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Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO3 in its high-
field canted antiferromagnetic state is well described by a spin model that violates rhombohedral
symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state
is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-
parallel spins. The revised spin model for BiFeO3 contains two new single-ion anisotropy terms that
violate rhombohedral symmetry and depend on the direction of the magnetic field.

I. INTRODUCTION

The room temperature multiferroic BiFeO3 is one
of the most technologically important materials in the
rapidly expanding field of spintronics [1–3], with applica-
tions to nanoelectronics [4, 5] and photo-voltaics [6, 7].
One of the most useful ways to control the properties
of BiFeO3 thin films is through strain, which unwinds
the cycloidal spin state and stabilizes a canted G-type
antiferromagnet (AF) [8, 9]. Increasing epitaxial strain
transforms the structure of thin films from rhombohedral
to “tetragonal-like” monoclinic [10–12]. Recent work on
thin films [13, 14] reveals that epitaxial strain can ro-
tate the AF vector S1 − S2 with respect to the electric
polarization P. Despite great interest in controlling its
magnetic properties, comparatively little is known about
the effects of magnetoelastic strain on bulk BiFeO3 [15].

Magnetic properties of bulk materials are typically de-
scribed by spin Hamiltonians with constant parameters.
Due to magnetostriction, however, those parameters may
depend on field and temperature. In ferromagnetic (FM)
materials, a large magnetic moment strains the crystal
and the strain changes the spin couplings [16–19]. Less
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is known about the effects of magnetostriction in AF ma-
terials or in materials with weak FM moments, where the
most notable manifestation of magnetostriction appears
to be a spontaneous or field-induced spin reorientation
[18, 20, 21].

A small, canted magnetic moment less than 0.1µB ap-
pears just above 18 T in the G-type AF phase of BiFeO3

[22–25]. The spin model of BiFeO3 in this canted phase
is not well understood because high fields present chal-
lenges for both structural and spectroscopic probes. In
this paper, we describe the THz absorption by spin waves
in the high-field canted phase of BiFeO3. Based on high-
resolution measurements of the spin-wave frequencies, we
show that the change of symmetry from rhombohedral to
monoclinic activates two new coupling terms in the spin
Hamiltonian. This work demonstrates that THz mea-
surements can be used to determine the magnetoelastic
coupling constants in the AF phase of a technologically-
important material.

Following the appearance of the electric polarization P
along one of the pseudo-cubic diagonals, the cubic sym-
metry of the perovskite structure of bulk BiFeO3 is bro-
ken below Tc ≈ 1100 K [26–28]. A cycloidal spin state
with wavevector Q ⊥ P and spins predominantly in the
plane defined by Q and P develops below TN ≈ 640 K
[29–31]. In zero magnetic field, the cycloid has a wave-
length of 62 nm [29, 32–34]. An applied magnetic field
increases the wavelength and rotates Q [35]. When a
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field applied perpendicular to P exceeds Bc ≈ 18 T, the
cycloid transforms into a G-type AF [36]. Both the po-
larization P and the magnetization M exhibit step-like
changes at Bc [22, 37].

Although the crystal structure of bulk ferroelectric
BiFeO3 was first assigned to the rhombohedral space
group R3c [28, 38–41], high-resolution structural stud-
ies suggested that the crystal symmetry might be mono-
clinic Cc [42] or even lower, triclinic P1 [43]. Additional
evidence for broken symmetry comes from magnetostric-
tion measurements: as the cycloid unwinds in a magnetic
field, the contraction or expansion of the lattice depends
on the direction of the applied field [15]. Based on a
study of the THz absorption spectra in the high-field
canted AF phase, this paper shows that magnetoelas-
tic coupling transforms the crystal structure of BiFeO3

from rhobomhedral to monoclinic. A new microscopic
model for the canted AF phase contains two new single-
ion anisotropy terms that break rhombohedral symmetry
and depend on the orientation of the magnetic field.

Many years and tremendous effort have been spent
constructing the spin model for bulk BiFeO3. Much
has been learned about the microscopic parameters by
studying the spin-wave excitations of the cyloidal state
using four different methods: inelastic neutron scattering
(INS) [44–47], Raman [48, 49], sub-millimeter wave elec-
tron spin resonance (ESR) [50], and THz [51–54] spectro-
scopies. Because few sub-THz spectroscopic methods are
compatible with high magnetic fields [50, 52], much less
is known about the spin-wave excitations in the canted
AF state.

The two iron S = 5/2 spins in the G-type AF struc-
ture produce two spin-wave modes, ν1 and ν2. In earlier
measurements, crystals were grown by the flux method,
which provided platelets with a large surface parallel to
(001) crystal plane (pseudo-cubic notation). The lower
frequency mode ν1 was then observed by ESR [50] and
the upper mode ν2 by THz absorption spectroscopy [52]
with field along (001). The dependence of the mode fre-
quencies on the field direction was not studied.

In the present study, a large single crystal grown us-
ing the floating zone method [55] was cut into 0.5 mm
thick samples with large faces normal to [1,-1,0], [-1,-1,2]
and [1,1,1]. THz absorption measurements employed ei-
ther Fourier transform far-infrared (FIR) or continuous
wave (CW) spectroscopy. FIR measurements were per-
formed above 0.55 THz in a fixed magnetic field. CW
measurements were performed at a fixed frequency be-
tween 0.1 and 0.9 THz by sweeping the magnetic field,
a method also called sub-millimeter wave ESR. Radia-
tion propagated either parallel (Faraday configuration) or
perpendicular (Voigt configuration) to the applied mag-
netic field. Descriptions of the experiment and measured
spectra are provided in the Supplemental Material [56].

In low fields and temperatures, it is sufficient to treat
the exchange, Dzyaloshinskii-Moriya (DM), and single-
ion anisotropy parameters as constants. At high mag-
netic fields, however, magnetoelastic coupling (magne-

J1

J2

Fe3+

S1

S2

FIG. 1. (Color online) (a) The crystallographic pseudo-cubic
unit cell of BiFeO3. In the canted AF state, the magnetic unit
cell is 2a × 2a × 2a with two spins, S1 and S2, per unit cell
and pseudo-cubic unit vectors x = [1, 0, 0], y = [0, 1, 0], and
z = [0, 0, 1]. (b) Fragments of two nearest-neighbor hexago-
nal planes viewed along Z. In the hexagonal planes (shaded
triangles) normal to Z = [1, 1, 1]/

√
3, the unit vectors are

X = [1,−1, 0]/
√

2 and Y = [−1,−1, 2]/
√

6.

tostriction) distorts the lattice and can change those pa-
rameters. In a FM, Callen and Callen [16–19] showed
that the driving force of magnetoelastic coupling is the
macroscopic magnetic moment, which changes with tem-
perature or in a magnetic field. However, AFs do not
have a net magnetic moment. In BiFeO3, the DM in-
teraction and magnetic field cant the spins but the net
magnetic moment is very weak.

