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The dispersion relation ǫ(k) of the elementary excitations of superfluid 4He has been measured at
very low temperatures, from saturated vapor pressure up to solidification, using a high flux time-of-
flight neutron scattering spectrometer equipped with a high spatial resolution detector (105 ‘pixels’).
A complete determination of ǫ(k) is achieved, from very low wave-vectors up to the end of Pitaeskii’s
plateau. The results compare favorably in the whole the wave-vector range with the predictions of
the dynamic many-body theory (DMBT). At low wave-vectors, bridging the gap between ultrasonic
data and former neutron measurements, the evolution with the pressure from anomalous to normal
dispersion, as well as the peculiar wave-vector dependence of the phase and group velocities, are
accurately characterized. The thermodynamic properties have been calculated analytically, develop-
ing Landau’s model, using the measured dispersion curve. A good agreement is found below 0.85 K
between direct heat capacity measurements and the calculated specific heat, if thermodynamically
consistent power series expansions are used. The thermodynamic properties have also been cal-
culated numerically; in this case, the results are applicable with excellent accuracy up to 1.3K, a
temperature above which the dispersion relation itself becomes temperature dependent.

I. INTRODUCTION

One of the most fundamental properties of a many-
body system is the dispersion relation ǫ(k) of its elemen-
tary excitations1–3, i.e., the dependence of their energy
on their wave-vector. The prediction by Landau4,5 of
the phonon-roton spectrum of the excitations in super-
fluid 4He, the canonical example of correlated bosons,
has paved the way for the development of several areas
of modern physics, like Bose-Einstein condensation, su-
perfluidity, phase transitions, quantum field theory, cold
atoms, cosmology and astrophysics.

In the first version of his theory, published in 1941,
Landau assumed that phonons and rotons had two sep-
arate dispersion relations; he corrected this idea in the
1947 paper, where he reached the conclusion that helium
was described by a single dispersion curve. The evolution
of the dispersion relation from the quadratic law of in-
dependent atoms to the sophisticated form proposed by
Landau is a spectacular example of emergent physics.

At low wave-vectors, the phonon linear dispersion pro-
gressively builds up as the interactions are switched on,
as shown by Bogoliubov6. At atomic-like wave-vectors,
a roton minimum appears, which is the signature of
the hard core and strong interactions, as solidification
is approached1,7,8. Excitations created from the super-
fluid condensate, let’s name it ‘the Vacuum’, have the
characteristics of waves and identical particles9,10.

The dispersion relation ǫ(k) has been directly ob-
served in 4He by measurements of the dynamic struc-
ture factor S(Q,ω) using inelastic neutron scattering
techniques11,12, fully confirming Landau’s prediction.

Substantial theoretical work has been devoted to the
description of the single-excitations dispersion of super-
fluid 4He, a simple Bose system where the atomic in-
teraction potential is well known. Variational, Monte-
Carlo, and phenomenological approaches have brought
valuable contributions to the present understanding of
helium physics4–6,13–25, but many important questions
remain open.
Superfluid helium also has important applications in

experimental physics. In particular, the properties of
phonons and rotons are exploited in quantum measure-
ments at the nanoscale level26,27 and in detectors for par-
ticle physics28–31.
In two previous articles32,33 we investigated in detail

the multi-excitations of superfluid 4He. Here we provide
experimental results on single-excitations in the whole
dynamic range where they are well defined, and we com-
pare them to the predictions of recent dynamic many-
body theory (DMBT) calculations34,35. In the second
part of the manuscript, starting from the measured dis-
persion curve at saturated vapor pressure, we calculate
the thermodynamic properties analytically and numeri-
cally. The results are compared to high accuracy thermo-
dynamic data. Tabulated values are provided for differ-
ent usual parameters (see also Supplemental Material at
[URL will be inserted by publisher] for additional tables).

II. PREVIOUS WORKS

The measured phonon dispersion relation of 4He is
shown in Fig. 1; it closely resembles the curve predicted
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by Landau4,5: the linear (‘phonon’) part at low wave-
vectors is followed by a broad maximum (‘maxon’) at
wave-vectors k∼1Å−1 and a deep (‘roton’) minimum (‘ro-
ton gap’) at k∼2Å−1. The dispersion curve becomes flat
for k≥2.8 Å−1 as the energy reaches twice the roton gap,
forming ’Pitaevskii’s plateau’11,12.
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FIG. 1. The dispersion relation of 4He at P=0 and
T<0.1K, determined by neutron scattering for wave-vectors
k>0.15 Å−1 (this work) . Below this value: extrapolation of
ultrasonic data36,37. Error bars are not visible at this scale in
most of the range (see Table VI). ∆M and ∆R are the maxon
and roton energies.

In the long wavelength limit, explored by ultrasonic
techniques, the deviations from linearity are described
by the expression

ǫ(k) ≈ ~ck(1− γk2) (1)

where c is the speed of sound, and γ is the phonon

dispersion coefficient . The general shape of the Lan-
dau spectrum suggests that γ > 0, but this was found
to be inconsistent with experiments. The latter found
an explanation with the suggestion made by Maris and
Massey38,39 that the dispersion is anomalous (γ < 0) at
low pressures. This effect attracted considerable atten-
tion both from the theoretical and experimental points
of view. Phonon damping due to 3-phonon processes, for
instance, is then allowed up to a critical wave-vector kc.
The dispersion becomes ‘normal’ at high pressures, near
solidification. Details can be found in a critical review
by Sridhar40.

Thermal phonons at usual temperatures involve much
higher wave-vectors. Going from macroscopic to atomic
wavelengths is obviously a challenge, which has been
taken up by neutron scattering.

A. The long wavelength limit

Deviations from the linear dispersion relation are often
described by a polynomial expansion of the excitation
energy in powers of the wave-vector modulus k:

ǫ(k) = ~ck
(

1 + α2k
2 + α3k

3 + α4k
4 + ...

)

(2)

where α2 = -γ and α1 is assumed to be zero.
A different type of expression, frequently used

in the analyis of experimental data, is the Padé
approximant39,41

ǫ(k) = ~ck

(

1− γk2
1− k2/Q2

a

1 + k2/Q2
b

)

. (3)

Its series expansion does not contain the term α3.
Microscopic theory, in fact, suggests a different descrip-

tion of the low-k regime. Starting from Bogoliubov’s for-
mula (see the discussion in Ref. 35), we derive the simple
expression

ǫ(k) = ~ck
√

1 + d2k2 + d3k3 + ... (4)

which is physically correct in the Feynman limit.
Comparing its power series expansion with Eq. 2 shows

that α1=0, γ=-d2/2, and α3=d3/2. Since higher order
terms are generated in the expansion, it is interesting to
see if Eq. 4 can describe the experimental data, eventu-
ally with a smaller number of parameters.
The term α3 has been calculated analytically42,43 from

the asymptotic form of the microscopic two-body inter-
action. For V (r) = C6r

−6,

α3 =
π2

24

ρ

m4c2
C6 (5)

where m4 is the mass of a 4He atom, and ρ the density
of the liquid. At saturated vapor pressure, this estimate
gives α3=-3.34 Å3 (see Refs. 37, 40, 42, and 43). The
pseudo-potential theory of Aldrich and Pines13,40,44 pro-
vides a similar estimate, α3=-3.7 Å3 with a value for the
dispersion coefficient, γ ≈-1.5 Å2, consistent with exper-
iments.
The experimental determination of the dispersion rela-

tion at long wavelengths has been attempted by different
techniques. The speed of sound is known in the whole
pressure range: ultrasound measurements at very low
temperatures yield c=238.3 ± 0.1m/s at saturated vapor
pressure. It increases rapidly with pressure (see Refs. 45
and 46, and references therein), exceeding 366m/s at the
melting pressure.

Since c =
√

1
ρκ , where κ is the isothermal compress-

ibility and ρ the density, one can obtain the pressure de-
pendence of the density by measuring the sound velocity
as a function of pressure. Abraham et al.45 found that
the expressions

P = A1(ρ− ρ0) +A2(ρ− ρ0)
2 +A3(ρ− ρ0)

3 (6)
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and

c =
√

A1 + 2A2(ρ− ρ0) + 3A3(ρ− ρ0)2. (7)

accurately describe their results. A fit of their data yields
the coefficients A1=5.679 104 bar cm3 g−1 (correspond-
ing to c0= 238.3m/s), A2=1.1115 106 bar cm6 g−2, and
A3=7.43 106 bar cm9 g−3. Here ρ0=0.14513 g/cm3 is the
density at P=0 (see Ref. 45 and references therein). The
sound velocity is almost linear as a function of density,
and one can use the expression

c = c0 + c1(ρ− ρ0) + c2(ρ− ρ0)
2. (8)

where c0=238.3±0.1, c1=4671.0±1.3 and c2=496±45 for
velocities in m/s and densities in g/cm3.
Ultrasonic measurements are accurate in the determi-

nation of the pressure dependence of the sound velocity,
but there are some uncertainties in the way the reference
velocity c0=238.3 ± 0.1 m/s (the value at zero pressure)
has been determined45 . It is therefore interesting to com-
pare the ultrasonic values with those obtained by other
techniques.
Tanaka et al.47 measured the molar volume of pure liq-

uid 4He at very low temperatures as a function of pres-
sure. We obtain from their data the velocity of sound,
either by derivation of the polynomial of order 9 given
by Tanaka et al. or by derivation of their data in a small
range around the relevant pressures, using the compress-
ibility: c2 = Vm

2/(m4∂Vm/∂P ), where m4 is the atomic
mass of 4He (4.0026032 g/mol). The molar volume V0

at P=0 is 27.5793 cm3/mol, and the number density
0.021836 atoms/Å3.
In the pressure range from 0 to 15 bar, the sound ve-

locities determined from the compressibility are system-
atically below the ultrasonic values, but they agree with
the latter within 0.7m/s. At higher pressures (partial
data are given in Ref. 47 up to the melting pressure),
we find a strong deviation of the sound velocity (up to
3m/s) from an almost linear density dependence, result-
ing from a small systematic error in the molar volume
data above 15 bar, as can be seen by comparing them
to the results of Abraham et al.45 (a useful formula for
Vm(P) is given by Greywall48).
Anomalous dispersion in superfluid 4He was observed

by Phillips49 using heat capacity techniques. The re-
sults have been extended to lower temperatures by
Greywall48,50, motivated by discrepancies observed be-
tween heat capacity and neutron scattering data. Since
the heat capacity is obtained as an integral of the dis-
persion curve over a substantial range of wave-vectors,
extracting the dispersion curve from data is not a unique
procedure (this point will be discussed in detail in section
VIII). The velocity of sound determined by Greywall at
low temperatures from the coefficient of the T3 term in
the heat capacity, in addition, is affected by uncertain-
ties in the thermometry48,50. The values of c from heat
capacity are lower than the ultrasonic ones, and less accu-
rate, but their density dependence is similar. Thermom-
etry calibration improvement reduced the values of the

sound velocities by about 3 to 6m/s for increasing pres-
sures, which is an indication of the typical uncertainties
in heat capacity data. Paradoxically, uncorrected data
were closer to the ultrasonic results.
Accurate measurement of the deviations from linearity

of the phonon dispersion have been made by Rugar and
Foster37. Ultrasonic measurements at two fundamental
frequencies showed that α1<10

−3Å at P=0 and 6.3 bar,
and α2 = (1.56±0.06)Å2 at SVP. If α1 is assumed to be
zero, then α2 =(1.55±0.01)Å2 at SVP. The excitation
spectrum is probed for k<0.011Å−1. Their analysis is
insensitive to assumed values of α4, α5, etc., and it is only
slightly sensitive to the value of α3, which is taken from
theory42,43. The density dependence of α2, measured
from SVP to 10 bar, is almost linear. The data agree
well with former results of Junker and Elbaum36 on the
temperature dependence of the ultrasonic velocity, which
reach higher pressures (about 15 bar).
We shall use the ultrasonic values in the following,

since they are the most accurate, and confirmed (but
only within about 0.7m/s) by other measurements. The
values obtained in the present work will be compared to
these data in Section VII.
The experiments described above provided a good de-

scription of the dispersion relation for small wave-vectors,
and convincing evidence of anomalous dispersion for pres-
sures below about 20 bar was progressively gathered. To
achieve a direct observation of the dispersion curve and
explore the dynamics at atomic wave-vectors, the privi-
leged tool is inelastic neutron scattering.

B. Previous neutron scattering results

Previous neutron scattering data have been described
in detail by Glyde in a book11 and a recent review
article12. Tables of the properties of liquid helium have
been published by Brooks and Donnelly51 and by Don-
nelly and Barenghi46; neutron scattering data from a va-
riety of sources and smoothed values are provided. Orig-
inal references should be consulted, however, for error
bars.
The quantitative knowledge of the dispersion rela-

tion is based on measurements by Cowley and Woods52,
Woods et al.53, Svensson et al.54–56, Stirling et al.57–59

and others12,60 mainly performed on triple-axis spec-
trometers. The different data sets are not totally com-
patible, and the dispersion relation which emerges from
these studies is therefore not fully satisfactory.
The main advantage of triple-axis spectrometers is

their good accuracy in the determination of energies and
wave-vectors. This point-by-point measuring technique
is time consuming, and therefore not appropriate to in-
vestigate the whole wave-vector range.
The small-k phonon region was studied, pushing the

technique to its limits, to explore a possible anomalous
dispersion. The first results52,54,55 were highly specula-
tive and at best qualitative, since error bars growing at
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low wave-vectors precluded a thorough comparison to ul-
trasonic sound velocity measurements. Higher accuracy
measurements performed by Stirling et al.57–59 finally
confirmed the anomalous character of the dispersion at
low pressures. However, these measurements showed a
systematic disagreement with ultrasound measurements,
which will be discussed further below.
Time-of-flight spectrometers (TOF) with large detec-

tor arrays allow measurements of dispersion curves over a
large range of energies and wave vectors simultaneously.
Early experiments by Dietrich et al.61 and Stirling et al.62

were followed by more recent measurements on IN6 at
the ILL by Stirling, Andersen, and coworkers63–69. Two
new data sets with an energy resolution of about 100µeV
were obtained through the latter works, referred to as
‘Andersen’63,66 and ‘Gibbs’68,69.
A good agreement with triple-axis data was found in

the roton and the maxon regions, but strong deviations
were observed both at low and high wave-vectors. IN6
shares with triple axis spectrometers the use of graphite
monochromators (3 focusing ones), thus complicating
the resolution function shape, and significant corrections
for sample absorption or off-center sample position were
needed in the data analysis.
Additional measurements were performed at ISIS on

the IRIS time of flight inverted-geometry crystal ana-
lyzer spectrometer, with an excellent energy resolution
of 15µeV, but a coarse wave-vector resolution70. An im-
portant result was obtained at high wave-vectors, show-
ing that the single-excitation dispersion curve is slightly
below twice the roton energy70. In this case, where the
dispersion is flat, the resolution characteristics of IRIS
constituted a major advantage.
Measurements by Pearce et al.71 on the same instru-

ment, mainly around the roton energy, showed discrep-
ancies with former works, in particular in the magnitude
of the temperature dependence of the roton parameters
determined at ILL’s IN10 backscattering spectrometer72

with an energy resolution better that 1µeV.
It was difficult to decide which set, among these partly

conflicting TOF data, was correct. The potential of the
TOF technique motivated the present studies on IN5.

