
Nearly tight Trotterization of interacting electrons
Yuan Su1,2, Hsin-Yuan Huang1,3, and Earl T. Campbell4

1Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125, USA
2Google Research, Venice, CA 90291, USA
3Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA
4AWS Center for Quantum Computing, Pasadena, CA 91125, USA

We consider simulating quantum systems on digital quantum computers.
We show that the performance of quantum simulation can be improved by
simultaneously exploiting commutativity of the target Hamiltonian, sparsity
of interactions, and prior knowledge of the initial state. We achieve this us-
ing Trotterization for a class of interacting electrons that encompasses various
physical systems, including the plane-wave-basis electronic structure and the
Fermi-Hubbard model. We estimate the simulation error by taking the tran-
sition amplitude of nested commutators of the Hamiltonian terms within the
η-electron manifold. We develop multiple techniques for bounding the transi-
tion amplitude and expectation of general fermionic operators, which may be
of independent interest. We show that it suffices to use

(
n5/3

η2/3 + n4/3η2/3
)
no(1)

gates to simulate electronic structure in the plane-wave basis with n spin or-
bitals and η electrons, improving the best previous result in second quantiza-
tion up to a negligible factor while outperforming the first-quantized simulation
when n = η2−o(1). We also obtain an improvement for simulating the Fermi-
Hubbard model. We construct concrete examples for which our bounds are
almost saturated, giving a nearly tight Trotterization of interacting electrons.
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1 Introduction
Simulating quantum systems to model their dynamics and energy spectra is one of the most
promising applications of digital quantum computers. Indeed, the difficulty of performing
such simulations on classical computers led Feynman [30] and others to propose the idea
of quantum computation. In 1996, Lloyd proposed the first explicit quantum algorithm
for simulating local Hamiltonians [50]. Since then, various quantum simulation algorithms
have been developed [10–13, 18, 25, 33, 52–55, 62], with potential applications in studying
condensed matter physics [24], quantum chemistry [20, 56], quantum field theories [39,
40], superstring/M-theory [31], as well as in designing other classical [43] and quantum
algorithms [2, 9, 15, 23, 32, 36, 46, 47, 67, 82].

Lloyd’s original work considered the simulation of k-local Hamiltonians. This was
subsequently extended to the study of d-sparse Hamiltonians [1, 10], which provides a
framework that abstracts the design of quantum algorithms from the underlying physical
settings. However, despite their theoretical value, algorithms for sparse Hamiltonian simu-
lation do not always provide the fastest approach for simulating concrete physical systems.
Hamiltonians arising in practice often have additional features beyond sparseness, such
as locality [33, 79], commutativity [22, 27, 74], and symmetry [35, 80], that can be used
to improve the performance of simulation. Besides, prior knowledge of the initial state
[6, 28, 69, 73] and the norm distribution of Hamiltonian terms [18, 21, 34, 49, 58] have also
been proven useful for digital quantum simulation.

We show that a number of these features, in particular the sparsity, commutativity, and
initial-state information, can be combined to give an even faster simulation. We achieve
this improvement for a class of interacting-electronic Hamiltonians, which includes many
physically relevant systems such as the plane-wave-basis electronic-structure Hamiltonian
and the Fermi-Hubbard model. Our approach uses Trotterization—a method widely ap-
plied in digital quantum simulation.

Our analysis proceeds by computing the transition amplitude of simulation error within
the η-electron manifold. To this end, we develop multiple techniques for bounding the tran-
sition amplitude/expectation of a general fermionic operator, which may be of independent
interest. For an n-spin-orbital electronic-structure problem in the plane-wave basis, our
result improves the best previous result in second quantization [6, 27, 54] up to a negli-
gible factor while outperforming the first-quantized result [7] when n = η2−o(1). We also
obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete
examples for which our bounds are almost saturated, giving a nearly tight Trotterization
of interacting electrons.

1.1 Combining interaction sparsity, commutativity, and initial-state knowledge
Sparsity can be used to improve digital quantum simulation in multiple ways. A common
notion of d-sparsity concerns the target Hamiltonian itself, where each row and column of
the Hamiltonian contains d nonzero elements accessed by querying quantum oracles. As
aforementioned, this provides an abstract framework for designing efficient simulation al-
gorithms and is versatile for establishing lower bounds [10], although it sometimes ignores
other important properties of the target system, such as locality, commutativity, and sym-
metry. Another notion of sparsity, closely related to our paper, considers the interactions
between the underlying qubits or modes [14, 57, 63, 87]. The sparsity of interactions does
not in general imply the underlying Hamiltonian is sparse, but it provides a tighter bound
on the number of terms in the Hamiltonian and may thus be favorable to digital quantum
simulation.
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Trotterization (and its alternative variants [25, 27, 34, 55, 62]) provides a simple ap-
proach to digital quantum simulation and is so far the only known approach that can
exploit the commutativity of the Hamiltonian. Indeed, in the extreme case where all the
terms in the Hamiltonian commute, we can simultaneously diagonalize them and apply the
first-order Lie-Trotter formula S1(t) without error. Previous studies have also established
commutator error bounds for certain low-order formulas [76] and specific systems [22, 74].
An analysis of a general formula Sp(t) is, however, considerably more difficult and has
remained elusive until the recent proof of the commutator scaling of Trotter error [27].

