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In aggregation-fragmentation processes, a steady state is usually reached in the long time limit.
This indicates the existence of a fixed point in the underlying system of ordinary differential equa-
tions. The next simplest possibility is an asymptotically periodic motion. Never-ending oscillations
have not been rigorously established so far, although oscillations have been recently numerically
detected in a few systems. For a class of addition-shattering processes, we provide convincing nu-
merical evidence for never-ending oscillations in a certain region U of the parameter space. The
processes which we investigate admit a fixed point that becomes unstable when parameters belong
to U and never-ending oscillations effectively emerge through a Hopf bifurcation.

Two complementary processes, aggregation and frag-
mentation, are widespread in Nature [1–9]. Mathemat-
ically, a well-mixed system undergoing aggregation and
fragmentation is described by equations

dck
dt

=
1

2

∑
i+j=k

Kij ci cj − ck
∑
j≥1

Kkj cj

+
∑
j≥1

Fkjcj+k −
1

2
ck
∑
i+j=k

Fij (1)

Here ck(t) denotes the density of clusters composed of k
monomers, Kij = Kji ≥ 0 is the rate of aggregation

[i]⊕ [j]
Kij−−→ [i+ j] (2)

and Fij = Fji ≥ 0 is the rate of binary fragmentation

[i+ j]
Fij−−→ [i] + [j] (3)

The system (1) of infinitely many non-linear ordinary
differential equations (ODEs) is analytically intractable
apart from a few special cases. The long-time behavior is
easier to probe. If the mass distribution becomes station-
ary, one may guess the stationary distribution by equat-
ing the rate of the aggregation process [i]⊕ [j]→ [i+j] to
that of the reverse fragmentation process [i+j]→ [i]+[j].
This detailed balance condition gives

Kij ci cj = Fij ci+j (4)

The detailed balance condition determines the station-
ary distribution only in exceptional cases. Generically
Eqs. (4) form an overdetermined system that does not
possess a solution [10].

More rich stationary states have been found in some
systems amenable to analysis, e.g., in addition to a sta-
tionary distribution of finite clusters an infinite cluster
comprising a finite fraction of mass of the entire systems
is sometimes formed (see [11–15]). Some aggregation-
fragmentation processes are characterized by unlimited
growth, namely the typical cluster mass diverges in the
long time limit. Non-thermodynamic behaviors and non-
equilibrium phase transitions have been also observed

[10]. These complicated behaviors reflect the peculiar-
ities arising in infinitely many ODEs.

The emergence of the stationary distribution is a more
basic feature since it is merely the fixed point and fixed
points often determine the long time behavior in sys-
tems of a few ODEs. For a single ODE, fixed points are
crucial; for two coupled ODEs, the asymptotic behavior
may be determined by a fixed point or a limit cycle. For
more than two equations, chaos may emerge. Thus one
would like to find never-ending oscillations and chaos in
aggregation-fragmentation processes.

Detecting a limit cycle in a system of two coupled
ODEs is difficult [16–18]. In Eqs. (1), the right-hand
sides are quadratic polynomials. Finding limit cycles for
the system

dx

dt
= P (x, y),

dy

dt
= Q(x, y) (5)

where P and Q are quadratic polynomials is the part
of the Hilbert’s 16th problem [19], see [20] for its fasci-
nating history. More precisely, Hilbert asked (i) whether
the number of limit cycles is finite for any polynomials
P and Q, and (ii) does it exist a universal upper bound
H(n) on the number of limit cycles depending only on
the maximal degree n = max[deg(P ),deg(Q)]. The af-
firmative answer to the first question was established in
[21, 22]. The answer to the second question is unknown,
apart from the case of linear vector fields which have no
limit cycles [23], that is H(1) = 0. For quadratic vector
fields, systems with four limit cycles have been discov-
ered [24, 25]. Thus H(2) ≥ 4; so far, the possibility that
H(2) =∞ has not been ruled out.

Persistent oscillations have been numerically observed
in [26] for some open aggregating systems driven by in-
put at small masses and sink at large masses. Oscillations
could be caused by the drive, however. In closed systems,
never-ending oscillations have been numerically detected
in a class of processes with collision-controlled fragmen-
tation where each fragmentation event leads to complete
shattering of colliding clusters into monomers:

[i]⊕ [j]
Sij−−→ [1] + · · ·+ [1]︸ ︷︷ ︸

i+j

(6)
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Since the binary collision can lead to aggregation or shat-
tering, the reaction rates that differ only by an amplitude,
Sij = λKij , have been explored [27–32]. For the family
of rates Kij = (i/j)a + (j/i)a, never-ending oscillations
have been detected [28, 29] in the region 1

2 < a ≤ 1 and
0 < λ ≤ λc(a).