To study the magnetoelastic properties of an AF, we
expand the free energy in terms of the strain and the FM
and AF ordering vectors, S1 + S2 and S1 − S2 [20]. But
calculating the spin-wave spectrum using this approach
requires an exact spin-operator form for the magnetoe-
lastic coupling. This paper shows that THz spectroscopy
can be used to narrow down the possible magnetoelastic
coupling terms in the Hamiltonian and to determine the
small coupling parameters.

This paper is divided into five sections. Section II de-
scribes the new spin model for BiFeO3 in the high-field
canted phase. Predictions of that model are compared
with THz measurements in Section III and the resulting
model parameters are presented in Section IV. Section V
contains a discussion and conclusion. In the Supplemen-
tal Material [56], we derive the possible magnetoelastic
coupling terms consistent with monoclinic symmetry for
BiFeO3.

II. MODEL

We propose a new spin model for BiFeO3 by applying
the microscopic theory of Callen et al. [16, 18] to the
canted AF state. Even in the absence of a net magnetic
moment, strain couples to the nearly collinear spins S1

and S2 in the magnetic unit cell. Due to crystal fields,
this magnetoelastic coupling affects the local single-ion
anisotropy parameters of the spin Hamiltonian. Details
of this treatment are provided in the Supplemental Ma-
terial [56].
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The earlier rhombohedral spin model of the cycloidal
spin state contained two exchange constants, two DM
terms, and one anisotropy term:

Hm = −J1

∑
〈i,j〉

Si · Sj − J2

∑
〈i,j〉′

Si · Sj (1)

+D1

∑
〈i,j〉

(Z× ei,j/a) · (Si × Sj)

+D2

∑
〈i,j〉

(−1)hi Z · (Si × Sj)−KZ

∑
i

S2
iZ

−1

2
KH

∑
i

[
(SiX + iSiY )6 + (SiX − iSiY )6

]
−gµBB

∑
i

m · Si

where ei,j = ax, ay, or az connects the S = 5/2 spin
Si on site Ri with the nearest-neighbor spin Sj on site

Rj = Ri + ei,j . The integer hi =
√

3Ri · Z/a is the
hexagonal layer number. While the AF exchange J1

couples nearest-neighbor spins along the edges of the
cube, the AF exchange J2 couples next-nearest neigh-
bor spins along the cube face diagonals, Fig. 1. Easy-
axis anisotropy KZ lies along the polarization direction
Z. Hexagonal anisotropy [57, 58] KH pins the plane of
the cycloid and the cycloidal wavevector Q to one of the
hexagonal axis [1,−1, 0], [0, 1,−1] or [1, 0,−1] perpendic-
ular to Z. The last term in (1) is the interaction of spin
Si with a magnetic field B = Bm. We assume that the g
factor for the S = 5/2 iron spins is isotropic with g = 2.

Two DM interactions are produced by broken inversion
symmetry. While the first DM interaction D1 determines
the cycloidal period λ [59], the second DM interaction
D2 tilts the cycloid out of the plane defined by Z and
the ordering wavevector Q ⊥ Z [22, 59, 60]. Because
this tilt averages to zero over the length of the cycloid,
BiFeO3 has no spontaneous magnetic moment below Bc.
In the canted AF state above Bc, BiFeO3 has a small
ferrimagnetic moment perpendicular to P [22–25].

Exchange parameters J1 and J2 are taken from INS
[44–46], which measured the spin-wave spectra over a
wide range of energies and wavevectors. Because INS
lacks sufficient wavevector resolution, the smaller DM
and anisotropy terms were later estimated using THz
absorption spectroscopy [52]. For convenience, Table I
summarizes the values of these parameters and the ex-
perimental or theoretical methods used for their deter-
mination based on the properties of the cycloidal state
assuming rhombohedral R3c symmetry.

The spin model for BiFeO3 undergoes significant sim-
plifications in the high-field canted AF state. Due to
the steep dispersion ω = cq of photons, THz spec-
troscopy measures the spin-wave frequencies at wavevec-
tor q � 2π/a. With two spins in the cubic unit cell shown
in Fig.1, J2 does not contribute when q ≈ 0 [61]. It is
also easy to show that the first DM interaction D1 has no
effect on the mode frequencies in the canted AF state be-
cause it sums to zero. Taking J1 ≈ −5.3 meV from INS

measurements [44–46], HAF
m only depends on the DM in-

teraction parameter D2 and the anisotropy parameters
KZ and KH :

HAF
m = −J1

∑
〈i,j〉

Si · Sj (2)

+D2

∑
〈i,j〉

(−1)hi Z · (Si × Sj)−KZ

∑
i

S2
iZ

−1

2
KH

∑
i

[
(SiX + iSiY )6 + (SiX − iSiY )6

]
−gµBB

∑
i

m · Si.

Hexagonal anisotropy is the weakest interaction in this
Hamiltonian with KHS

6 < 10−3 meV. Since |D2| � KZ ,
the spins lie primarily in the XY plane with 〈SiZ〉 ≈ 0.
The spin canting induced by the DM interaction and by
magnetic fields [15] up to about 35 T is less than 2◦.
Consequently, the zero-order spin state is S1 ≈ −S2 and
(S1 − S2) ⊥ B.

Because the spins are perpendicular to the field B, the
magnetoelastic strain depends on the field direction m.
The equilibrium strain is solved by minimizing the elastic
and magnetoelastic energies for field directions X and Y,
see Supplemental Material [56]. When B ‖ Z, there is no
preferred orientation for the spins in the hexagonal plane
and the strain vanishes. For B ‖ X, the zero-order spin
state has (S1−S2) ‖ Y. For B ‖ z or ‖ Y, the zero-order
spin state has (S1 − S2) ‖ X because both z and Y are

perpendicular to X = (x− y)/
√

2.
Both the strain and the unit vectors Xn and Yn are

determined by the field direction m. Hence, our anal-
ysis would be the same for B along any cubic axis. If
B ‖ x, then the spins S1 and S2 would point (approx-

imately) along ±X3 with X3 ≡ [0, 1,−1]/
√

2 ⊥ x. If
B ‖ y, then the spins would point along ±X2 with

X2 ≡ [−1, 0, 1]/
√

2 ⊥ y. For specificity, we treat the

case B ‖ z with X = X1 ≡ [1,−1, 0]/
√

2 ⊥ z. In all
cases, Yn = Z×Xn.