A different direction to speeding up digital quantum simulation is to exploit information
about the initial state. The error of digital quantum simulation is commonly quantified
in previous work by the spectral-norm distance, which considers all possible states in the
underlying Hilbert space. But if the state is known to be within some subspace throughout
the simulation, then in principle this knowledge could be used to improve the algorithm.
For instance, digital quantum simulation in practice often starts with an initial state in
the low-energy subspace of the Hamiltonian, so a worst-case spectral-norm analysis will
inevitably overestimate the error. To address this, recent studies have considered a low-
energy projection on the simulation error and provided improved approaches, using either
Trotterization [6, 28, 69, 73] or more advanced quantum algorithms [51], that can be
advantageous when the energy of the initial state is sufficiently small.

Ideally, the sparsity of interactions, commutativity of the Hamiltonian, and prior knowl-
edge about the initial state can all be combined to yield an even faster digital quantum
simulation. This combination, however, appears to be technically challenging to achieve.
Indeed, the state-of-the-art analysis of Trotterization represents the simulation error in
terms of nested commutators of Hamiltonian terms with exponential conjugations [27,
Theorem 5]. This representation is versatile for computing the commutator scaling of
Trotter error, but it yields little information about the energy of the initial state. To the
best of our knowledge, the only previous attempt to address this problem was made by
Somma for simulating bosonic Hamiltonians [73], whose solution seems to have a diver-
gence issue.1 Instead, we combine the sparsity, the commutativity and the initial-state
information to give an improved simulation of a class of interacting electrons.

1.2 Simulating interacting electrons
Simulating interacting electrons has emerged as one of the most important applications of
digital quantum simulation [8]. Following pioneering work such as [4, 60], recent develop-
ments of efficient quantum algorithms for electronic structure simulation have dramatically
reduced the simulation cost through various techniques [6, 14, 20, 45, 56, 59, 68, 71, 78,
81, 85].

Here, we consider simulating the following class of interacting electrons by Trotteriza-
tion:

H = T + V :=
∑
j,k

τj,kA
†
jAk +

∑
l,m

νl,mNlNm, (1)

where A†j , Ak are the fermionic creation and annihilation operators, Nl are the occupation-
number operators, τ , ν are coefficient matrices, and the summation is over n spin orbitals.
The specific definitions of these fermionic operators are given in Section 2.2. We say the
interactions are d-sparse if there are at most d nonzero elements within each row/column of
τ and ν. This model represents various systems arising in physics and chemistry, including

1Recent work [3] developed a tighter analysis of Trotter error for time-dependent Hamiltonian simulation
that exploits both commutativity of the target Hamiltonian and knowledge about the initial state.
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the electronic-structure Hamiltonians in the plane-wave basis [6] and the Fermi-Hubbard
model [28, 42].

To apply Trotterization, we need to express the Hamiltonian as a sum of elementary
terms, each of which can be directly exponentiated on a quantum computer; see Section 2.1
for a review of this algorithm. For the electronic Hamiltonian (1), it suffices to consider
the two-term decomposition H = T + V , as the exponentials of T and V can be directly
implemented using various quantum circuits. For instance, all the terms in V commute
with each other so e−itV = ∏

l,m e
−itνl,mNlNm , where each e−itνl,mNlNm corresponds to a

two-qubit operation under the Jordan-Wigner transformation. On the other hand, the
exponential e−itT can be implemented by diagonalization, i.e., e−itT = Ue−i

∑
λ`N`U †,

where U can be efficiently implemented using Givens rotations [41, 65]. In cases where
τ and ν are translationally invariant τj,k = τj+q,k+q, νl,m = νl+q,m+q, we can implement
e−itT using the fast fermionic Fourier transform [6] and a related circuit implementation
exists for e−itV [54].

We now apply a pth-order Trotterization Sp(t) to approximate the evolution of the
electronic Hamiltonian (1) for time t. We prove the following bound on the error of this
approximation.

Theorem 1 (Fermionic seminorm of Trotter error). Let H = T + V = ∑
j,k τj,kA

†
jAk +∑

l,m νl,mNlNm be an interacting-electronic Hamiltonian (1) with n spin orbitals, which
we simulate using a pth-order formula Sp(t). Then,∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η

2tp+1
)
. (2)

Furthermore, if the interactions are d-sparse,∥∥∥Sp(t)− e−itH
∥∥∥
η

= O
(
(‖τ‖max + ‖ν‖max)p−1 ‖τ‖max ‖ν‖max d

p+1ηtp+1
)
. (3)

Here, ‖·‖ is the spectral norm, ‖·‖max is the max-norm denoting the largest matrix element
in absolute value, and

‖X‖η := max
|ψη〉,|φη〉

|〈φη|X|ψη〉| (4)

is the fermionic η-seminorm for number-preserving operator X, where |ψη〉, |φη〉 are quan-
tum states with η electrons.

