that a dependence
of the stored-energy density on inelastic-strain gradients may lead to spurious hardening effects,
preventing the model from accommodating large inelastic slips. The main result of this paper is
an alternative inelastic model of creep type, where higher-order energy-contribution is provided
by the gradients of the elastic strain and of the plastic strain rate, thus preventing the onset of
spurious hardening under large slips. The combination of Kelvin-Voigt damping and Maxwellian
creep results in a Jeffreys-type rheological model. Existence of weak solutions is proved via a
Faedo-Galerkin approximation.
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1 Introduction

Inelasticity at large strain has been the focus of an intense research activity for decades, first
from the engineering community, see, e.g., the monographs [10,18,25], and subsequently also
from the mathematical point of view (see, e.g., the recent contributions [9, 20, 26] on large-
strain rate-independent processes, incomplete damage, and finite plasticity, respectively as
well as the monographs [21, 33] and the references therein).
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Within the mathematical purview, there is a general agreement that the rigorous analysis
of large-strain inelastic time-evolving phenomena requires higher-order regularizations of the
inelastic strains [8, 13, 24, 29, 32–34, 44]. Existence theories without gradient regularization
are available only in one space dimension [27], at the incremental level [30, 31, 47], or under
stringent modeling restrictions [20, 30]. In the engineering literature, on the other hand,
gradient theories at large strains are seldom considered, see [3,10,37], [18, Ch. 25], [25, Ch. 8],
and existence of solutions not in focus.

Gradient theories for the inelastic strain introduce an internal length-scale in the problem
related to the characteristic width of inelastic slip-bands arising during creep, damage, or
plastification processes. The occurrence of such scale is however not expected to cause addi-
tional hardening. Although sometimes strain or time hardening are to be considered [3,37], in
many applications, inelastic models are ultimately desired not to exhibit any hardening effect
during long-lasting slip deformations. In metals, for example, very large irreversible plastifi-
cation can occur within the phenomenon sometimes referred to as superplasticity. Large slips
with no hardening are particularly common in rock, soil, or ice mechanics. Typically, the
slip on tectonic faults can easily accommodate kilometers during millions of years. Glaciers
flow kilometers, with hardening only occurring at temperatures below −70◦ C [46]. In a very
different context, large deformations without hardening can be observed in polymers as well.

As a result, one is interested in identifying inelastic strain-gradient modelizations guar-
anteeing, on the one hand, that the existence of time-evolution of inelastic phenomena is
mathematically well-posed, and on the other hand, that no spurious hardening effects are
generated. The focus of this paper is hence on introducing a novel hardening-free inelastic
model of creep-type allowing for existence of solutions. In order to accomplish this, the
energy of the medium is assumed to contain a term depending on the gradient of the elas-

tic strain. This contrasts with usual approaches based on total strain-gradient or inelastic

strain-gradient regularization. Indeed, we present an example in Subsection 2.3 below show-
ing the possible effect of such usual strain-gradient regularizations on the onset of spurious
hardening.

Our new model is introduced in Section 2. In addition to elastic-strain hardening, we
assume the viscous dissipation to be quadratic and to depend on the gradient of the inelastic-
strain rate. This last gradient term does not affect the hardening-free nature of the model.

Eventually, Section 3 focuses on the existence of weak solutions to the model. The proof
relies on a Faedo-Galerkin approximation, as well as on compactness, and lower semiconti-
nuity arguments.

2 A hardening-free viscoelastic model

We devote this section to introducing and commenting our modeling choices.
Following the classical mathematical theory of inelasticity at large strains [15,17,23], we

assume that the elastic behavior of our specimen Ω ⊂ R
d, d = 2, 3, is independent from

preexistent inelastic distortions. This can be rephrased as the assumption that the deforma-
tion gradient F := ∇y associated to any deformation y : Ω → R

d of the body decomposes
into an elastic strain and an inelastic one. For linearized theories, this decomposition would
have an additive nature; in the setting of large-strain inelasticity, instead, this behavior is
traditionally modeled via a multiplicative decomposition. In the mathematical literature
different constitutive models have been taken into account, see, e.g., [8, 12, 13, 36] in the
framework of finite plasticity. We focus here on the classical multiplicative decomposition
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ansatz [19, 22], recently justified in the setting of dislocation systems and crystal plasticity
in [6, 7]), in which deformations y ∈ H1(Ω;Rd) fulfill

F = FelΠ, (2.1)

where Fel and Π denote the elastic and inelastic strains, respectively.

2.1 Tensorial notation

In the following, we use capital letters to indicate tensors and tensor-valued functions, inde-
pendently from their dimensions. For A, Â, Ã ∈ R

d×d, B, B̂ ∈ R
d×d×d, and C, Ĉ ∈ R

d×d×d×d

we use the standard notation for contractions on two, three, and four indices, namely,

A:Â = AijÂij , B
...B̂ = BijkB̂ijk, (C:A)ij = CijklAkl, (B:A)i = BijkAjk, C::Ĉ = CijklĈijkl

(summation convention over repeated indices). On the other hand, contraction on one index
will be marked by · only in case of vectors. In particular, (CA)ijkl = CijkmAml, (BA)ijk =
BijmAmk, etc. The symbol ⊤ indicate transposition of two-tensors, namely A⊤

ij = Aji,
whereas we denote by the superscript t the partial transposition of a four-tensor with respect
to the first two indices, namely Ct

ijkl = Cjikl. For A ∈ R
d×d we indicate its symmetric part

by symA = (A + A⊤)/2 and, if A is invertible, use the shorthand notation A−⊤ = (A−1)⊤.