III. EXPERIMENTAL DETAILS

The cylindrical sample cell was made out of 5083 alu-
minum alloy, selected because of its good mechanical and
neutron scattering properties. The minority chemical
constituents (4.4% Mg, 0.7% Mn, 0.15% Cr, etc.) have
a modest effect on the neutron scattering and absorp-
tion cross-sections compared to the values for pure alu-
minum, with an increase of less than 15% of the total
cross-section. The gain in mechanical properties allows
reducing the thickness in a much larger proportion, by a
factor of 3. High pressure studies could be made using
a thin cell, of 1mm wall thickness, for pressures up to
24 bar.

The cell had a 15mm inner diameter, which is small
compared to the 30 to 50mm diameters used in other
works. Cadmium disks of 0.5mm thickness were placed
inside the cell every 10mm, to reduce multiple scattering.
This was not needed for the present studies, and it even
had an undesirable effect, reducing the signal on some
neutron detectors placed far from the sample horizontal
plane. We did not place Cd masks on the sides of the
cell; preserving the cylindrical geometry turned out to
be favorable for the data analysis.
High purity (99.999%) helium gas was condensed in

the cell at temperatures on the order of 1K. The stain-
less steel gas-handling system consisted of a set of high
quality valves, tubes and calibrated volumes. The gas
was admitted through a “dipstick”, placed in a helium
storage dewar, which was used to purify, condense and
pressurize the helium sample.
The dispersion relation of helium is very sensitive to

the applied pressure. For this reason, pressures in the sys-
tem were measured with a high accuracy 0-60bar Digi-
quartz gauge, located at the top of the cryostat. This
gauge has a precision of 6mbar, but the pressures inside
the cell are known only within 20mbar, due to helium
hydrostatic-head corrections. The corrected pressures in
the cell are given in Table I.

Helium samples

Nominal P (bar) 0 0.5 1 2 5 10 24
Corrected P (bar) 0 0.51 1.02 2.01 5.01 10.01 24.08

TABLE I. Nominal and corrected values for the pressures in-
vestigated in the present work. The estimated uncertainty is
<0.02 bar.

The cell was carefully centered in a dilution refrigerator
providing temperatures well below 100mK. The thermal
connection to the mixing chamber was achieved by us-
ing massive OFHC-copper pieces. Sintered silver powder
heat exchangers placed at the top of the cell provided a
good thermal contact between the cell and the helium
sample. Two long, small diameter, Cu-Ni filling capillar-
ies were used in parallel, for safety. They were thermally
anchored along the dilution unit, insuring a negligible
heat leak to the cell. Thermometry was provided by cal-
ibrated carbon and RuO2 resistors.
Measurements were made for a vanadium sample (a

rolled foil, mass 9.81 g, external diameter 12mm, height
60mm, used for the detectors efficiency calibration), for
the empty cell, and then for the cell filled with 4He at
several pressures (see Table I). The helium measurements
were performed at temperatures below 100mK. The data
acquisition consists in several runs of one hour duration.
The longest measurements were made at P=0 (9h) and
P=24bar (6h). Two hours runs were made at all other
pressures. The empty cell signal, measured for 10h, was
used as background and subtracted from all the helium
measurements.
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IV. INELASTIC NEUTRON SCATTERING

A. Inelastic neutron scattering equations

The quantity measured by a neutron spectrometer73,74

is the double differential scattering cross section per tar-
get atom, which is proportional to the dynamic structure
factor:

∂2σ

∂Ω ∂Ef
=
b2c
~

kf
ki
S(Q,ω) (9)

where bc is the bound atom coherent scattering length.
The incident neutron has an initial energy Ei and a wave-

vector ~ki, leaving the sample with a final energy Ef and

a wave-vector ~kf ; the wave-vector transfer is ~Q = ~ki− ~kf ,
and the energy transfer ~ω = Ei − Ef .
The wave-vector transfer is written in terms of the scat-

tering angle ϕ between ~ki and ~kf :

Q2 = ki
2 + kf

2 − 2kikfcosϕ (10)

Q2 =
2mn

~2

[

2Ei − ~ω − 2
√

Ei(Ei − ~ω) cosϕ
]

(11)

The number of neutrons detected as a function of the
scattering angle ϕ and the energy transfer yields S(Q,ω)
through Eq. 9.
At zero temperature there are no thermal excitations,

and the only allowed process is the creation of excitations.

When a single-excitation of energy ǫ and wave-vector ~k is
created, conservation of energy and wave-vector leads to

ǫ = ~ω and ~k = ~Q. Single-excitations on the dispersion
curve ǫ(k) are observed in the dynamic structure factor
S(Q,ω) as sharp peaks.

B. The time of flight spectrometer IN5

The measurements were performed on the IN5 time
of flight spectrometer75,76 at the Institut Laue Langevin
(see Fig. 2).

Radial collimator

Sample

Beam stop

Monitor

1.2 m8 m

Focusing neutron guide

Choppers

Detectors

4 m

FIG. 2. Disk chopper time of flight spectrometer IN5.

A pulsed monochromatic beam is provided by three
groups of two choppers. A key feature is that the resolu-
tion is well represented by a Gaussian function.

FIG. 3. The (Q, ω) space accessible for an incident neutron
energy Ei = 3.52meV, calculated from equation (11). Con-
stant angle lines are shown for selected values between 0◦ et
180◦. The gray area indicates the region actually used in the
present measurements.

The neutron energy was Ei = 3.52mev for the low
wave-vector range, which gives a convenient access to ex-
citations of wave-vectors k from 0.15 to 2.3 Å−1 and cov-
ers the energy range between 0 and 2.22meV as shown
in Fig. 3. In the conditions of the experiment, IN5 has a
very large neutron flux of φn = 2× 105 neutrons/(cm2s)
at the sample position. The uncertainty in the incident
energy is ≈1%, a point which will be further discussed
below. The complete wave-vector range was explored us-
ing different incident neutron energies Ei = 3.520, 5.071,
7.990, and 20.45meV, with energy resolutions (FWHM)
at elastic energy transfer of 0.07, 0.12, 0.23 and 0.92meV,
respectively, for a chopper speed of 16900 rpm.

A large array of 3He+CF4 position sensitive neutron
detectors (PSD) is located in a vacuum chamber which
surrounds the sample space. Key features of the detec-
tion system are its large angular coverage and resolution.
The 384 detector tubes are placed at a distance of 4m
from the axis of the instrument. The angular position
of the tubes with respect to the direction of the neu-
tron beam is given by the ‘detector angle’ ϕ0, covering
the range from -12◦ to 135◦. The tubes are straight and
long, their vertical range goes from -1.47 to +1.47m. The
PSD system provides 241 ‘pixels’ of small size (26×11.24
mm2) per tube, characterized by their position (angle ϕ0,
height z) in the detector surface. The pixels correspond-
ing to the same Debye-Scherrer cones, i.e., at the same
scattering angle ϕ (Fig. 4), are grouped by software77,
resulting in 346 different scattering angles in the interval
6◦ to 135◦. The detection process is more efficient than
with triple-axis spectrometers, where a single detector
has to be moved over the whole angular range.

The distance from each pixel to the center of the
instrument varies substantially due to the tall, verti-
cal tube geometry. The Debye-Scherrer cones ‘standard
procedure’77 groups the individual detector pixels into
equivalent units located at the in-plane angles ϕ0 and
in-plane nominal distance D=4m.
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FIG. 4. IN5 detectors set-up (drawn to scale): constant scat-
tering angle curves on the detector surface of ≈ (3×10)m2.
The horizontal positions of the pixels are characterized by
the azimutal angle ϕ0 of their detector tube (indicated on the
curves); vertical positions are given by the height z measured
along the tube.

The neutron arrival signal from each pixel of the PSD is
read into a data acquisition system of 1024 time channels
of 6.9084 µs duration (‘time frame’). Since the neutron
velocity is on the order of 820 m/s, the time of flight over
the 4m instrumental distance is on the order of 4.9ms,
or 700 channels. The ‘time origin’ of the data acquisition
is set in such a way that both the elastic peak and the
helium excitation peak are measured within the same
time frame, as shown in Figs. 5 and 6.
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FIG. 5. Time of flight measurement at an incident neutron
energy Ei=3.52meV, for scattering angles of 54.6◦ (near the
maxon), and 102.5◦ (near the roton). Note that the elastic
peaks of these signals are slightly shifted.

V. STANDARD DATA REDUCTION

Standard data-reduction77 was initially used32,33 to
calculate from the raw data the dynamic structure factor
S(Q,ω) of broad multi-excitations. The ‘standard anal-
ysis’ data consist of time of flight spectra (matrix of the
number of counts for the 1024 time channels for 346 an-
gles ϕ): the raw data from the detectors pixels have been

grouped by scattering angle ϕ, as described above. In
this section V, therefore, ϕ represents the scattering an-
gle of an effective detector located in the horizontal plane,
at z=0 and ϕ=ϕ0 (‘in-plane effective description’). The
very narrow single-excitations, however, require a more
sophisticated ‘pixel-by-pixel analysis’, described in sec-
tion VI, where the same raw data are processed, but the
TOF data (1024 time channels) of the 384×241 detector
pixels are analyzed individually.
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FIG. 6. Time of flight measurement at an incident neutron en-
ergy Ei=3.52meV, for a scattering angle of 26◦ (Q=0.20 Å−1)
corresponding to the phonon region.

A. Time of flight (TOF) equations

We first proceed to fit the spectra to determine very
accurately the time of arrival at the detectors of elas-
tically scattered neutrons, telast measured, as described
above, using the system clock times. The ‘elastic peaks’
(see Fig. 5) can be approximated by simple Gaussians.
Since superfluid helium does not scatter elastically, we
use the signal of the aluminum cell, and compare it to
that of the vanadium sample.
The equation τ0 = telast − ts = D/vi for the neutron

flight over the distance D separating the sample from the
detectors, determines the important parameter ts, the
time of scattering at the sample, according to the system
clock. This supposes that the detectors are located at
the same distance of the sample, which is often a good
approximation.
The energy of the excitations is determined from the

measurement of the time of flight τ of inelastically scat-
tered neutrons, over the same distance D. A neutron
creating an excitation of energy ǫ reaches a detector lo-
cated at an angle ϕ at a time tinel(ϕ), obtained from the
gaussian fits of the ‘helium peaks’ (see Fig 5). The time
of flight is now τ(ϕ) = tinel(ϕ)− ts. The final velocity of
the neutron vf = D/τ provides the neutron final energy
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Ef . The energy of the excitations is ǫ = Ei − Ef , where
the initial energy of the neutrons Ei is known from the
mechanical characteristics of the choppers system. The
excitation wave-vector k is obtained from equ. 11.
In this simple scheme, there are only two indepen-

dent instrumental parameters, selected among the initial
neutron energy Ei, the average sample-detector distance
Dav, and the average time of arrival of the neutrons at
the sample position, tavs . The energy of the excitations
is obtained from the equation:

ǫ(ϕ) =
1

2
mnD

2
av

[

1

(telast(ϕ)− tavs )2
−

1

(tinel(ϕ)− tavs )2

]

(12)
where mn is the neutron mass, and tavs = tavelast−Dav/vi.

A more convenient form can be used when the sample-
detector distances differ by a significant amount:

ǫ(ϕ) = Ei

[

1−

(

telast(ϕ)− ts
tinel(ϕ)− ts

)2
]

(13)

The dependence on the initial energy Ei is made ex-
plicit. The distances D(ϕ) to all individual detectors do
not appear. Instead, we find the inelastic and elastic
times for each angle ϕ, which are the measured parame-
ters. Last but not least, one has to determine ts. In ex-
periments using a small diameter cylindrical sample with
a small absorption, like in the present case, this time of
arrival at the sample is very well defined, and unique: it
does not depend on ϕ.
The analysis yielding the energies ǫ(ϕ) involves only

two instrumental parameters: the initial neutron energy
Ei, and the neutron arrival time ts at the sample, cen-
tral to the present discussion, which can be estimated us-
ing the nominal sample-detector distance of IN5, 4.00m.
The actual flight distances in the sample plane should be
close to this value, but they can be significantly affected
by other effects. For instance, the analysis assumes that
the elastically scattered neutrons follow the same flight
path as the inelastically scattered ones reaching a given
detector. This is not true if absorption plays an impor-
tant role; it introduces, in addition, undesired angular
shifts. Correcting for systematic errors, fortunately, can
be done as shown in the next section.

B. Distance and angle corrections

Distance and angular corrections arise from imperfec-
tions in the instrument and sample geometries and from
the finite size of the components. Neutron beam, sam-
ple and detectors have typical dimensions on the order of
centimeters, the instrument lengths are on the order of
meters, thus requiring finite size optics analytical calcula-
tions or computer simulations if uncertainties on the or-
der of 10−3 are desirable. We have used both techniques

to evaluate possible effects, and retained the correspond-
ing corrections, listed below, when their influence on the
excitations energies was larger than 1µeV.

1. Sample off-center

Corrections may be necessary if the sample is not
placed exactly at the geometrical center of the instru-
ment. Large sample off-set effects were observed by An-
dersen et al.63,66. Their characteristic symptom, essen-
tially a parabolic angular dependence of the elastic times
of flight, is also observed here and ascribed, however, to
a very different cause, namely, a rigid-plate distortion of
the detectors plane. Both effects are discussed below.
A description of the sample off-center geometry, not to

scale, is given in Fig. 7. The detectors are placed on a
rigid frame, forming a circle around the ‘instrument cen-
ter’ O. Their distances and angles have been carefully
characterized using theodolites. In principle the sample
is centered with respect to the cryostat, which is cen-
tered with respect to the cylindrical experimental space,
aligned with the detectors bank.
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Neutron 

beam
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Sample

a

Neutron 
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d
e

te
ct

o
rs

x

FIG. 7. Instrument parameters when the sample is not cen-
tered. Reference points: instrument center O, sample center
A; x and y are the coordinates of ~OA and α the angle between
~OA and the neutron beam. Distances: instrument center
to sample a, instrument center-detectors D, sample-detectors
L(ϕ); ϕ is the nominal scattering angle, ψ the physical scat-
tering angle.

If the ‘sample position’ A is shifted from the geometri-
cal ‘instrument center’ O (Fig. 7), the TOF distance D
is replaced by L :

L(ϕ) =
√

D2 + a2 − 2aD cos(α− ϕ) (14)

while the physical scattering angle ψ is related to the
detector angle ϕ by the expression

cos(ψ) = (D cos(ϕ)− a cos(α))/L (15)
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FIG. 8. Arrival time of neutrons elastically scattered by the
aluminum cell, measured in the standard analysis as a func-
tion of the scattering angle (the time origin ts is -1323 µs), at
an incident neutron energy Ei=3.52meV. The arrow on the
right hand side indicates the corresponding variation of the
flight distance.

The elastic TOFs of the vanadium sample and the alu-
minum cell both display a visible angular dependence,
indicating a significant variation of the L(ϕ). Fig. 8
shows the time of arrival of neutron elastically scattered
by the aluminum cell. The apparent dispersion observed
on the data points, reproducible in different scans, corre-
sponds to small differences in sample-detector distances.
The arrival times at large angles display the character-
istic parabolic shape of a sample position shifted with
respect to the detectors center. A fit to the data in Fig.
8 using the sample-offset model

telast(ϕ) =
√

D2 + a2 − 2aD cos(α− ϕ)/vi + ts (16)

with D=4.00m and vi=824.17m/s (these values
are not critical), would yield as off-set parameters
a=19.0(5)mm and α=245.8(7)◦. The fit also yields ts,
but this parameter, strongly correlated to the initial en-
ergy Ei and the distance D, will be determined consis-
tently later on. The off-set distance and angle are surpris-
ingly similar to those calculated by Andersen et al.63,66.
In the present case, however, we can show that such a
large off-set is incompatible with the complete calcula-
tion of the elastic TOF for our 3-dimensional detector
array. In particular, the detectors covering positive and
negative low angles are highly sensitive to sideways dis-
placements. We found that sample off-set corrections are
on the order of 2mm or less. The TOF results deter-
mined with the vanadium sample are almost identical to
those described above, the corresponding differences in
flight distances are again less than 2mm. This indicates
that the sample is very well centered inside the cryostat,
and the latter within the instrument. Some small differ-
ences between the vanadium and the aluminum cell data

can be ascribed to their different geometry, in particular
the effect of the cadmium disks inside the cell.
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FIG. 9. Angular correction to the scattering angle ϕ, calcu-
lated for a supposed sample position off-set (a=19.0(5)mm
and α=245.8(7)◦). ψ is the corrected scattering angle. The
black line corresponds to a simple in-plane-only detectors
scheme, while the red line describes the values calculated for
the actual 3-dimensional IN5 detectors geometry. Such a cor-
rection could be discarded here, but may have affected earlier
works (see text).