The new spin state and spin-wave frequencies are mod-
eled by the Hamiltonian

H = HAF
m +

∑
i

Hime(m), (3)

where the new strain-induced Hamiltonian for the i-th
spin is

Hime(m) = −K(m)
A,1 SiY SiZ −K

(m)
A,2 (S2

iX − S2
iY ) (4)

−K(m)
E,1 SiY S

3
iZ −K(m)

E,2 (S2
iX − S2

iY )S2
iZ

−K(m)
E,3 (S4

iX + S4
iY − 6S2

iXS
2
iY ),

where the single-ion anisotropy constants depend on the
field orientation m. As shown in the Supplemental Mate-
rial, the two strains εγ,11 = 1

2 [εXX − εY Y ] and εγ,21 = εY Z
couple to the zero-order spin state [56].
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TABLE I. Exchange and anisotropy parameters, unit meV,
of BiFeO3. The spin-wave energies at q = 0 do not depend
on the parameters J2 and D1 in the canted AF state. KH

is hexagonal anisotropy [57, 58] used to model the rhombo-
hedral phase (see Supplemental Material). Magnetoelastic
anisotropy parameters KE,2 and KE,3 were determined for
the magnetic field directions X, Y, and z. By symmetry,
magnetoelastic anisotropy parameters are zero when B ‖ Z.

Previous Method This work
J1 -5.3 a -5.3 (fixed)
J2 -0.2 a -
D1 0.18 b -
D2 6.0× 10−2 c (8.32± 0.48)× 10−2

KZ 4.0× 10−3 d (3.76± 0.39)× 10−3

KH 4× 10−6 e 0
Magnetic field direction (this work)

X Y, z
KE,2 0 (1.02± 0.27)× 10−4

KE,3 −(5.90± 0.68)× 10−5 −(1.14± 0.61)× 10−5

a INS [44–46]
b Cycloid wavelength [59]
c Cycloid tilt [23, 64], INS [47]
d 3rd harmonic generation [65, 66], neutron diffraction [36], INS

[45, 47], spectroscopy [52, 67], tight binding [68]
e Cycloid order vector rotation [57, 58]

III. COMPARISON WITH THZ
MEASUREMENTS

For each field direction and magnitude, the energy
E = 〈H〉 was minimized as a function of angles θi and φi
for the two spins Si = S(cosφi sin θiX + sinφi sin θiY +
cos θiZ) in the unit cell. Linear spin-wave theory was
then used to evaluate the two spin-wave mode frequen-
cies, which were compared with the measured frequen-
cies. This loop was repeated by varying the Hamiltonian
parameters until a minimum χ2 was achieved [62].

Measured mode frequencies are plotted as a function
of magnetic field along X, Y, Z, and cubic axis z in
Fig. 2. The blue circles and black squares are the spin-
wave frequencies. The red dashed line gives the linear
field dependence of the red circles, which are produced
by impurities [56].

The boundaries between the cycloidal and canted AF
state found by THz absorption spectroscopy agree fairly
well with the vertical lines in Fig. 2 obtained from the
the maximum of dM/dB, where M(B) is the magneti-
zation [25, 63]. For field along Z, d2M/dB2 vanishes at
the upper critical field of the intermediate state, 28 T.
Scattering of the THz data near 18 T for field along X
or Y, Figs. 2(a) and (b), is probably caused by a slight
misorientation of the sample relative to B.

At 28 T, the transition into the canted AF state for
B ‖ Z is clearly marked by the appearance of the ν2

mode and the disappearance of other modes, Fig. 2(c).
Since strain is absent and there is no in-plane anisotropy
for this field direction (we assume KH = 0), our model
predicts that ν1 = 0.

An intermediate spin state appears between the cy-
cloidal and canted AF states when B ‖ Z, Fig. 2(c). In

the cycloidal state, the frequency of mode Φ
(1)
1 [54] ex-

trapolates to zero at 24.5 T, the same field where the cy-
cloidal state transforms to an intermediate state accord-
ing to magnetization data. Other modes do not exhibit
clear changes when entering this intermediate state. The-
oretical studies [69] and neutron diffraction spectroscopy
[15, 70] reveal that the intermediate state in magnetic
field B ⊥ Z is a conical spin structure with ordering vec-
tor along the magnetic field. While earlier measurements
suggested that it disappears at low T [15], our data in-
dicate that the intermediate state exists even at low T
when B ‖ Z.

Our main theoretical results for the spin-wave frequen-
cies are shown by the solid curves in Fig. 2, which were
obtained for a magnetoelastically strained crystal us-
ing Eq. (3). We introduce ten strain-induced parameters

K
(m)
Γ,k : one set for m = X and the other set for m = Y

or z. Recall that strain is absent for m ‖ Z. Because the

spins lie in the XY plane, −K(m)
E,1

∑
i SiY S

3
iZ does not

contribute to the spin dynamics (only two of the three
factors of SiZ can be replaced by boson operators in the
Holstein-Primakoff expansion [62]). Our fit gave large

errors for the parameters K
(m)
A,1 , K

(m)
A,2 , and K

(m=X)
E,2 ,

which were then set to zero. Consequently, neither of
the l = 2 monoclinic, single-ion anisotropy terms appear
in our Hamiltonian. Found to be negligible, KH was also
set to zero. The final fit was then performed with three
magnetostriction-enforced parameters together with D2

and KZ : five parameters in all [71]. Table I lists the val-
ues for these five parameters.

Aside from some differences due to the scattering of the
experimental points (particularly for ν1), the agreement
between theory and experiment for the THz frequencies
is quite good. By contrast, the rhombohedral spin model
yields a value for χ2 that is four times larger [56] than
our monoclinic model.

IV. MODEL PARAMETERS

Table I compares the parameters of the canted AF and
cycloidal states. While the new estimate for KZ is close
to the previous estimate in the cycloidal state, the new
value for D2 is about 39% larger than the cycloidal esti-
mates.