In this Letter, we consider a slightly simpler class of
processes, and provide much stronger evidence for never-
ending oscillations. We consider systems in which each
aggregation event involves at least one monomer:

[1]⊕ [s]
As−−→ [1 + s] (7)

This naturally occurs if only monomers are mobile as it
happens, e.g., in monolayer growth [33, 34]. The shat-
tering is assumed to be spontaneous

[s]
Bs−−→ [1] + · · ·+ [1]︸ ︷︷ ︸

s

(8)

rather than the collision-induced shattering (6). The gov-
erning equations read

dcs
dt

= c1[As−1cs−1 −Ascs]−Bscs, s ≥ 2 (9a)

dc1
dt

=

∞∑
s≥2

sBscs − 2A1c
2
1 − c1

∑
s≥2

Ascs (9b)

The system is closed, so the mass density is conserved:

M =

∞∑
s=1

scs(t) ≡ const (10)

There is no natural relation between spontaneous shat-
tering rates Bs and collision-controlled addition rates As.
Pure addition processes with rates As = sa have been in-
vestigated [35]. The merging rate cannot grow faster than
mass, so on the physical grounds a ≤ 1. Furthermore,
addition processes with rates As = sa and a > 1 are ill-
defined due to instantaneous gelation [35, 36]. Thus it is
reasonable to choose a ≤ 1. Most interesting behaviors
are anticipated near the maximal growth exponent a = 1.
Hence we take As = s and recast (9a)–(9b) into

dcs
dt

= c1[(s− 1)cs−1 − scs]−Bscs, s ≥ 2 (11a)

dc1
dt

=

∞∑
s≥2

sBscs − c21 − c1 (11b)

where we additionally set M = 1. These equations are
too general, so we further specialize Eqs. (11a)–(11b) to
a class of algebraic break-up rates

Bs = Bsβ (12)

Suppose that the system reaches a steady state. From
(11a) we find that the stationary size distribution obeys
cs = cs−1(s− 1)/(s+Bs/n1), from which

cs
c1

=

s∏
j=2

j − 1

j +Bj/c1
(13)

This is valid for arbitrary break-up rates Bs, modulo of
course the assumption that a steady state is reached.

Using (13) with β < 0, we deduce cs ∼ s−1. The tail
must decay faster than s−2 to agree with mass conser-
vation,

∑
s≥1 scs = 1. Thus the assumption that the

system reaches the steady state is erroneous when β < 0.
Instead, the typical size grows indefinitely, i.e., shatter-
ing rates with β < 0 are too weak to counter-balance
growth via addition. Similar coarsening behaviors have
been observed in a few other aggregation-fragmentation
processes, see e.g. [37]. Leaving the complete analysis of
the behavior in the β < 0 for future, let us consider the
behavior when |β| � 1 limit. The shattering rates van-
ish when β = −∞, so in the first stage, we drop them.
In this situation, the monomers quickly disappear. If
cs(0) = δs,1, one gets [35]

cs(t) =
(1− e−t)s−1 − s−1(1− e−t)s

(2− e−t)s
(14)

from which cs(∞) =
(
1− s−1

)
· 2−s. Thus without shat-

tering, the system freezes into a stationary state with no
monomers and an exponential cutoff in the size distribu-
tion. In the second stage, dimers start to break, while
the heavier clusters remain stable. The time scale for
this second stage is O(2−β). At the end of the second
stage, there are no monomers and dimers. In the third
stage, trimers start to break. The corresponding time
scale is O(3−β). At the end of this stage, there are no
monomers, dimers, and trimers. This continues demon-
strating coarsening in the β → −∞ limit.

