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Realizing and characterizing interacting topological phases in synthetic quantum systems is a formidable
challenge. Here, we propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-
law decaying interactions. Based on analytical and numerical arguments, we show that this model features a
quantum phase transition from a liquid to a valence bond solid that spontaneously breaks lattice translational
symmetry and is reminiscent of the Majumdar-Ghosh state. The different phases can be probed dynamically
by measuring the evolution of a fully dimerized state. We moreover introduce an interferometric protocol to
characterize the topological excitations and the bulk topological invariants of the interacting many-body system.

Introduction.—Recent progress in realizing synthetic quan-
tum systems has offered new opportunities for the experi-
mental characterization and control of topological quantum
phases. Topologically nontrivial band structures have been
created by periodic driving [1–5], interaction-induced chi-
ral propagation of excitations have been studied in the few-
body limit of quantum Hall states [6, 7], symmetry pro-
tected topological (SPT) phases have been realized [8–11],
and quantum spin liquids have been explored with quantum
devices [12, 13]. While first steps have been laid in realizing
interacting topological phases, several challenges remain, in
particular concerning the characterization and control of indi-
vidual topological excitations.

Here, we propose the realization of a dimerized valence
bond solid with topologically nontrivial excitations in a
Heisenberg model with power-law interactions using trapped
ions [14]. This phase arises due to frustration from long-range
interactions and is adiabatically connected to the symmetry
broken Majumdar-Ghosh phase [15–17]. When locally de-
forming this Hamiltonian to introduce bond alternating cou-
plings, it realizes a Haldane SPT phase [18]. Our model
therefore illustrates the interplay between spontaneous sym-
metry breaking and toplogical order. To realize the long-range
Heisenberg model in a trapped-ion setting, we propose a Flo-
quet protocol that consists of periodic globally-applied π/2-
pulses around different axes of the Bloch sphere, see Fig. 1 (a,
b). We determine the phase diagram and propose an interfero-
metric protocol to characterize the topological excitations and
the bulk topological invariants of our interacting many-body
system.

Model.—We investigate a long-range spin-1/2 Heisenberg
chain with open boundaries

HLR(α) =
∑
i<j

J

|i− j|α
[
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + Ŝzi Ŝ

z
j

]
, (1)

where α is the power-law exponent of the long-range interac-
tions and J > 0 their typical energy scale (for a spin-1 variant
of the model see Ref. [19]). When considering only near-
est and next-to-nearest neighbor couplings, HLR(α) reduces

Floquet Period
δ Δ

timet1 t2 t3

Hxx Hyy Hzz

(a)

(b)

(c)

...

power-law exponent

exponent

Figure 1. Floquet protocol and phase diagram. (a) Interac-
tions between ions in a linear Paul trap are of Ising type Hxx =
J/|i − j|αŜxi Ŝxj with discrete Z2 symmetry. (b) Periodically ap-
plying global π/2-pulses around different axes of the Bloch sphere
creates interactions along all three spin directions Hxx, Hyy, and
Hzz. (c) The high-frequency limit of such a protocol realizes a long-
ranged Heisenberg model HLR with continuous SU(2) symmetry.
This model features a quantum phase transition from a dimerized to
a liquid phase. Inset: A Binder cumulant analysis of the dimerization
determines a critical power-law exponent of αc ≈ 1.66.

to the Majumdar-Ghosh (MG) model [15, 16], which exhibits
a phase transition from a liquid to a dimerized valence bond
solid that breaks the translational invariance of the lattice [17].

The long-range Heisenberg modelHLR reduces for α→∞
to the conventional Heisenberg model with nearest-neighbor
couplings, whose ground state is a gapless spin liquid with
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power-law decaying antiferromagnetic correlations [20]. For
the opposite limit of α → 0, each spin interacts equally with
all the others and the ground states correspond to arbitrary
singlet pairings (see supplementary materials [21] and refer-
ences [22–24] therein). For small but finite α, it is energeti-
cally favorable to form singlets on neighboring sites as in the
Majumdar-Ghosh state

|MG〉 =

L/2∏
i

(|↑〉2i |↓〉2i+1 − |↓〉2i |↑〉2i+1)/
√

2. (2)

As a consequence the ground state breaks translational sym-
metry. Due to the different behavior of the ground states in
the two limits, at least one quantum phase transition occurs at
some critical αc.

To quantitatively determine the phase diagram, we per-
form Density-Matrix Renormalization Group (DMRG) simu-
lations [25, 26] and compute the dimerization order parameter

di = ~S2i · (~S2i+1 − ~S2i−1). (3)

as a function of α and for different system sizes L, see
Fig. 1 (c). The data for the thermodynamic limit was extrapo-
lated from finite-size results by a scaling Ansatz |α − αc|ν .
Expressions without spatial indices, indicate in the follow-
ing averages over the bulk. In our numerical studies, we
represent the Hamiltonian as a matrix product operator, in
which we approximate the power-law coupling by a sum of
exponentials [26, 27]. An analysis of the Binder cumulant〈
d4
〉
/
〈
d2
〉2

, that is expected to be scale-independent at crit-
icality [28, 29], indicates a quantum phase transition from a
dimerized phase to a liquid at αc ≈ 1.66 (inset). Precisely
extracting the critical point is a formidable challenge, as the
transition is in the Berezinskii-Kosterlitz-Thouless universal-
ity class [17, 30, 31]. We emphasize, however, that for the
following discussions the precise location of the phase transi-
tion is not crucial.