This theorem follows from an inductive estimate of the fermionic seminorm of nested
commutators of Hamiltonian terms, and will be formally proved in Section 3 and Section 4.
Note that in order to use the prior knowledge of the initial state, we have considered the
fermionic seminorm ‖·‖η of Trotter error with respect to the η-electron manifold. This
seminorm is closely related to other metrics used to quantify the impact of initial-state
information to digital quantum simulation [6, 28, 69, 73]; see Section 2.3 for a detailed dis-
cussion. The resulting bound depends on the number of electrons η, as well as the spectral
norm ‖τ‖, the max-norm ‖τ‖max , ‖ν‖max, and the sparsity of interactions d, but there is
no dependence on the total number of spin orbitals n. This improves over previous work
[27, Theorem F.5] where an explicit n-scaling seems unavoidable. Meanwhile, other prior
estimates of the fermionic seminorm [6, Appendix G] [28, Theorem 13] did not exploit com-
mutativity of the Hamiltonian and would introduce an additional factor of ηp in the Trotter
error bound. Our result thus improves the performance of digital quantum simulation by
combining the initial-state information, the interaction sparsity, and commutativity of the
Hamiltonian.
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A common issue with the Trotterization algorithm is that existing analyses can be very
loose for simulating certain physical systems. However, we address this with the following
theorem, which shows that the asymptotic scaling of our bound is nearly tight.

Theorem 2 (Tightness). For s, w > 0 and positive integer η ≤ n
2 , there exists an

interacting-electronic Hamiltonian H = T +V = ∑
j,k τj,kA

†
jAk+∑l,m νl,mNlNm as in (1)

with n spin orbitals such that ‖τ‖ = s, ‖ν‖max = w,∥∥ [T, . . . [T︸ ︷︷ ︸
p

, V ]]
∥∥
η

= Ω (spwη) ,
∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T ]]
∥∥
η

= Ω ((wη)p s/n) . (5)

In addition, for u,w > 0 and positive integer d ≤ η ≤ n
2 , there exists a d-sparse interacting-

electronic Hamiltonian (1) with n spin orbitals such that ‖τ‖max = u, ‖ν‖max = w,∥∥ [T, . . . [T︸ ︷︷ ︸
p

, V ]]
∥∥
η

= Ω ((ud)pwd) ,
∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T ]]
∥∥
η

= Ω ((wd)p u) . (6)

We prove the above theorem by choosing T = ∑n−1
j,k=0A

†
jAk and V = ∑n/2−1

l,m=0 NlNm and
computing their rescaled nested commutators, both in the original basis and the Fourier ba-
sis; see Section 5 for the proof. Note that both commutators [T, . . . [T, V ]] and [V, . . . , [V, T ]]
contribute to the Trotter error, as well as other types of nested commutators which do not
dominate the error scaling (Proposition 1). Modulo an application of the triangle inequal-
ity, Theorem 2 then shows that our bound (2) overestimates the Trotter error by a factor
of nη in the worst case, whereas (3) overestimates a factor of at most η. For p sufficiently
large, this only contributes no(1) and ηo(1) to the gate complexity, respectively. In this
sense, we have given a nearly tight Trotterization of interacting-electronic Hamiltonians
(1).2

1.3 Main techniques
The proof of Theorem 1 relies on multiple approaches we develop for bounding the fermionic
seminorm, which may be of independent interest. Recall from (4) that the fermionic
seminorm ‖X‖η of a number-preserving operator X is the maximum transition amplitude
of X within the η-electron manifold.

Our first approach is based on the observation that the fermionic seminorm of X can
be alternatively represented using the expectation of X†X, i.e.,

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = max
|ψη〉

√
〈ψη|X†X|ψη〉. (7)

We then upper bound X†X in terms of the particle-number operator N = ∑
j Nj , so that

the expectation scales with the number of electrons η = 〈ψη|N |ψη〉 instead of the total
number of spin orbitals. Assuming X is a sum of product of fermionic operators, we
contract the summation indices in X†X by using either diagonalization (Lemma 2) or an
operator Cauchy-Schwarz inequality (Lemma 1) [61]. To extend this argument to general
fermionic operators, we prove a Hölder-type inequality (Lemma 3) and apply it recursively
to bound X†X. We detail this recursive approach in Section 3 and use it to prove (2).