We will use the algebra AÂ:Ã = A:ÃÂ⊤ and A:ÂÃ = Â⊤A:Ã.
Let us recall that, for a differentiable function F : R

d×d → R
d×d and A, Â ∈ R

d×d

we have that DF (A) ∈ R
d×d×d×d and DF (A):Â = (d/dα)F (A + αÂ)|α=0. In particular,

one has that D(A−1):Â = −A−1ÂA−1. Moreover, one easily checks that D(F⊤) = (DF )t,

so that one has that D(A−⊤):Â = −A−⊤Â⊤A−⊤. Given two other differentiable functions

F̂ : Rd×d → R
d×d and f : Rd×d → R one has that D(f ◦F )(A):Â = Df(F (A)):DF (A):Â and

D(F̂ ◦ F )(A):Â = DF (F̂ (A)):DF̂ (A):Â.
Let the reference domain Ω ⊂ R

d be open and with Lipschitz boundary Γ , and let n be
the outward-pointing unit normal vector at the boundary. For a m-tensor valued function
x ∈ Ω 7→ A(x) ∈ (Rd)m with m ≥ 1 we define the gradient ∇A(x) ∈ (Rd)m+1 and the
divergence divA(x) ∈ (Rd)m−1 componentwise as

∇A(x)i1...imj =
∂

∂xj

Ai1...im(x), (divA(x))i1...im−1
=

d∑

j=1

∂

∂xj

A(x)i1...im−1j .

For all x ∈ Ω 7→ A(x) ∈ R
d×d and x ∈ Ω 7→ Â(x) ∈ R

d×d we have that ∇(AÂ) =

(Â⊤∇A⊤)t + A∇Â. Let now x ∈ Ω 7→ v(x) ∈ R
d, x ∈ Ω 7→ A(x) ∈ R

d×d, and x ∈ Ω 7→
B(x) ∈ R

d×d×d be given. Under suitable regularity assumptions the following Green formulas
can be checked

∫

Ω

A:∇v dx = −

∫

Ω

divA·v dx +

∫

Γ

(An)·v dx , (2.2a)
∫

Ω

B
...∇A dx = −

∫

Ω

A:divB dx +

∫

Γ

(A:B)·n dx . (2.2b)

Eventually, let div
S

denote the (d−1)-dimensional surface divergence on Γ . For vector-valued
functions x 7→ v(x) ∈ R

d this is defined as

div
S
v = tr∇

S
v for ∇

S
v := ∇v −

∂v

∂n
⊗ n ,
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where tr stands for the trace. The same definition will be used row-wise for tensor-valued
functions. We will use the [11, Formula (34)]

∫

Γ

A:∇
S
v dS = −

∫

Γ

(div
S
A·v + 2hAn·v) dS , (2.3)

where h stands for the mean curvature of Γ . Arguing row-wise, an analogous relation can
be checked to hold for tensors-valued functions as well.

2.2 Stored energy

Our aim is that of introducing a hardening-free inelastic model. In absence of hardening,
the mathematical analysis of inelastic evolution is notoriously challenging. In order to make
the existence of weak solutions amenable, we include in the model higher-order (gradient)
effects. More specifically, we define

Φ(y,Π) =

∫

Ω

ϕ
E
(∇y Π−1) + ϕ

H
(Π) + ϕ

G
(∇(∇y Π−1)) dx . (2.4)

Here, ϕ
E

: Rd×d → [0,∞) corresponds to the elastic energy density of the medium and will be
assumed to be coercive and to control the sign of detFel, see (3.1a) below. On the other hand,
ϕ

H
: Rd×d → [0,∞] plays the role of a constraint on detΠ . In particular, we are interested

in choices of ϕ
H

enforcing the usual isochoric constraint detΠ = 1 in an approximate sense
and keeping detΠ away from negative values, see (3.1b) below. An explicit example for such
a term is

ϕ
H
(Π) :=





δ

max(1, detΠ)r
+

(detΠ − 1)2

2δ
if detΠ > 0,

+∞ if detΠ ≥ 0
(2.5)

with δ > 0 small and r big enough; cf. [44, Remark 2.6], [21, Formula (9.4.36)], or [40].
Eventually, ϕ

G
: Rd×d → [0,∞) controls the elastic strain gradient and relates to the

length scale of higher-order effects. Specific assumptions are given in (3.1c) below. In
particular, the stored energy features a regularizing term depending on the gradient of the
elastic strain Fel = ∇yΠ−1. Note however that no gradient of Π appears in the energy, for
this might give rise to hardening, as explained in Subsection 2.3 below.

2.3 Spurious hardening from gradients in the stored energy

As already mentioned, the analysis of inelastic evolution models calls for considering inelastic
gradient theories. Usual choices in this direction are terms of the form

1

2
κ|∇Π|2 (standard choice), (2.6a)

1

2
κ|F−⊤∇Π|2 (push forward), (2.6b)

1

2
κ|∇(Π⊤Π)|2 (inelastic metric tensor). (2.6c)

For the standard choice in (2.6a), we refer to [14, 21, 24, 34] in the context of plasticity, see
also [32] for a more general dependence on ∇Π covering also creep models, as well as [1] for
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an additional scalar-valued internal variable acting as an effective inelastic strain. The push-

forward term in (2.6b) has been used in [21, Remark 9.4.12] and [42, Remark 5], whereas the
inelastic metric tensor in (2.6c) has been analyzed in [13], cf. [39] for a throughout discussion
and comparison.

All models (2.6) however exhibit a drawback: the influence of the inelastic gradient terms
amplifies when inelastic slips evolve and accommodate large inelastic strains. This, in turn,
might result in a spurious hardening effect.

To demonstrate the presence of a non-autonomous spurious hardening effect, we consider
d = 2 and resort to a stratified situation where F and Π are constant in the x1 direction,
cf. [44] or also [21, Example 9.4.11] for similar examples. We consider a pure horizontal shift
of the stripe Ω = R×[−ℓ, ℓ] driven by time-dependent Dirichlet boundary conditions for the
displacement on the sides R×{±ℓ} and evolving in a steady-state mode. In particular, we
assume by symmetry that the deformation has the stratified form

y(x1, x2) = (x1 + f(t, x2), x2)

where the slip via the (unspecified) smooth function f : [0,+∞) × [−ℓ, ℓ] → R fulfills the
given Dirichlet boundary conditions, say

f(t,±ℓ) = ±t. (2.7)

We specify elastic response by assuming the material to be rigid. In particular, the elastic
strain Fel is assumed to be the identity matrix. In the setting of plasticity, this would be
called a plastic-rigid model. The corresponding inelastic strain reads then

Π = F = ∇y =

(
1 ∂x2

f(t, x2)
0 1

)
. (2.8)