Scattering angle corrections have also been considered
for a case where the sample would be off-center. They
were calculated for the present geometry, taking into ac-
count the 3-dimensional positions of the detector pixels,
shown in Fig. 4. Debye-Scherrer rings grouping would
produce a peculiar angular correction, shown in Fig. 9,
if the sample had been off-center. Such a correction is
not compatible with our measured data for the disper-
sion curve: it would have given visible accidents. We
have therefore concluded that distance and angular cor-
rections due to a sample center off-set are very small in
the present work.

2. Effect of strong scattering and absorption

A different correction may be caused by strong scat-
tering and/or absorption in large samples. Essentially,
the sample regions which are both closer to the reactor
and to the detectors provide a larger contribution to the
scattered neutrons flux, than those located further away.
Both TOF distances and scattering angles are affected.
We have calculated the effective sample center position

for the vanadium cylindrical sample used for calibration
purposes, and for the thin wall aluminum alloy sample
cell. The relevant parameter is the ratio of the sample di-
mensions to the penetration depth λscatt = (

∑

niσi)
−1.

The sum runs over the scattering and absorption cross-
sections (at the incident energy Ei) of the different el-
ements present in the sample with number densities ni.
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FIG. 10. Displacement of the effective position of the sample
center for the vanadium sample (used in the calibration pro-
cedure) calculated for neutron absorption. The coordinates
axes are defined in Fig. 7, and the corresponding angles are
indicated along the parametric curve. Inset: magnitude of
the effect compared to the sample size.

The apparent sample center position depends now on the
scattering angle ϕ.

For the vanadium sample, λscatt=32mm, significantly
larger that the vanadium radius of 6mm. In this case,
the calculation (Fig. 10) yields a maximum shift of less
that 1mm, a small effect on the distances of flight.

The aluminum cell may also display a displacement of
its effective center due to scattering and absorption. The
shift, however, is even smaller. For our aluminum alloy,
λscatt=65mm, considerably larger that the can dimen-
sions (7.5mm internal radius, wall thickness 1mm) and
the corresponding neutron paths. The effective sample
center position calculated for this hollow cylinder geom-
etry is given in Fig. 11.

Corrections ascribed to strong absorption have been
applied by Gibbs68 to his TOF data. A much larger
and thicker aluminum cell was used in this work; never-
theless, the present work suggest that other causes are
more probable. The accuracy of these data may thus be
slightly lower than initially believed.

The effective sample center displacement due to strong
scattering and absorption in the sample also affects the
scattering angles. The calculated angular shift for the
vanadium sample is very small, in particular at low an-
gles, where accuracy is needed. The same remark is valid
for the measurements with the experimental cell. We
can therefore conclude that angular corrections due to
strong scattering and/or absorption are small in the con-
ditions of the present experiment (small diameter, thin
aluminum cell).
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FIG. 11. Displacement of the effective sample center position
calculated for neutron scattering and absorption in the thin
wall cylindrical aluminum alloy sample cell. The coordinates
axes are defined in Fig. 7, and the corresponding angles are
indicated along the parametric curve. The magnitude of the
effect is much smaller than the sample size (inset).

3. Distance corrections in the detectors

Neutrons are not detected, in average, at the center of
the detectors. Due to the strong neutron absorption of
3He, the detection process takes place with a short char-
acteristic distance λabs, which depends on the density
of the 3He gas in the detector, and on the neutron en-
ergy. For the parameters of the present experiment, the
penetration length is ≈5mm. The distance between the
instrument center and the position where neutrons are
detected is in fact somewhat shorter than the nominal
distance D=4.00m between the center of the instrument
to the center of the detector tubes. The latter have an
internal diameter Ddet=24.4mm. The neutron detection
process occurs at an average distance ȳ from the plane
of the detector centers. At an incident neutron energy
Ei=3.52meV, ȳ ≈5mm. This value depends on the fi-
nal neutron energy, and hence on the scattering angle ϕ
for neutrons scattered from the sharp excitations on the
dispersion curve of 4He. Corrections for this effect have
been calculated for the detectors geometry, and applied
to the data.

4. Other corrections

A related effect is the apparent displacement of the
sample center, when using cadmium shields or windows
on the sides of the cell63,66, slightly masking the helium
sample or the aluminum cell for some scattering angles.
The effect is absent in the present experiment, where the
cylindrical symmetry has been preserved, thus ensuring
an excellent angular average.
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The finite diameter of the sample can lead to distance
and angular corrections in small instruments, in partic-
ular for the 30 to 50mm diameter cells used in previous
works. These corrections are negligible for the present
work on IN5 with a 15mm inner diameter cell.

VI. DETAILED PIXEL-BY-PIXEL ANALYSIS

The single-excitation dispersion curve is intense and
extremely sharp, and we are therefore interested in
the best resolution and accuracy both in energy and
wave-vector. For this reason, we proceed now with a
refined analysis using a ‘high resolution configuration’.

Analysis step 1: The ‘high resolution configuration’
consists of a pixel-by-pixel treatment of the multidetec-
tors signals (see section IV for hardware details). Neu-
trons are collected in 1024 time channels for each PSD de-
tector pixel. Thanks to the very high flux of IN5, elastic
and inelastic times of flight can be determined by means
of gaussian fits, for each of the 241x384 pixels in the de-
tector matrix (see section IVB). The software LAMP77 is
used to read and fit the nxs raw data files of IN5. We ob-
tain about 9×104 values of pairs (telast(ϕ0,z),tinel(ϕ0,z)),
where ϕ0 is the angle of a detector tube and z the height
of a pixel within the corresponding tube.
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FIG. 12. Distortion of the detectors plane: difference between
the radial distance determined from the time of flight and the
nominal IN5 radius (4.00m), for all detector pixels (angle ϕ0,
height z).

The elastic times yield, using at this early stage the
value of ts obtained from the standard analysis (see Sec-
tion VB), the distances of flight for each pixel. These are
visualized by representing their projections on the hor-
izontal plane (i.e., the radial distances), as a 2D-array
shown in Fig. 12, where the nominal 4.00m have been
subtracted. The data reveal a systematic distortion of
the detectors plane along the angular direction, confirm-
ing the previous observation based on the standard analy-

sis (see Fig. 8). It is now shown, in addition, that the dis-
tortion is also present in the vertical direction: an undu-
lation of the detector plane, similar to that of a distorted
incompressible plate, is observed. A Debye-Scherrer av-
erage along the lines depicted in Fig. 4 depends now on
the detailed shape of the detector plane distortion, and
the standard procedure is clearly inaccurate.
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FIG. 13. Debye-Scherrer rings seen on the low-angle pixels
of the detector plane, in the phonon region (see energy scale
on the right hand side). The black diamond is the beam-stop
shadow.

Another important information can be obtained from
the pixelized analysis. The energy of the excitations
and their scattering angle can now be calculated and
visualized is a two-dimensional array, as shown in Fig.
13 for the smallest angles. Contour fits made along the
phonon Debye-Scherrer rings show that large sample
off-centering (see Section VB1) can be excluded to a
very good accuracy (a few mm). We have calculated
the possible distortions of the detector assembly, which
is by construction a rather rigid cylindrical wall, fixed
at the floor level, rigidly held at the level of the middle
plane, and rather free to move at the top. As suggested
by Fig. 12, the detectors plane simply undulates. As
a result, the distances to the center vary substantially,
but angular corrections, a second order effect, are small.
For our data, the angular correction is easily calculated
by iteration, adding the successive angular deviations
calculated for the measured distances corresponding to
each detector tube. The correction, which reaches its
maximum (0.07◦) at the largest angles (135◦), is very
small.

Analysis step 2: we determine the value of Ei,the initial
neutron energy, and ts, the time of arrival of the neutrons
at the sample. As was explained in Section VA, the nom-
inal values of these parameters are not accurate enough,
and the dispersion relation calculated with these values
is systematically too high by about 9µeV. We thus cal-
ibrate our energy scale at a single point using the roton
energy determined by Stirling57,59 on IN12, a high reso-
lution triple-axis spectrometer: ∆R=0.7418±0.001meV.
The inelastic times we have measured, plotted as a func-
tion of the scattering angle, have a maximum value of
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trotinel=(602.68±0.02)τch at the roton; the corresponding
elastic time is trotelast=(514.02±0.05)τch (a time channel
is τch=6.9084µs).
The data of Fig. 12 show that the detector dis-

tances are close to the nominal value of 4.00m in the
lower part of the plane and that they increase near the
top. Taking into account the reduction of the effective
flight distance due to the average penetration length in
the 3He detectors (see Section VB3), we estimate the
average sample-detector distance in the roton region,
Lrot≈4.000±0.005m. Knowing the distance and the ar-
rival time gives a relation between the initial neutron ve-
locity vi (and hence the energy Ei) and ts, the time of ar-
rival of the neutrons at the sample: Lrot = (trotelast− ts)vi,
which can be solved together with Eq. 13 expressed at
the roton:

∆R = Ei

[

1−
(

trotelast−ts
trotinel−ts

)2
]

We obtain Ei=3.520±0.003meV, vi=820.62±0.3m/s,
and ts=(-191.55±0.4)τch. As expected, the corrected
neutron energy is slightly lower (by 0.85%) than the
nominal value.

Analysis step 3: with these parameters, we ana-
lyze with a Mathematica program the set of data pairs
telast(ϕ0,z),tinel(ϕ0,z). For each pixel, we calculate the
excitation energy using Eq. 13, and the corresponding
Debye-Scherrer angle ϕ. The result is a curve ǫ(ϕ) with
a very large number (9×104) of independent data points.
Fig. 14 shows the results in the most delicate region, at
low angles.
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FIG. 14. ǫ(ϕ) (analysis step 3) in the phonon region. Most
of the data display the usual statistical distribution, but spu-
rious data points are also present at very low angles, system-
atically above the main curve. The corresponding neutrons
travel through indirect paths, they must be identified and
eliminated from the analysis.

There are obvious spurious data points, corresponding
to neutrons reaching the detectors in an indirect way, as
commonly observed in neutron scattering experiments.
Also, a simple inspection of Fig. 12 shows the presence
of a few bad tubes and bad pixels. In addition, some

detectors located behind the beam-stop (diamond-like
shadow at zero angle) or in its vicinity, cannot be ex-
ploited. Removing these spurious points leaves typically
88000 independent points of good quality. It is clearly
desirable to average over several data points in order
to improve the statistical uncertainty in the energy,
as suggested by the dispersion seen in Fig. 14, at the
expense of a reduced wave-vector resolution.

Analysis step 4: the wave-vectors k corresponding to
the E(ϕ) data points are calculated using Eq. 11. The re-
sulting ǫ(k) data sets are averaged within 0.002 Å−1 bins.
There are about 103 bins on the dispersion relation at
each pressure in the wave-vector range 0.14<k<2.25Å−1.
The number of points per bin varies, as shown in Fig. 15,
as a function of wave-vector. This is mainly due to the
detectors geometrical layout: there are gaps between dif-
ferent groups of detector tubes, as described in Section
IVB. Empty bins are also found around Q=1.729 Å−1,
which corresponds to angles near 90◦, where the Debye
Scherrer cone is essentially a vertical plane.
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FIG. 15. Number of data points per wave-vector interval of
width 0.002 Å−1.

At the lowest wave-vectors, typically between 0.15 and
0.2 Å−1, the number of data points per bin is small. Bin-
ning carries no benefit, and error bars in this region are
dominated by statistical errors. Except for this small re-
gion, binning is done over a substantial number of points,
typically more than 70. By trying different bin sizes,
it becomes clear that going beyond about 50 points/bin
does not improve the resulting dispersion curve: statisti-
cal errors become negligible compared to systematic er-
rors.
Some small oscillations can be seen in the data. An

example is given in Fig. 16. They are due to several
factors, essentially deviations from the assumed param-
eters (instrument geometry, sample environment char-
acteristics, detector properties, electronic delays, etc.).
Correcting for these cannot be achieved by averaging
neighboring points. These deviations correspond well to
the error bars, calculated using the uncertainties in all
these parameters, for data above 0.2 Å−1. The uncer-
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FIG. 16. Raw data in the roton region: a point is the measure-
ment from one pixel. The effect of the gaps present by con-
struction between different groups of detector tubes (marked
by arrows) are visible. Systematic errors can be seen in one
of these regions, probably due to a local defect of the detector
groups at their junction. Individual tubes are visible around
90◦.

tainty in Q, due to the uncertainty of the instrument an-
gles (0.07◦, about 2/10 of a detector tube angular range)
and to the uncertainty of the initial energy (0.003meV)
(see Eq. 11), can be represented by the expression
∆Q=10−4(7+7.2Q) Å−1. This corresponds essentially to
a fraction of a bin. The uncertainty in the energy ǫ(k) has
been determined by varying the parameters Ei, ts, Drot,
∆R in the allowable parameter range. This is needed
due to the non-linear character of the equations, and the
strong correlation between Ei and ts, a problem already
noted by Andersen et al.63,66. The calculated relative
uncertainty is essentially constant, ∆E/E≈ 2.1×10−3.

VII. THE DISPERSION RELATION IN THE
WHOLE RANGE

The dispersion relation at saturated vapor pressure in
the whole wave-vector range is shown in Fig. 1. In this
section, we first present high accuracy measurements of
the pressure dependence in the particularly interesting
wave-vector range below 2.3 Å−1, shown in Fig. 17. Error
bars are comparable to the size of the data points. The
effects of pressure are clearly seen: the phonon sound
velocity and the maxon energy increase, while the ro-
ton minimum decreases and shifts towards higher wave-
vectors. A spectacular flattening of the maxon is ob-
served at high pressures. In the following paragraphs,
we provide a quantitative analysis of the experimental
dispersion curves.
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FIG. 17. Dispersion curves ǫ(k) measured for several pres-
sures in the 0 to 24 bar range. The individual data points
are represented by small circles (best seen on-line). Accurate
values for the pressures are given in Table I.

A. Phonons

The behavior at low wave-vectors is shown in Fig. 18,
where the phase velocity ǫ(k)/~k is represented as a func-
tion of wave-vector k at P=0. The k∼0 value of the ul-
trasonic data for the sound velocity (238.3±0.1m/s) and
the curve calculated using Rugar and Foster non-linear
ultrasonic data37, strongly extrapolated from low wave-
vectors, are also shown. It is already rewarding to observe
that ultrasound and neutron data, in spite of their non-
overlapping validity region, are perfectly compatible and
smoothly merge around 0.2-0.25 Å−1. For k<0.2Å−1,
however, the neutron data are slightly too high in en-
ergy. This is not surprising: spurious data points pro-
liferate at the lower end of the wave-vector range, as
discussed above (see Fig. 14), leading to systematic er-
rors that increase the energies. For wave-vectors as low
as 0.15<k<0.2Å−1, Rugar and Foster’s curve is still in
good agreement with the neutron data within error bars
(at their lowest limit). A similar behavior is observed at
all pressures (Fig. 19). DMBT calculations, to be dis-
cussed in detail below, are clearly in good quantitative
agreement with the experiments.