Our numerical results for the anisotropy parameters
agree with simple estimates based on their order in the
spin-orbit coupling parameter l|J1| where l ∼ 10−1.
While the DM interactions are first order in l and the
easy-axis anisotropy KZ is second order in l, the magne-
toelastic parameters KE,2 and KE,3 are third order [57].
Therefore, S4KE,n ∼ lS2KZ so that KE,n ∼ 10−2KZ , as
found in Table I. Just as inelastic neutron-scattering lacks
the energy resolution to determine the small DM and
anisotropy interactions in BiFeO3, it also lacks the en-
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 B | | [ 0 , 0 , 1 ]
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)

a )  B | | [ - 1 , - 1 , 2 ] ν2

ν1

ν1

ν2
b )  B | | [ 1 , - 1 , 0 ]

M a g n e t i c  F i e l d  ( T )

ν2

c )  B | | [ 1 , 1 , 1 ]

FIG. 2. Spin-wave frequencies at liquid He temperature for field along (a) Y (blue circles and blue lines) and z (black squares
and black line, data from [52]), (b) X, or (c) Z. Experimental points are marked by blue circles and black squares. Solid
lines are the best fits for spin-wave modes ν1 and ν2 using Eq. (3). The dashed red line is the linear fit of impurity peak

positions, red circles. The black dotted line in panel (c) is the linear extrapolation of the frequency dependence of mode Φ
(1)
1

in the cycloidal state [54]. The gray background denotes the cycloidal state. The yellow background denotes the intermediate
spin state between the cycloidal and canted AF states for B ‖ Z in panel (c). The boundaries are determined from the field
dependence of the magnetization M(B) [63].

ergy resolution to determine the even smaller magnetoe-
lastic coupling parameters KE,2 and KE,3. Fortunately,
the small parameters induced by spin-orbit coupling can
be measured using spectroscopic techniques.

As expected, the canted AF state has a small FM mo-
ment in the XY plane induced by the DM interaction D2.
The spin canting and corresponding FM moment M0 can
be experimentally estimated by extrapolating the mag-
netization to zero magnetic field. While early work [72]
estimated that M0 = 0.03µB per Fe, more recent exper-
iments obtained M0 = 0.048µB [73] or 0.04µB [15] per
Fe.

With spins in the XY plane and KH = 0, only the

K
(m)
E,3 term violates rotational invariance. The canting

angle φ0 � 1 is theoretically given by

φ0 ≈
1

2

D2

|J1|+K
(m)
E,3 S

2/3
(5)

with canted magnetization

M0 = 2SµB sinφ0 ≈
SµBD2

|J1|+K
(m)
E,3 S

2/3
. (6)

Because K
(m)
E,3 S

2/3|J1| ∼ 10−5, φ0 ≈ D2/2|J1| and

M0 ≈ SµBD2/|J1| are independent of the direction of
the field in the XY plane, in agreement with the obser-
vation that M0 is the same for fields along X and Y [73].
The rotational invariance of M0 confirms that magne-
tostriction affects neither the exchange coupling J1 nor
the DM coupling D2: if J1 or D2 were altered by strain,
then M0 ∝ D2/|J1| would be different for fields along
X and Y. Our result that magnetostriction mostly af-
fects the single-ion anisotropy is consistent with recent
ab initio results that the single-ion anisotropy is highly
sensitive to a small misfit of crystal parameters [14].

The fitting parameter D2 ≈ 8.3 × 10−2 meV gives
φ0 = 0.0078 ± 0.0005 rad and M0 ≈ 0.039 ± 0.002µB
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per Fe, which is within range of the two most recent ex-
perimental estimates [15, 73]. By comparison, the value
D2 ≈ 6.0×10−2 meV obtained from earlier cycloidal state
measurements [23, 47, 64] and from a rhombohedral fit
for the canted AF state [56] gives M0 = 0.027µB per Fe,
which is about 33% smaller than the recent experimental
estimate of 0.04µB [15].

V. DISCUSSION AND CONCLUSION

Since K
(m)
E,2 and K

(m)
E,3 depend on the direction m of

the magnetic field, the strain is different for field along X
and Y. This agrees with the observation that the magne-
tostriction ∆lX/lX at Bc [74] is positive when B ‖ X and
negative when B ‖ Y. Moreover, ∆lX/lX is nearly con-
stant as B increases above the critical field. Hence, the
single-ion contributions of the spin-canting FM compo-
nent S1 +S2 to the magnetostriction are small compared
to the single-ion contributions of the AF vector S1 − S2.

Other evidence for magnetoelastic coupling in the
canted AF state is provided by the transverse electric
polarization Pt ⊥ Z, which changes as the magnetic field
is rotated in the hexagonal plane [74]. If m ‖ Y, Pt ‖ Y;

if m ‖ X, Pt ‖ −Y. Both strains εγ,11 = [εXX − εY Y ]/2

and εγ,21 = εY Z preserve the Y Z mirror plane and allow
Pt ‖ Y. Because εY Z tilts the Z axis, it could produce
the in-plane component Pt by rotating the FE polariza-
tion P. A tilting angle of 0.01 to 0.04◦ is consistent with
the magnitude of Pt [15].

In the cycloidal state, Pt is again modulated by the
rotation of an in-plane magnetic field with an amplitude
roughly half the size of that in the AF state [74]. Un-
like in the canted AF state, this behavior cannot be ex-
plained by the strain εY Z because a periodic spin struc-
ture like the cycloid should not produce homogeneous
strain. Therefore, it is likely [74] that Pt is induced by
metal-ligand hybridization [75] and not by the tilting of
the c axis in both the cycloidal and AF states. Addi-
tional magnetostriction measurements are needed to de-
termine which strain component, εγ,11 = [εXX − εY Y ]/2

or εγ,21 = εY Z , is dominant in the AF state of BiFeO3.
The hysteresis of the magnetostriction [15] and of

the cycloidal wavevector Q in a magnetic field [35] also
demonstrate that magnetoelastic coupling is important
in the cycloidal state. The rotation of the AF vec-
tor S1 − S2 with the period of the cycloidal wavelength
will induce strain at the harmonic wavevectors 2Q and
4Q. Consequently, the single-ion anisotropy constants
will also be modulated with wavevectors 2Q and 4Q.
However, the spin-wave frequencies of the cycloidal state
are (at least so far) well described by the rhombohedral
model without additional magnetoelastic couplings.

This work demonstrates that high-resolution THz ab-
sorption measurements can be used to determine the
magnetoelastic coupling constants for the AF phase
of a material. The magnetic-field dependence of the
q = 0 spin-wave frequencies in the canted AF state of

BiFeO3 were fitted using a spin model consistent with
the monoclinic distortion of the orthorhombic R3c lat-
tice. Whereas epitaxial strain stabilizes the monoclinic
phase in thin BiFeO3 films [10], magnetoelastic coupling
stabilizes the monoclinic phase in bulk BiFeO3. The mag-
netoelastic coupling is driven by the in-plane spin com-
ponents parallel to the AF order vector S1 − S2. Those
spin components couple to the strain through single-ion
anisotropy interactions. Our new microscopic model for
the canted AF state of BiFeO3 contains two single-ion
terms that appear in monoclinic symmetry and depend
on the direction of the magnetic field in the XY plane.
The dependence of the spin microscopic parameters on
the orientation of the magnetic field has clear implica-
tions for the technological applications of BiFeO3.