Let us note that detΠ = 1, so that ϕ
H
(Π) = 0 when ϕ

H
is defined as in (2.5). The arguments

in the κ-term in (2.6) read (see Section 2 for details on the tensorial notation) then as

(∇Π)ijk =

{
∂2
x2
f(t, x2) for i = 1, j = 2, k = 2,

0 otherwise,
, (2.9a)

(F−⊤∇Π)ijk =





∂2
x2
f(t, x2) for i = 1, j = 2, k = 2,

−∂x2
f(t, x2)∂

2
x2
f(t, x2) for i = j = k = 2,

0 otherwise,
, (2.9b)

(∇(Π⊤Π))ijk =





∂2
x2
f(t, x2) for i = 1, j = 2, k = 2,

∂2
x2
f(t, x2) for i = 2, j = 1, k = 2,

2∂x2
f(t, x2)∂

2
x2
f(t, x2) for i = j = k = 2,

0 otherwise,

. (2.9c)

Note that ∂x2
f(t, x2) necessarily depends on time. Indeed, if this were not the case one

would have that
.

f(t, ℓ) −
.

f(t,−ℓ) =

∫ ℓ

−ℓ

∂x2

.

f(t, x2) dx2 = 0,

contradicting the fact that
.

f(t,±ℓ) = ±1 from (2.7). Hence, in all cases, the argument of the
quadratic terms in (2.6) is genuinely time dependent. More precisely, by taking the mean
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across the stripe we have that

1

2ℓ

∫ ℓ

−ℓ

∂x2
f(t, x2) dx2 =

1

2ℓ
(f(t, ℓ) − f(t,−ℓ))

(2.7)
=

t

ℓ

so that the terms in (2.6) would actually be unbounded in time. This shows, that no matter
how small the coefficient κ is, the regularizing terms in (2.6) grow indefinitely under large
slips, preventing the energy from being bounded and eventually corrupting the modelization.
To compensate for these spurious hardening-like effects, one could assume κ to be time
dependent, which would however lead to an artificially non-autonomous model, which is also
not desirable.

In order to avoid this spurious hardening effect while still retaining regularization, our
choice (2.4) for Φ above departs from the classical inelastic-gradient regularization (2.6) by
including the gradient of the elastic strain Fel instead. Note that in the above example
the term ∇Fel vanishes, hence allowing for indefinitely large inelastic slips under bounded
energy.

Before closing this discussion, let us mention the possibility of considering the alternative
inelastic-gradient terms

1

2
κ
∣∣curlΠ

∣∣2 or
1

2
κ
∣∣Π−⊤curlΠ

∣∣2 (2.10)

in the energy Φ. Here, the curl of the tensor Π is taken row-wise in three dimension and
is defined as curlΠ = (∂1Π12 − ∂2Π11, ∂1Π22 − ∂2Π21) in two dimensions. These terms
correspond to the so-called dislocation-density tensor [4] and have been considered in [31,
40, 45] from the viewpoint of existence of solutions of the incremental problems. In case of
(2.8), the plastic strain is curl-free and both terms in (2.10) vanish. Therefore these terms
exhibit a capability to accumulate large inelastic slips at bounded energy, for they vanish
for Π given by (2.8). In particular, at least in elastically “well rigid” materials, they would
not generate the spurious hardening effect mentioned above. However, the options (2.8) do
not seem to contribute sufficient compactness in order to devise an existence theory at the
time-continuous level. Of course, combination of some option from (2.10) with some option
from (2.4) in the stored energy is possible and yields analytically good compactifying effects
but again the spurious hardening would be involved in the model.

2.4 Dissipation

In order to incorporate inertial effects, a Kelvin-Voigt-type viscosity needs to be included in
the model. We consider a purely linear viscous model by assuming the dissipation potential
to be quadratic in terms of rates, namely,

R(y,Π ;∇
.

y,
.

Π) =

∫

Ω

νm
2
|
.

Π|2 +
νh
2
|∇2

.

Π|2 +
νkv
2
|
.

Cel|
2 dx

with Cel = F⊤

el Fel = Π−⊤∇y⊤∇yΠ−1, (2.11)

where νm, νh, and νkv are positive viscous coefficients and Cel is the elastic Cauchy-Green

tensor. In particular, the Kelvin-Voigt-type viscosity term depends on
.

Cel in order to ensure
frame-indifference [2].

The occurrence of the ∇2
.

Π term above is motivated by the need of controlling the rate of
Π uniformly in space while still avoiding hardening. In other words, differently from gradient
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terms acting directly on Π (see Section 2), this term provides a regularization not giving
rise to spurious hardening effects, a phenomenon which we want to avoid. This uniform
bound in space in turn will allow the control of the nonlinear terms in (2.12) as well as of
the inverse Π−1, which is paramount for devising an existence theory. Henceforth, following
a suggestion by A. Mielke [28], we augment our dissipation potential by a regularization
provided by the gradient of the creep rate.

The only higher-order terms involving the inelastic strain hence occur in the dissipation

and are given by the gradient of the inelastic strain rate, i.e. of
.

Π . With reference to the
discussion of Subsection 2.3, let us point out that such terms may again be time dependent.
Still, they can be expected to show some boundedness with respect to time. In the case of
(2.8) one indeed obtains that the mean across the strip

1

2ℓ

∫ ℓ

−ℓ

.

Π(t, x1, x2) dx2 =
1

2ℓ

∫ ℓ

−ℓ

(
0 ∂x2

.

f(t, x2)
0 0

)
dx2 =

(
0

.
f(t,ℓ)−

.
f(t,−ℓ)
2ℓ

0 0

)
(2.7)
=

(
0 1/ℓ
0 0

)

is time-independent. A regularization in term of ∇
.

Π is hence not expected to generate
spurious hardening-like effects.

2.5 Constitutive equations

Following the classical Coleman-Noll procedure [5], we identify variations of Φ with respect
to y and Π as driving forces in the momentum equation and in the inelastic flow-rule,
respectively. More precisely, we have

δyΦ(y,Π) = −div
(
Dϕ

E
(∇yΠ−1)Π−⊤ − div

(
Dϕ

G
(∇(∇yΠ−1))

)
Π−⊤

)
, (2.12a)

δΠΦ(y,Π) = ∇y⊤Dϕ
E
(∇yΠ−1):D(Π−1)

+ Dϕ
H
(Π) − div

(
Dϕ

G
(∇(∇yΠ−1))

)
:∇yD(Π−1) . (2.12b)

In order to consider variations of the dissipation R, we start by explicitly computing
.