We also show in Fig. 18 the neutron scattering data
obtained at saturated vapor pressure by Stirling11,57,59.
The comparison is of particular importance, because they
have been measured on a triple-axis spectrometer (IN12),
i.e., using a very different neutron technique. It is obvious
that the IN12 phonon energies are too low: the difference
with our data as well as with Rugar and Foster’s curve
exceeds error bars for k<0.3 Å−1, and matching the ul-
trasound velocity is clearly impossible unless the error
bars of IN12 data are significantly increased. System-
atic errors at low wave-vectors are indeed expected, given
the large size of Stirling’s helium sample and the short
length of the IN12 instrument, as well as other particu-
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FIG. 18. Phase velocity ǫ(k)/~k at P=0. Black dots with
error bars: present results. Different fits made in the wave-
vector range 0.2<k<0.6 Å−1 are shown by thick lines (see leg-
end and text). Red dot at k=0: sound velocity45,46. Extrapo-
lated non-linear ultrasound data37 are shown as a dashed blue
line. Stirling’s neutron data11,57,59 are represented by purple
circles.
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The corresponding sound velocities45,46 are indicated at k=0
by crossed circles. Non-linear ultrasound data36,37 (available
only between 0 and 15 bar), interpolated to P=0, 2, 5, 10 bar,
and extrapolated to large wave-vectors: thick dash-dotted
lines. Theory: DMBT34,35 curves are shown by thin lines
for several atomic densities (see graph legend and Table II).

lar features of the resolution function of triple-axis (TAS)
spectrometers. At higher wave-vectors, where both tech-
niques are relatively free from systematic errors, a very
good agreement between our TOF data and Stirling’s
TAS data is observed, which constitutes an important
experimental test.
Several functional forms describing the low wave-

vector sector of the dispersion curve have been proposed

(see Section IIA). Figure 18 shows fits made in the range
0.2<k<0.6 Å−1. The first fit uses the polynomial expan-
sion of Eq. 2, written now in practical units as

ǫ(k) = 0.0065821ck(1+ α2k
2 + α3k

3 + α4k
4) (17)

where α2 = −γ, ǫ(k) is expressed in meV, k in Å−1, c
in m/s, and the αi coefficients in Åi. The sound veloci-
ties obtained from neutron data using the polynomial fit
are given in Table II. At 24 bar the dispersion is normal,
and a simple quadratic fit (α3 = α4 = 0) is sufficient to
describe the data very well, changing the speed of sound
by a small amount, within error bars, with respect to the
result obtained with the full expression. The Padé ap-
proximant (Eq. 3) is very sensitive to the upper limit of
k used in the fit. It tends to overestimate the sound ve-
locity, and the same conclusion applies to the expression
derived from Bogoliubov’s formula (Eq. 4).

P n Neutron err Sound err Vm(P) CV

bar at/Å3 m/s m/s m/s m/s m/s m/s
0 0.021836 241.7 2.9 238.3 0.1 237.76 236.8
0.51 0.021968 246.4 7.2 242.6 0.1 241.98 240.7
1.02 0.022096 251.0 6.6 246.5 0.1 246.04 244.3
2.01 0.022334 257.9 6.9 253.9 0.1 253.53 251.2
5.01 0.022983 278.1 7.1 274.0 0.1 273.73 270.5
10.01 0.023889 308.6 7.8 302.3 0.1 301.75 298.6
24.08 0.025804 364.7 1.9 361.9 0.1 359.28 357.9
24.08 0.025804 367.1 4.6

TABLE II. Sound velocities obtained from neutron scat-
tering (this work), ultrasound45,46, molar volume pressure
dependence47, and heat capacity (Greywall, analysis 4)48,50,
at different pressures (n is the atomic density). At 24 bar, the
upper line corresponds to a quadratic fit, while the last line
gives the result of the full fit, for comparison (see text).

The sound velocities deduced from the present neu-
tron scattering measurements are compared in Table II
to the ultrasonic sound velocities45,46, to those obtained
(at interpolated densities) from Greywall’s heat capacity
(CV ) measurements48,50, and to the values we calculate
from the compressibility (molar volume pressure depen-
dence) determined by Tanaka et al.47 (see Section IIA.
As noted for the P=0 data, the neutron scattering values
are higher than the ultrasonic ones, but the difference is
within error bars. The speed of sound we calculate from
the compressibility agrees very well with the ultrasonic
data, except at the highest pressure, where either the
ultrasonic data or, most likely, the compressibility data
become somewhat inaccurate. Heat capacity data for the
speed of sound are systematically lower than the ultra-
sonic values. Error bars are not quoted, but their sensi-
tivity to different methods of data analysis48,50 suggests
that the uncertainties are comparable to our estimated
errors for the neutron data.
The values of the speed of sound and their density

dependence determined using different techniques are in
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excellent agreement, they only display a small overall
shift within error bars, as can be seen in Fig. 20. The
same observation applies to the polynomial fits of the
dispersion curve made in different ranges (0.015<k<0.5,
0.015<k<0.6, and 0.18<k<0.6 Å−1) with the Jastrow-
Feenberg Euler-Lagrange microscopic theory34,35. The
resulting sound velocities display a small dependence on
the selected k-range, not visible at the scale of Fig. 20.
The figure also shows the results of Quantum Monte-
Carlo calculations17 performed with the Aziz II potential,
in excellent agreement with the experiments.
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FIG. 20. Sound velocities from ultrasound45,46, heat
capacity48,50, our analysis of compressibility47 data, and the
present neutron scattering measurements, as a function of
density (see Table II). Red line: Jastrow-Feenberg Euler-
Lagrange calculation34,35. Short-dash line: Quantum Monte-
Carlo calculation17 with Aziz II potential.

We focus now our attention on the determination of
the anomalous dispersion parameter γ as a function of
density. Fits were made with equation 17 using the ul-
trasonic sound velocities c to reduce the free parameters
to α2=−γ, α3 and α4. As seen from Fig. 18 and its ac-
companying discussion, the choice of the wave-vector fit
range of the experimental data has to be made with care.
The chosen lower limit was k=0.25 Å−1 to reduce system-
atic errors, and k=0.5 Å−1 was used as the upper limit;
we also checked with fits extended to k=0.6 Å−1 the effect
of the fit range on the accuracy. With 125 data points in
this range, statistical error bars were small.

The anomalous dispersion parameter γ obtained from
this analysis is shown in Fig. 21. Two types of error
bars are given for each data point; the smaller bars in-
dicate the statistical uncertainty, while the larger ones
give the estimated systematic errors, associated to the
uncertainty in the global parameters of the analysis, de-
scribed in Section V. The statistical error bars are small,
and therefore, only a global shift of the whole experimen-

tal curve within the systematic error bars is allowed. The
results are compared in Fig. 21 to data from two different

types of ultrasonic measurements, performed respectively
by Junker and Elbaum36 (temperature dependence), and
Rugar and Foster37 (non-linear measurements) (see Ref.
40 for a critical review and references to former data).
The neutron data agree well in magnitude with these, and
their density dependence, in particular, agrees extremely
well. A small global systematic shift, as described above,
is observed. At the highest densities, where ultrasound
data do not exist, the neutron scattering result confirms
the evolution towards positive values of γ extrapolated
from the ultrasonic data.

0.021 0.022 0.023 0.024 0.025 0.026
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

 Neutrons
 Junker and Elbaum 
 Rugar and Foster
 Greywall analysis 4
 Greywall analysis 3
 DMBT fit 0.015<k<0.5 
 Feynman approxAn

om
al

ou
s 

di
sp

er
si

on
 p

ar
am

et
er

 
 (Å

2 )

Density (atoms/Å3) 

20.4 bars

FIG. 21. The anomalous dispersion parameter γ as a function
of density. Black dots: neutrons, this work (small error bars:
statistical uncertainty, larger bars: systematic uncertainty).
Ultrasound: blue lozenges37 and orange triangles36 . Green
circles: heat capacity48,50. Blue dash-dotted line: Feynman
approximation. Red lines: DMBT results34,35 (dots and cir-
cles correspond to polynomial fits in different k-ranges. Black
dashed line: DMBT34,35 fit rescaled in density by 0.0005 Å−3.
See legend and text for details.

The density dependence of neutron scattering and ul-
trasonic data for γ can be described quite remarkably
by the DMBT theory34,35. Polynomial fits are a simple
method to compare theory to experiments, but the re-
sults depend on the choice of the wave-vector range. Sev-
eral fits were made with Eq. 17, starting with the range
(0.015-0.5 Å−1). We then made fits in a higher range,
0.18<k<0.6 Å−1, comparable to the experimentally ac-
cessible range, in order to estimate a possible correction
on the experimental γ. The correction suggested by the-
ory places the neutron data exactly on top of the ultra-
sonic results. Normal dispersion (i.e., γ=0) is recovered
for pressures larger than 20.4 bars. A perfect quantita-
tive theoretical fit of the experimental data is obtained
in the whole density range if the theoretical densities are
globally increased by 0.0005 Å−3, a very small correction
which is compatible with the uncertainties in the theo-
retical equation of state34.
On the other hand, the curve calculated using the

Feynman approximation is clearly inadequate at high
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densities, where correlations are strongest. The phe-
nomenological theory of Pines and coworkers13,44 esti-
mated γ∼-1.5 Å2 at the saturated vapor pressure, a value
in good agreement with the present experiment and the
DMBT microscopic theory.
For completeness, we also show in Fig. 21 Greywall’s

heat capacity results48,50. Error bars, not provided, can
be roughly estimated from the change in γ observed in
different types of analysis. Heat capacity data agree rea-
sonably well at low densities with the results discussed
above. However, a very large systematic discrepancy is
seen at high densities; in particular, the transition to
normal dispersion is not observed.

0.021 0.022 0.023 0.024 0.025 0.026
0

-1

-2

-3

-4

-5

-6  neutrons free  
 neutrons fixed  
  KPFD 
Aldrich et al. 
DMBT fit 0.015<k<0.5 
DMBT fit 0.180<k<0.6 

 
 (Å

3 )

Density (atoms/Å3) 

FIG. 22. The parameter α3 as a function of density. Open
blue squares: present work, fit parameters =(γ,α3,α4) (small
error bars: statistical uncertainty, larger bars: systematic un-
certainty, see text). Black squares: present work, fit parame-
ters =(α3,α4); error bars include both types of uncertainties.
Dashed blue line: KPFD expression42,43,78. Red dots: DMBT
results34,35 (fits in indicated k-ranges). Diamond: Aldrich,
Pethick and Pines13,44.

The parameter α3, which originates in the long-range
part of the van der Waals interaction between he-
lium atoms, is of theoretical interest. Kemoklidze and
Pitaevskii42 and Feenberg43 calculated α3 = −3.34 Å3 at
saturated vapor pressure (see Eq. 5). The density de-
pendence was obtained from Davison’s formula37,48,50,78.
The results are shown in Fig. 22. This parameter
is negative in the whole density range, its magnitude
is about -3 Å3, with a slow variation as a function of
density. Fits were made using γ as a free parameter,
and also using our ‘best estimate’ for γ (black dashed
line in Fig. 21) discussed above. The statistical un-
certainties are rather small in both cases, and system-
atic uncertainties dominate. Having checked that the
two sets of results are consistent, we use in the fol-
lowing the values of α3 calculated with the ultrasound
values of γ. The magnitude of α3 and its density de-
pendence are in good agreement with the Kemoklidze-
Pitaevskii-Feenberg-Davison (KPFD) expression42,43,78.

The pseudo-potentials phenomenological calculation by
Aldrich, Pethick and Pines13,44 yields γ=-1.5 Å2 and
α3=-3.7 Å3. Our fits of their published curves show
that these results depend on the wave-vector range.
For 0<k<0.4 Å−1 we find γ=-(1.57±0.02Å2 and α3=-
(4.0±0.1) Å3. The original values13,44 are found only if
we extend the fit range beyond k=0.6.
The results of the microscopic DMBT calculation34,35

are shown in Fig. 22. Again, the results depend on the
wave-vector range selected for the fits. We note that the
density dependence of α3 calculated using a low wave-
vector range (0.015<k<0.5 Å−1) is remarkably similar to
that predicted by KPFD. The fit done at higher wave-
vectors (0.18<k<0.6 Å−1) agrees particularly well with
the neutron data. We conclude that the neutron scat-
tering measurement and the microscopic DMBT calcula-
tion agree reasonably well with the α3 values predicted
by KPFD. We also note that the present work is the only
source of experimental data on α3 up to now.
The results for α4, the next term in the series expan-

sion obtained with the fits described above, are shown
in Fig. 23. This parameter, determined here experimen-
tally for the first time, is positive in the whole density
range, its magnitude is about 2 Å4, with a slow variation
as a function of density. The results can be discussed in a
very similar way as done above for α3. The values depend
on the fit range. Our fits to the pseudo-potential theory
published curves13,44 give α4∼2.3±0.2, which agrees well
with our neutron data. The values calculated with the
microscopic theory (DMBT) are in good agreement with
the neutron data, when comparable wave-vector ranges
are used for the fits.
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FIG. 23. The parameter α4 as a function of density. Open
blue squares: present work, fit parameters =(γ,α3,α4) (small
error bars: statistical uncertainty, larger bars: systematic un-
certainty, see text). Black squares: present work, fit parame-
ters =(α3,α4); error bars include both types of uncertainties.
Red dots: DMBT results34,35 (fits in indicated k-ranges). Di-
amond: our fit of data by Aldrich, Pethick and Pines13,44.

The results are often presented in terms of the nor-
malized phase velocity, ǫ/~ck, in order to emphasize the
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transition from anomalous to normal dispersion as a func-
tion of pressure. The experimental data (neutrons and
ultrasound) are shown in Fig. 24, together with the set
of curves calculated by the DMBT34,35.
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FIG. 24. Normalized phase velocity ǫ(k)/~ck as a function
of wave-vector k. Circles with error bars: present results at
P=0, 2, 5, 10, and 24 bar (from top to bottom). Non-linear
ultrasound data36,37 (available only between 0 and 15 bar)
have been interpolated to P=0, 2, 5, 10 bar, and extrapolated
to wave-vectors 0<k<0.25 Å−1 (black dashed lines). Theory:
DMBT34,35 curves for several atomic densities (see Table II).

It is interesting to compare in this ‘anomalous disper-
sion’ representation, the results obtained from two very
different theoretical approaches, pseudo-potentials and
DMBT. Even at the substantially expanded vertical scale
of Fig. 25, a remarkable agreement is observed, within
the uncertainties of comparable magnitude estimated for
experiments and theory.
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FIG. 25. Normalized phase velocity ǫ(k)/~ck as a func-
tion of wave-vector k. Experimental data at at P=0, 2,
5, 10, and 24 bar (circles with error bars) are compared
to the pseudo-potential calculation of Aldrich, Pethick and
Pines13,44 (dashed curves) and to the DMBT results34,35 for
several atomic densities (see Table II).