Floquet Protocol.—Collective vibrations of an ion crystal
mediate long-range Ising interactions Hxx =

∑
i<j J/|i −

j|αSxi Sxj [32, 33]. Previous works suggested to use multiple
phonon branches [34] and quasi-periodic driving [35] to re-
alize Heisenberg type interactions, or have employed digital
simulation schemes [36]. Here, instead we suggest periodic
driving [37–40] to promote the discrete Z2 symmetry of the
Ising interactions to the continuous SU(2) symmetry of the
Heisenberg interactions. The protocol consists of π/2-pulses
around different axes to encircle a surface of the Bloch sphere
Fig. 1 (b); see Ref. [38] for a related protocol and Refs. [41–
43] for recent experimental realizations. The duration δ of the
π/2-pulses can be chosen to be much shorter than the waiting
time ∆, leading to an effective period of ≈ 3∆. This way
the many-body state rotates periodically from the x over y to
z direction. These unitary transformations can also be inter-
preted to act on the Hamiltonian instead of the many-body
state, leading to an effective time evolution with alternating
Hxx, Hyy, and Hzz Ising couplings. Provided the rate ∆−1

power-law exponent
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Figure 2. Dynamical phase diagram. (a) Evolution of the dimer-
ization d under the Floquet dynamics for an initial |MG〉-state of sin-
glets. The evolution is governed by HLR(α) for α ∈ {0.2, 0.5, 1.5}
and a chain of 64 sites. Inset: We illustrate the relative deviation
σ ≡ |(d∆J→0 − d∆J)/d∆J→0| of the Floquet protocol from the
exact evolution for different values of ∆J and α = 0.5. (b) Ther-
mal phase diagram for HLR(α) including the effective temperature
T ∗ of our system (solid line) and a schematic of the phase boundary
between the dimerized and the translational invariant phases (dashed
dome) for a system of 18 sites.

is fast compared to the typical interaction strength J , a high-
frequency expansion [44] for the effective periodic drive can
be computed, which to leading order yields the SU(2) invari-
ant Hamiltonian (1).

Singlet evolution.—As a direct application of our Floquet
protocol, we compute the time evolution of the long-range
Heisenberg model HLR(α) for an initial singlet state |MG〉
using the time-dependent variational principle for MPS [45–
49]. For quenches to small α, we find that the dimerization
remains finite at long times, whereas it quickly decays to zero
for quenches to large α, see Fig. 2 (a). To compare the discrete
Floquet evolution with the exact dynamics of HLR(α), we in-
troduce the relative deviation σ ≡ |(d∆J→0− d∆J)/d∆J→0|,
shown in the inset of Fig. 2 (a) for α = 0.5. We find that
the Floquet protocol accurately describes the SU(2) invariant
Heisenberg evolution for ∆J = 0.1 (depending on α, larger
values of ∆J ∼ 1 can be safely reached [21]).

The energy density of the dimerized initial state is
〈MG|HLR(α) |MG〉 /L = −0.375J independent of α, which
is larger than the ground-state energy density of HLR(α).
Hence, the quench deposits an extensive amount of energy
into the system. According to the eigenstate thermalization
hypothesis [50–52], which is expected to hold for generic in-
teracting systems as this, a subsystem should thermalize to
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an effective temperature T ∗, that is consistent with the en-
ergy density deposited in the system. The effective temper-
ature can then be evaluated self-consistently from the condi-
tion 〈MG|HLR(α) |MG〉 = tr[HLR(α)e−HLR(α)/T∗

/Z] where
Z is the partition sum. We approximate the thermal expec-
tation value using the typicality approach [53] and evolve 50
random initial states in imaginary time using exact diagonal-
ization on 18 spins (see [21] for system size dependence) to
extract effective temperature T ∗ as a function of α; Fig. 2 (b).
From the dynamical phase diagram, we find that for α . 1 the
effective temperature is low enough such that a finite dimer-
ization is supported in the steady state, whereas it decays to
zero for α & 1, consistent with our observations on the time
evolution in Fig. 2 (a). Despite the one-dimensional character
of our system, a sharp finite-temperature phase transition can
arise in the thermodynamic limit because of the long-range
interactions [54].

Measuring the Zak phase.—Starting from the |MG〉-state,
a state close to the ground state of HLR(α) can be prepared
by adiabatically tuning α as long as the system remains in
the dimerized phase. We will now present a protocol to mea-
sure a topological order parameter of such a state. Following
Refs. [55, 56], we introduce the SU(2)-transformation

Φ : ~Si · ~Sj 7→ Ŝz
i Ŝ

z
j +

1

2
(eiϕŜ+

i Ŝ
−
j + h.c.), (4)

where ϕ is a compact variable in the interval [0, 2π]. The
SU(2)-transformation is designed such that it affects only
couplings crossing the `-th bond between sites ` and ` + 1,
which separates our system into a left SL and a right SR part.
All interactions within one subsystem remain unchanged. As
a consequence we obtain for every choice of the bond `
a new family of Hamiltonians HLR(α;ϕ) parametrized by
ϕ ∈ [0, 2π].

A key for obtaining a quantized topological order parame-
ter is that the chosen parametrization retains the time-reversal
symmetry of HLR(α;ϕ) [55]. Tuning ϕ continuously through
the interval [0, 2π], describes a closed loop C` within the set
of Hamiltonians. This allows us to introduce the Zak phase

γZak
` =

∮
C`

dϕ 〈ψ(ϕ)| i∂ϕ |ψ(ϕ)〉 , (5)

where |ψ(ϕ)〉 is the ground state ofHLR(α;ϕ). The Zak phase
is well defined, provided the corresponding path C` is fol-
lowed adiabatically, which can be ensured because the dimer-
ized phase is gapped, see supplementary material [21]. In or-
der to gain some intuition about the Zak phase, we first apply
the SU(2)-transformation to the fully dimerized |MG〉-state.
When the bond ` lies within a singlet, the transformation gives
(|↑↓〉 − eiϕ |↓↑〉)/

√
2. Evaluating Eq. (5) for this particular

case reveals a Zak-phase of π [57, 58], while it is zero when
the bond ` lies between two singlets. For the |MG〉-state and
thus also for the adiabatically connected ordered ground states
ofHLR we consequently expect to find a Zak phase alternating
between values of 0 or π when traversing the bond ` through
the system.
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Figure 3. Measuring many-body Zak phases with interferome-
try. (a) Single Floquet period and (b) complete pulse sequence for
extracting the Zak phase; see main text for details. (c) The effective
field Beff acting on the system during the step (iii) of the protocol
has a sign change at the bond where we measure γZak

` . (d) Perform-
ing measurements for different ` yields alternating Zak phases of 0
or π. Data is evaluated for a system of 32 sites and α = 0.2.