Cel = Π−⊤(∇
.

y⊤∇y+∇y⊤∇
.

y)Π−1 + (D(Π−⊤):
.

Π)∇y⊤∇yΠ−1 + Π−⊤∇y⊤∇yD(Π−1):
.

Π

= Π−⊤(∇
.

y⊤∇y+∇y⊤∇
.

y)Π−1 −Π−⊤
.

Π⊤Π−⊤∇y⊤∇yΠ−1 −Π−⊤∇y⊤∇yΠ−1
.

ΠΠ−1

= Π−⊤(∇
.

y⊤∇y+∇y⊤∇
.

y)Π−1 − 2 sym (Π−⊤∇y⊤∇yΠ−1
.

ΠΠ−1) .

This Kelvin-Voigt-type viscosity features then both ∇
.

y and
.

Π terms. It hence contributes
to both the momentum equation and to the inelastic flow rule. In particular, setting for

brevity Σ := νkv
.

Cel, the contribution of the Kelvin-Voigt-type viscosity to the stress is given
by

δ .
y

.

Cel:Σ = −div
(
2 sym

(
Π−⊤∇y⊤ΣΠ−1

))
.

On the other hand, by computing

D .
Π

.

Cel =
(
Π−⊤∇y⊤∇y D(Π−1)

)t
+ Π−⊤∇y⊤∇y D(Π−1) ,

we have that the Kelvin-Voigt-type viscous contribution to the inelastic driving force is

D .
Π

.

Cel:Σ = −2 sym
(
Π−⊤∇y⊤∇yΠ−1ΣΠ−1

)
.
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2.6 Evolution system

The evolution of the medium is governed by the system of momentum equation and the
inelastic flow rule. Let us denote by T (

.

y) = 1
2

∫
Ω
̺|
.

y|2 dx the kinetic energy and by F (t)
the external load

〈F (t), y〉 =

∫

Ω

f(t)·y dx +

∫

Γ

g(t)·y dS

where f and g denote a given body force density and surface traction density, respectively.
The system reads then in abstract form

(δ .
yT (

.

y))
.

+ δ .
yR(y,Π ;∇

.

y,
.

Π) + δyΦ(y,Π) = F (t) , (2.13a)

δ .
Π

R(y,Π ;∇
.

y,
.

Π) + δΠΦ(y,Π) = 0 . (2.13b)

Here, we have formally indicated variations with δ. In the following, these relations will
be made precise in the weak sense, see (3.3). For the sake of clarity, we present here the
strong form of the system, assuming suitable regularity of the ingredients. Owing to our
choices (2.4) and (2.11) for energy and dissipation, the latter corresponds to the nonlinear
PDE system

̺
..

y − div
(

Dϕ
E
(∇yΠ−1)Π−⊤ + 2 sym

(
Π−⊤∇y⊤ΣΠ−1

))

+ div
(
div

(
Dϕ

G
(∇(∇yΠ−1))

)
Π−⊤

)
= f, (2.14a)

νm
.

Π + div2
(
νh∇

2
.

Π
)

+ ∇y⊤Dϕ
E
(∇yΠ−1):D(Π−1)

− 2 sym
(
Π−⊤∇y⊤∇yΠ−1ΣΠ−1

)
+ Dϕ

H
(Π)

− div
(
Dϕ

G
(∇(∇yΠ−1))

)
:∇yD(Π−1) = 0 , (2.14b)

where we have again used the notation

Σ = νkv
.

Cel and Cel = Π−⊤∇y⊤∇y⊤Π−1 . (2.15)

Taking into account the formulas (2.2)–(2.3), system (2.14) is intended to be completed by
the following boundary conditions

Dϕ
E
(∇yΠ−1)Π−⊤n− div

(
Dϕ

G
(∇(∇yΠ−1))

)
Π−⊤

)
n

− div
S

(
Dϕ

G
(∇(∇yΠ−1)

)
nΠ−⊤

)
− 2h

(
Dϕ

G
(∇(∇yΠ−1))nΠ−⊤

)
n

+ 2 sym
(
Π−⊤∇y⊤ΣΠ−1

)
n = g , (2.16a)(

Dϕ
G

(∇(∇yΠ−1)
))

:(n⊗ (nΠ−1)) = 0 , (2.16b)

Dϕ
G
(∇(∇yΠ−1))n:∇y D(Π−1) − divνh∇

2
.

Πn

− div
S
(νh∇

2
.

Πn) − 2νhh(∇2
.

Πn)n = 0 , (2.16c)

νh∇
2
.

Π:(n⊗ n) = 0 . (2.16d)

The energetics of the model can be obtained by formally testing (2.14a) with
.

y under

(2.16a)–(2.16b) and (2.14b) with
.

Π under (2.16c)–(2.16d). By considering the initial condi-
tions

y(0) = y0,
.

y0 = v0, Π(0) = Π0 , (2.17)
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the resulting energy balance on the time interval [0, t] is

∫

Ω

ρ

2
|
.

y(t)|2 + ϕ
E
(∇y(t)Π−1(t)) + ϕ

G
(∇(∇y(t)Π−1(t))) + ϕ

H
(Π(t)) dx

+

∫ t

0

∫

Ω

νkv|
.

Cel|
2 + νm|

.

Π|2 + νh|∇
2
.

Π|2 dx dτ =

∫ t

0

∫

Ω

f ·
.

y dx dτ +

∫ t

0

∫

Γ

g·
.

y dS dτ

+

∫

Ω

ρ

2
|
.

y0|
2 + ϕ

E
(∇y0Π

−1
0 ) + ϕ

G
(∇(∇y0Π

−1
0 )) + ϕ

H
(Π0) dx . (2.18)

In particular, the sum of total energy at time t and dissipated energy on [0, t] equals the
sum of initial total energy and work of external forces.