B. Phase and group velocities

We have shown in the previous section that the poly-
nomial expansion (Eq. 17) becomes inaccurate as one
considers wave-vectors in the atomic range. As seen in
Fig. 26, the phase velocity curves display a very pecu-
liar behavior for 0.5<k<1.8 Å−1: they become linear to a
high degree of accuracy. This is observed both in the ex-
periment and in the DMBT curves, at all densities (with
some changes at the highest pressures, where the maxon
is strongly damped). It is obvious that adding higher or-
der terms in a series expansion around k=0 in order to
describe this type of high-k dispersion requires a strong
compensation of successive terms, and is inadequate.
One can easily check (series expansion of the phase veloc-
ity around the maxon wave-vector) that this linear term
is a consequence of the maxon parabolic dispersion rela-
tion, combined with the fact that the maxon energy at
low pressures is numerically very close to −~

2k2M/2mM ,
where kM and mM are the maxon wave-vector and its
(negative) mass, respectively.
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FIG. 26. Phase velocity ǫ(k)/~k at P=0, 2, 5, 10, and 24
bar (from bottom to top, circles with error bars). DMBT
curves34,35 are shown for several atomic densities (see Table
II). A linear dependence on the wave-vector is observed in a
large range (see text).

Our dense data-set allows to calculate the group ve-
locity by numerical differentiation with a good accuracy.
The result is shown in Fig. 27, where a 40-points average
is used for clarity. The graph emphasizes the behavior at
low wave-vectors (the importance of the α3 term), and
the behavior around the maxon and roton wave-vectors,
where the group velocity vanishes. The corresponding
DMBT results are shown in Fig. 28. The selected den-
sities are extremely close to the values corresponding to
the experimental pressures (P=0, 5, 10, and 24 bar), see
Table II. The agreement between theory and experiment
is remarkable.
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FIG. 27. Group velocity ∂ǫ(k)/~∂k at P=0, 5, 10, and 24 bar.
Sound velocities are indicated by dots at k=0. At low wave-
vectors, thin lines show the parabolic dependence calculated
from ultrasound data36,37 (available only between 0 and 15
bar), and thick lines the polynomial expansion including the
calculated α3 term42,43,78.
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FIG. 28. Group velocity ∂ǫ(k)/~∂k calculated by DMBT34 at
selected atomic densities (compare to experiment, Fig. 27).

C. Rotons

We now concentrate on the properties of the disper-
sion curve around the roton. Given the large number of
data points with small error bars, it is possible to cal-
culate the main parameters of these excitations (energy,
wave-vector, and mass) for the different pressures using
a quartic polynomial expression:

ǫR(k) = ∆R+
~
2

2m4µR
(k−kR)

2+BR(k−kR)
3+CR(k−kR)

4

(18)

where ∆R, kR, µR, BR, and CR are adjustable pa-
rameters. ∆R is the roton gap defined before, kR the
roton wave-vector, and µR the effective roton mass. The
best fits are obtained using an asymmetric wave-vector
range, from kR-0.2Å

−1 to kR+0.3Å−1. Different ranges
were tested, with a number of data points in the 100 to
200 points range. Under these conditions, the parame-
ters ∆R, kR, and µR do not depend on the wave-vector
range selected for the fits. Quadratic fits in a small range
(≤0.1Å−1) give essentially the same results: statistical
errors on the resulting parameters are very small, and
the dominating uncertainties essentially originate from
systematic errors. For example, the very small wiggles
seen in the dispersion curves are due to imperfections of
the detectors, and not to statistics. A typical fit is shown
in Fig. 29, and the results for all pressures are given in
Table III.
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FIG. 29. The dispersion relation in the vicinity of the roton
minima at different pressures (accurate values of P are given
in Table I). The dashed line on the 10 bar curve shows a
quartic fit using the largest acceptable wave-vector range (see
text).

The present data at saturated vapor pressure are com-
pared to the results of previous works in Table IV. The
roton gap ∆R is known with an accuracy of 1µeV. Early
measurements indicated values close to 0.743meV or
higher, but a slightly lower value (∆R=0.7418(10)) was
obtained by Stirling using a high resolution spectrome-
ter. As seen above, we have used this value in order to
calibrate the IN5 spectrometer in energy, and a remark-
able agreement with the ultrasonic sound velocities was
obtained at very low wave-vectors.

We find a value of kR slightly lower than Stirling’s
(the most accurate available so far), within small and
comparable error bars. Higher values, outside error bars,
are found in the literature (Table IV). A similar remark
applies to the roton effective mass: we obtain a value
that agrees well with that found by Stirling11,57,59 and
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P (bar) ∆R (meV) kR (Å−1) µR

0 0.7418(10) 1.918(2) 0.141(2)
0.51 0.7388(10) 1.923(2) 0.139(2)
1.02 0.7360(10) 1.927(2) 0.137(2)
2.01 0.7307(10) 1.935(2) 0.135(2)
5.01 0.7148(10) 1.957(2) 0.125(2)
10.01 0.6895(10) 1.988(2) 0.114(2)
24.08 0.6261(10) 2.048(2) 0.091(2)

TABLE III. Roton parameters deduced from fits using Eq.
18 around the roton minimum. The roton energy at P=0 is
taken from Refs. 11, 57, and 59 in our instrument calibration
procedure.

∆R (meV) kR (Å−1) µR

This work 0.7418(10) 1.918(2) 0.141(2)
Woods 1977 0.7426(10) 1.926(5) 0.126(30)
Stirling 1991 0.7418(10) 1.920(2) 0.136(5)
Andersen 1992-1994 0.743(1) 1.931(3) 0.144(3)
Gibbs 1999 0.7426(21) 1.929(2) 0.161(4)
Pearce 2001 0.7440(20) 1.926(-) 0.166(10)

TABLE IV. Zero pressure roton parameters (this work) com-
pared to previous results: Woods et al.53, Stirling11,57,59, An-
dersen et al.63–67, Gibbs et al.68,69, and Pearce et al.71. ∆R

at P=0 is taken from Ref. 57 and 59 in our instrument cali-
bration procedure.

Andersen et al.63–67, but disagrees with those found by
Gibbs et al.68,69 and Pearce et al.71. The position and
curvature of the roton minimum can be determined in our
case with a better accuracy, simply because of our much
larger number of data points in the small wave-vector
range of interest.
This becomes obvious in the representation of the pres-

sure dependence of the roton gap, shown in Fig. 30. Our
data (see Table III) have a smooth dependence on pres-
sure, easily fitted by a second order polynomial through
the statistical error bars. We remind that an overall shift
in energy is allowed, within the 1µeV systematic uncer-
tainty in ∆R(P), if the accuracy of ∆R(P=0) is improved
in future measurements.
There are few results in the literature on the pressure

dependence of the dispersion relation. Results for the
roton gap are shown in Fig. 30. Early data of Dietrich
et al.61 cover a large pressure range, with large uncer-
tainties in energy (about 5µeV) and wave-vector (about
0.005 Å−1), and a reasonable accuracy on the pressure
(±0.14 bar). The temperature, on the order of 1.3K
is unfortunately too high, and a finite temperature cor-
rection, estimated using the roton gap temperature de-
pendence measured more recently by Gibbs et al.68,69,
would shift Dietrich’s data upwards in energy by 5 to
10µeV. This would bring them in good agreement with
the present results.
High resolution triple-axis results at non-zero pressures

are scarce. Those by Talbot et al.60, only available at
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FIG. 30. Pressure dependence of the roton energy at very
low temperatures. Small black dots: this work; the solid line
is a 2d order polynomial fit. Energy statistical error bars,
and uncertainties in the pressures, are not visible at this
scale; the plotted energy error bars correspond to the sys-
tematic uncertainty in the P=0 roton gap (see text). Green
×: Stirling11,57,59. Red diamonds: Gibbs et al.68,69 (pres-
sure error bars unknown). Orange +: Dietrich et al.61 (at
T=1.3K).

20.0 bar, with large error bars, agree well with our data.
Stirling’s data11,57,59 are only available at 15.2 and 24 bar
(T=0.9K), but their uncertainty in the pressure of 1 bar,
unfortunately, translates into an energy uncertainty of
about 6µeV. As seen in Fig. 30, the data point at about
15 bar agrees with ours, but this is not the case for the
high pressure one. The latter is definitely very low in en-
ergy, a discrepancy that cannot be explained by errors on
the pressure measurement, since solidification takes place
at 25.32bar. It is closer to the much higher temperature
result of Dietrich et al.61, than to our high pressure data.
We should point out here that the polynomial fit to our
data does not change significantly if our point at 24 bar
is omitted.

The only recent source of good resolution data at non-
zero pressures is Gibbs et al.68,69. Fig. 30 shows that
there is a good agreement between these results and ours
in the pressure dependence of the roton gap. The devia-
tions are probably explained by the larger uncertainties
of the data by Gibbs et al., including a likely error in their
pressures, measured with a Bourdon gauge (uncertainties
not quoted).

The pressure dependence of the roton wave-vector kR
is shown in Fig. 31. The present data display a smoother
behavior, with small error bars, compared to former re-
sults. The statistical uncertainties from the fits at con-
stant scattering angle are one order of magnitude smaller
than the systematic errors (see the discussion at the end
of Section VI). The latter, on the order of 0.002 Å−1,
are due to the uncertainty in the detector angles, and
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to the conversion from scattering angle to wave-vector,
which involves the systematic uncertainty of the energies.
We observe a good agreement with Stirling’s triple-axis
data57,59. TOF data by Dietrich et al.61, Andersen et

al.63–67 and Gibbs et al.68,69 are systematically shifted,
but on both sides of our curve.
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FIG. 31. Pressure dependence of the roton wave-vector.
Small black dots: this work; the solid line is a guide to the
eye. The energy error bars correspond to the systematic un-
certainties, statistical ones are not visible in this plot (see
text). Green dots: Stirling57,59. Red diamonds: Gibbs et
al.68,69. Blue ×: Andersen et al.66. Orange +: Dietrich et
al.61 (at T=1.3K).

The pressure dependence of the roton effective mass
µR is shown in Fig. 32. Stirling’s data points57,59 at
SVP and 15bar agree with ours, but this is not the case
for the point at 24 bar. The data by Dietrich et al.61

and those by Gibbs et al.68,69 are shifted with respect to
ours, but follow the same trend. We also note that the
roton effective mass is strongly non-linear as a function
of pressure, but it is an almost linear function of the
density. This will be discussed in more detail below, in
the comparison of our data with DMBT calculations.

D. Maxons

The properties of the dispersion curve around the
maxon (Fig. 33) can be studied in a similar way. Fits
have been made using the cubic polynomial expression:

ǫM (k) = ∆M +
~
2

2m4µM
(k− kM )2 +BM (k− kM )3 (19)

where the parameters are the maxon energy ∆M , the
maxon wave-vector kM , and the (negative) maxon ef-
fective mass µM . Different fitting ranges were tested in
order to evaluate the influence of systematic errors. The
maxon curves display a much smaller asymmetry than
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FIG. 32. Pressure dependence of the roton effective mass.
Small black dots: this work. The large (small) energy error
bars correspond to the systematic (statistical) uncertainties,
respectively (see text). Green dots: Stirling57,59. Red dia-
monds: Gibbs et al.68,69. Blue ×: Andersen et al.66. The
lines are guides to the eye.

the roton ones. In the fits, it is possible to limit the poly-
nomial expression to the cubic term in the wave-vector
range spanning 0.2Å−1 around kM . A typical fit is shown
in Fig. 33 on the 5 bar curve, results for all pressures are
given in Table V.
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FIG. 33. The dispersion relation in the vicinity of the maxon
at different pressures (accurate values of P are given in Table
I). The dashed line on the P=5 bar curve shows a typical
cubic fit (see text). At 24 bar, the maxon is strongly damped.

There is an excellent agreement between our results
for the maxon energy at saturated vapor pressure and
those from Gibbs et al.69 and Gibbs (Thesis)68. At finite
pressures, however, there is a clear discrepancy between
these data and ours. The published version69 is closer to
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P (bar) ∆M (meV) kM (Å−1) µM

0 1.191(1) 1.103(2) -0.545(2)
0.51 1.197(1) 1.104(2) -0.547(2)
1.02 1.202(1) 1.102(2) -0.552(2)
2.01 1.212(1) 1.102(2) -0.561(2)
5.01 1.236(1) 1.104(2) -0.591(2)
10.01 1.260(1) 1.110(2) -0.666(2)
24.08 1.263(1) 1.134(2) -0.874(2)

TABLE V. Maxon parameters deduced from fits using Eq.
19.
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FIG. 34. Pressure dependence of the maxon energy. Small
black dots: this work. The energy error bars correspond to
the systematic uncertainties (see text). The solid line is a
polynomial fit of order 3 through the low pressure data. The
point at 24 bar is in a different regime (see text). Triangle:
Talbot et al.60. Red diamonds: Gibbs et al.69 and Gibbs
(Thesis)68. The red dashed line indicates twice the measured
roton energy.

our result than the earlier (but more detailed) version of
the same work, found in Gibbs’s thesis manuscript68.

The behavior at high pressures is interesting, be-
cause a different regime is reached when ∆M∼2∆R,
the maxon being spectacularly damped by three-particle
processes33. This happens according to Fig. 34 at
P∼20bar. Results at the same pressure by Talbot et

al.60 and Gibbs et al.68,69 are considerably shifted, on
both sides, with respect to the present data. The large
discrepancy between former data may be due to the effect
of damping on the maxon energy, as seen in Fig. 33. A
third order polynomial fit can describe the pressure de-
pendence of the maxon energy in our data, within their
very small statistical uncertainty. The curve is shown
in Fig. 34. Extrapolation to high pressures is delicate,
and a better description, in terms of densities, will be
presented below.

The pressure dependence of the maxon wave-vector
kM is given in Table V. This parameter is, surprisingly,

rather constant at low pressures. A substantial increase
is observed at 24 bar, related to the damping, as seen in
Fig. 33. A small increase of kM is already observed at
10 bar. The maxon effective mass µM , on the other hand,
has a smooth variation with pressure, that we can fit by
a simple second order polynomial expression. Its values
can be found in Table V. A discussion of these results is
given below.

E. Theory: Dispersion relation at SVP

Among the numerous theoretical calculations of the
dispersion relation of superfluid 4He to be found in
the literature, we have chosen four examples, especially
appropriate for this manuscript (see Fig. 35): the
Brillouin-Wigner (BW) perturbative calculation by Lee
and Lee14, two different types of Monte-Carlo (MC)
calculations79, and the variational dynamical many-
body theory34 (DMBT). Starting from the Bijl-Feynman
spectrum80, which is clearly very far from the experi-
mental result, the perturbative calculation by Lee and
Lee has, first of all, the merit to bring theory closer to
the experiment. In addition, it provides a quantitative
estimate of the corrections due to the different Feynman
diagrams involved in microscopic calculations. The effect
of the ǫ4b term14 is shown, as an example, in Fig. 35. In
spite of the large number of diagrams included, the BW
approach is not satisfactory: strong departures from the
experimental results are seen in the whole wave-vector
range.
DMBT provides accurate results from low wave-vectors

to somewhat beyond the maxon. The discrepancy ob-
served at high wave-vectors is, according to the BW cal-
culation described above, consistent with fact that the
ǫ4b diagram is not included in the DMBT calculation
(see the discussion in Ref. 34). Improving the accuracy
would imply an additional computational effort which is
not necessary, in particular, to investigate the density de-
pendence of the dispersion. The dispersion relation cal-
culated by DMBT at the present level is already in good
agreement with the experiment in the whole wave-vector
range, including the plateau region, the calculation of
which constitutes a severe theoretical challenge.
Monte Carlo calculations18,79,81 constitute a very dif-

ferent approach to the microscopic description of quan-
tum fluids. We show in Fig. 35 the results of Diffu-
sion Monte Carlo (DMC) calculations by Boronat and
coworkers19,82, that clearly provide values of the disper-
sion relation at zero temperature in excellent agreement
with the experiment.
Path Integral Monte Carlo (PIMC) calculations yield

results on the dispersion relation at finite temperatures.
The data24 at T=0.8 and 1.2K (Fig. 35) (identical within
uncertainties, since the dispersion relation is not strongly
temperature dependent below 1.25K) are in good agree-
ment with the experimental values. Both MC methods,
however, experience difficulties in observing the plateau



21

of the dispersion relation, essentially because of its very
low weight; calculations in this region capture instead a
multiexcitation ‘branch’ also seen in the experiments (see
Ref. 33 and Section VIIG).
Since constant progress is made in numerical methods

and techniques, both variational and Monte Carlo meth-
ods are expected to yield further important developments
in this field.
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FIG. 35. Dispersion relation ǫ(k) at saturated vapor pres-
sure. Upper curves: Bijl-Feynman spectrum80 (ǫ0); BW
calculation14 (black dots); BW calculation, excluding the
ǫ4b term14 (circles). Red curves: DMBT34 at two densities
around SVP (see legend). Green lozenges: DMC19,82; trian-
gles: PIMC24 at T=0.8 and 1.2K. Thick black line: experi-
ment (this work).