Before we numerically compute the Zak phase of the dimer-
ized state, we introduce a protocol to experimentally measure
it in a trapped ion setting. Let us first gain some intuition: To
realize a transformation similarly to (4), we can use an effec-
tive (in general time-dependent) magnetic field Beff

i (t) acting
on the spins of HLR(α), that is proportional to a step function
with the step being located at bond `. Using the Peierls substi-
tution, the magnetic field can be absorbed into Hamiltonian as
HLR(α;ϕ(t)) =

∑
i<j J/|i− j|α[Sz

iS
z
j + 1

2 (eiϕij(t)S+
i S
−
j +

h.c.)], where ϕij(t) ≡
∫ t

0
dt′[Beff

j (t′) − Beff
i (t′)]. A phase is

only picked up, when bond ` is crossed as Beff
i is assumed to

be constant except across bond `. The time t is chosen such
that the phase ϕ is adiabatically tuned from 0 to 2π. The Zak
phase can be measured using a Ramsey sequence to cancel
dynamical phases [59–61].
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In order to implement this approach in a chain of ions, we
identify the left-most ion as an ancilla qubit τz that operates
on the same computational basis and has the same power-law
coupling to the other spins of the chain

∑
i J/|i|ατzŜzi ≡∑

iB
eff
i Ŝ

z
i . The protocol then consists of the following steps,

see Fig. 3 (a) and (b) for an illustration: (i) After ground state
preparation of the chain initialize the ancilla qubit in a super-
position state by applying a π/2-rotation. This leads to an op-
posite sign in Beff for the two ancilla states and in turn allows
for a cancellation of the dynamical phase. (ii) Perform global
π/2-rotations on the system around different axes, as dis-
cussed in Fig. 1 (c), to realize the long-range Heisenberg dy-
namics. During that time perform equally spaced π-rotations
on the ancilla qubit to cancel the phase accumulation from
interaction with the remaining chain. (iii) After a Floquet pe-
riod, apply a π-rotation only on the right part of the system to
create a kink in the effective fieldBeff

i at bond `, see Fig. 3 (b).
Accumulate phase on the ancilla and apply another π-rotation
to restore the couplings within the system. Steps (ii) and (iii)
are then repeated until ϕ covers the whole interval [0, 2π]. (iv)
Apply a π−pulse to the left part of the system enabling an in-
verse rotation to compensate the effect of the protocol on the
wave function of the system. (v) Measure the phase of the an-
cilla, which corresponds to the many-body Zak phase at bond
`. For a more detailed description see supplementary mate-
rial [21]

We now numerically evaluate the Zak phase Eq. (5). Using
DMRG we compute the ground state for 20 discretized steps
along C` for a system of 32 sites and α = 0.2, see Fig. 3 (d),
which confirms that the Zak phase is alternating between 0
and π, a characteristics of a dimerized state. We also confirm
the adiabaticity of the computation by calculating the prod-
uct of projectors into the ground state P(ϕ) = |ψ(ϕ)〉 〈ψ(ϕ)|
during each step of the protocol, which attains large values
between 0.75 to 1.

In the proposed experimental protocol, the effective mag-
netic field has the required jump at bond ` to introduce the
local SU(2)-transformation, but also varies slowly across the
other bonds. By numerically simulating the protocol of Fig. 3,
we find that the phase accumulated on the ancilla has the char-
acteristic bond alternating pattern for dimerized states; see
supplementary material [21] for details, where we also ana-
lyze the number of required operations.

Topological excitations.—In order to characterize the topo-
logical excitations of the dimerized phase, we now consider
a chain with an odd number of sites. In this case, singlets
cannot fully cover the chain, and hence an unpaired spin-
1/2 (spinon) excitation is always present. Due to prominent
examples such as the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model [62] we are used to the existence of spin-1/2 states
in interacting topological phases. These degenerate modes
provide a clear signature for topological order and are typi-
cally localized at the edges of the system. In contrast to the
usual edge modes, a measurement of the magnetization for
HLR indicates that the excitation is delocalized over the en-
tire lattice, see Fig. 4 (a). In order to obtain an analytical un-

0 0 0πππSPT I SPT II

(a)

(b)

Figure 4. Topological excitations. (a) Local magnetization for a
spinon in a lattice of 33 sites and α = 0.2. We compare the DMRG
result with a variational Ansatz delocalizing a single spinon. (b) This
bulk excitation swaps the Zak phase of even and odd bonds as the
bond ` traverses the system.

derstanding, we introduce a variational state that describes a
delocalized spinon with wavevector q separating two |MG〉-
states with singlets on even and odd bonds, respectively [21].
The spinon hence represents a defect in the topological order;
inset of Fig. 4 (a). Variationally optimizing the ground state
energy with our Ansatz yields q = πL

2(L+1) , which is consis-
tent with the oscillatory magnetization pattern in Fig. 4 (a).