Our second approach starts by bounding the fermionic seminorm

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| (8)

2For specific molecules, our complexity estimates may be further improved by using additional features
of the Hamiltonians; see Section 7 for a further discussion of this point.
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in terms of the maximum expectation value max|ψη〉 |〈ψη|X|ψη〉|. We then expand X
and |ψη〉 and give a combinatorial argument to count the number of “paths” which have
nonzero contribution to the expectation (Proposition 11). We discuss this path-counting
approach in more detail in Section 4 and use it to prove (3). It is worth mentioning that
the path-counting technique can also be used to prove the following alternative bound for
the pth-order Trotterization∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
(n ‖τ‖max + ‖ν‖max η)p−1 ‖τ‖max ‖ν‖max nη

2tp+1
)
. (9)

This is slightly weaker than (2) since ‖τ‖ ≤ n ‖τ‖max always holds but not necessarily
saturates, but in our application it yields the same gate complexity for the electronic-
structure simulation in the second-quantized plane-wave basis. We discuss this further in
Appendix B.

Note that the expectation of fermionic operators, when taken with respect to the
computational-basis states, can be exactly computed using the so-called Wick’s theorem
[64, 86]. However, this approach would introduce unnecessary term reordering which actu-
ally complicates our proof. In contrast, the underlying idea of path counting is conceptually
simpler and may have potential applications in other contexts beyond the analysis of Trot-
ter error.

1.4 Applications
The nearly tight Trotterization of electronic Hamiltonian (1) gives improved simulations
of many systems arising in condensed matter physics and quantum chemistry, including
the plane-wave-basis electronic-structure Hamiltonian and the Fermi-Hubbard model.

The electronic-structure problem considers electrons interacting with each other and
some fixed nuclei. An efficient simulation of such systems could help understand chemical
reactions, and provide insight into material properties. Here, we consider representing the
electronic-structure Hamiltonian in the plane-wave basis [6]:

H = 1
2n

∑
j,k,µ

κ2
µ cos[κµ · rk−j ]A†jAk

− 4π
ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2
µ

Nj + 2π
ω

∑
j 6=k
µ6=0

cos[κµ · rj−k]
κ2
µ

NjNk,
(10)

where ω is the volume of the computational cell, κµ = 2πµ/ω1/3 are n vectors of plane-
wave frequencies, µ are three-dimensional vectors of integers with elements in the interval
[−n1/3, n1/3], rj are the positions of electrons; ζι are nuclear charges; and r̃ι are the nuclear
coordinates. We can represent this Hamiltonian in the form (1) with

‖τ‖ = O
(
n2/3

ω2/3

)
, ‖ν‖max = O

(
n1/3

ω1/3

)
. (11)

Assuming a constant system density η = O (ω), Theorem 1 then implies that∥∥∥Sp(t)− e−itH
∥∥∥
η

= O
((

n2/3

η2/3 + n1/3η2/3
)p

n1/3η2/3tp+1
)
. (12)

This approximation is accurate for a short-time evolution. To simulate for a longer time,
we divide the evolution into r steps and apply Sp(t/r) within each step, obtaining∥∥∥S r

p (t/r)− e−itH
∥∥∥
η

= O
((

n2/3

η2/3 + n1/3η2/3
)p

n1/3η2/3 t
p+1

rp

)
. (13)
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Simulation Algorithm n, η η = Θ(n)
Interaction-picture (Ref. [7], first quantization) Õ

(
n1/3η8/3

)
Õ
(
n3)

Qubitization (Ref. [7], first quantization) Õ
(
n2/3η4/3 + n1/3η8/3

)
Õ
(
n3)

Interaction-picture (Ref. [54], second quantization) Õ
(
n8/3

η2/3

)
Õ
(
n2)

Trotterization (Ref. [6], second quantization)
(
n5/3η1/3 + n4/3η5/3

)
no(1) n3+o(1)

Trotterization (Ref. [27], second quantization)
(
n7/3

η1/3

)
no(1) n2+o(1)

Trotterization (Theorem 1, second quantization)
(
n5/3

η2/3 + n4/3η2/3
)
no(1) n2+o(1)

Table 1: Comparison of our result and previous results for simulating the plane-wave-basis elec-
tronic structure with n spin orbitals and η electrons. We use Õ (·) to suppress polylogarithmic
factors in the gate complexity scaling.

Therefore,

r = O
((

n2/3

η2/3 + n1/3η2/3
)(

n2/3η1/3
)1/p

)
(14)

steps suffices to simulate for a constant time and accuracy with a pth-order Trotterization.
Implementing each step using the approach of [54, Sect. 5] and choosing p sufficiently large,
we obtain the gate complexity (

n5/3

η2/3 + n4/3η2/3
)
no(1). (15)

Up to the negligible factor no(1), this improves the best previous result in second quanti-
zation while outperforming the first-quantized simulation when n = η2−o(1). See Table 1
for a gate-count comparison. We discuss this in detail in Section 6.1.