F. DMBT: density dependence

The experimental properties of the roton and the
maxon described above can be compared to DMBT pre-
dictions. Since a small shift in density34 is often needed
in order to compare quantitatively the DMBT calcula-
tions and the experiments, we shall use in the following,
instead of pressures, atomic densities. We thus avoid in-
troducing in the comparison the theoretical equation of
state. The pressure-density relations used here to con-
vert the experimental pressures in atomic densities are
known with excellent accuracy, they are found in Abra-
ham et al.45 and Greywall48 (see Section IIA).
The dependence of the roton energy on density is

shown in Fig. 36. A good agreement is found within
the expected accuracy of the theoretical calculation, es-
timated to be on the order of 10%. This is not due to
a shortcoming of the theory, but to the choice of the di-
agrams included in the calculation, limited to the most
significant ones, as far as the physics is concerned. As
seen in the previous section, an estimate of the energy
correction34 can be made using the Brillouin-Wigner per-
turbation calculation by Lee and Lee14. The first omitted

diagram would decrease the roton energy by 0.05meV.
This brings the (corrected) theory close to the experi-
mental result at low pressures and, as expected, the de-
viation grows in fact at high pressures, where correlations
are strongest.
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FIG. 36. Density dependence of the roton energy. Present
results (black dots with total uncertainty error bars, see text)
are compared to the DMBT calculation34 (red squares).

The calculated roton wave-vector kR and its density
dependence (Fig. 37) are quantitatively very close to
the experimental result. It is clear that the diagrams in-
cluded in the DMBT calculation capture all the essential
features. The omitted diagrams have a smaller effect on
this parameter, than on the roton energy.
It has been suggested by Dietrich et al.61 that the den-

sity dependence of the roton wave-vector obeyed a simple
law, kR = aρ1/3, expected if the system is homotheti-
cally transformed with pressure. Clearly, as seen in Fig.
37, neither theory nor experiment follow this law. In-
deed, the density dependence of kR is almost linear, even
within the very small statistical error bars of the fits, and
a fortiori within the somewhat larger total error bars in-
cluding systematic uncertainties.
The density dependence of the roton effective mass µR

is shown in Fig. 38, where the experimental data are
compared to the DMBT calculations. The curves were
found to be very similar, and the analysis could be carried
out in the same way: the same function and wave-vector
range already applied (see above) to the experimental
data were used to fit the DMBT results. As seen in the
figure, the predicted magnitude as well as the density de-
pendence are confirmed by the experiment. The slightly
higher values of the theory are expected, since the theo-
retical roton minimum, calculated with a limited number
of diagrams, is not as deep as the experimental one.
The shape of the dispersion curve around the roton

minimum deviates rapidly from a simple parabola, and
it also changes substantially with density. Higher order
terms in the polynomial expansion (see Eq. 18) are not at
all negligible, unless fits are limited to a very small range
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FIG. 37. Density dependence of the roton wave-vector. Black
dots: this work (small error bars: statistical uncertainty,
larger bars: systematic uncertainty, see text). The deviations
from a linear dependence are small: the short-dashed and the
solid red lines are, respectively, a linear and a quadratic poly-
nomial fit to the data. The expression61 kR = aρ1/3 (green
dash-dotted line) clearly does not fit the data. Red squares:
DMBT calculation34 .
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FIG. 38. Density dependence of the roton effective mass.
Black dots: this work (small error bars: statistical uncer-
tainty, larger bars: systematic uncertainty, see text). The
solid line is a quadratic fit to the data. Red squares: DMBT
calculation. The dashed red line is a guide to the eye.

around the minimum, reducing the accuracy of the fits.
With a large number of independent data points, we have
access to higher order coefficients: the cubic term (BR)
and the quartic term (CR) defined by Eq. 18. The results
are shown in Figs. 39 and 40.
We consider now the maxon properties, comparing our

data to the predictions of the DMBT. The calculated
dispersion relation in the vicinity of the maxon is shown
in Fig. 41 for several densities, directly comparable to
our experimental result shown in Fig. 33.
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FIG. 39. Density dependence of the roton cubic term BR

(asymmetry coefficient). Black dots: this work. Red squares:
DMBT34calculation34. Lines are guides to the eye.
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FIG. 40. Density dependence of the roton quartic coefficient
CR. Black dots: this work. Red squares: DMBT34 calcula-
tion. Lines are guides to the eye.

The maxon energy, represented in Fig. 42 as a function
of density, displays a much weaker variation than that ob-
served for the roton. As described above, the high density
data point is beyond the 2-roton limit, the corresponding
maxon is damped, and this point is in a different regime
compared to the lower pressure ones. Polynomial fits of
order 2 and 3 excluding the high density data point en-
compass a relatively small portion of the 2-roton line,
indicating that the maxon damping begins at a density
nc=0.0255±0.0002Å−3 (P=21.5±1.6bar).
The maxon wave-vector kM is essentially constant at

low densities, as seen in Fig. 43. We have fitted Gibbs’s
data68, and we find a systematic difference, somewhat
outside their relatively large error bars.
Also shown is the dependence of the Debye wave-

vector on the number density n. kD=(6π2n)1/3 is de-
fined by assigning one degree of freedom per atom for
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FIG. 41. The dispersion relation calculated (DMBT34) in the
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atoms/Å3. See also experimental the data in Fig. 33.
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FIG. 42. Density dependence of the maxon energy. Black
dots: this work. Error bars: systematic uncertainty; statisti-
cal error bars are not visible at this scale (see text). The solid
line is a quadratic fit to the data. A quadratic and a cubic fit
excluding the high pressure point are also shown. The long-
dash red line is the 2-roton energy. Triangle: Talbot et al.
data60. Red squares: DMBT34 calculation. The short-dash
red line is a guide to the eye.

the longitudinal mode, integrated with an upper limit

kD: Na = (V/(2π2))
∫ kD

0
k2dk, where Na is Avogadro’s

number and V the molar volume. The Debye model2

usually describes a solid, where the wave-vector is lim-
ited by the inverse of the lattice spacing. In the liquid,
such limitation does not exist. The hard core of the he-
lium atoms, however, introduces a characteristic length
and solid-like properties, like the very existence of roton
excitations7,8. The Debye wave-vector is quantitatively
similar to the maxon wave-vector, the maxon being anal-
ogous to a zone-boundary phonon. At high pressures,
one can expect this analogy to work even better, and kM

closely follows, indeed, the density dependence of kD. In
the liquid, the states with higher wave-vectors progres-
sively loose the relation with their ‘first Brillouin zone’
analogues, and at k≈2kD one observes a roton minimum,
instead of a zero.
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FIG. 43. The maxon wave-vector as a function of density.
Black squares: this work. Open lozenges: our fits to Gibbs’s
data68. Theory: DMBT34. Lines are guides to the eye. The
Debye wave-vector calculated for the longitudinal phonon of
a periodic system (see text) is shown for comparison.

The values of kM calculated by the DMBT agree well
in magnitude with the experimental ones. A deviation
is seen at relatively high densities, just before entering
the strong damping region of the continuum. The exper-
imental data discussed above display a small increase at
high densities, and the opposite is found in the theoreti-
cal calculations. It must be pointed out that the maxon
is very flat, and hence systematic errors can easily shift
its position: this very small effect (about 2%) may come
from the approximations in the theory, or from experi-
mental resolution problems. In the theory, the decrease
of the maxon wave-vector is clearly correlated with the
damping at the maxon (see Figs. 41 and 42).
In a previous publication33 we provided tables of roton

and maxon parameters obtained with the standard data
analysis (see Section V). A uniform shift of 9.2µeV ap-
plied to the energies yielded the correct sound velocities
and the expected roton gap. This was accurate enough
for the study of multi-excitations, but insufficient to es-
tablish the dispersion curve of single-excitations. Here,
the energy scale has been calibrated at the roton energy.
The energies as a function of pressure obtained from both
analysis differ by a small amount. Also, the wave-vectors
(in particular at the roton and the maxon) are slightly
reduced by the energy recalibration. The values of the
effective masses agree reasonably well after correcting an
error (a missing factor 1.05462 from ~

2) in the previous
publication. The new roton and maxon data tables are
more accurate, they have been obtained by a consistent
procedure entirely based on neutron data, and error bars
including detailed systematic uncertainties are given.
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G. Beyond the roton

The very high wave-vector region, usually referred to
as ‘beyond the roton’ in the literature11,12,20,83–85, is also
of interest. The dispersion relation at high wave-vectors
increases up to an energy ǫmax≈2∆R, the Pitaevskii
plateau. Since high-k excitations can decay into roton
pairs, they cannot remain sharp above the plateau. The
experimental investigation of this region11,12,83,84 is diffi-
cult, due to the limited energy resolution of the spectrom-
eters at the relevant energies. Early experiments placed
the curve above the plateau, even at SVP, but this has
been shown by Pistolesi to be due to experimental reso-
lution effects11,12,20,85.
According to high resolution work70 at SVP, single ex-

citations reach twice the roton gap at Q = 2.8 Å−1, the
energy remains constant in the vicinity of 2∆R between
Q=3.0 Å−1, and the end point of the dispersion curve is
at Q =3.6 Å−1. At high pressures (20 bar), the disper-
sion curve has been shown to lie essentially just below
the plateau86, and to also end at about k=3.6 Å−1.
From the theoretical point of view, according to

the calculations of Pitaevskii and their extension
by Zawadowski, Ruvalds, Solana (ZRS theory) and
Pistolesi11,12,20,85, the dispersion curve is believed to be
slightly below Pitaevskii’s plateau.
The results of the present measurements, obtained

with different incident neutron energies in order to opti-
mize the energy resolution, are shown in Fig. 44.
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FIG. 44. The dynamic structure factor S(Q,ω) in Pitaevskii’s
plateau region, measured using different incident neutron en-
ergies (Ei = 3.520, 5.071, 7.990, and 20.45 meV), with energy
resolutions (FWHM) at elastic energy transfer 0.07, 0.12, 0.23
and 0.92meV, respectively (thin gray lines indicate limits of
kinetic ranges). The color-coded intensity scale is in units of
meV−1. Dashed line: 2∆R.

We show in Fig. 45 our data for the dispersion rela-
tion at T<0.1K. We also show the results obtained by
Glyde et al. at a higher temperature (1.35K) using the
IRIS spectrometer; error bars are similar to ours in en-
ergy, but 25 times larger in wave-vector. There is an

excellent agreement between these data where they can
be compared.
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FIG. 45. The dispersion relation measured beyond the roton.
Open circles: present work at T<0.1K (error bars, shown for
some points, are better seen on-line). Red squares: Glyde et
al.70 (T=1.35K)

The single excitations phase velocity (Fig. 46), does
not display particular features in this range. The group
velocity (Fig. 47), on the other hand, vanishes at Q
= 2.8 Å−1 and, as seen in Fig. 45, the dispersion
curve becomes flat. The intensity of the single excita-
tion decreases approximately exponentially (Fig. 44) for
k>3 Å−1. It is difficult to define an ‘end wave-vector’
of the single excitation. We observe however a change
in the exponential-like intensity decrease at k≈3.7 Å−1,
close to the value Q =3.6 Å−1 quoted in the only other
high resolution data at SVP in this range70.
The calculations in the framework of DMBT34 predict

that the dispersion curve remains almost constant below
the plateau at high densities, but the behavior is differ-
ent at low densities: at saturated vapor pressure, after
reaching the continuum at k≈2.8 Å−1, the curve remains
at the edge of the continuum with some undulations. An
asymmetric peak is the formed, and its shape varies with
k, as seen in Fig. 48 (the figure can be expanded in the
on-line version). At all densities, the single excitation in-
tensity finally vanishes at a wave-vector on the order of
3.6 Å−1, slightly increasing with density.
Disentangling the single excitation from the multi-

excitations contribution cannot be done unambiguously
at the largest wave-vectors. The good general agreement
between experiment and theory supports the hypothesis
of an end of the dispersion curve in this range.

H. Comparison to previous works

The measured dispersion relation at saturated vapor
pressure has been represented in Fig. 1. A table summa-
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FIG. 46. The single-excitations phase velocity at saturated
vapor pressure (black dots, almost continuous line), is com-
pared to the calculated values (dashed line, DMBT34) at a
neighboring density (see Table II).
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FIG. 47. The single-excitations group velocity at saturated
vapor pressure (black dots, almost continuous line), is com-
pared to the calculated values (dashed line, DMBT34) at a
neighboring density (see Table II).

rizing the results is given below (Table VI). Raw data
and tables with a finer wave-vector grid (0.002Å−1) are
provided, see Supplemental Material at [URL will be in-
serted by publisher].

The present results are compared to previous experi-
mental data in Fig. 49, a percent deviation plot where
our data are taken as the reference. We examine first
the data-base carefully selected by Brooks, Donnelly and
Barenghi46,51, where several results of lower accuracy or
considered less trustworthy, have already been discarded
by these authors. Large deviations with respect to our
data are seen, in particular around 0.4 Å−1 and at high
wave-vectors. The thick red line in Fig. 49 shows Don-
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FIG. 48. The dynamic structure factor calculated (DMBT34)
for the density n=0.0220 Å−3 (close to SVP), in the plateau
region. The solid lines are cuts of S(k,ǫ) for fixed wave-vectors.

nelly’s spline fit of this set of data (see Ref. 46 and ref-
erences therein). Also shown are results by Andersen et

al.63,66, Gibbs et al.68,69, and Glyde et al.70, which were
not included in the data-base mentioned above.

One can distinguish several regions. For k<0.2 Å−1,
the dispersion is essentially obtained from ultrasound
data, and the very small difference between our data
and Donnelly’s spline fit is within error bars. For
0.2<k<1 Å−1 our data agree well with those of Ander-
sen et al.. Furthermore, our data measured at a differ-
ent incident neutron energy (5.071meV), are in excellent
agreement with those measured at 3.52meV, our refer-
ence in this wave-vector range. The data of Gibbs et al.,
with a larger statistical uncertainty, lie in-between our
curve and Donnelly’s.

Between 1 and 2 Å−1, our data at the two different
incident energies are again found to be consistent. It
is important to realize that these two sets of data are
independent, in particular the angles and distances cor-
responding to a given wave-vector are different. The de-
viation between these data sets is very small, it does not
display accidents or inconsistencies, and this is observed
in a very large wave-vector range. This result constitutes
an important verification of the consistency of the present
data. The results of Andersen et al. agree with those of
Gibbs et al.. They are consistent with Donnelly’s data-
base, but all these points are ignored by Donnelly’s ‘fit’
to a great extent, the curve is in fact closer to our result.