We also characterize the Zak phase for this state. For odd
numbers of sites, the dimerized ground state of the system
is two-fold degenerate due to the SU(2) symmetry of our
model and hence we cannot construct an adiabatic path C`.
To lift the degeneracy, we apply a weak local magnetic field
in the center of the system, which introduces a small gap. This
magnetic field breaks time reversal symmetry. From the argu-
ments of Hatsugai [55, 56] it then follows that the Zak phase
is not quantized in general. As a consequence, we expect a
monotonous change in the Zak phase as we traverse the sys-
tem which can be interpreted as a mobile domain wall sepa-
rating two distinct topological phases. This is consistent with
our results in Fig. 4 (b), which also show that the Zak phase of
even and odd bonds differ by π as advocated by the domain
wall picture.

Outlook.—The Heisenberg model with long-range antifer-
romagnetic interactions exhibits a phase transition from a
liquid to a dimerized valence bond solid that spontaneously
breaks the lattice translational invariance. We propose Floquet
protocols for trapped ions to realize this model and to charac-
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terize the nature of the delocalized topological excitations as
well as the bulk topological invariants.

For future studies, it would be interesting to introduce an
easy-axis anisotropy by adjusting the Floquet periods between
the π/2-pulses to realize a deconfined quantum critical point
between a dimerized and a Néel ordered phase in our one-
dimensional model [63, 64] or to explicitly break the trans-
lational symmetry by introducing bond-alternating couplings
to realize a Haldane symmetry protected topological (SPT)
phase with localized edge states [18]. A future challenge
is to create interacting higher-dimensional topologically or-
dered many-body states with synthetic quantum matter, that
are characterized by a topological entanglement entropy and
fractional excitations [65]. With our protocols, interactions in
two dimensional triangular lattices of trapped ions [66], could
be promoted from Z2 to SU(2) symmetry, with the prospect
of realizing exotic frustrated mangetic states or even quantum
spin liquids.
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All-to-all Interactions.—Here, we discuss the limiting case
α = 0 of HLR, in which our one-dimensional model describes
a cluster of spins forming one self-interacting spin of exten-
sive magnitude ~S:

ĤLR(α = 0) = J
∑
i<j

~Si · ~Sj

=
J

2

∑
i,j

~Si · ~Sj −
J

2

∑
i

~S2
i (6)

=
J

2
~S · ~S − 3J

8
L.

To arrive at the final expression we introduced ~S ≡ ∑
i
~Si

and made use of the identity for amplitudes of spin operators
~S · ~S = s(s+ 1).

The energy spectrum of the model can now be completely
determined by representation theory of the group SU(2). To
this end, we look at all possible irreducible representations
arising from a product of L spin-1/2 degrees of freedom. We

(a)

(b)

Figure 5. Energy Gaps. Energy gap ∆E above the ground state (a)
as a function of the lattice size L and (b) as a function of α.

will first assume an even number of spins L. The arising rep-
resentations are given by

L⊗
i=1

D1/2 =

L/2⊕
j=0

Nj⊕
n=1

Dj , (7)

where we denoted an irreducible representation of spin j as
Dj following the notation of Cornwell and Buck [22]. Ex-
pression (7) indicates that we have Nj distinct irreducible
SU(2)-representations Dj , where j ranges up to total spin
L/2. The energy Ej corresponding to each spin representa-
tion Dj is according to Hamiltonian (6) given as

Ej =
J

2
j(j + 1)− const. (8)

The ground states of the theory are hence given by all singlet
representations arising from the product of L spins, which is
also conjectured by the theorem of Marshall for quantum an-
tiferromagnetic Heisenberg models [23, 54]. Next we deter-
mine the degeneracies of energy levels, which are directly re-
lated to the set {Nj}, because we find precisely Nj(2j + 1)
states of energy Ej . First, we note that these degeneracies
carry a dependence on the system size L. This is required to
ensure an exponential growth of the Hilbert space as we ex-
tend our system with additional spins. Although also higher
spin representations will be made accessible by additional
spins, latter only cause a linear increase in the dimension of
the Hilbert space.

We can now use the L-dependence to determine recursive
relations for every Nj(L) respectively. For this purpose we
will first look at a small system and then generalize our ob-
servations to arbitrary system sizes. We start by adding an
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additional spin doublet to a system of only L = 2 spins. The
corresponding decomposition into irreducible representations
Dj is given by(
D1/2 ⊗D1/2

)
⊗
(
D1/2 ⊗D1/2

)
(9)

=
(
D0 ⊕D1

)
⊗
(
D0 ⊕D1

)
=
(
D0 ⊕D1

)
⊕
(
D1 ⊕D0 ⊕D1 ⊕D2

)
= D0 ⊕D0 ⊕D1 ⊕D1 ⊕D1 ⊕D2.

Here, we used distributivity as well as the Clebsch-Gordan
series for products of two irreducible SU(2)-representations.

We notice that the added singlet representation reproduces
all given representations of the previous system. The triplet
contained in the added spin doublet will produce three new
representations for every previous one. For the example of (9)
this concretely increases N0 by 1, N1 by 2 and N2 by 1. If we
look at the situation, given in (9), on more general grounds
we recognize that D0 can only result from a product of two
singlets or two triplets. All other spin representations can,
however, be generated from previous ones in four different
ways. The spin can on the one hand be kept constant by an
product with D0 or D1. On the other hand it can be increased
or decreased by 1 using the product with D1. This behavior is
summed up to the following recursive sequence for the set of
{Nj(L)}.

N0(L+ 2) = N0(L) +N1(L)

N1(L+ 2) = N0(L) + 2N1(L) +N2(L)

N2(L+ 2) = N1(L) + 2N2(L) +N3(L) (10)
...

Nn(L+ 2) = Nn−1(L) + 2Nn(L) +Nn+1(L)

This set of equations can be implemented and solved symbol-
ically, determining the entire spectrum of HLR(α = 0).