We also consider applications to the Fermi-Hubbard model, which is believed to capture
the physics of some high temperature superconductors. This model is classically challenging
to simulate [44, 88], but is a potential candidate for near-term quantum simulation [16, 17,
48, 66]. We have

H = −s
∑
〈j,k〉,σ

(
A†j,σAk,σ +A†k,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (16)

where 〈j, k〉 denotes a summation over nearest-neighbor lattice sites and σ ∈ {0, 1} labels
the spin degree of freedom. The Fermi-Hubbard model represents a lattice system with
nearest-neighbor interactions and, according to [22], can be simulated with O

(
n1+1/p

)
gates using a pth-order Trotterization for a constant time and accuracy. On the other hand,
recent work [28] shows that the Trotterization algorithm has gate complexity O

(
nη1+1/p

)
when restricted to the η-electron manifold. By simultaneously using the sparsity of interac-
tions, commutativity of the Hamiltonian and information about the initial state, we show
in Section 6.2 that O

(
nη1/p

)
gates suffices, improving both results for the Fermi-Hubbard

model.3

We conclude the paper in Section 7 with a discussion of the results and some open
questions.

3Note however that this does not significantly improve the approach based on Lieb-Robinson bounds
[33], since that approach has gate complexity Õ (n) when using a high-precision quantum simulation
algorithm as a subroutine.
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2 Preliminaries
In this section, we summarize preliminaries of this paper, including a discussion of the
Trotterization algorithm and its error analysis in Section 2.1, a brief summary of the
second-quantization representation in Section 2.2, and an introduction to the fermionic
seminorm and its properties in Section 2.3.

2.1 Trotterization and Trotter error
The Trotterization algorithm approximates the evolution of a sum of Hamiltonian terms
using exponentials of the individual terms. For the interacting-electronic Hamiltonian (1),
it suffices to consider a two-term decomposition H = T + V , as the exponentials of T and
V can be directly implemented on a quantum computer. Then, the ideal evolution under
H for time t is given by e−itH = e−it(T+V ), which can be approximated by a pth-order
product formula Sp(t), such as the first-order Lie-Trotter formula

S1(t) := e−itT e−itV (17)

and (2k)th-order Suzuki formulas [77]

S2(t) := e−i
t
2V e−itT e−i

t
2V ,

S2k(t) := S2k−2(ukt)2 S2k−2((1− 4uk)t) S2k−2(ukt)2,
(18)

where uk := 1/(4−41/(2k−1)). This approximation is accurate when t is small. To simulate
for a longer time, we divide the evolution into r Trotter steps and apply Sp(t/r) with
Trotter error at most ε/r. We choose r sufficiently large so that the simulation error, as
quantified by the spectral norm

∥∥∥S r
p (t/r)− e−itH

∥∥∥, is at most ε.
Trotterization (and its alternative variants) provides a simple approach to digital quan-

tum simulation and is so far the only known approach that can exploit commutativity of
the Hamiltonian. Indeed, in the extreme case where all the Hamiltonian terms commute,
Trotterization can implement the exact evolution without error. Previous studies have also
established commutator analysis of Trotter error for systems with geometrical locality [22]
and Lie-algebraic structures [74], as well as certain low-order formulas [76], including the
first-order Lie-Trotter formula

S1(t)− e−itH =
∫ t

0
dτ1

∫ τ1

0
dτ2 e

−i(t−τ1)He−iτ1T eiτ2T [iT, iV ] e−iτ2T e−iτ1V (19)

and the second-order Suzuki formula

S2(t)− e−itH =
∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 e

−i(t−τ1)He−i
τ1
2 V

·
(
e−iτ3T

[
−iT,

[
−iT,−iV2

]]
eiτ3T + ei

τ3
2 V

[
i
V

2 ,
[
i
V

2 , iT
]]
e−i

τ3
2 V
)
e−iτ1T e−i

τ1
2 V .

(20)
An analysis of the general case is, however, considerably more difficult and has remained
elusive until the recent proof of commutator scaling of Trotter error [27]. Here, we introduce
a stronger version of that result which can be proved as in [26, Appendix C] by combining
Theorem 3, 4, and 5 of [27] without invoking the triangle inequality.4

4It is essential to invoke a representation of the Trotter error where nested commutators have at most a
constant number of layers [27]. If such a representation were not used, Trotterization would have a worse
asymptotic complexity [83, Appendix B].
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Proposition 1 (Commutator representation of Trotter error). Let H = T + V be a two-
term Hamiltonian and Sp(t) be a pth-order formula. Define H0 = V and H1 = T . Then,

Sp(t)− e−itH =
∫ t

0
dτ1

∫ τ1

0
dτ2

∑
γγγ,j

aγγγ,j(τ1, τ2)e−i(t−τ1)H

·Uγγγ,j(τ1, τ2)
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
Wγγγ,j(τ1, τ2),

(21)

where γγγ ∈ {0, 1}p+1 are binary vectors5 and j goes through a constant range of numbers
(depending on the order p). Here, Uγγγ,j(τ1, τ2) and Wγγγ,j(τ1, τ2) are products of evolutions
of T and V with time variables τ1 and τ2 and aγγγ(τ1, τ2) are coefficients such that∫ t

0
dτ1

∫ τ1

0
dτ2 |aγγγ,j(τ1, τ2)| = O

(
tp+1

)
. (22)

As an immediate application, we find that the spectral norm of the Trotter error scales
with nested commutators of the Hamiltonian terms, i.e.,∥∥∥Sp(t)− e−itH

∥∥∥ = O
(

max
γγγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥ tp+1

)
. (23)

Note that the use of maxγγγ in place of
∑
γγγ does not change the scaling as γγγ only ranges

over a constant number of binary vectors. We then divide the evolution into r steps and
apply the triangle inequality to obtain

∥∥∥S r
p (t/r)− e−itH

∥∥∥ ≤ r ∥∥∥Sp(t/r)− e−i
t
r
H
∥∥∥ = O

(
max
γγγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥ tp+1

rp

)
.