Therefore oscillations may occur only when β ≥ 0, so
in the following we focus on this range. From (13) we
deduce the asymptotic behaviors

cs
c1
∝


(c1/B)s(s!)−(β−1) β > 1

s−1 exp[−sβB/βc1] 0 < β < 1

s−1−B/c1 β = 0

(15)

Qualitative changes occur at β = 1 and β = 0. At these
marginal cases one can obtain more precise results:

cs
c1

= s−1(1 +B/c1)1−s, c1 =

√
B2 + 4B −B

2
(16)

when Bs = Bs, while when Bs = B we get

cs
c1

=
Γ(s)Γ(2 +B/c1)

Γ(s+ 1 +B/c1)
(17)

with

c1 =
b− 1−B

2
, b ≡

√
B2 + 6B + 1 (18)

The steady state (17) has an algebraic tail, cs ∼ s−γ for
s� 1, with

γ = 1 +
B

c1
=
b− 1 +B

b− 1−B
(19)
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FIG. 1: The plot of the exponent γ given by (19).

The exponent γ is an increasing function of the amplitude
B. Starting from γ = 2 for B = 0 it grows asymptotically
as B + 1 for B � 1; see Fig. 1.

The β = 0 case is special since Eq. (11b) is particularly
simple in this situation:

dc1
dt

= B(1− c1)− c21 − c1 (20)

From this closed equation, we deduce that (18) is indeed
a stable fixed point for the monomer density. If c1(0) = 1,
the explicit expression for the monomer density reads

c1(t) = c1 +
b(1− c1)2

2 ebt − (1− c1)2
(21)

with c1 ≡ c1(∞) and b given by (18). The remaining
equations (11a) can be re-written as

dns
dτ

= (s− 1)ns−1 − sns, s ≥ 2 (22)

with ns(τ) = eBt cs(t) and τ =
∫ t
0
dt′ c1(t′). These equa-

tions with already known n1(τ) = eBt c1(t), where c1(t)
is given by (21), can be solved recurrently from which
one verifies the stability of the fixed point (17)–(18).

The stability of the steady state is difficult for theo-
retical analysis when β > 0. We study it by perturb-
ing Eqs. (11a)–(11b) near the fixed point in a way that
preserves the mass density, and we explore the eigenval-
ues of the corresponding linearized aggregation operator.
After truncating the infinite system to N equations, we
find that the eigenvalues of the corresponding Jacobian
matrix have negative real parts, with at most one excep-
tional pair of eigenvalues with a positive real part (see
Fig. 2–3). This pair is present in a certain region in the
parameter space

U = {(β,B)|β > 1, 0 < B < Bcrit(β)} (23)

This occurs only for sufficiently large N . The steady
state loses stability via Hopf bifurcation when B crosses
the critical value Bcrit(β) and enters region U. This leads
to the birth of a stable limit cycle. The imaginary part

FIG. 2: The eigenvalues of the linearized system truncated
to N = 5000 equations. The eigenvalues have negative real
parts, and concentrate close to zero, with a possible excep-
tional pair of eigenvalues that has a positive real part. This
pair appears in region U of the parameter space, and it is
responsible for oscillations.

FIG. 3: The eigenvalues near λ = 0, the same parameters as
in Fig. 2. The pair of eigenvalues with positive real part that
causes oscillations is clearly visible.

of the critical eigenvalue decreases monotonically, igno-
rant to the bifurcation, as B decreases (Fig. 4). The real
part changes its behavior once the eigenvalue becomes
unstable: Re(λ) keeps growing for a short while before
reaching its maximum value and then decays monotoni-
cally. Figure 5 shows the transition curve Bcrit(β) in the
parameter space. In particular, it shows that there is a
singularity at β = 1, whose existence is connected with
the qualitative changes in the steady state (15)–(16). In
our numerical experiments we exploit the structure of the
Jacobian and use the inverse power method [38] to find
unstable eigenvalues (see SM for details).

We carried out numerical simulations to study the os-
cillatory solutions of the system truncated to N equa-
tions, with N sufficiently large to ensure that mass con-
servation is held on each iteration with machine precision.
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FIG. 4: Real and imaginary parts of the eigenvalue that
crosses the imaginary axis as B varies. The cusp in the plot of
log |Reλ| corresponds to Hopf bifurcation: The critical eigen-
value changes its sign, and a limit cycle is born.

FIG. 5: The region of the (β,B) plane where unstable eigen-
values exist. It means that these values of the parameters
correspond to the birth of oscillations.