After investigating the exact limit α = 0 let us now discuss
the implications for small but positive α. Recalling Marshall’s
theorem [23] we still expect to find an overall singlet as the
ground state of our system. On the contrary to the previous
discussion we do, however, not expect to find a degeneracy
in the ground state. High degeneracies are expected for the
case α = 0 as interactions do not introduce a definite order in
the system and we can reorder the spins in all possible ways.
This is no longer possible for α > 0, where the decaying
interactions favor nearby singlets. For this reason we expect
the ground state to exhibit a large overlap with |MG〉, defined
in the main text and possesses a finite dimerization d.

Energy Gaps of Ordered Phase.—After investigating the
ground state of the system, we can use our previous results to
discuss also excited states and especially the existence of finite
energy gaps in the dimerized phase. The latter are especially
important for an adiabatic implementation of our protocol to
measure geometric Zak phases.

For the case of even L and very small α we expect to find
an overall spin-singlet even for the first excited states, since all

(b)

(c)

(a)
α = 0.1

α = 1.0

α = 2.0

Figure 6. Convergence of the Floquet Protocol. The convergence
of the Floquet Hamiltonian towards its infinite-frequency limit HLR

is examined by comparing time-evolution of |MG〉-states in different
regions of the phase diagram: (a) α = 0.1, (b) α = 1.0, and (c)
α = 2.0 for different values of the Floquet period 3∆.

spin-0 configurations only receive small corrections increas-
ing with α compared to the degenerate case of α = 0. The
gaps of all higher spin representations are, however, still de-
termined up to a factor by (8) to be finite and O(J). Even
though an analytical calculation of the gap is challenging,
intuition can be gained from mapping our long-ranged spin
model HLR to a Non-Linear Sigma model (NLσM) with a
topological term [18, 24, 35]. A renormalization analysis in-
dicates that such a system either flows to a gapless fixed point
of a SU(2)1 Wess-Zumino-Witten conformal field theory or
approaches a gapped fixed point. These limits are related to
the disordered gapless and the gapped ordered phase of our
model. We test this conjecture numerically in Fig. 5. For
small α our finite size analysis supports a converged energy
gap above the ground state. As the critical point αc ≈ 1.66 is
approached, the required system sizes to observe an onset of
saturation increases.

A short remark should be addressed to the case of odd-
numbered system sizes. Whereas finite energy gaps above
the ground state were shown to exist naturally in the ordered
phase for systems with an even number of sites, the situation
is different for odd L. Although the previous arguments for
a gap between the various spin representations apply in the
same way for odd L, they also conserve the degeneracy within
each representation. This fact directly results from the SU(2)
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symmetry of HLR. Contrary to the spin singlet for even lattice
sizes transforming trivially under application of group gen-
erators from su(2), the ground state spin-1/2-representation
for odd L allows a mixing of both polarization directions of
the spinon excitation. The ground state degeneracy will hence
remain two-fold unless we break the underlying SU(2) sym-
metry. This can for instance be achieved with a small but finite
local magnetic field, causing an energy splitting within each
spin representation and creating a finite gap above the ground
state.

Convergence of the Floquet Protocol.—We numerically
study the convergence of the driven Hamiltonian to its high-
frequency limit HLR. To this end, we investigate the time-
evolution of a maximally dimerized |MG〉-state for both
cases. The numerical results are shown in Fig. 6 for Floquet
step durations of ∆ ∈ {0.1, 1.0} and α ∈ {0.1, 1, 2}. Note
that for the following investigations we explicitly set the over-
all coupling strength to J = 1, causing time intervals like ∆ to
be dimensionless quantities. We find fast convergence to the
evolution governed by HLR even for comparatively low driv-
ing frequencies (∆ = 1.0) both deep in the dimerized phase
(α = 0.1) and in the fluid phase (α = 2.0), whereas closer
to the critical regime shorter periods are required. All in all,
the effective Floquet Hamiltonian approximates HLR reason-
ably well already for not-too-high driving frequencies which
simplifies an experimental realization.

Short-time expansion.—Besides questions on the conver-
gence of our protocol, a point of experimental interest should
be in timescales. To estimate the typical relaxation time scale
of the dimerization, we perform a short-time expansion of the
quantum evolution

〈MG| d(t) |MG〉 = 〈MG|U†(t, 0) d U(t, 0) |MG〉 (11)

and U(t, 0) = T exp
(
− i

∫ t

0

dt′HLR(t′;α)
)
,

where U(t, 0) denotes the usual time evolution operator from
time 0 to t involving time ordering T in the Dyson sense. To
simplify our notation we will suppress the powerlaw exponent
α of the Hamiltonian from now on. Expanding expression
(11) up to second order we get

d(t) = 〈MG| d |MG〉+ i

∫ t

0

dt1 〈MG| [H(t1), d] |MG〉

− 1

2

∫ t

0

dt1dt2 〈MG| T
{

[H(t1), [H(t2), d]]
}
|MG〉 .

(12)

Next we would like to comment on the terms of Eq. (12) in-
dividually. The first term describes just a static offset given
by the maximal dimerization value d0 = 0.75. The lin-
ear contribution in t [second term in Eq. (12)] will vanish
since the dimer order parameter only is summed up from two
projectors on the singlet configuration |MG〉 translated with
respect to each other by one lattice site. This implies that
d |MG〉 ∝ |MG〉 + |φ〉, where |φ〉 is related to |MG〉 by a

(b)

(a)

(c)

(d)

Figure 7. Short-time evolution. (a) We provide numerical results
for the double commutator 〈MG| [HLR, [HLR, d]] |MG〉 character-
izing the decay of the order parameter obtained from a short-time
expansion. (b)-(d) Comparison of the perturbative to the exact the
time-evolution of the order parameter for values of the scaling pa-
rameter α ∈ {0.1, 0.5, 1.0}.