At the roton, the agreement is good between the var-
ious data sets. This point, of course, has been used in
order to calibrate our energy scale. At wave-vectors be-
yond the roton, previous results display strong statistical
scatter and systematic inconsistencies; our data are just
in the middle, and very close, as noted above, to the data
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k ǫ(k) err ǫ k ǫ(k) err ǫ k ǫ(k) err ǫ
Å−1 meV meV Å−1 meV meV Å−1 meV meV
0 0.0000 1.25 1.1698 0.0020 2.5 1.3718 0.0035
0.05 0.0787 1.3 1.1542 0.0020 2.55 1.3985 0.0039
0.1 0.1587 1.35 1.1310 0.0019 2.6 1.4214 0.0044
0.15 0.2407 0.0014 1.4 1.1055 0.0019 2.65 1.4375 0.0049
0.2 0.3244 0.0012 1.45 1.0743 0.0018 2.7 1.4571 0.0053
0.25 0.4092 0.0010 1.5 1.0381 0.0018 2.75 1.4617 0.0058
0.3 0.4938 0.0010 1.55 0.9999 0.0017 2.8 1.4746 0.0062
0.35 0.5782 0.0011 1.6 0.9563 0.0016 2.85 1.4776 0.0066
0.4 0.6581 0.0012 1.65 0.9113 0.0015 2.9 1.4737 0.0071
0.45 0.7338 0.0013 1.7 0.8672 0.0015 2.95 1.4818 0.0075
0.5 0.8040 0.0014 1.75 0.8242 0.0014 3 1.4784 0.0080
0.55 0.8701 0.0015 1.8 0.7877 0.0013 3.05 1.4793 0.0085
0.6 0.9279 0.0016 1.85 0.7584 0.0013 3.1 1.4781 0.0089
0.65 0.9812 0.0017 1.9 0.7427 0.0013 3.15 1.4767 0.0094
0.7 1.0267 0.0018 1.95 0.7459 0.0013 3.2 1.4805 0.0098
0.75 1.0667 0.0018 2 0.7681 0.0013 3.25 1.4920 0.010
0.8 1.1002 0.0019 2.05 0.8094 0.0014 3.3 1.4855 0.011
0.85 1.1280 0.0019 2.1 0.8637 0.0015 3.35 1.4954 0.011
0.9 1.1518 0.0020 2.15 0.9374 0.0016 3.4 1.4940 0.012
0.95 1.1678 0.0020 2.2 1.0154 0.0017 3.45 1.5012 0.012
1 1.1809 0.0020 2.25 1.0944 0.0019 3.5 1.5199 0.012
1.05 1.1882 0.0020 2.3 1.1701 0.0020 3.55 1.5377 0.013
1.1 1.1907 0.0020 2.35 1.2370 0.0023 3.6 1.5538 0.013
1.15 1.1884 0.0020 2.4 1.2914 0.0025
1.2 1.1814 0.0020 2.45 1.3363 0.0030

TABLE VI. The dispersion relation of 4He at saturated va-
por pressure and very low temperatures (T<100mK). Be-
low k=0.15 Å−1: ultrasound data37 (see text). From 0.15
to 0.3 Å−1: combined ultrasound and present neutron data;
above 0.3 Å−1, present neutron data. See Supplemental Ma-
terial at [URL will be inserted by publisher] for more detailed
tables.

of Glyde et al..
Our data for the dispersion curve constitute therefore

a new, comprehensive and coherent data base. In the
following, we use this result to calculate the thermody-
namical properties, a stringent test for the measured dis-
persion curve.

VIII. SPECIFIC HEAT AND OTHER
THERMODYNAMICAL PROPERTIES

Considerable effort has been devoted to the calcula-
tion of the thermodynamical properties of superfluid 4He
starting from the dispersion curve. Different kinds of
experiments were performed, and subsequently analyzed
using Landau’s model4,5. In the simplest approximation,
applicable at low temperatures, the thermal population
of the states described by Landau’s spectrum is signifi-
cant in the low-k phonon region, and around the roton
minimum. The model has 4 parameters: the sound veloc-
ity, the roton gap, the roton wave-vector and the roton ef-
fective mass. The heat capacity calculated by Landau4,5

was in good agreement with early specific heat mea-
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FIG. 49. Percent deviation plot comparing different data
to our measured dispersion curve. Black diamonds: data-
base selected by Donnelly et al.46,51, and their spline fit (red
curve); triangles: Andersen et al.63,66; open circles: Gibbs
et al.68,69; inverted triangles: Glyde et al.70. Small black
dots: this work, additional data measured at a different en-
ergy, Ei=5.071meV.

surements. When high accuracy data became available,
substantial quantitative deviations from Landau’s model
were observed, and several attempts were made to im-
prove this formalism. Phillips et al.49 and Greywall48,50

calculated low temperature series expansions for the spe-
cific heat based on the series expansion of the dispersion
curve given by Eq. 2. Since published formulas contain
errors49 or misprints48, we provide below the correct re-
sults. We also expand the series to higher order, which is
found necessary to obtain thermodynamically consistent
series expansions.
In the following section, we first provide a numerical

calculation of the thermodynamic properties using the
dispersion relation determined in the present work. We
then compare these results with those obtained with our
analytical formulas.

A. Specific heat: complete numerical calculation.

The internal energy E and other thermodynamical
properties, in particular the specific heat CV =

(

∂E
∂T

)

V
,

can be calculated as a function of temperature by ele-
mentary statistical physics2, using the dispersion rela-
tion ǫ(k), the Bose distribution function n(ǫ(k)), and the
density of states of an isotropic 3-dimensional system,
D(ω)dω = (V/2π2)k2dk:

E = (kBV/2π
2)

∫ kend

0

ǫ(k)

e
ǫ(k)
kBT − 1

k2dk (20)

Integration is performed over all the states; in Lan-
dau’s model, the upper limit is taken as infinity, the expo-
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nential factor making this choice possible in the very low
temperature limit; for our higher temperature approxi-
mations we introduce a finite upper limit of the spectrum,
kend.

Donnelly et al.87 concluded that the early neutron data
were ‘consistent’ with high resolution specific heat results
(see previous section). Given the large dispersion of the
neutron data around their proposed curve, they empha-
sized the real need for further neutron scattering studies.
We show in Fig. 50 and in Table VII the specific heat cal-
culated numerically in all the temperature range below
Tλ using the present neutron scattering data.

T Cv (total) Cv (phonons) Cv (rotons) S (total)
K J/(K.mol) J/(K.mol) J/(K.mol) J/(K.mol)
0.05 1.037E-05 1.037E-05 2.270E-70 3.459E-06
0.10 8.260E-05 8.260E-05 1.920E-33 2.760E-05
0.15 2.770E-04 2.770E-04 3.030E-21 9.276E-05
0.20 6.513E-04 6.513E-04 3.360E-15 2.187E-04
0.25 0.001261 0.001261 1.330E-11 4.247E-04
0.30 0.002157 0.002157 3.170E-09 7.290E-04
0.35 0.003392 0.003392 1.531E-07 0.001149
0.40 0.005016 0.005013 2.738E-06 0.001704
0.45 0.007094 0.007069 2.532E-05 0.002409
0.50 0.009756 0.009607 1.480E-04 0.003288
0.55 0.01330 0.01268 6.203E-04 0.004376
0.60 0.01837 0.01634 0.002028 0.005736
0.65 0.02613 0.02064 0.005487 0.007489
0.70 0.03846 0.02566 0.01279 0.009841
0.75 0.05784 0.03147 0.02651 0.01310
0.80 0.08812 0.03816 0.04994 0.01774
0.85 0.1329 0.04586 0.08702 0.02434
0.90 0.1968 0.05469 0.1421 0.03364
0.95 0.2848 0.06481 0.2200 0.04653
1.00 0.4018 0.07641 0.3253 0.06397
1.05 0.5527 0.08969 0.4630 0.08708
1.10 0.7424 0.1049 0.6375 0.1170
1.15 0.9755 0.1221 0.8533 0.1549
1.20 1.256 0.1418 1.115 0.2022
1.25 1.589 0.1639 1.425 0.2600
1.30 1.977 0.1889 1.788 0.3297

TABLE VII. Specific heat (total, phonon and roton contri-
butions), and total molar entropy, at the saturated vapor
pressure, as a function of temperature, calculated numeri-
cally using the measured dispersion relation (this work). The
uncertainties on the specific heat are ≤1%, see Supplemen-
tal Material at [URL will be inserted by publisher] for more
detailed tables.

The figure also shows the phonon and the roton contri-
butions, defined here as the specific heat obtained by inte-
gration over wave-vector ranges separated by the maxon
wave-vector kM (see Section VII). The ‘phonons’ thus
correspond to the range (0-kM ) and the ‘rotons’ to (kM -
kend).

A clear deviation between the calculated and measured
specific heats is seen above 1.3K. This is not surprising:
at high temperatures the dispersion curve itself changes
rapidly as the temperature increases, and the excitations

0.0 0.5 1.0 1.5 2.0
10-5

10-4

10-3

10-2

10-1

100

101

 

 

Sp
ec

ifi
c 

he
at

  (
J 

m
ol

-1
 K

-1
)

Temperature (K) 

 Total CV (int. 0 to 3.60 Å-1) 
 Phonons (int. 0 to kM) 

 Rotons (int. kM to 3.60 Å-1) 
 CV Phillips et al.
 CV Greywall 

FIG. 50. Total specific heat, and phonon and roton contribu-
tions, calculated numerically with the measured dispersion re-
lation. Specific heat data by Phillips et al.49 and Greywall48,50

are shown for comparison.

broaden substantially11,12,88. This regime is outside the
scope of this study, we concentrate here on the low tem-
perature properties, where the dispersion curve is unique.
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FIG. 51. Percent difference between specific heat measure-
ments, and the values inferred from the dispersion relation
measurement (present work). Open squares: Phillips et al.49.
Red dots: Greywall data, listed in Refs. 46 and 51. Blue solid
line: Greywall’s fit of his data48,50.

Deviations are also observed at low temperatures, they
are rather small (Fig. 51). Their probable origin can be
understood by inspection of Fig. 52, where the phonon
regime is emphasized. The expanded scale reveals a clear
accident in Greywall’s data around 0.3K. The curve cal-
culated from the neutron data, however, does not display
any accident in this range. An excellent agreement is ob-
tained with Greywall’s data if we correct the latter in
an obvious way: above 0.33K we keep his temperature
scale, based on the 3He vapor pressure thermometer, and
below this temperature we correct the Curie tempera-
ture of his CMN thermometer by simply adding 1mK.
Such a correction is within the possibilities considered
by Greywall in his error handling discussion. It would be
desirable to repeat the heat capacity experiment using
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modern thermometric techniques, but this kind of exper-
iment remains difficult. Finally, let us mention that the
drop of CV /T

3 observed in Greywall’s data below 0.15K
is clearly an artifact due to thermal decoupling.
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FIG. 52. CV /T3 in the phonon range. The values calculated
from the dispersion curve (solid line, this work), compared to
heat capacity data. Crosses: Wiebes46,89. Triangles: Phillips
et al.49. Dots: Greywall48,50. Circles: Greywall’s data, tem-
peratures corrected by adding 1mK; this correction should
apply below 0.3K (see text).

At higher temperatures, the behavior of the heat ca-
pacity is dominated by the exponential growth associated
to the roton gap. Fig. 53 shows that the influence of kend,
the upper integration limit of the dispersion relation, is
small below 1.25K, the maximum temperature where the
low temperature dispersion relation can be safely used.
We find that values of kend≈3.6±1 Å−1 provide good fits.
A curve calculated with 2.20 Å−1, too small a value, is
shown for comparison purposes only. A termination of
the spectrum in this wave-vector region is therefore in
rough agreement with specific heat data.
To conclude this section, we should say that the sys-

tematic difference on the order of 1 to 2% observed be-
tween the specific heat calculated from the dispersion
curve in the present work, and the results of heat ca-
pacity measurements, is larger than the estimated uncer-
tainty of the former (≤1%, see Supplemental Material at
[URL will be inserted by publisher] for uncertainty data
tables and files), but consistent with the quoted uncer-
tainty of the latter (2%). Neutron data (combined with
ultrasound in the phonon region) provide therefore a bet-
ter determination of this thermodynamic parameter than
the direct measurement.

B. Specific heat: analytical calculation

It is often convenient to have analytical expressions
for the thermodynamical properties. We calculate in this
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FIG. 53. Specific heat calculated numerically with the mea-
sured dispersion relation, for an integration limit kend=3.6
Å−1. The result obtained using kend=2.2 Å−1 is shown
for comparison. Specific heat measurements by Wiebes46,89,
Phillips et al.49 and Greywall48,50 are also shown.

section the low temperature polynomial series expansions
describing phonon and roton contributions to the specific
heat, and to other thermodynamical properties.

1. Phonon series expansions

The properties related to the phonons are calculated
with Eq. 20 and the following series expansion of the
phonon excitation energies:

ǫ(k) = ck(1 + α1k + α2k
2 + α3k

3 + α4k
4 + α5k

5 + α6k
6)

(21)

The integration upper limit is taken as infinity, since at
temperatures T<<∆R/kB the exponential thermal pop-
ulation factor suppresses the contribution of the high en-
ergy parts of the spectrum. In practice, the analytic cal-
culation is done by integration over the energy, rather
than over wave-vector, and we introduce the inverse se-
ries describing the single-valued (phonon) branch of the
spectrum:
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k =
ω

c
− α1

(ω

c

)2

+
(

2α2
1 − α2

)

(ω

c

)3

+
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−5α3
1 + 5α1α2 − α3

)

(ω

c

)4

+
(

14α4
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)
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c

)5
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(

−42α5
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2
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+ η
(ω

c

)7

+O
(

ω8
)

where

η = 132α6
1 − 330α4

1α2 + 120α3
1α3 + 180α2

1α
2
2

− 36α2
1α4 − 72α1α2α3 + 8α1α5

− 12α3
2 + 8α2α4 + 4α2

3 − α6 .

The complete analytical formulas for the specific heat
are cumbersome, and we only give below those applicable
when α1=0, which is the case in practice (see Section
IIA). The corresponding expression is

Cphonon
V = AT 3+CT 5+DT 6+ET 7+KT 8+LT 9 (22)

where the term BT4 is absent because α1=0, and the
relevant coefficients are given by:

A =
2π2k4

BV
15c3~3

C = −
40(π4α2k

6
BV )

21(c5~5)

D = −
15120(α3k

7
BV ζ(7))

π2c6~6

E =
224π6k8

BV (4α2
2−α4)

15c7~7

K =
1451520k9

BV ζ(9)(9α2α3−α5)
π2c8~8

L = −
640(π8k10

B V (55α3
2−30α2α4−15α2

3+3α6))
11(c9~9)

where ζ is the Riemann zeta function.
It is clear from this expansion that, contrarily to what

is generally believed, the coefficients of the specific heat
series expansion are not associated to a single coefficient
of the dispersion relation series; E, for instance, contains
both α2 and α4.
The αi coefficients have been determined in Sec-

tion VIIA by fits at low wave-vectors. For the dis-
persion curve at saturated vapor pressure, the coeffi-
cients c=238.3 m/s, α1=0, α2=1.55Å−2, α3=-4.04Å−3,
α4=2.30Å−4, α5=0, α6=0 provide a good fit of the dis-
persion curve for k<0.5 Å−1. The corresponding coeffi-
cients of the specific heat series are therefore: A=0.0831,
C=-0.0548, D=0.0653, E=0.0603, K=-0.262, L=0.141,
when temperatures are expressed in kelvin and CV in
J/(mol.K).
Strong oscillations in the amplitude of successive terms

of the series expansions are present for temperatures
≈1K. They originate from an attempt to describe the dis-
persion relation by a power series expansion around k=0

while (as seen in Fig. 26) the phase velocity has a very
linear portion, quite extended, far from k=0. This quite
unusual behavior has several consequences. Clearly, for
k>0.5Å−1, the higher order coefficients will vary with the
order of the polynomial, and once a polynomial providing
a good description of the dispersion relation is chosen, it
must be consistently used in the thermodynamic calcula-
tions. The previous discussion may appear as academic,
but it is at the root of the problems encountered in the
analysis of specific heat measurements48–50, as is illus-
trated in Fig. 54. The partial contribution due to the
phonons estimated by these authors (green dashed line
for Phillips et al., blue dash-dotted line for Greywall),
has the right order of magnitude, but it deviates from
the present neutron scattering result (black dashed line)
above 0.5K; in particular, the temperature dependence
is clearly different.
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FIG. 54. CV /T3 showing the phonon contribution to the
specific heat and the onset of the roton contribution. Dots:
CV measurements48–50 with their fitted phonon contributions
(see legend). Present work: a) red dotted line: analytical
result with K=L=0; b) red dash-dotted line: analytical result
with K 6=0 and L 6=0; c) black solid line: numerical integration
of full dispersion curve; d) dashed line: numerical integration
over the phonon region (0<k<kM). See Fig. 52 for additional
details.