This makes the finite system numerically indistinguish-
able from the infinite one. The results are presented in
Fig. 6 for multiple values of B with β = 2 fixed. The ini-
tial condition was taken as a perturbation of the steady
state (13)–(15) that preserves its mass density:

c̃1 = c1 + 1.8c2, c̃2 = 0.1c2, c̃s = cs. (24)

Comparing Figs. 6 and 4 we see that the oscillations
die out when B is above the critical value Bcrit(2) and
persist when B is below it. As B continues to decrease,
the amplitude of the oscillations at first grows, reaches
its maximum, and starts decaying to zero. The frequency
of the oscillations decreases monotonically with B.

How many equations should one take to see oscilla-
tions? In our numerical experiments, we have observed
that Eqs. (11a)–(11b) cease to have unstable eigenvalues
for parameters from the region (23) when N is not big
enough. The “big enough” grows as B tends to zero or β
tends to one, together with the effective length of the sta-
tionary distribution. At another extreme, one can con-
sider Eqs. (9a)–(9b) and set As to zero for s ≥ 3. Finding

Oscillations for different B
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FIG. 6: Oscillatory regimes for monomers c1(t) and total den-
sity N(t) =

∑∞
k=0 ck for different values of B with β = 2

and unit mass density. The oscillations decay when B =
3.1622776602 ·10−6 [Decay], persist when B = 1.2195704602 ·
10−6 [Average], and have the largest possible (for β = 2 and
unit mass) amplitude when B = 1.668100537·10−7 [Maximal].
In all three cases we used initial conditions as in (24).

limit cycles is difficult even for such simple systems of two
coupled ODEs. Several tools allow one to rule out the
limit cycles or prove their existence [16–18]. In our case,
the application of the Dulac criterion shows the absence
of limit cycles independently of the rates (see SM). Re-
cent results on Hopf bifurcation in a finite Becker-Döring
exchange model also show that the number of ODEs in
such finite systems has to be sufficiently large to obtain
oscillatory solutions [39]. This perhaps explains why de-
spite years of searching, the oscillatory solutions have not
been observed.

To summarize, we have found oscillatory solutions in
the realm of addition-shattering models (11a)–(11b) with
algebraic break-up rates (12). These solutions are born
through the Hopf bifurcation mechanism: The steady
states exist whenever β ≥ 0, but become unstable for
parameters from (23) and give birth to never-ending os-
cillations via Hopf bifurcation. Oscillatory solutions in
other models have been detected recently [28, 29, 39].
For instance, Hopf bifurcation has been found in a finite
Becker-Döring system with constant kinetic coefficients
[39]. Our infinite system with algebraically growing rates
also exhibits oscillatory solutions, at least the numerical
evidence is very convincing.

In a class of addition-shattering processes that we in-
vestigated, persistent oscillations occur in a small region
of the phase space; the same holds for the model studied
in [28, 29]. This rarity is similar to the empirical evidence
with limit cycles in planar systems with quadratic poly-
nomials. Systems with up to four limit cycles are known
[24, 25, 40, 41]. If H(2) = ∞, there exist planar sys-
tems with quadratic polynomials and an arbitrary num-
ber of limit cycles. The rule of thumb, however, is that
a “generic” planar system has no limit cycles (see [41]).
The same seemingly holds for aggregation-fragmentation
systems. Limit cycles are very rare, and systems with
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more than one limit cycle are currently unknown. An-
other avenue for future work is to seek oscillations in sys-
tems with standard binary fragmentation. Among the
biggest challenges is providing rigorous proof of persis-
tent oscillations in an infinite system and finding chaos.

The work of S.S.B and S.A.M was partly supported by
Moscow Center for Fundamental and Applied Mathemat-
ics (agreement No. 075-15-2019-1624).
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Supplementary material: Hopf bifurcation in
addition-shattering kinetics

A. Truncated Models and Dulac function

In aggregation-fragmentation processes (1), never-
ending oscillations have not been found analytically. This
is not surprising as it requires a solution of an infinite set
of non-linear ODEs. To appreciate the existence of os-
cillations one can first seek such solutions in truncated
models in which the matrix elements Kij vanish when
i+ j is sufficiently large.

We define m−truncated models by requiring

Kij = 0 when i+ j > m (25)

For such models, the system (1) of infinitely many ODEs
reduces to ODEs for the densities c1, . . . , cm. Taking into
account mass conservation

m∑
j=1

jcj(t) = 1 (26)

reduces the number of ODEs to m− 1. Limit cycles are
possible in a system of two (or more) ODEs. Thus in the
truncated models, limit cycles may arise when m ≥ 3.
Chaos becomes (in principle) feasible when m ≥ 4.