Figure 8. Size-dependence of effective temperature. Effective tem-
perature T ∗, at which the thermal energy of the system reaches the
energy of a fully dimerized initial state, displayed for values of the
scaling parameter α ∈ {0.2, 0.5, 1.0, 1.5}. The estimates were gath-
ered using the typicality approach with 40 random states and system
sizes from 12 to 20 sites.
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Figure 9. Simulation of the Zak protocol. We show the phase accumulation of the ancilla qubit 〈τxA〉 during the Zak protocol illustrated in
Fig. 3 (a) and (b) in the main text. We consider an effective evolution with HLR(α) for a time span of T1 = 2.0 and α = 0.2. The phase
ϕ is introduced during the evolution via application of HZak for durations of T2 ∈ {0.1, 0.2, 0.5}. Interferometric measurements should be
performed at ϕ = π to extract the relevant phase accumulation (orange dashed lines). The results are compared with an ideal step function
coupling the ancilla and the system with T2/T1 = 0.05 (red dashed line).

projection onto the singlet configuration between two consec-
utive singlets of |MG〉. As a consequence the linear part takes
the form ∝ Im[〈MG|H(t1) |φ〉], which in fact vanishes.
To simplify the last term, we choose t to be commensurate
with full Floquet periods

d(t) = d0 −
t2

2
〈MG| [HLR, [HLR, d]] |MG〉 (13)

The last expression describes the short time evolution of the
order parameter up to quadratic order and can be further
simplified by evaluating the double commutator, see Fig. 7a,
which determines (the square of) the typical decay rate. The
short-time expansion up to quadratic order is also compared
to an exact numerical time evolution in Fig. 7 (b - d).

System size dependence of thermal expectation values.—
We evaluate the system size dependence of the thermal phase
diagram of Fig. 2 (b) of the main text. In the main text, we
already mentioned that computations for the finite tempera-
ture expectations of dimer order parameter and energy were
performed based on the concept of typicality. Concretely we
generate a number of N random states, which will be evolved
in imaginary time to−β/2. The entire set ofN evolved states
can now be used as an approximation of the density matrix
of the system. Here, we evaluate the effective temperature
after the quench for different system sizes ranging from 12
to 20 sites and different values of the long-range exponent
α ∈ {0.2, 0.5, 1.0, 1.5}. The results are illustrated in Fig. 8
for a summation over N = 40 random states. We find good
agreement with the data of Fig. 2 (b) of the main text for all
system sizes L.

Numerical investigations of the dynamical Zak protocol.—
The protocol depicted in Fig. 3 (a) and (b) of the main text can

be used to measure topological phases in trapped ion experi-
ments. The connection between this dynamical protocol and
the conventional transformation of the Hamiltonian in Eq. (5)
of the main text is corroborated in this section. To this end,
we simulate the protocol of Fig. 3 (a) and (b) using exact di-
agonalization methods for systems of L = 15 ions including
the ancilla qubit.

We start by implementing the initial state of our evolution
protocol. We consider a system with an even number of sites,
determine the ground state |ψ0〉 of this system, and append an
ancilla spin in state |↑〉A to its left. The adiabatic ground state
preparation is discussed in the next section. After performing
a π/2−flip to the ancilla the system is described by the prod-
uct state |ψ〉 ≡ (|↑〉A + |↓〉A)/

√
2⊗ |ψ0〉. This state can now

be evolved according to the dynamical protocol of Fig. 3 (a)
and (b).

For sake of simplicity we will at first neglect the dis-
cretization of the original Floquet protocol within the time
interval [0, T1] of a single period in our simulation. Instead
we will directly use the effective description obtained in the
high-frequency limit in terms of the long-ranged Heisenberg
model HLR. Below, we will systematically study the full Flo-
quet evolution. In this first part of the protocol, depicted in
Fig. 3 (a), the ancilla qubit gets effectively decoupled from
the remaining systems by π−pulses frequently applied to it.
For the second part of the protocol within the time interval
[T1, T1 + T2] the decoupling of the ancilla no longer takes
place. More precisely, the ancilla interacts with the remaining
system via a long-ranged Ising Hamiltonian, whose orienta-
tion can be chosen to point along the z-direction. Interactions
will furthermore exhibit a characteristic sign change in their
prefactors as they cross the critical bond ic. The evolution
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Figure 10. Spatial dependence of Zak phases from the simulated
protocol. The phase accumulated at the ancilla 〈τxA〉 shows charac-
teristic alternations between odd and even bonds. Imperfections of a
power-law implementation ofHZak become relevant at bonds further
away from the ancilla qubit.

of the system during the second part of the protocol is hence
described by the Hamiltonian

HZak(α; ic) =
∑

0≤i<j

Jij(α; ic)S
z
i S

z
j (14)

with Jij(α; ic) =
3 sign(ic − i) sign(ic − j)

|j − i|α . (15)

In this expression we identify the left most spin with the an-
cilla qubit Sz0 ≡ τzA. The critical bond ic in this notation
takes half-integer values within [1/2, L − 3/2]. In every pe-
riod of our Floquet protocol the evolution governed by HZak

will induce an additional phase ∆ϕ(α; ic) to the Hamiltonian.
Following the notation of the main text, the Hamiltonian will
transform as

HLR(α,ϕ) 7−→
{
HLR(α,ϕ+ ∆ϕ) for |↑〉A
HLR(α,ϕ−∆ϕ) for |↓〉A

(16)

with ∆ϕ(α; ic) ≡
(
J0,ic− 1

2
(α)− J0,ic+ 1

2
(α)
)T2

2
(17)

≡ ∆J(α; ic)
T2

2
. (18)

The factor of 1
2 is resulting from the fact that we use the spin

operator of the ancilla τzA in HZak instead of the related Pauli
matrix.