Remark 2.1 (Nonlinear or activated creep). We assume here the dissipation potential to

be quadratic, which makes the occurrence of
.

Π in (2.14b) linear. In order to generalize this
to the nonlinear (or even activated) case, the analysis of the problem would require to check
strong compactness for the approximations of Σ. This seems presently out of reach in our
setting. where only a weak convergence for such approximants can be guaranteed, cf. (3.13)
below.

Remark 2.2 (Jeffreys rheology). The combination of two viscous damping mechanisms and
one elastic energy-storing mechanism is often referred to as Jeffreys rheology [21] (sometimes
also called anti-Zener rheology). This combination may arise from two different arrange-
ments of rheological elements: one can arrange a Stokes viscous element either in parallel
with a Maxwell rheological element or in series with a Kelvin-Voigt rheological one. Recall
that a Maxwell (resp. Kelvin-Voigt) rheological element is an arrangement of an elastic and
a viscous element in series (resp. in parallel). At small strains, the two possible arrange-
ments giving a Jeffreys rheology are equivalent, cf. [21, Formula (6.6.34)]. On the contrary,
equivalence does not hold at large strains. In our model we follow the second variant: the
viscous Stokes element is in series with a Kelvin-Voigt rheological element. The reader is
referred to [21, Remark 9.4.4], for a model following the first variant instead, which allows
for a simpler analysis in spite of a somehow lesser physical relevance.

3 Analysis of the model

In the following we use the standard notation C(·) for the space of continuous functions,
Lp for Lebesgue spaces, and W k,p for Sobolev spaces whose k-th distributional derivatives
are in Lp. Moreover, we use the abbreviation Hk = W k,2 and, for all p ≥ 1, we let the
conjugate exponent p′ = p/(p−1) (with p′ = ∞ if p = 1), and use the notation p∗ for the
Sobolev exponent p∗ = pd/(d−p) for p < d, p∗ < ∞ for p = d, and p∗ = ∞ for p > d. Thus,
W 1,p(Ω) ⊂ Lp∗(Ω) or Lp∗′(Ω) ⊂ (W 1,p(Ω))∗= the dual to W 1,p(Ω).

Given the fixed time interval I = [0, T ], we denote by Lp(I;X) the standard Bochner
space of Bochner-measurable mappings u : I → X , where X is a Banach space. Moreover,
W k,p(I;X) denotes the Banach space of mappings in Lp(I;X) whose k-th distributional
derivative in time is also in Lp(I;X).
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Let us list here the assumptions on the data which are used in the following:

ϕ
E

: Rd×d → [0,+∞] continuously differentiable on GL+(d), ∃ ǫ > 0, pG ∈ (d, 2∗), r > pGd/(pG − d),

ϕ
E
(Fel) ≥

{
ǫ/(detFel)

r if detFel > 0,

+∞ if detFel ≤ 0,
, (3.1a)

ϕ
H

: Rd×d → [0,+∞] continuously differentiable on GL+(d), ∃ ǫ > 0, s > 2∗d/(2∗ − d),

ϕ
H
(Π) ≥

{
ǫ/(detΠ)s if detΠ > 0,

+∞ if detΠ ≤ 0,
, (3.1b)

ϕ
G

: Rd×d×d → [0,+∞) convex, continuously differentiable, ∃ ǫ > 0,

∀G, G̃ ∈ R
d×d×d : (Dϕ

G
(G)−Dϕ

G
(G̃))

...(G−G̃) ≥ ǫ|G−G̃|pG

ϕ
G

(G) ≥ ǫ|G|pG , |Dϕ
G

(G)| ≤ (1 + |G|pG−1)/ǫ , (3.1c)

̺ > 0, νm, νkv, νh > 0, (3.1d)

y0∈W 2,pG(Ω)d, v0∈L2(Ω)d, Π0∈H2(Ω)d×d,

ϕ
E
(∇y0Π

−1
0 )∈L1(Ω), ϕ

H
(Π0)∈L1(Ω), (3.1e)

f ∈ L1(I;L2(Ω)d) + L2(I;L1(Ω)d), g ∈ L2(I;L1(Γ )d). (3.1f)

A prototypical choice for ϕ
G

satisfying (3.1c) is ϕ
G

(·) = | · |pG. The restriction pG < 2∗ will
be instrumental for estimates (3.11) and (3.16) below.

The definition of weak solutions follows directly from system (2.13). It can be recovered
by formally testing both equations in (2.14) by smooth functions and use Green formulas (2.2)
together with the surface Green formula (2.3), the boundary conditions (2.16), and multiple
by-part integration in time, keeping into account the initial conditions (2.17). Altogether,
we arrive at the following definition.

Definition 3.1 (Weak formulation of (2.14) with (2.16)-(2.17)). The pair (y,Π) satisfying

y ∈ L∞(I;W 2,pG(Ω)d) ∩H1(I;L2(Ω)d) with ∇y⊤∇y ∈ H1(I;L2(Ω)d×d) ,

Σ ∈ L2(I×Ω)d×d, det∇y > 0 , and
1

det∇y
∈ L∞(I×Ω) , and (3.2a)

Π ∈ H1(I;H2(Ω)d×d) with detΠ > 0 and
1

detΠ
∈ L∞(I×Ω) (3.2b)

is called a weak solution to the initial-boundary-value problem (2.14), (2.16)–(2.17) if the

following two identities hold with Σ from (2.15):

(i) The weak formulation of the momentum balance (2.14a) with the boundary conditions

(2.16a)–(2.16b) and first two initial conditions in (2.17)

∫ T

0

∫

Ω

(
Dϕ

E
(∇yΠ−1):(∇ỹ Π−1) + ̺y·

..
ỹ + 2 sym

(
Π−⊤∇y⊤ΣΠ−1

)
: ∇ỹ

+ Dϕ
G

(∇(∇yΠ−1))
...∇(∇ỹΠ−1)

)
dx dt =

∫ T

0

∫

Ω

f ·ỹ dx dt

+

∫ T

0

∫

Γ

g·ỹ dS dt +

∫

Ω

̺v0·ỹ(0) − ̺y0·
.
ỹ(0) dx (3.3a)

holds for any ỹ smooth with ỹ(T ) =
.
ỹ(T ) = 0.
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(ii) The weak formulation of the creep flow rule (2.14b) with the boundary conditions

(2.16c)–(2.16d) and the last initial condition in (2.17)

∫ T

0

∫

Ω

(
∇y⊤Dϕ

E
(∇yΠ−1):D(Π−1) + Dϕ

H
(Π) − 2 sym

(
Π−⊤∇y⊤∇yΠ−1ΣΠ−1

))
:Π̃

− νmΠ :
.
Π̃ + Dϕ

G
(∇(∇yΠ−1))

...∇
(
∇yD(Π−1):Π̃

)
− νh∇

2Π
...∇2

.
Π̃ dx dt

=

∫

Ω

νmΠ0:Π̃(0) + νh∇
2Π0

...∇2Π̃(0) dx (3.3b)

holds for any Π̃ smooth with Π̃(T ) = 0.