Several new questions about bulk BiFeO3 are raised
by this work. Density-functional calculations are needed
to understand the disappearance of the l = 2 single-ion
anisotropy terms. Magnetostriction measurements are
required to distinguish the strains εγ,11 = [εXX − εY Y ]/2

and εγ,21 = εY Z in the canted AF state. The appear-
ance of the intermediate conical state for field along Z at
low temperatures requires additional study. New mea-
surements and theory are needed to clarify the role of
magnetoelastic coupling in the cycloidal state. Thus, the
proposed model may serve as the foundation for future
work on this important multiferroic material, providing
insight into both the cycloidal and canted AF states.
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Magnetoelastic Distortion of Multiferroic BiFeO3 in the Canted Antiferromagnetic
State: Supplemental Material

T. Rõõm∗, J. Viirok, L. Peedu, U. Nagel, D. G. Farkas, D. Szaller, V. Kocsis, S. Bordács, I.
Kézsmárki, D. L. Kamenskyi, H. Engelkamp, M. Ozerov, D. Smirnov, J. Krzystek, K.

Thirunavukkuarasu, Y. Ozaki, Y. Tomioka, T. Ito, T. Datta, and R. S. Fishman†

A. Theory

This Supplemental Material develops a new spin model for BiFeO3 in the canted AF state. Magnetoelastic coupling
distorts the crystal and breaks rhombohedral symmetry by introducing new single-ion anisotropy terms into the spin
Hamiltonian. The total energy is the sum of elastic, magnetic (spin-only part), and magnetoelastic energies:

H = He +Hm +Hme. (7)

To find the equilibrium spin configuration, the energy E = 〈H〉 is minimized with respect to both the strain and
the spin orientations. The spin-wave spectrum is evaluated using Hm plus additional terms arising from Hme due to
the strain. Below we write down each part of (7), find the strain induced by the zero-order AF spin state, and then
construct a new spin Hamiltonian by including additional strain-induced single-ion anisotropy terms.

1. Magnetoelastic energy

Our treatment of the magnetoelastic energy follows the microscopic theory of Callen et al. [16, 17]. The general
form for single-ion contributions to the magnetoelastic energy is given by

Hme = −
∑
f

∑
Γ,Γ′

∑
j,j′

B̃Γ,Γ′

jj′ (f)
∑
i

εΓ,ji SΓ′,j′

i (f) + . . . , (8)

which omits higher-order terms in the strain εΓ,ji . Since we only consider homogeneous strain, the magnetoelastic
energy is the same in each magnetic unit cell, with spins labeled by f . In BiFeO3, the two spins f = 1 and 2 in the

unit cell are equivalent and the magnetoelastic constants are equal: B̃Γ,Γ′

jj′ (1) = B̃Γ,Γ′

jj′ (2). Both Γ and Γ′ count the

irreducible representations of the spin-site symmetry. The final factor in Eq. [8], SΓ,j
i (f), is the linear combination

of f spin operators that transform like the i-th component of the irreducible representation Γ. Because the strain is
homogeneous, it is sufficient to consider point group symmetry C3v at the spin sites. If more than one combination
of symmetrized strain or spin operators transform like Γ (Γ′), then j > 1 (j′ > 1). Index i runs over the components
of the basis functions that transform like an n-dimensional irreducible representation, i = 1, . . . , n. The relevant
irreducible representations in C3v are A1 and E with Γ = Γ′.

Several criteria constrain the terms in the magnetoelastic Hamiltonian. Since the Hamiltonian transforms like the
fully symmetric representation A1, spin operators and strain can be combined only when Γ ⊗ Γ′ contains A1. The
strain is time-inversion invariant but the spin is not. Because the Hamiltonian must be invariant with respect to time

inversion, only even powers of spin operators are allowed in SΓ,j
i .

Our symmetry analysis is simplified by expanding the strain and spin tensors in spherical harmonics Y ml and Ym′

l′ ,
respectively. The strain tensor only has l = 0 and l = 2 components. Even powers of spin operators require even
values of l′ and we limit l′ to values of 2 and 4.

Following the symmetry analysis in Section V A 6, Table II presents the A1-symmetric magnetoelastic terms of
Eq. 8 that are linear in strain and second or fourth order in the spin. The magnetoelastic constants B̃αjj′ and B̃γjj′
are explained in Table III, which provides the mapping between tensors in spherical {θ, φ} and Cartesian coordinates
{x, y, z}. Since the spin is treated classically, this mapping also applies to the spin (for quantum-mechanical spins,
the mapping of tensor operators from spherical to Cartesian coordinates was given by Ref. [16,76]). Labels α and γ
denote tensors of A1 and E symmetry, respectively. In C3v, Γ⊗ Γ′ contains A1 only if Γ = Γ′.

Altogether, four spherical tensor functions transform like the irreducible representation A1 and five transform like
the two-dimensional irreducible representation E for l = 0, 2 and 4. For example, B̃γ23 is the coupling between strain
represented by the spherical tensor function (γ, 2) and the spin function represented by the spherical tensor function
(γ, 3), Table III. Because Y0

0 term produces a constant offset of the energy (S2
x + S2

y + S2
z = S2), it is not included in

Hme.
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TABLE II. A1-symmetric magnetoelastic coupling terms between the spherical strain tensor Y ml (l = 0, 2) and the spherical
spin tensor Yml (l = 2, 4) in point group C3v. |Y ml 〉+ = Y ml + Y −ml and |Y ml 〉− = Y ml − Y −ml where 0 ≤ m ≤ l. Y ml (θ, φ) are
the basis functions of a full rotation group O(3) as defined in Ref. [77].