The absolute phase ∆ϕ(α; ic) acquired by the Hamiltonian
thereby strongly depends on the value of the power-law expo-
nent α as well as on the chosen critical bond ic. Our imple-
mentation will describe an overall closed protocol if the rel-
ative phase between both ancilla states |↑〉A and |↓〉A equals
2π. When we start from the initial experimentally accessi-
ble Hamiltonian HLR(α,ϕ = 0) we will find after n periods
Hamiltonians HLR(α,ϕ = ±n∆ϕ) associated to the differ-
ent z−basis states of the ancilla. This determines the number
of Floquet periods N needed for measuring the Zak phase as
a function of T2, α and ic

N =
2π

∆J(α; ic)T2
. (19)
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Figure 11. Zak phase measurements for Floquet protocol. (a)
Change of the ancilla magnetization 〈τxA〉 during the evolution with
a discretized version of the dynamical Zak protocol for α = 0.2 and
application times for the sequence of Ising evolutions of T1 = 0.9.
The discretized protocol shows good agreement with the continuous
evolution usingHLR (red dashed lines) for T2 . 0.2. (b) The results
for interferometric measurements at ϕ = π show the expected alter-
nating behavior for different choices of ic. For large T2 associated to
a non-adiabatic implementation the protocol does not allow to reach
〈τzA〉 = − 1

2
at odd bonds. However, the alternating nature of the

pattern can be resolved even away from the adiabatic limit T2 � T1.

For large values of α and critical bond ic, i.e. far away from
the ancilla, ∆J(α; ic) can be very small, which requires ei-
ther large application times T2 or a high number of Floquet
periods N to successfully describe a closed protocol. We,
however, find numerically that the number of Floquet peri-
ods needed for the considered systems stays reasonable small,
as discussed below.

Before investigating detailed results of numerical simula-
tions, we want to address another aspect important for mea-
surements of topological phases at the ancilla qubit. Besides
the desired effect of transferring the topological Zak phase
to the ancilla spin, we also need to study the consequences
of our protocol of Fig. 3 (a) on the physical spin system. To
this end, we interpret the evolution governed by HZak as a
rotation for each spin with specific angle δϕ around the z-
direction, Rδϕ ≡ exp(−iT2HZak). To simplify our argument,
we will for the moment consider a coupling in the form of
step function (α → 0 case). Spins located left/right to the
critical bond ic will thereby acquire rotations with opposite
chirality. Acting with these rotations on our Hamiltonian, i.e.,
computing R†δϕHLR(α,ϕ)Rδϕ, exactly reproduces the trans-
formation of Eq. (16). The rotation Rδϕ hence allows us to
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describe the evolution with all Hamiltonians within the family
{HLR(α,ϕn)}n, although not directly accessible in experi-
ments. In total, we find for the evolution in our closed protocol
of Fig. 3 (b),
N∏
n=1

(
e−iT1HLR(α,ϕn)

)
=

N∏
n=1

((
R†δϕ

)n
e−iT1HLR(α,0)

(
Rδϕ

)n)
=
(
R†δϕ

)N N∏
n=1

(
e−iT1HLR(α,0)Rδϕ

)
,

(20)

where {ϕn}n denotes a suitable discretization of the interval
[0, 2π]. The second factor of the last equality is precisely the
evolution described by steps (ii) and (iii) in the protocol of
Fig. 3 (b) in the main text. The first factor, moreover, indi-
cates an inverse rotation around an angleNδϕ, which also has
to be applied in our protocol before measuring. This inverse
rotation takes care of an additional unwanted phase acquired
during the protocol evolution in the physical spin system. Ne-
glecting this contribution would result in interferometric mea-
surements not only detecting the desired topological phase at
the ancilla, but also an unknown phase acquired in the system.
The required inverse rotation of Eq. (20) is obtained by apply-
ing −HZak for the same duration as the overall application
time of HZak during the protocol. The Hamiltonian −HZak

can thereby be generated analogously to its positive counter-
part HZak. Specifically, after the last Floquet period of the
protocol, a single global π-pulse to the left part of the system
(in contrast HZak was generated by a π-pulse acting on the
right part) implements −HZak and subsequent time evolution
finally allows to unwind the unwanted phase accumulation of
the physical spin system. This subtlety is taken into account in
step (iv) of the protocol of Fig. 3 (b). After this procedure the
Zak phase of the ancilla can be measured in the conventional
way on the ancilla qubit.

With the basics of our simulations set, let us have a look
at concrete results. In Fig. 9 we provide results for dynam-
ical evolution of the initial state |ψ〉 for different choices of
T2/T1 and the critical bond ic in a system with power-law
scaling α = 0.2. We show the magnetization of the ancilla
qubit in x−basis 〈τxA〉 against the absolute phase ϕ acquired
by the Hamiltonian HLR(α,ϕ). The interferometric measure-
ment to extract the value of the Zak phase should be performed
at ϕ = π (orange dashed lines), where both absolute phases
add up to a relative phase difference of 2π. We can clearly
identify odd bonds (top row: bond 1, bond 3, ...) and even
bonds (bottom row: bond 2, bond 4, ...) in Fig. 9. Whereas
odd bonds approach the value 〈τxA〉 = − 1

2 for ϕ → π, even
bonds will almost return to the starting value 〈τxA〉 = + 1

2 . This
refers to values of the Zak phase of γZak = π and γZak = 0,
respectively, considering an ancilla state of

|ψ(ϕ = π)〉A =
1√
2

(
|↑〉+ eiγZak |↓〉

)
(21)

at absolute implemented phase of ϕ = π. To investigate the
impact of a power-law decay in the couplings of HZak we

furthermore show in Fig. 9 results obtained using a perfect
step function (α → 0) in HZak (red dashed lines). We find
that deviations between power-law and step function are most
pronounced for even bonds: Whereas the step function im-
plementation returns to the starting value at absolute phases
of ϕ = π, the power-law results yield values of 〈τxA〉 < 1