Let us note that, due to (3.2b), we have also Π−1 = CofΠ⊤/ detΠ ∈ L∞(I×Ω)d×d,
as well as Dϕ

G
(∇(∇yΠ−1)) ∈ L∞(I;Lp′

G(Ω)d×d×d) so that all integrands in (3.3) are well-
defined as L1-functions.

Our main analytical result is an existence theorem for weak solutions. This is to be seen
as a mathematical consistency property of the proposed model. It reads as follows.

Theorem 3.2 (Existence of weak solutions). Let the assumptions (3.1) hold. Then, there

exists a weak solution (y,Π) in the sense of Definition 3.1.

Proof. As we are working in reference (Lagrangian) coordinates and aim at testing by partial
derivatives in time, we can advantageously use the Galerkin discretisation method in space.
Let us fix a nested sequence of finite-dimensional subspaces Vk ⊂ W 2,∞(Ω), k ∈ N whose
union is dense in W 2,∞(Ω). We will use this sequence for all components of deformations y
and inelastic strains Π .

Without loss of generality, we may consider an approximation of the initial conditions
y0,k ∈ V d

k , v0,k ∈ V d
k , and Π0,k ∈ V d×d

k such that

y0,k → y0 strongly in W 2,pG(Ω)d, (3.4a)

v0,k → v0 strongly in L2(Ω)d, (3.4b)

Π0,k → Π0 strongly in H2(Ω)d×d. (3.4c)

Existence of a finite-dimensional approximate solution (yk, Πk) ∈ W 2,1(I;V d
k )×C1(I;V d×d

k )
of the initial-value problem for the system of nonlinear ordinary differential equations arising
from the Galerkin approximation is standard, also using successive prolongation based on
uniform L∞ estimates. Such estimates can be obtained by testing the discrete-in-space equa-

tions by
.

yk and
.

Πk. This leads to the energy balance (2.18) for the Galerkin approximations
(yk, Πk). Starting from the energy balance, by using the Gronwall and Hölder inequalities,
we obtain a-priori estimates independently of k, namely,

{yk}k∈N is bounded in W 1,∞(I;L2(Ω)d), (3.5a)

{Πk}k∈N is bounded in H1(I;H2(Ω)d×d) ⊂ L∞(I×Ω)d×d, (3.5b)

{Fel,k}k∈N = {∇ykΠ
−1
k }k∈N is bounded in L∞(I;W 1,pG(Ω)d×d), (3.5c)

{Cel,k}k∈N = {F⊤

el,kFel,k}k∈N is bounded in H1(I;L2(Ω)d×d). (3.5d)
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Next, we use the classical Healey-Krömer [16] argument, here applied to the plastic strain
instead of the deformation gradient, as already exploited in [44]. This is based on the L∞-
bound of Πk and on the sufficiently fast blow-up of ϕ

H
, as assumed in (3.1b). It is important

that the argument in [16] holds even for the discrete level (as realized already in [21, 35])
and ensures that detΠk ≥ δ for all time instants and for some δ > 0 independent of k. In
particular, we also have that

{Π−1
k }k∈N is bounded in L∞(I ×Ω)d×d. (3.5e)

From (3.5b)–(3.5c) we get that {∇yk}k∈N = {Fel,kΠk}k∈N is bounded in L∞(I × Ω)d×d×d.
From (3.5b) we find that ∇(∇ykΠ

−1
k ) = (Π−⊤

k ∇(∇yk)
⊤)t + ∇ykD(Π−1

k )∇Πk is bounded in
L∞(I;LpG(Ω)d×d×d). This in particular implies that

{∇(∇yk)
⊤}k∈N =

{
Π⊤

k

(
∇(∇ykΠ

−1
k )−∇ykD(Π−1

k )∇Πk

)t}
k∈N

is bounded in L∞(I;LpG(Ω)d×d×d). (3.5f)

From (3.5a), we know that {yk}k∈N is bounded in L∞(I;L2(Ω)d), so that (3.5f) yields a
bound in L∞(I;W 2,pG(Ω)d). We proceed by showing that (3.5d), yields the estimate

{∇
.

yk}k∈N is bounded in L2(I×Ω)d×d. (3.5g)

To prove (3.5g) we argue as in [21, Sect. 9.4.3]. We preliminary observe that by the
growth conditions from below on ϕ

E
in (3.1a), as well as by the super-quadratic growth on

ϕ
G

in (3.1c), the Healey-Krömer argument yields the existence of δel > 0 such that

detFel,k ≥ δel in I ×Ω

for every k ∈ N. By combining the Cauchy-Binet formula with the bound in (3.5e), we find
that

1

det∇yk
=

1

det(∇ykΠ
−1
k Πk)

=
1

det(∇ykΠ
−1
k )

1

detΠk

is uniformly bounded in L∞(I×Ω). Property (3.5g) follows now by applying the generalized
Korn inequality by Neff [38] and Pompe [41] as exploited for the Kelvin-Voigt rheology
in [35, Thm. 3.3].

For all k ∈ N the pair (yk, Πk) fulfills the weak formulation (3.3) with initial conditions
approximated as (3.4), provided that the test-functions take value in the finite-dimensional
space. In particular, we have
∫ T

0

∫

Ω

(
Dϕ

E
(∇ykΠ

−1
k ):(∇ỹk Π

−1
k ) + ̺yk·

..