Coupling constant Spherical harmonics

B̃α12 Y 0
0 Y0

2

B̃α22 Y 0
2 Y0

2

B̃α23 Y 0
2 Y0

4

B̃α14 Y 0
0

∣∣Y3
4

〉
+

B̃α24 Y 0
2

∣∣Y3
4

〉
+

B̃γ11
∣∣Y 2

2

〉
+

∣∣Y2
2

〉
+
−

∣∣Y 2
2

〉
−

∣∣Y2
2

〉
−

B̃γ12
∣∣Y 2

2

〉
+

∣∣Y1
2

〉
+

+
∣∣Y 2

2

〉
−

∣∣Y1
2

〉
−

B̃γ13
∣∣Y 2

2

〉
+

∣∣Y1
4

〉
+

+
∣∣Y 2

2

〉
−

∣∣Y1
4

〉
−

B̃γ14
∣∣Y 2

2

〉
+

∣∣Y2
4

〉
+
−

∣∣Y 2
2

〉
−

∣∣Y2
4

〉
−

B̃γ15
∣∣Y 2

2

〉
+

∣∣Y4
4

〉
+

+
∣∣Y 2

2

〉
−

∣∣Y4
4

〉
−

B̃γ21
∣∣Y 1

2

〉
+

∣∣Y2
2

〉
+

+
∣∣Y 1

2

〉
−

∣∣Y2
2

〉
−

B̃γ22
∣∣Y 1

2

〉
+

∣∣Y1
2

〉
+
−

∣∣Y 1
2

〉
−

∣∣Y1
2

〉
−

B̃γ23
∣∣Y 1

2

〉
+

∣∣Y1
4

〉
+
−

∣∣Y 1
2

〉
−

∣∣Y1
4

〉
−

B̃γ24
∣∣Y 1

2

〉
+

∣∣Y2
4

〉
+

+
∣∣Y 1

2

〉
−

∣∣Y2
4

〉
−

B̃γ25
∣∣Y 1

2

〉
+

∣∣Y4
4

〉
+
−

∣∣Y 1
2

〉
−

∣∣Y4
4

〉
−

TABLE III. Mapping between tensors in spherical {θ, φ} and Cartesian {x, y, z} coordinates for the irreducible representations
A1 and E in C3v for l = 0, 2, 4. |Y ml 〉+ = Y ml + Y −ml and |Y ml 〉− = Y ml − Y −ml where 0 ≤ m ≤ l. Y ml (θ, φ) are the basis
functions of the full rotation group O(3) as defined in Ref. [77]. The same mapping applies between the spherical spin tensor
components and the Cartesian spin tensor components for a classical spin.

Irrep Spherical Cartesian
A1 α, 1 Y 0

0 1
A1 α, 2 Y 0

2 z2

A1 α, 3 Y 0
4 z4

A1 α, 4 i
∣∣Y 3

4

〉
+

(3x2 − y2)yz

E γ, 1 {
∣∣Y 2

2

〉
+
,−i

∣∣Y 2
2

〉
−} { 1

2
(x2 − y2), xy}

E γ, 2 {i
∣∣Y 1

2

〉
+
,−

∣∣Y 1
2

〉
−} {yz, xz}

E γ, 3 {i
∣∣Y 1

4

〉
+
,−

∣∣Y 1
4

〉
−} {yz3, xz3}

E γ, 4 {
∣∣Y 2

4

〉
+
,−i

∣∣Y 2
4

〉
−} { 1

2
(x2z2 − y2z2), xyz2}

E γ, 5 {
∣∣Y 4

4

〉
+
,−i

∣∣Y 4
4

〉
−} {

1
4
(x4 + y4 − 6x2y2), x3y − xy3}

2. Elastic energy

The general form for the elastic energy is given by [17]

He =
∑
Γ,Γ′

∑
j,j′

1

2
cΓ,Γ

′

jj′

∑
i

εΓ,ji εΓ
′,j′

i , (9)

where εΓ,ji is an n-dimensional (i = 1, . . . , n) strain function corresponding to representation Γ, j counts the strain
functions if there are more than one for a given representation Γ, and cΓjj′ are the elastic constants.

Symmetrized strain tensors for the point group C3v are [17]

εα,1 = εXX + εY Y + εZZ , (10)

εα,2 =
1

2

(√
3εZZ −

1√
3
εα,1

)
, (11)

{εγ,11 , εγ,12 } =
{1

2
(εXX − εY Y ), εXY

}
, (12)

{εγ,21 , εγ,22 } = {εY Z , εXZ}. (13)
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Using Table III and the requirement that Γ⊗ Γ′ must contain A1, the C3v-symmetric elastic energy is

He =
1

2
cα11(εα,1)2 + cα12ε

α,1εα,2 +
1

2
cα22(εα,2)2 (14)

+
1

2
cγ11[(εγ,11 )2 + (εγ,12 )2] + cγ12[εγ,11 εγ,21 + εγ,12 εγ,22 ]

+
1

2
cγ22[(εγ,21 )2 + (εγ,22 )2].

3. Magnetic energy

Within rhombohedral symmetry, the magnetic Hamiltonian of the AF state (see main text) is

HAF
m = −J1

∑
〈i,j〉

Si · Sj (15)

+D2

∑
〈i,j〉

(−1)hi Z · (Si × Sj)−KZ

∑
i

S2
iZ

−1

2
KH

∑
i

[
(SiX + iSiY )6 + (SiX − iSiY )6

]
−gµBB

∑
i

m · Si.

Because the hexagonal anisotropy is very weak (KHS
6 � gµBBS), the magnetic field determines the zero-order spin

state discussed next.

4. Strain induced by zero-order AF spin state

Based on Eq. (15), we solve for the strain using an approximate “zero-order” spin state. Neglecting the small canting
induced by the Dzyaloshinskii-Moriya interaction and magnetic field, S1 ≈ −S2 with both spins perpendicular to the
applied magnetic field. Since |D2| � KZ , the spins are forced into the hexagonal plane with SiZ ≈ 0. Hence, the
lowest-order magnetoelastic energy does not contain SZ terms for fields along X or Y.

Using symmetry-allowed terms from Table II and the mapping between tensors in spherical and Cartesian coordi-
nates from Table III, the magnetoelastic coupling of Eq. (8) for one spin is

Hime = −1

2
[B̃γ11ε

γ,1
1 + B̃γ21ε

γ,2
1 ](S2

iX − S2
iY ) (16)

−1

4
[B̃γ15ε

γ,1
1 + B̃γ25ε

γ,2
1 ](S4

iX + S4
iY − 6S2

iXS
2
iY ).

Thus, the number of strain tensor components is reduced from six to two with εγ,11 = 1
2 [εXX − εY Y ] and εγ,21 = εY Z ,

Table III.
Assuming the strain is weak enough that SZ ≈ 0 and S1 ≈ −S2, the equilibrium strain is obtained from the

minimization conditions

∂

∂εγ,11

[He +H1
me +H2

me] = 0, (17)

∂

∂εγ,21

[He +H1
me +H2

me] = 0, (18)

where the magnetoelastic energy for spins S1 and S2 is given by (16). Only even powers of the spin contribute to (16)
and the magnetoelastic couplings are equal for the two spins.