(24)
It thus suffices to choose

r = O

(maxγγγ
∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥)1/p t1+1/p

ε1/p

 (25)

to ensure that the error of simulation is no more than ε.
The above analysis is versatile for computing the commutator dependence of Trotter

error. Unfortunately, the resulting bound does not use prior knowledge of the initial state
and will in particular be loose if the initial state lies within a low-energy subspace. On
the other hand, recent work of Şahinoğlu and Somma proposed a Trotterization approach
for simulating low-energy initial states but the commutativity of the Hamiltonian was
ignored in their analysis [69]. Here, we address this by simultaneously using commutativity
of the Hamiltonian and prior knowledge of the initial state to improve the simulation
of a class of interacting electrons. We obtain further improvement when the electronic
Hamiltonian has sparse interactions. In the following, we introduce preliminaries about
the second-quantization representation (Section 2.2) and the notion of fermionic seminorm
(Section 2.3), on which our analysis will be based.

2.2 Second-quantization representation
In this section, we review several facts about the second-quantization representation that
are relevant to our analysis. We refer the reader to the book of Helgaker, Jørgensen, and
Olsen [37] for a detailed discussion of this topic.

5We use bold symbols to represent vectors throughout this paper.
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We use the abstract Fock space to represent electronic Hamiltonians. Specifically, for
a system of n spin orbitals, we construct a 2n-dimensional space span{|c0, c1, . . . , cn−1〉}
spanned by the basis vectors |c0, c1, . . . , cn−1〉, where cj = 1 represents that mode j is
occupied and cj = 0 otherwise. General vectors in the Fock space, denoted by |ψ〉 or |φ〉,
are then given by linear combinations of these orthonormal basis vectors. We define the
η-electron subspace span{|c0, c1, . . . , cn−1〉,

∑
j cj = η}. By considering all 0 ≤ η ≤ n, we

obtain the decomposition

span {|c0, c1, . . . , cn−1〉} =
n

ë

η=0
span

{
|c0, c1, . . . , cn−1〉,

∑
j

cj = η
}
, (26)

where k denotes the orthogonal direct sum. Using bold symbol ccc to represent an arbitrary
fermionic configuration and |ccc| = ∑

j cj to denote the Hamming weight, we have

span {|ccc〉} =
n

ë

η=0
span

{
|ccc〉, |ccc| = η

}
. (27)

We say that normalized vectors in the η-electron subspace form the η-electron manifold
and denote an arbitrary such vector by |ψη〉 or |φη〉.

The n elementary fermionic creation operators are defined through the relations

A†j |c0, c1, . . . , 0j , . . . , cn−1〉 = (−1)
∑j−1

k=0 ck |c0, c1, . . . , 1j , . . . , cn−1〉,

A†j |c0, c1, . . . , 1j , . . . , cn−1〉 = 0,
(28)

whereas the fermionic annihilation operators are defined by

Aj |c0, c1, . . . , 0j , . . . , cn−1〉 = 0,

Aj |c0, c1, . . . , 1j , . . . , cn−1〉 = (−1)
∑j−1

k=0 ck |c0, c1, . . . , 0j , . . . , cn−1〉.
(29)

The use of † is justified by the fact thatA†j is indeed the Hermitian adjoint ofAj with respect
to the inner product in the Fock space. We also introduce the occupation-number operators
Nj = A†jAj and add them together to get the particle-number operator N = ∑n−1

j=0 Nj .
Fermionic creation and annihilation operators satisfy the canonical anticommutation

relations
A†jA

†
k +A†kA

†
j = AjAk +AkAj = 0, A†jAk +AkA

†
j = δj,kI, (30)

where the Kronecker-delta function δj,k is one if j = k and zero otherwise. Applying these,
we obtain the following commutation relations of second-quantized fermionic operators.

Proposition 2 (Commutation relations of fermionic operators). The following commu-
tation relations hold for second-quantized fermionic operators:

1.
[
A†lAm, A

†
j

]
= δj,mA

†
l ,
[
A†lAm, Ak

]
= −δk,lAm;

2.
[
Nl, A

†
j

]
= δl,jA

†
j, [Nl, Ak] = −δl,kAk;

3.
[
N,A†j

]
= A†j, [N,Ak] = −Ak;

4. [Nl, Nm] = 0.
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We say a fermionic operator is number-preserving if every η-electron subspace is in-
variant under the action of this operator. Equivalently, operator X is number-preserving
if and only if it commutes with the particle-number operator, i.e., [N,X] = 0. Yet an-
other equivalent definition is based on the notion of η-electron projections: letting Πη be
orthogonal projections onto the η-electron subspaces, then X is number-preserving if and
only if it commutes with every Πη, namely, [Πη, X] = 0. In the matrix representation, X
is block-diagonalized by the set of η-electron projections {Πη}.