ỹ k + 2 sym
(
Π−⊤

k ∇y⊤k ΣkΠ
−1
k

)
:∇ỹk

+ Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇(∇ỹkΠ
−1
k )

)
dx dt =

∫ T

0

∫

Ω

f ·ỹk dx dt

+

∫ T

0

∫

Γ

g·ỹk dS dt +

∫

Ω

̺v0·ỹk(0) − ̺y0·
.

ỹk(0) dx (3.6a)

∫ T

0

∫

Ω

(
∇y⊤k Dϕ

E
(∇ykΠ

−1
k ):D(Π−1

k ) + Dϕ
H
(Πk) − 2 sym

(
Π−⊤

k ∇y⊤k ∇ykΠ
−1
k ΣkΠ

−1
k

))
:Π̃k

− νmΠk:
.

Π̃k + Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇
(
∇ykD(Π−1

k ) : Π̃k

)
− νh∇

2Πk

...∇2
.

Π̃k dx dt

=

∫

Ω

νmΠ0:Π̃k(0) + νh∇
2Π0

...∇2Π̃k(0) dx (3.6b)
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for all ỹk ∈ C2(I;V d
k ) and Π̃k ∈ C1(I;V d×d

k ) with ỹk(T ) =
.

ỹk(T ) = 0 and Πk(T ) = 0.
We are hence ready to address the convergence {(yk, Πk)}k∈N as k → ∞. By the Ba-

nach selection principle and the Aubin-Lions compact-embedding theorem, we select a not
relabeled subsequence converging with respect to the weak* topologies indicated in (3.5). In
particular, we have that

yk → y weakly* in W 1,∞(I;L2(Ω)d) ∩ L∞(I;W 2,pG(Ω)d)

and strongly in C(I×Ω̄)d, (3.7a)

Πk → Π weakly in H1(I;H2(Ω)d×d) and strongly in L∞(I×Ω)d×d, (3.7b)

Π−1
k → Π−1 strongly in L∞(I×Ω)d×d, (3.7c)

Fel,k = ∇ykΠ
−1
k → Fel = ∇yΠ−1 weakly* in L∞(I;W 1,pG(Ω)d×d), (3.7d)

Cel,k = F⊤

el,kFel,k → Cel = F⊤

el Fel weakly in H1(I;L2(Ω)d×d). (3.7e)

In fact, using the Aubin-Lions theorem in the context of Galerkin method when the time
derivatives are estimated only in some locally convex space (or alternatively only their
Hahn-Banach extension is estimated in a Banach space) requires some attention, as com-
mented in [43, Sect.8.4]. The convergence of Π−1

k is obtained by exploiting the formula
Π−1

k = CofΠ⊤
k /detΠk, as well as the uniform lower bound detΠk ≥ δ, and the fact that the

determinant is a locally Lipschitz function. By recalling that D(Π−1):A = −Π−1AΠ−1 for
all A ∈ R

d×d one readily checks that

D(Π−1
k ) → D(Π−1) strongly in L∞(I×Ω)d×d×d×d, (3.8)

∇(Π−1
k ) = D(Π−1

k ):∇Πk → D(Π−1):∇Π = ∇(Π−1)

strongly in Lq(I×Ω)d×d×d ∀q < 2∗. (3.9)

We further proceed by proving that

∇(∇ykΠ
−1
k ) → ∇(∇yΠ−1) strongly in LpG(I×Ω)d×d×d. (3.10)

By the uniform monotonicity of Dϕ
G

, we find:

ǫ
∥∥∇(∇ykΠ

−1
k ) −∇(∇yΠ−1)

∥∥pG

LpG(I×Ω)d×d×d

≤

∫ T

0

∫

Ω

(
Dϕ

G
(∇(∇ykΠ

−1
k )) − Dϕ

G
(∇(∇yΠ−1))

)...
(
∇(∇ykΠ

−1
k ) −∇(∇yΠ−1))

)
dx dt

=

∫ T

0

∫

Ω

Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇(∇(yk−y)Π−1
k ) dx dt

+

∫ T

0

∫

Ω

Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇(∇y(Π−1
k −Π−1)) dx dt

−

∫ T

0

∫

Ω

Dϕ
G

(∇(∇yΠ−1))
...
(
∇(∇ykΠ

−1
k )−∇(∇yΠ−1)

)
dxdt =: I1,k + I2,k + I3,k .

where ǫ > 0 is from (3.1c). We have I3,k → 0 owing to (3.7d) and to Dϕ
G

(∇(∇yΠ−1)) ∈
L∞(I;Lp′

G(Ω)d×d×d) because of the growth assumption in (3.1c). Also I2,k → 0 since

∇(∇y(Π−1
k −Π−1)) = ((Π−⊤

k −Π−⊤)∇(∇y)⊤)t + ∇y(∇Π−1
k −∇Π−1) → 0 (3.11)

strongly in LpG(I×Ω)d×d×d by (3.7c); here we also used the convergence ∇Π−1
k → ∇Π−1

strongly in LpG(I×Ω)d×d×d owing to (3.7b). To prove that also the term I1,k converges to
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0, we test the momentum equation for the Galerkin approximants by yk−ỹk where ỹk is an
approximation of the limit y which takes values in the finite-dimensional subspaces V d

k and
which converges to y in L2(I;W 2,pG(Ω)d) ∩H1(I;L2(Ω)d). We further assume ỹk(0) = y0,k.
Note that here yk−ỹk is not C2(I;H2(Ω)d) but rather W 1,∞(I;H2(Ω)d). Nevertheless, this
regularity is enough for arguing differently from (3.6a) and integrating by-part in time only
once. Note also that yk(T ) − ỹk(T ) 6= 0. For this reason, a further term at time T appears
in the equation below. Altogether,

I1,k =

∫ T

0

∫

Ω

Dϕ
G

(∇(∇ykΠ
−1
k ))

...(∇(∇(ỹk−y)Π−1
k )) + ̺

.

yk·(
.

yk−
.