The m = 3 truncated model consists of three ODEs

dc1
dt

= −2c21 − 2Kc1c2 + 2Fc2 +Gc3 (27a)

dc2
dt

= c21 − 2Kc1c2 − Fc2 +Gc3 (27b)

dc3
dt

= 2Kc1c2 −Gc3 (27c)

where we shortly write the matrices ||Kij || and ||Fij ||
with i, j ≤ 2 as

||Kij || =

 2 K

K 0

 , ||Fij || =

 2F G

G 0

 (28)

Specializing (26) to m = 3 we get 2c2 = 1 − c1 − 3c3.
Substituting this relation to (27a) and (27c) we obtain

dc1
dt

= (F − 1
2Kc1)(1− c1 − 3c3) +Gc3 − 2c21 (29a)

dc3
dt

= 1
2Kc1(1− c1 − 3c3)−Gc3 (29b)

Equations (29a)–(29b) are the most general equations
for the truncated model with m = 3. Indeed, (28) are the
most general rates satisfying the symmetry requirement,
we merely disregarded the pathological case K11 = 0 and
set K11 = 2 by rescaling the time variable.

On the physical grounds, the rates are positive. Hence
the parameters should lie inside the octant

R3
+ = {(F,G,K)|F > 0, G > 0, K > 0} (30)

We are also interested in the behavior inside the triangle

T = {(c1, c3)| c1 ≥ 0, c3 ≥ 0, c1 + 3c3 ≤ 1} (31)

Indeed, the densities are non-negative and mass conser-
vation written as 2c2 = 1 − c1 − 3c3 ≥ 0 explains the
last inequality. If the system starts inside the triangle, it
forever remains there.

We now rule out the existence of limit cycles for the
system (29a)–(29b) using the Dulac criterion [16–18]. For
the general planar system (5), the Dulac criterion asserts
that if there exists a smooth function D(x, y) in a simply-
connected domain D ⊂ R2 such that the Dulac function

D ≡ ∂x[DP ] + ∂y[DQ] (32)

has the same sign throughout D, there are no closed or-
bits lying entirely in D. Choosing D(c1, c3) = 1 and T as
the domain, one computes the Dulac function

D = −F −G−K(c1 + c2)− 4c1 (33)

Thus D < 0 assuring the absence of limit cycles for the
general truncated system (29a)–(29b).

Similarly, a limit cycle is impossible for the arbitrary
addition-shattering process truncated to m = 3. Indeed,
Eqs. (9a)–(9b) turn into a planar system

ċ1 = P, ċ2 = Q (34)

with quadratic polynomials

P = (B2 − 1
2A2c1)(1− c1 − 3c3) + 3B3c3 − 2A1c

2
1

Q = 1
2A2c1(1− c1 − 3c3)−B3c3

(35)

depending on four positive rates: A1, A2, B2, B3. Choos-
ing again D(c1, c3) = 1 and the triangle T as the domain,
we compute the corresponding Dulac function

∂P

∂c1
+
∂Q

∂c2
= −B2 −B3 −A2(c1 + c2)− 4A1c1 (36)

and find that it is negative assuring the absence of limit
cycles for the truncated system (34)–(35).

B. Linearizing Eqs. (11a)–(11b) about the steady
state

Equation (13) asserts that the stationary size dis-
tribution is uniquely determined by the density c1 of
monomers. The mass density

M =
∑
s≥1

scs = c1
∑
s≥1

s

s∏
j=2

j − 1

j +Bj/c1
(37)

increases monotonically with c1 and thus for every value
of M , the system (11a)–(11b) has at most one steady
state. To numerically find the steady state with a given
mass density it suffices to solve a nonlinear equation (37).