2 .
This imperfection is, however, expected as a power-law en-
tails small but finite values for the implemented phases also
away from the critical bond ic. As a consequence our pro-
tocol will apart from the chosen critical bond ic also effect
couplings across other bonds; most dominantly the first one.
These phases implemented at other bonds will in general pro-
hibit recurrence to the initial configuration at ϕ = π. This also
applies in similar form for a phase accumulation of ϕ = 2π,
shown in Fig. 9. At ϕ = 2π, where we expect our protocol
to reproduce the initial state independent of the choice for ic,
only the step function implementation yields fully accurate
results. Despite the power-law decay of interactions causing
some deviations from the ideal behavior, we find that the pro-
tocol of Fig. 3 (a) and (b) allows clear discrimination of even
and odd bonds, respectively. This becomes clear when ex-
tracting the values of 〈τzA〉 interferometrically measured at the
ancilla for ϕ = π (orange dashed lines) as a function of the
chosen bonds ic, see Fig. 10.

Now, we can repeat the analysis for the evolution under
the discretized Floquet protocol of consecutive rotated long-
ranged Ising Hamiltonians. We proceed in exactly the same
manner as before and expect the results to be qualitatively
equivalent if we consider the adiabatic limit T2 � T1 with
the drive frequency of the Floquet protocol ∝ 1/T1 still be-
ing sufficiently fast. We show the results for the discretized
version of the dynamical protocol in Fig. 11. Indeed we find
that for example for a choice of (α, T1) = (0.2, 0.9) values
of T2 . 0.2 are already sufficient to obtain the correct be-
havior we already encountered for evolution governed by the
high-frequency Hamiltonian HLR (red dashed lines). This is
illustrated in Fig. 11 (a) for evolution associated to ic located
at the first two bonds in the system (continuous data obtained
for T1 = 0.9 and T2 = 0.1). Extracting the results for the
interferometric measurement for all bonds indicates that also
larger T2 ≈ 0.4 already yield the characteristic alternating
pattern of the Zak phase in the topological phase, as illustrated
in Fig. 11 (b).

Given all this input, we can estimate the number of Flo-
quet periods needed to obtain the results of Fig. 9, Fig. 10 and
Fig. 11. According to Eq. (19) the number of Floquet periods
N strongly depends on α and the chosen ic. For our simula-
tions this requires for exampleN ≤ 9 Floquet periods to reach
the desired absolute phase of ϕ = π for (α, T2) = (0.2, 0.2)
and (ic − 1

2 ) ≤ 13. For larger values of α (e.g. α = 0.8),
the required number of periods can vary more drastically with
ic (N = 7 for ic = 1 or N = 40 for ic = 12). Overall,
the requirements are, however, not too severe highlighting the
experimental relevance of the proposed protocol.

Adiabatic ground state preparation.— In the previous sec-
tion we assumed that the system can initially be prepared in its
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Figure 12. Adiabatic ground state preparation. (a) We show the
L−th root of the absolute overlap between an in M−steps adiabat-
ically prepared state |φM 〉 and the ground state |ψ0〉 of HLR(α) for
different values of the power-law scaling α and application times
of T0 ∈ {2.0, 6.0} for each evolution step. We find that already a
comparable small number of evolution steps M is sufficient to reach
large overlap with the actual ground state for small α . 0.8. (b) Us-
ing the adiabatically prepared states as initial states for our dynam-
ical protocol we find qualitatively similar results as for the previous
simulations.

ground state |ψ0〉. This can for example be achieved by adia-
batic evolution. To this end, we start out with a fully dimerized
state |MG〉. To approximate the ground state of HLR(α) we
sequentially evolve |MG〉 with HLR(αm) for a given time in-
terval T0. The values of αm thereby approach the final value
of α in M steps, i.e. αm ≡ m δα for m ∈ {1, 2, , . . . ,M}
with δα = α

M . If the resulting state |φM 〉 is sufficiently close
to the ground state of the system |ψ0〉 it should allow for mea-
surements of Zak phases with results similar to the ones dis-
played in Fig. 10 and 11.

We show the L−th root of the absolute overlap
| 〈ψ0|φM 〉 |1/L between the adiabatically prepared state and
the true ground state in Fig. 12 (a) for various choices of α as a
function of the number of evolution steps M . During the evo-
lution every HamiltonianHLR(αm) is applied for a time inter-
val of T0 = 2.0 respectively T0 = 6.0. We notice that already

a comparable small number of evolution steps M provides a
good approximation of the actual ground state for small values
of α . 0.8. We moreover repeat the simulations for the in-
terferometric protocol starting from these states. Our results,
shown in Fig. 12 (b), reveal that adiabatically prepared initial
states yield similarly to previous results an alternating pattern
in the interferometrically measured magnetization 〈τzA〉 at the
ancilla, as expected from the good fidelity of the adiabatically
prepared ground state.

Combining all insight we gained within the last paragraphs
we can estimate the experimental requirements for interfero-
metric measurements of topological Zak phases. Once more
concrete statements highly depend on the chosen parameters.
We will in the following hence consider exemplary choices
reasonable close to experimental possibilities. Recalling the
T2−dependence of Eq. (19) we want to choose the application
time of HZak as large as possible, while still remaining close
enough to both the adiabatic and the high-frequency limit. Our
simulations of the discretized protocol indicate that this cri-
terion is e.g. satisfied for (T1, T2) = (1.2, 0.4). Assuming
initial ground state preparation within M = 8 evolution steps
we expect γZak to be measurable with 50 global and 32 local
pulses at the first two bonds of a system characterized by a
power-law exponent α = 0.8. This estimate includes 1 local
and 3M global pulses for preparation of the initial state, 6N
local respectively 5N global pulses for evolution as well as 1
additional global and local pulse for unrotating the system and
performing the interferometric measurement.
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