The analytical calculations of the specific heat using
series expansions of the dispersion curve display strong
deviations with respect to the full numeric result, begin-
ning at temperatures as low as 0.4K. Furthermore, the
series expansions used in the previous analysis of specific
heat data48–50, being truncated, cannot be directly used
to extract the dispersion relation coefficients. As shown
in the figure, removing the terms K and L strongly affects
the fits. Handled with care, the analytical expansions
are still very useful for the calculation of phonon thermal
properties in different contexts.
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2. Roton region

The analytical calculation of the roton contribution to
the thermodynamical properties was already performed
by Landau in his seminal papers on roton excitations4,5.
In the vicinity of the roton minimum, the excitation en-
ergies are described by Eq. 18. In the limiting case where
BR=CR=0, Landau obtains the expression

CR
V = CLe

−
∆R
kBT

(

1 +
kBT

∆R
+

3

4

(

kBT

∆R

)2
)

(23)

with CL =
∆2

Rk2
RV

√
µRm4√

2π3/2
√
kBT 3/2~

The analysis of the measured specific heats with Lan-
dau’s analytical expression is therefore sensitive to a com-
bination of several roton parameters (energy, wave-vector
and effective mass).
Landau also assumes that |k − kR| << kR. The an-

alytical calculation, however, can be done without this
last assumption. We calculate here the average energy
of the rotons ER and their specific heat CR

V with Eq. 20
using Eq. 18 with BR=CR=0, including in the integrand
all terms of the expansion of (k − kR)

2. The calculation
is performed by integration over wave-vectors. We find
an additional term

Caddit
V = CLe

−
∆R
kBT

(

T

2τR

)

(

1 +
3kBT

∆R
+

15

4

(

kBT

∆R

)2
)

(24)
where we introduced the parameter τR which has the

dimensions of temperature: τR =
k2
R~

2

2kBµRm4
. The addi-

tional term is similar to Landau’s expression, with an
additional coefficient T/(2τR). Since τR ≈ 158K, this
additional term is of the same magnitude as the third
term in Eq. 23 for temperatures above 1K, and they are
both very small.
In order to improve the accuracy of Landau’s analytic

description, it is necessary to take into account the asym-
metry (cubic term) and the deformation of the minimum
(quartic term). Unfortunately, the corresponding expres-
sions are extremely complex and cumbersome, they are
not of practical interest. At the analytical level, we are
therefore left with equations providing a rough approxi-
mation. As seen in Fig. 55, the difference between Lan-
dau’s approximation and the roton contribution calcu-
lated numerically with the dispersion curve grows sub-
stantially with the temperature. The figure also illus-
trates the fact that phonons, defined as excitations below
the maxon wave-vector, have a non-negligible contribu-
tion to the thermodynamic properties at higher temper-
atures than commonly believed: the phonon and roton
contributions become equal at 0.77K for the heat capac-
ity, for instance.
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FIG. 55. The total heat capacity (black solid line), and
phonon (blue dash-dotted line), roton (red dashed line) con-
tributions to the specific heat calculated numerically with
the measured dispersion relation (present work). Short-
dash black line: Landau formula for the rotons contribution.
Crosses: specific heat measurements49.

C. Normal fluid density

The normal fluid density is given2,4,5 by the expression

ρn =

(

~
2

6π2kBT

)
∫ kend

0

e
ǫ(k)
kBT

e
ǫ(k)
kBT − 1

k4dk (25)

One can obviously integrate analytically the series ex-
pansions within the limitations discussed previously. In
order to take full advantage of the measured dispersion
curve ǫ(k), it is convenient to perform a numerical inte-
gration, as done above for the specific heat. The normal
fluid densities calculated using the dispersion curve are
given in Table VIII in the temperature range up to 1.3K.
The result is compared in Fig. 56 to selected experimen-
tal data46. The latter cover the temperature range from
1.2K to the lambda point.
The percent difference between previous data46,51 and

our calculated curve is shown in Fig. 57, on the one hand
for the experimental data-base, and on the other hand
for the tabulated values. The latter were calculated be-
low 1K using spline approximations to different neutron
data sets. We see that for the purposes of calculating ρn,
our result matches accurately the direct measurements
at about 1.25K. Above this temperature, the dispersion
curve itself becomes temperature dependent, a problem
that is beyond the scope of the present article. It is there-
fore extremely satisfactory to see that these two sets of
data agree particularly well. It is also clear that neutron
techniques extend considerably towards lower tempera-
tures the range where this parameter has been accurately
determined. The temperature range below 1K is a par-
ticularly fertile playground for objects all possible sizes
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FIG. 56. Normal fluid density calculated using the measured
dispersion relation. Experimental points by Maynard, Tam
and Ahlers, and Singass and Ahlers (data-base in Ref. 46)

.

immersed in helium and sensitive to its excitations, from
nano-oscillators to huge particle detectors26–31,90.
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FIG. 57. Deviation plot for the normal fluid density. We
show the percent difference between Maynard’s experimental
data, or tabulated (essentially, calculated) values46,51, and the
values calculated using the dispersion relation, taken as the
reference (this work). The ‘simple Landau model’ (see text)
deviates substantially from our data.

Landau’s general formula, Eq. 25, yields when applied
to the first term of the series expansions for the phonon
and the roton dispersion relation (the so-called ‘simple

Landau model’4,5) : ρ
(L)
n = ρ

Ph(L)
n + ρ

R(L)
n , with

ρ
Ph(L)
n = 2π2kB

4T 4

45c5~3

ρ
R(L)
n =

~k4
R(µRm4)

1/2

3
√
2π3/2(kBT )1/2

e
−

∆R
kBT

Since these formulas are frequently used, it is interest-
ing to check their validity range. A comparison between
the expressions above and our complete numerical calcu-
lation with the measured dispersion relation, is shown in
Fig. 57. Deviations on the order of 10% are found be-
low 1K, even around 0.5K where this expression is often
assumed to give a good approximation. The deviation is
even larger if one considers the phonon and roton contri-
butions separately, as shown in Fig. 58. The superfluid
densities are defined as ρs = ρ− ρn (see Table VIII).

0.0 0.5 1.0
-20

-10

0

10

20

 

 

N
or

m
al

 d
en

si
ty

 d
ev

ia
tio

n 
pl

ot
 (%

)

Temperature  (K) 

Deviation of the Landau model
from the numerical calculation: 

 Phonon+Roton 
 Phonon contribution 
 Roton contribution 

FIG. 58. Normal fluid density deviation plot: percent differ-
ence between the ‘simple Landau model’ normal densities2,4,5,
and our numerical calculation with the full dispersion curve.
Phonon, roton, and total normal density deviations are

defined as 100 (ρ
Ph(L)
n -ρPh

n )/ρPh
n , 100 (ρ

R(L)
n -ρRn )/ρ

R
n , and

100 ((ρ
Ph(L)
n + ρ

R(L)
n ) - ρn)/ρn, respectively.

D. Number density of phonons and rotons

The number density of phonons NPh and rotons NR

as a function of temperature, of interest for instance in
the ballistic regime, is given by the expressions:

NPh = (2π2)−1
∫ kM

0 (e
ǫ(k)
kBT − 1)−1k2dk

NR = (2π2)−1
∫ kend

kM
(e

ǫ(k)
kBT − 1)−1k2dk

The result is shown Fig. 59 (see Supplemental Material
at [URL will be inserted by publisher] for data tables.),
converted to the number of phonons and rotons per he-
lium atom, in order to emphasize the importance of the
excitation density as the temperature exceeds T≈1.3K.
Near the lambda point, the roton density, an atomic-size
excitation, approaches one per atom, as expected.
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T ρ ρn ρPh
n ρRn

K g/cm3 g/cm3 g/cm3 g/cm3

0 0.14514 – – –
0.05 0.14514 1.103E-10 1.103E-10 3.94E-74
0.10 0.14514 1.754E-09 1.754E-09 6.65E-37
0.15 0.14514 8.799E-09 8.799E-09 1.566E-24
0.20 0.14514 2.749E-08 2.749E-08 2.305E-18
0.25 0.14514 6.626E-08 6.626E-08 1.130E-14
0.30 0.14514 1.355E-07 1.355E-07 3.213E-12
0.35 0.14514 2.476E-07 2.474E-07 1.798E-10
0.40 0.14514 4.196E-07 4.159E-07 3.649E-09
0.45 0.14514 6.945E-07 6.567E-07 3.772E-08
0.50 0.14514 1.230E-06 9.872E-07 2.432E-07
0.55 0.14514 2.540E-06 1.427E-06 1.113E-06
0.60 0.14514 5.939E-06 1.997E-06 3.943E-06
0.65 0.14513 1.419E-05 2.722E-06 1.147E-05
0.70 0.14513 3.220E-05 3.631E-06 2.857E-05
0.75 0.14513 6.769E-05 4.757E-06 6.293E-05
0.80 0.14513 1.316E-04 6.141E-06 1.254E-04
0.85 0.14513 2.381E-04 7.835E-06 2.303E-04
0.90 0.14512 4.048E-04 9.901E-06 3.95E-04
0.95 0.14512 6.519E-04 1.242E-05 6.39E-04
1.00 0.14512 0.001002 1.549E-05 9.87E-04
1.05 0.14512 0.001480 1.922E-05 0.001461
1.10 0.14511 0.002112 2.375E-05 0.00209
1.15 0.14511 0.002925 2.923E-05 0.00289
1.20 0.14512 0.003945 3.585E-05 0.00391
1.25 0.14512 0.005201 4.378E-05 0.00516
1.30 0.14512 0.006720 5.322E-05 0.00667

TABLE VIII. Total density ρ (from Ref. 46) and normal fluid
densities (total, phonon and roton contributions) as a function
of temperature, calculated numerically using the measured
dispersion relation (this work). See Supplemental Material at
[URL will be inserted by publisher] for more detailed tables.

IX. CONCLUSIONS

The main result of this work is the determination of
the dispersion relation ǫ(k) of superfluid 4He in the whole
wave-vector range at saturated vapor pressure, and in
a large range for pressures up to 24 bar. Earlier neu-
tron data were scarce, of low resolution, often contra-
dictory. Roton and maxon parameters were affected by
the instrumental resolution and the wave-vector range
over which the dispersion curve was averaged out, lead-
ing to a substantial spread in the values found in the
literature; as the experimental techniques progressively
improved, lower roton energies, wave-vectors and effec-
tive masses were obtained. Motivated by the lack of high
accuracy data, Donnelly and coworkers46,51 designed a
‘recommended dispersion relation’, a spline curve mak-
ing its way across the large error bars of some of the data
available at that time.
A measured dispersion curve is now available. It is

characterized by small error bars, and it agrees well
with measurements performed by other techniques: ul-
trasound and compressibility at low wave-vectors, as well
as heat capacity, a technique providing an important
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FIG. 59. Number of phonon and roton excitations per atom.
The numerical calculation performed with the measured low
temperature dispersion curve, is accurate for T<1.3K.

global test over a large wave-vector range.
Our neutron measurements have been performed using

time of flight (TOF) techniques with a 105 pixels detec-
tor matrix. Statistical errors are in general negligible in
this work. Considerable effort has been devoted to under-
stand the sources of systematic errors and the resulting
corrections. This also allowed us to identify problems
that affected earlier measurements.
The energy scale of our spectrometer has been re-

fined by a calibration at a single point, the roton en-
ergy ∆R=0.7418meV determined with an uncertainty of
1µeV by Stirling11,57,59. This is the main source of un-
certainty of our results for ǫ(k). It affects them in a
global way, and they can therefore be corrected (the en-
ergies should be corrected proportionally, as indicated by
Eq. 13, and the wave-vectors recalculated using Eq. 11)
if a more accurate value of ∆R becomes available. The
remaining systematic errors originate from small defects
in the IN5 spectrometer construction. Comparing data
at two different neutron energies has allowed us to show
that the corresponding effects are smaller than the global
systematic error quoted above. They can be seen as os-
cillations in the curves, in particular around the roton
minimum. No effort was done to suppress these by av-
eraging or smoothing, since they are a good indicator,
for further applications of the present data, of residual
systematic errors.
The measured dispersion curve has allowed us to cal-

culate the thermodynamic properties of superfluid he-
lium in the temperature range below 1.3K, where the
non-interacting-excitations picture is valid. Our results
provide the most accurate values for the heat capacity
(direct measurements are affected by delicate issues of
thermometry and temperature scales), the normal fluid
density, and other thermodynamical properties. They
also provide independently the contributions from exci-
tations in different wave-vector ranges, and in particular
the phonon and the roton contributions. This informa-
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tion is of interest, for instance, for low temperature trans-
port phenomena, the damping of nano-resonators in he-
lium below 1K26,27, particle detection29–31, and several
other effects determined by ballistic phonons and roton
quasiparticles.

In addition to these numerical calculations, we de-
veloped analytical expressions for the thermodynamical
properties. We found that specific heat measurements
were analyzed using inconsistent low temperature series
expansions; no disagreement is observed between the neu-
tron results and the specific heat data using our coherent
expressions.

The results on pure superfluid 4He have analogues
in other systems. Rotons and maxons are studied in
4He in reduced dimensions, confined geometries, droplets
spectrometry22,91–95, but also in 3He96,97, in cold atomic
gases98–100, classical liquids101, etc.: they are a general
feature of many-body interacting systems.

Throughout this manuscript, we have considered ‘el-
ementary excitations’ (poles of the fully renormal-
ized single-particle propagator) and ‘statistical quasi-
particles’ (elementary excitation energies defined as the
functional derivative of the total energy with respect
to the distribution function), in the sense described by
Balian and de Dominicis102–104, as essentially identi-
cal concepts. The description of the thermodynamic

properties using a self-consistent temperature dependent
dispersion relation has been explored by Donnelly and
Roberts88, it describes phenomenologically the thermo-
dynamic properties. The other route, presently explored
by different types of many-body microscopic calcula-
tions, seems more promising. The difference between
the measured specific heat and that calculated for non-
interacting quasi-particles using the dispersion curve has
a simple behavior (see Fig. 50), and provides information
about roton-roton interactions105,106. Additional contri-
butions have been predicted103,104 for the heat capac-
ity, it would be interesting to have a theoretical estimate
of their magnitude and make a quantitative comparison
with the present data.
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