Owing to mass conservation, the sets of equal-mass size
distributions are invariant for (11a)–(11b). And when we
talk about the birth of limit cycles we always confine the
system to distributions of fixed mass M , which we can
choose to be unity since the system remains unchanged
under scaling

cs 7→Mcs, Bs 7→MBs, t 7→ 1

M
t (38)

To preserve the total mass, we consider the following per-
turbations {xs} of the steady state:∑

s≥1

sxs(t) = 0. (39)

In the vicinity of the steady state, equations (11a)–(11b)
read

dxs
dt

= (c1 + x1)[(s− 1)xs−1 − sxs]−

Bs

[
cs
c1
x1 − xs

]
, s ≥ 2 (40a)

dx1
dt

= −(c1 + x1)x1 −
∑
s≥2

sBs

[
cs
c1
x1 − xs

]
(40b)

Dropping nonlinear terms in Eqs. (40a)–(40b) we arrive
at

dxs
dt

= c1[(s− 1)xs−1 − sxs]−

Bs

[
cs
c1
x1 − xs

]
, s ≥ 2 (41a)

dx1
dt

= −c1x1 −
∑
s≥2

sBs

[
cs
c1
x1 − xs

]
(41b)

C. Numerical approach for evaluation of the
spectrum

Fix N and consider the first N equations of (40a)–
(40b). Such truncation obviously breaks the mass con-
servation law but it holds with machine precision pro-
vided N is sufficiently large, making the finite system
numerically indistinguishable from the infinite one.

The elements of the Jacobian matrix J ∈ RN×N are
given by

J(i, j) =



−c1 −
∑
s≥2 sBs

cs
c1
, i = 1, j = 1

jBj , i = 1, j > 1

c1 −B2
c2
c1
, i = 2, j = 1

−Bi cic1 , i > 2, j = 1

(i− 1)c1, i > 2, j = i− 1

Bi − ic1, i ≥ 2, j = i

0, otherwise

(42)

For moderate values of N we can compute the complete
spectrum σ(J) of J with the help of standard LAPACK
procedures (or their wrappers as in numpy). For example,
Fig. 2 of the main text was obtained this way for N =
5000.

However, with Hopf bifurcation in mind, we are not
interested in the whole spectrum of J but only in its
eigenvalues that invade the complex half-plane with a
positive real part, Reλ > 0. When β is close to unity,
N gets as big as 107 making the computation of all the
eigenvalues not only superfluous but highly inefficient.

Instead, we can use the so-called inverse iterations (or
inverse power method) that allow one to find the eigen-
value closest to a given complex number µ ∈ C and its
corresponding eigenvector. The iterations start from an
initial vector v0 ∈ CN that is typically chosen to be ran-
dom unless some a priori information is available. At
each iteration, the algorithm solves a linear system of
equations and normalizes a vector:

uk = (J− µIN )−1vk−1, vk =
uk
‖uk‖

(43)

The resulting vector is an approximate eigenvector of J:

Jvk ≈ λkvk, λk ≈ argminλ∈σ(J)|λ− µ|

This method converges fast and very few iterations are
needed when µ is close to the desired eigenvalue.

FIG. 7: The inverse power method converges geometrically
and its rate of convergence depends on how close the spectral
shift µ is to the eigenvalue λ we are computing. The error
is measured as |λ − λk|, where λk is the result of the k-th
iteration. We used B = 10−10, β = 1.5, and N = 107.

The computational complexity of the algorithm stems
from the need to solve a linear system of equations at
each iteration (43). To make the iterations efficient, we
exploit the structure of the Jacobian (42). Matrix J is



extremely sparse and has the following template:

J =



× × × × . . . × × ×
× × 0 0 . . . 0 0 0
× × × 0 . . . 0 0 0
× 0 × × . . . 0 0 0
...

...
...

...
. . .

...
...

...
× 0 0 0 . . . × × 0
× 0 0 0 . . . 0 × ×


, (44)

where × denotes nonzero elements. Matrices of this form
(44) admit an exceptionally pleasant upper-lower trian-
gular factorization J = UL with

U =



× × × × . . . × × ×
0 × 0 0 . . . 0 0 0
0 0 × 0 . . . 0 0 0
0 0 0 × . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 × 0
0 0 0 0 . . . 0 0 ×


(45a)

and

L =



× 0 0 0 . . . 0 0 0
× × 0 0 . . . 0 0 0
× × × 0 . . . 0 0 0
× 0 × × . . . 0 0 0
...

...
...

...
. . .

...
...

...
× 0 0 0 . . . × × 0
× 0 0 0 . . . 0 × ×


(45b)

This means that we can precompute the UL factorization
(45a)–(45b) of J − µIN and then solve two very sparse
triangular systems per iteration (43).