A special example of number-preserving operator is the particle-number operator N ,
which acts as a scalar multiplication by η within the η-electron subspace. Other exam-
ples include excitation operators A†jAk, occupation-number operators Nl, and elementary

exponentials in the Trotterization algorithm e
−it
∑

j,k
τj,kA

†
jAk and e−it

∑
l,m

νl,mNlNm . The
fermionic Fourier transform [29] as given below is also number-preserving:6

FFFT† ·A†j ·FFFT = 1√
n

n−1∑
l=0

e−
2πijl
n A†l , FFFT† ·Ak ·FFFT = 1√

n

n−1∑
m=0

e
2πikm
n Am, (31)

since

FFFT† ·N · FFFT =
n−1∑
j=0

FFFT† ·A†j · FFFT · FFFT† ·Aj · FFFT

= 1
n

n−1∑
l,m=0

n−1∑
j=0

e
2πij(m−l)

n

A†lAm =
n−1∑
l=0

A†lAl = N.

(32)

In fact, the set of number-preserving operators contains identity and is closed under linear
combination, multiplication, Hermitian conjugation, and taking limit.

Proposition 3 (Number-preserving operators as a closed unital †-subalgebra). The fol-
lowing operators are respectively number-preserving:

1. the identity operator I;

2. λX + µY , if X and Y are number-preserving, and λ and µ are complex numbers;

3. XY , if X and Y are number-preserving;

4. X†, if X is number-preserving;

5. lim
i→∞

Xi, if Xi are number-preserving and the limit exists.

2.3 Fermionic seminorm
We now introduce the notion of fermionic seminorm, which we use to quantify the error
of the Trotterization algorithm that takes the prior knowledge of the initial state into
consideration.

For any number-preserving operator X and 0 ≤ η ≤ n, we define the fermionic η-
seminorm as the maximum transition amplitude within the η-electron manifold:

‖X‖η := max
|ψη〉,|φη〉

|〈φη|X|ψη〉| , (33)

6This can alternatively be proved using the fact that the fermionic Fourier transform is generated by
the fermionic swap and Hadamard gate [6, Appendix I], both of which are number-preserving.
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where |ψη〉, |φη〉 are quantum states containing η electrons.7 When there is no ambigu-
ity, we drop the dependence on η and call ‖X‖η the fermionic seminorm of X. As the
name suggests and the following proposition confirms, the fermionic seminorm is indeed a
seminorm defined on the closed unital †-subalgebra of number-preserving operators.

Proposition 4 (Seminorm properties). The following properties hold for the fermionic
seminorm:

1. ‖λX‖η = |λ| ‖X‖η, if X is number-preserving and λ is a complex number;

2. ‖X + Y ‖η ≤ ‖X‖η + ‖Y ‖η, if X and Y are number-preserving;

3. ‖XY ‖η ≤ ‖X‖η ‖Y ‖η, if X and Y are number-preserving;

4. ‖I‖η = 1;

5. ‖UXW‖η = ‖X‖η, if U,X,W are number-preserving and U,W are unitary;

6.
∥∥∥X†∥∥∥

η
= ‖X‖η, if X is number-preserving.

Proof. We will only prove the third statement, as the remaining follow directly from the
definition of the fermionic seminorm. We consider

‖XY ‖η = max
|ψη〉,|φη〉

|〈φη|XY |ψη〉|

= max
|ψη〉,|φη〉

|〈φη|XΠηΠηY |ψη〉|

≤ max
|φη〉

∥∥∥ΠηX
†|φη〉

∥∥∥max
|ψη〉
‖ΠηY |ψη〉‖ ,

(34)

where Πη is the orthogonal projection onto the η-electron subspace and the last step follows
from the Cauchy-Schwarz inequality. To proceed, we optimize over an arbitrary state |ϕ〉
to get ∥∥∥ΠηX

†|φη〉
∥∥∥ = max

|ϕ〉

∣∣∣〈ϕ|ΠηX
†|φη〉

∣∣∣
= max
|ϕ〉
‖Πη|ϕ〉‖

∣∣∣∣∣ 〈ϕ|Πη

‖Πη|ϕ〉‖
X†|φη〉

∣∣∣∣∣
≤
∥∥∥X†∥∥∥

η
= ‖X‖η

(35)

assuming Πη|ϕ〉 6= 0, as the case Πη|ϕ〉 = 0 never leads to maximality. But on the other
hand,

‖X‖η =
∥∥∥X†∥∥∥

η
= max
|φη〉,|ϕη〉

∣∣∣〈ϕη|X†|ψη〉∣∣∣
= max
|φη〉,|ϕη〉

∣∣∣〈ϕη|ΠηX
†|ψη〉

∣∣∣
≤ max
|φη〉,|ϕ〉

∣∣∣〈ϕ|ΠηX
†|ψη〉

∣∣∣ = max
|φη〉

∥∥∥ΠηX
†|φη〉

∥∥∥ ,
(36)

implying max|φη〉
∥∥∥ΠηX

†|φη〉
∥∥∥ = ‖X‖η. Similarly, we have max|ψη〉 ‖ΠηY |ψη〉‖ = ‖Y ‖η.