ỹk) + f ·(yk−ỹk)

− Dϕ
E
(∇ykΠ

−1
k ):∇(yk−ỹk)Π−1

k ) − 2 sym
(
Π−⊤

k ∇y⊤k ΣkΠ
−1
k

)
:∇(yk−ỹk) dx dt

−

∫

Ω

.

yk(T )·(yk(T )−ỹk(T )) dx +

∫ T

0

∫

Γ

g·(yk−ỹk) dS dt → 0 .

Then, from (3.5g), using (the above mentioned generalization of) the Aubin-Lions theo-
rem, exploiting an information about

..

y k obtained via a comparison argument in the discrete
variant of (2.14a) for the Galerkin approximants, we infer that

.

yk →
.

y strongly in L2(I ×Ω)d,

and
.

yk(T ) →
.

y(T ) weakly in L2(Ω)d.

By (3.5b), (3.7c), (3.7d), and (3.7e) we conclude that I1,k → 0 and obtain (3.10).
What it is left to prove is that (y,Π) is a weak solution in the sense of Definition 3.1.

Let ỹ and Π̃ be smooth with ỹ(T ) =
.

ỹ(T ) = 0 and Π̃(T ) = 0, and approximate them via

sequences ỹk and Π̃k as in (3.6), so that ỹk → ỹ strongly in H2(I;W 2,pG(Ω)d) and Π̃k → Π̃
strongly in H1(I;H2(Ω)d). One needs to check that convergences (3.7) are sufficient to pass
to the limit in all terms in (3.3). Let us start by the momentum balance (3.6a). By the
continuity of the superposition operator we have that

Dϕ
E
(∇ykΠ

−1
k )Π−⊤

k → Dϕ
E
(∇yΠ−1)Π−⊤ strongly in L∞(I×Ω)d×d , (3.12)

cf. the growth condition (3.1a). Estimate (3.5d) ensures that

Σk = νkv
.

Cel,k → Σ weakly in L2(I×Ω)d×d. (3.13)

The limit Σ can be identified as Σ = νkv
.

Cel since we have convergence (3.7e). Owing to
(3.13), (3.5f), and (3.7c) we deduce that

Π−⊤

k ∇y⊤k ΣkΠ
−1
k → Π−⊤∇y⊤ΣΠ−1 weakly in L2(I×Ω)d×d . (3.14)

Let us now compute

Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇(∇ỹkΠ
−1
k ) = Dϕ

G
(∇(∇ykΠ

−1
k ))

...(Π−⊤

k ∇(∇ỹk)
⊤)t

+ Dϕ
G

(∇(∇ykΠ
−1
k ))

...(∇ỹkD(Π−1
k ):∇Πk)

Convergences (3.7) suffice to pass to the weak limit in both terms in the right-hand side. In
fact, taking into account (3.8) and (3.10), we have the following strong convergences (even
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though weak ones would be enough for our existence proof):

Dϕ
G

(∇(∇ykΠ
−1
k ))

...(Π−⊤

k ∇(∇ỹk)
⊤)t → Dϕ

G
(∇(∇yΠ−1))

...(Π−⊤∇(∇ỹ)⊤)t

in Lp(I;Lp′
G(Ω)d×d) ∀p < +∞ , and (3.15)

Dϕ
G

(∇(∇ykΠ
−1
k ))

...(∇ỹk D(Π−1
k ):∇Πk) → Dϕ

G
(∇(∇yΠ−1))

...(∇ỹ D(Π−1):∇Π)

in Lp(I;Lq(Ω)d×d) ∀p < +∞, q <
2∗p′G

2∗+p′G
. (3.16)

Since all the remaining terms in the momentum balance (3.6a) are linear, convergences
(3.12)–(3.16) allow to pass to the limit and obtain (3.3a).

Let us now move to the flow rule (3.6b). Arguing as above, by (3.5f) we have that

∇y⊤k Dϕ
E
(∇ykΠ

−1
k ):D(Π−1

k ) → ∇y⊤Dϕ
E
(∇yΠ−1):D(Π−1)

strongly in L∞(I×Ω)d×d . (3.17)

By using again convergence (3.13) we also get that

Π−⊤

k ∇y⊤k ∇ykΠ
−1
k ΣkΠ

−1
k → Π−⊤∇y⊤∇yΠ−1ΣΠ−1 weakly in L2(I×Ω)d×d . (3.18)

Eventually, we use convergences (3.7a), (3.9), and (3.10) in order to check that

Dϕ
G

(∇(∇ykΠ
−1
k ))

...∇
(
∇ykD(Π−1

k ):Π̃k

)
= −Dϕ

G
(∇(∇ykΠ

−1
k ))

...∇
(
∇ykΠ

−1
k Π̃kΠ

−1
k

)

= −Dϕ
G

(∇(∇ykΠ
−1
k ))

...
(
[(Π̃kΠ

−1
k )⊤∇(∇ykΠ

−1
k )t]t + ∇ykΠ

−1
k ∇(Π̃kΠ

−1
k )

)

→ Dϕ
G

(∇(∇yΠ−1))
...∇

(
∇yD(Π−1):Π̃

)
strongly in L1(I×Ω)d×d×d.

All remaining terms in the flow rule (3.6b) are linear and convergences (3.17)–(3.18) suffice
to pass to the limit and obtain (3.3b).
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[26] D. Melching, M. Neunteufel, J. Schöeberl, and U. Stefanelli. A finite-strain model for
incomplete damage in elastoplastic materials. Comput. Methods Appl. Mech. Engrg., to
appear, 2020.

[27] D. Melching and U. Stefanelli. Well-posedness of a one-dimensional nonlinear kinematic
hardening model. Discrete Cont. Dynam. Syst. Ser. S, 13, 2020.

[28] A. Mielke. Personal communication, 2017.

[29] A. Mielke. Finite elastoplasticity, Lie groups and geodesics on SL(d). In P. Newton,
A. Weinstein, and P. J. Holmes, editors, Geometry, Mechanics, and Dynamics, pages
61–90. Springer–Verlag, New York, 2002.

[30] A. Mielke. Existence of minimizers in incremental elasto-plasticity with finite strains.
SIAM J. Math. Anal., 36:384–404, 2004.

[31] A. Mielke and S. Müller. Lower semicontinuity and existence of minimizers for a func-
tional in elastoplasticity. Z. Angew. Math. Phys., 86:233–250, 2006.
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