We used this approach to compute the unstable region
(23) in the parameter space as depicted in Fig. 5. To fur-
ther accelerate the computations, we employed parame-
ter continuation: we took the approximate eigenvalue λ
and eigenvector v corresponding to parameters (β,B) as
the spectral shift µ̃ and starting vector ṽ0 for the adjacent
parameters (β̃, B̃). This allowed us to process Jacobians
of size N = 107 in reasonable time on a standard laptop.

Figure 7 shows how the convergence of the inverse
power method depends on the spectral shift µ: The con-
vergence is always geometrical, but its rate decreases
when µ is far from the eigenvalue that we seek to com-
pute. On a standard laptop, the computation takes 30-40
seconds in the worst case and less than 1 second in the
best one. This phenomenon motivates one to exploit pa-
rameter continuation.

D. The product kernel

Aggregation-fragmentation processes in which both
processes are collision-controlled, and each fragmentation
event leads to complete shattering, have been studied in

[27–29] in the situation when the rates of aggregation and
shattering events differ only by an amplitude:

Sij = λKij (46)

This relation between the rates is natural since both ag-
gregation and shattering are possible outcomes of the bi-
nary collision [27]. The governing equations then read

dck
dt

=
1

2

∑
i+j=k

Kij ci cj − (1 + λ)ck
∑
j≥1

Kkj cj (47a)

for k ≥ 2, while the density of monomers satisfies

dc1
dt

= −c1
∑
i≥1

K1,i ci + λc1
∑
i≥2

iK1,i ci

+
λ

2

∑
i≥2

∑
j≥2

(i+ j)Kij ci cj (47b)

For the special class of rates

Kij = (i/j)a + (j/i)a (48)

never-ending oscillations have been detected [28, 29] in
the region

{(a, λ)| 12 < a ≤ 1, 0 < λ ≤ λc(a)} (49)

To appreciate the bounds 1
2 < a ≤ 1 we note that aggre-

gation equations with kernel (48) and a > 1 are ill-defined
due to instantaneous gelation. Further, for aggregation
equations with kernel (48) driven by the constant input
of monomers, the densities approach steady state values
when 0 ≤ a < 1

2 , while in the range 1
2 < a ≤ 1 the den-

sities evolve ad infinitum [37]. The shattering effectively
acts as a source of monomers, and this qualitatively ex-
plains the appearance of ac = 1

2 .

0.5 1.0 1.5 2.0 2.5 3.0
λ

0.5

1.0

1.5

2.0

FIG. 8: Bottom to top: The stationary densities c1, M0, M2.
The density of monomers is c1 = (1 + 2λ)/(2 + 2λ); the mo-
ments M0, M2 are given by (53).

To gain insight into the behavior of the aggregation-
shattering models satisfying (46), one may study kernels



different from (48) and hopefully more amenable to ana-
lytical treatment. The product kernel

Kij = ij (50)

is particularly well-known — in the context of pure ag-
gregation it provides the simplest description of gelation
[3, 8]. For this kernel, Eqs. (47a)–(47b) become

dck
dt

=
1

2

∑
i+j=k

ijci cj − (1 + λ)kck, k ≥ 2 (51a)

dc1
dt

= −(1 + λ)c1 + λM2 (51b)

where M2(t) =
∑
j≥1 j

2cj(t) is the second moment, and

the mass density is again set to unity:
∑
j≥1 jcj(t) = 1.

The system (51a)–(51b) does not admit solutions with
never-ending oscillations. Instead, for every λ > 0 solu-
tions quickly approach to the steady state

ck =
1√
4π

Γ
(
k − 1

2

)
k Γ(k + 1)

(1 + 2λ)k

(1 + λ)2k−1
(52)

The moments Mp =
∑
k≥1 k

pck approach to [see also

Fig. 8]

M0 = 2 + 2(1 + λ) ln
1 + 2λ

2 + 2λ

M2 =
1 + 2λ

2λ

M3 =
(1 + 2λ)(1 + 2λ+ 2λ2)

4λ3

M4 =
(1 + 2λ)(3 + 12λ+ 18λ2 + 12λ3 + 4λ4)

8λ5

(53)

etc. The tail of the distribution (52) is

ck ∼ k−5/2e−µk, µ = 2 ln(1 + λ)− ln(1 + 2λ) (54)

Since µ ' λ2 as λ → +0, the mass distribution decays
algebraically, ck ∼ k−5/2, when 1� k � λ−2. These an-
alytical observations become extremely useful during the
validation of accuracy of miscellaneous numerical meth-
ods.
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