Spin-induced strain εΓ,ji (m) depends on the direction of the magnetic field m. We consider four field directions,
X, Y, Z, and z, Fig. 1 in paper. If m = Z there is no preferred spin orientation in the hexagonal XY plane so that
εγ,11 (Z) = εγ,21 (Z) = 0. If m = X, then S1 = −S2 = SY and if m = Y, then S1 = −S2 = SX. If m = z, the spins
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are along the X direction with the same spin state as for m = Y. Solving Eqs. (17) and (18), we find:

εγ,11 (X) = c−1(2b1S
2 + b2S

4), (19)

εγ,21 (X) = c−1(2b3S
2 + b4S

4), (20)

εγ,11 (Y ) = c−1(−2b1S
2 + b2S

4), (21)

εγ,21 (Y ) = c−1(−2b3S
2 + b4S

4), (22)

where

b1 = B̃γ11c
γ
22 − B̃γ21c

γ
12, (23)

b2 = B̃γ25c
γ
12 − B̃γ15c

γ
22, (24)

b3 = B̃γ21c
γ
11 − B̃γ11c

γ
12, (25)

b4 = B̃γ15c
γ
12 − B̃γ25c

γ
11, (26)

c = 2[(cγ12)2 − cγ11c
γ
22]. (27)

5. Hamiltonian with “frozen” strain

The Hamiltonian is the sum of HAF
m from Eq. (15) and the single-ion magnetoelastic interactions:

HSW
m = HAF

m +
∑
i

Hime(m). (28)

The magnetoelastic Hamiltonian for the i-th spin is

Hime(m) = −K(m)
A,1 SiY SiZ −K

(m)
A,2 (S2

iX − S2
iY ) (29)

−K(m)
E,1 SiY S

3
iZ −K(m)

E,2 (S2
iX − S2

iY )S2
iZ

−K(m)
E,3 (S4

iX + S4
iY − 6S2

iXS
2
iY ).

The single-ion anisotropy constants depend on the direction-dependent strain found in Section V A 4:

K
(m)
A,1 = [B̃γ12 ε

γ,1
1 (m) + B̃γ22 ε

γ,2
1 (m)], (30)

K
(m)
A,2 =

1

2
[B̃γ11 ε

γ,1
1 (m) + B̃γ21 ε

γ,2
1 (m)], (31)

K
(m)
E,1 = [B̃γ13 ε

γ,1
1 (m) + B̃γ23 ε

γ,2
1 (m)], (32)

K
(m)
E,2 =

1

2
[B̃γ14 ε

γ,1
1 (m) + B̃γ24 ε

γ,2
1 (m)], (33)

K
(m)
E,3 =

1

4
[B̃γ15 ε

γ,1
1 (m) + B̃γ25 ε

γ,2
1 (m)]. (34)

As shown by Eq, (16), only strains εγ,11 = [εXX − εY Y ]/2 and εγ,21 = εY Z couple to the zero-order spin state. Hence,
only five out of the fifteen magnetoelastic couplings listed in Table II survive.

6. Symmetry considerations of magnetoelastic terms in C3v

Point group C3v has three classes of symmetry elements, {E, 2C3, 3σv}, and three irreducible representations,
{A1, A2, E}. The C3 elements are ±2π/3 rotations about the Z axis, Fig. 1 in paper. The vertical reflection plane σXv
is the Y Z plane normal to X. Two mirror planes are generated by ±2π/3 rotations of σXv . It is once again helpful to
expand the strain and spin tensors in spherical harmonics [17]. The subduction from the full rotation group O(3) to
the point group C3v is given in Table IV up to l = 4.

The strain and spin parts of the magnetoelastic Hamiltonian are represented by spherical harmonics of even l.
Table IV shows that l = 0 transforms like Γ(0) = A1, l = 2 like Γ(2) = A1 ⊕ 2E, and l = 4 like Γ(4) = 2A1 ⊕A2 ⊕ 3E.
The magnetoelastic Hamiltonian must be fully A1 symmetric. Table V implies that the fully symmetric A1 is present
in A1 ⊗ A1, A2 ⊗ A2, and E ⊗ E. Since the strain is even in l, A2 terms are excluded. Therefore, we are left with
combinations of strain and spin parts that are either A1 or E.
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TABLE IV. Irreducible representations of spherical harmonics Y ml in the point group C3v [77].

l A1 A2 E
0 1 0 0
1 1 0 1
2 1 0 2
3 2 1 2
4 2 1 3

TABLE V. Product of irreducible representations of C3v.

A1 A2 E
A1 A1 A2 E
A2 A2 A1 E
E E E A1 ⊕A2 ⊕ E

Table III lists A1− and E-symmetric spherical tensors and their mapping to Cartesian tensors. The A1-symmetric
terms in the magnetoelastic coupling (8) are listed in Table II. The A1 symmetry of E ⊗ E terms was checked by
applying C3 and σXv symmetry operations. Under rotation, the transformation of the strain tensor components Y ml
and spin tensor components Yml is identical: C3Y

m
l = eim2π/3Y ml and C3Yml = eim2π/3Yml . Their transformation is

different under reflection: σXv Y
m
l = Y −ml and σXv Yml = (−1)lY−ml .

B. The Spin Model of the Canted Antiferromagnetic State in Rhombohedral Symmetry

The spin model for BiFeO3 with rhombohedral symmetry in the canted AF state is given by Eq. [15] with no
additional magnetoelastic terms.

Figure 3 shows our fit to this rhombohedral model. The predicted mode frequencies do not follow the experimental
data for field along X or Y, panels (a) and (b). Mode ν2 frequencies are closer to the experimental values for field
along Z, panel (c), but there are still deviations just above Bc. The frequency of mode ν1 is nonzero when B ‖ Z
because the hexagonal anisotropy KH breaks the rotational invariance in the XY plane.

For this rhombohedral fit, χ2 is about four times larger than for the monoclinic fit discussed in the main paper.
As described in the main paper, J1 = −5.3 meV was taken from inelastic-neutron scattering measurements [44–
46]. The rhombohedral parameters are then D2 = (5.7 ± 0.6) × 10−2 meV, KZ = (2.1 ± 0.5) × 10−3 meV, and
KH = (1.3± 0.4)× 10−6 meV. While the rhombohedral value for D2 is consistent with the cycloidal value (see main
paper), KZ is about half as large. The magnetic moment extrapolated to zero field is almost the same for field along
X and Y: M0 = SµBD2/|J1| ≈ 0.027 ± 0.003µB per Fe. This is 33% less than the lower experimental estimate [15]
of 0.04µB per Fe. In the absence of the hexagonal anisotropy KH , χ2 for the rhombohedral model would increase by
another factor of two.

TABLE VI. Spin terms that couple to strains
∣∣Y 2

2

〉
+

= εγ,11 and
∣∣iY 1

2

〉
+

= εγ,21 . Compared to Table II, terms not containing∣∣Y 2
2

〉
+

or
∣∣Y 1

2

〉
+

are absent.

B̃γ12
∣∣Y 2

2

〉
+

∣∣Y1
2

〉
+

εγ,11 SY SZ

B̃γ22
∣∣Y 1

2

〉
+

∣∣Y1
2

〉
+

−εγ,21 SY SZ

B̃γ11
∣∣Y 2

2

〉
+

∣∣Y2
2

〉
+

1
2
εγ,11 (S2

X − S2
Y )

B̃γ21
∣∣Y 1

2

〉
+

∣∣Y2
2

〉
+

1
2
εγ,21 (S2

X − S2
Y )

B̃γ13
∣∣Y 2

2

〉
+

∣∣Y1
4

〉
+

εγ,11 SY S
3
Z

B̃γ23
∣∣Y 1

2

〉
+

∣∣Y1
4

〉
+

−εγ,21 SY S
3
Z

B̃γ14
∣∣Y 2

2

〉
+

∣∣Y2
4

〉
+

1
2
εγ,11 (S2

X − S2
Y )S2

Z

B̃γ24
∣∣Y 1

2

〉
+

∣∣Y2
4

〉
+

1
2
εγ,21 (S2

X − S2
Y )S2

Z

B̃γ15
∣∣Y 2

2

〉
+

∣∣Y4
4

〉
+

1
4
εγ,11 (S4

X + S4
Y − 6S2

XS
2
Y )

B̃γ25
∣∣Y 1

2

〉
+

∣∣Y4
4

〉
+

1
4
εγ,21 (S4

X + S4
Y − 6S2

XS
2
Y )
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FIG. 3. The magnetic field dependence of the spin-wave frequencies for field directions (a) Y = [−1,−1, 2], (b) X = [1,−1, 0],
and (c) Z = [1, 1, 1] at liquid He temperature. Experimental points are marked by blue circles. Solid blue lines are the best fit
results for spin-wave modes ν1 and ν2 using the model spin Hamiltonian (15) consistent with rhombohedral R3c symmetry.

C. Impurity mode

The mode plotted by the red circles and fitted with a linear field dependence (the red dashed line) in Fig. 3 is assigned
to impurities for three reasons. First, this mode was absent in flux-grown crystals [52]. Second, the frequencies of this
mode do not depend on field orientation. Finally, the spin-wave model with two spins in the unit cell permits only
two modes. One candidate for the impurity is Fe in the low spin S = 1/2 state [78], which is insensitive to single-ion
anisotropies. If the orbital moment of the impurity is quenched (L = 0), then the impurity mode would depend
isotropically on the magnetic field, as observed. The average of the impurity spin parameters in three magnetic field
directions gives the g factor g = 2.11± 0.04 and a zero field intercept of 90± 2 GHz.

Due to the distribution of local fields produced by the iron spins, the impurity signal does not appear in the cycloidal
state below 18 T. Therefore, the impurities do not constitute a separate phase with a different structure or chemical
composition. Rather, they are randomly distributed within BiFeO3.

D. Experimental Methods

BiFeO3 crystals were grown by the floating zone method using laser diodes as the heat source [55]. Samples in
three hexagonal orientations with large faces normal to [1,-1,0], [-1,-1,2] and [1,1,1] were cut to a thickness of about
0.5 mm.

THz absorption measurements used either Fourier transform far-infrared (FIR) or continuous wave (CW) spec-
troscopy. FIR measurements were performed above 0.55 THz with a Genzel-type interferometer (Bruker 113v) and a
1.6 K composite Si bolometer (Infrared Laboratories) as a detector. The radiation source was a mercury arc lamp.
The spectra were collected in a fixed magnetic field. CW measurements were performed at a fixed frequency by
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sweeping the magnetic field, a method also called sub-millimeter wave ESR. Monochromatic radiation was provided
by few frequency-tunable backward wave oscillators and frequency multipliers covering 0.1 to 0.9 THz. The radiation
intensity was measured with a 4.2K InSb bolometer (QMC Instruments Ltd.)

The FIR method was used in HMFL Nijmegen and the CW method in NHMFL Tallahassee. Radiation propagated
either parallel or perpendicular to the applied magnetic field in Faraday or Voigt configurations, respectively.

THz radiation was guided to the sample from the top of the liquid helium cryostat and from the sample to the
detector with light pipes. In the FIR setup, the bolometer was placed in the tail of the sample cryostat below the
center of the magnet. In the CW setup, the bolometer was placed in a separate cryostat a few meters away from
the magnet. Radiation was either unpolarized or polarized by a wire grid located a few millimeters from the sample
surface in the incident THz beam. Sample temperature was maintained between 2 and 8 K.

In the Faraday configuration, each sample was measured in a magnetic field perpendicular to the cutting plane. In
the Voigt configuration, each sample was measured in magnetic fields along two principal directions in the cutting
plane. After the sample was cooled in zero field, measurements were carried out in different magnetic fields or by
sweeping the field, both with a fixed field orientation.

E. Spectra

1. FIR spectroscopy

The absorption spectra αB(ν) obtained by FIR spectroscopy were calculated from the difference [62] αB(ν) −
αB=0(ν) = − ln[IB(ν)/IB=0(ν)]/d, where IB(ν) is the transmitted intensity of radiation for sample thickness d. Mode
frequencies were determined by fitting the spectra with a Gaussian line shape. The FIR spectra are shown in Fig. 4,
5 and 6. The radiation polarization, i.e. the directions of the THz electric e and magnetic h fields, are given in the
figure titles.

2. CW spectroscopy

The transmission spectra tν(B) measured by CW spectroscopy were calculated using tν(B) = Iν(B)/Īν , where Īν
is the mean value of Iν(B) over the field sweep, typically from 0 to 35 T. Mode frequencies were determined from the
transmission line minima.

Due to the distortion of the transmission line shape in the CW method, the transmission minimum may not
correspond to the magnetic field with the strongest absorption. Because the v1 data was taken only with the CW
method, its lineshape is more distorted and the data points are more scattered than for the v2 data in Fig. 3 In
addition, the magnetic-field dependence of v1 is less steep than that of v2. Hence, its line position is less accurate in
the magnetic-field scan.

The titles of Figs. 7-17 show the direction k of light propagation, the direction of the applied magnetic field B,
and the directions of the radiation electric (e) and magnetic (h) field components. The red (blue) line is for B > 0
(B < 0). The solid line is for increasing fields, d|B|/dt > 0, and the dashed line for decreasing fields, d|B|/dt < 0. In
case of hysteresis, the average of the up and down sweep transmission line minima determined the mode resonance
field. The frequency in GHz units is given on the right side of each figure.
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