This completes the proof of the third statement.

7Note that it is possible to extend this to define ‖·‖η→ξ for operators that map the η-electron subspace
to ξ-electron subspace, although this is not needed in our analysis and will not be further pursued here.
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The fermionic seminorm, as defined in (33) by the maximum transition amplitude
within the η-electron manifold, provides a reasonable metric for quantifying the error
of digital quantum simulation with initial-state constraints. Indeed, a seminorm similar
to our definition was used by Somma [73] for analyzing quantum simulation of bosonic
Hamiltonians. However, we point out that this is not the only error metric that takes
the prior knowledge of the initial state into account. Recent work [69] analyzed the low-
energy simulation of k-local frustration-free Hamiltonians by computing the spectral norm
of Trotter error projected on the low-energy subspace. However, the following proposition
shows that these two error metrics are the same for fermionic systems.

Proposition 5 (Fermionic seminorm as a projected spectral norm). For any number-
preserving operator X, it holds that

‖X‖η = max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = ‖XΠη‖ . (37)

Proof. The underlying idea behind this proposition is already hinted in the proof of Propo-
sition 4. We have

max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = max
|ψη〉,|φη〉

|〈φη|ΠηXΠη|ψη〉|

≤ max
|ψ〉,|φ〉

|〈φ|ΠηXΠη|ψ〉| = ‖ΠηXΠη‖ .
(38)

But on the other hand,

‖ΠηXΠη‖ = max
|ψ〉,|φ〉

|〈φ|ΠηXΠη|ψ〉|

= max
|ψ〉,|φ〉

‖Πη|φ〉‖ ‖Πη|ψ〉‖
∣∣∣∣∣ 〈φ|Πη

‖Πη|φ〉‖
X

Πη|ψ〉
‖Πη|ψ〉‖

∣∣∣∣∣
≤ max
|ψη〉,|φη〉

|〈φη|X|ψη〉|

(39)

assuming Πη|φ〉 6= 0 and Πη|ψ〉 6= 0, as the zero vector will not lead to maximality. The
proposition then follows since number-preserving operatorX commutes with the η-electron
projection Πη.

Another common approach to quantify the error of digital quantum simulation is to
take the maximum expectation max|ψη〉 |〈ψη| · |ψη〉| within the η-electron manifold. This
approach is used by previous work [6, 28, 65] and appears to give a natural metric when
digital quantum simulation is used as a subroutine in phase estimation. We show that this
only differs from our definition (33) by at most a constant factor, reaffirming the fermionic
seminorm as a proper error metric for simulating fermionic systems.

Proposition 6 (Transition amplitude and expectation). For any number-preserving op-
erator X, the following statements hold:

1. max|ψη〉,|φη〉 |〈φη|X|ψη〉| = max|ψη〉 |〈ψη|X|ψη〉|, if X is Hermitian;

2. max|ψη〉,|φη〉 |〈φη|X|ψη〉| = max|ψη〉
√
〈ψη|X†X|ψη〉

(
equivalently,

∥∥∥X†X∥∥∥
η

= ‖X‖2η
)
;

3. max|ψη〉 |〈ψη|X|ψη〉| ≤ max|ψη〉,|φη〉 |〈φη|X|ψη〉| ≤ 2 max|ψη〉 |〈ψη|X|ψη〉|.8

8Note that the second inequality is tight by considering X = A†0A1 on a fermionic system with two spin
orbitals and one electron.
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Proof. The first statement follows from the fact that ΠηXΠη is Hermitian and that the
spectral norm of a Hermitian operator is its largest eigenvalue in absolute value. For the
second statement,

max
|ψη〉,|φη〉

|〈φη|X|ψη〉| = ‖X‖η = ‖XΠη‖ =
√
‖ΠηX†XΠη‖ = max

|ψη〉

√
〈ψη|X†X|ψη〉. (40)

The first inequality of Statement 3 is trivial. For the second inequality, we apply the
polarization identity

〈φη|X|ψη〉 = 1
4
(

(〈φη|+ 〈ψη|)X (|φη〉+ |ψη〉)− (〈φη| − 〈ψη|)X (|φη〉 − |ψη〉)

− i (〈φη| − i〈ψη|)X (|φη〉+ i|ψη〉) + i (〈φη|+ i〈ψη|)X (|φη〉 − i|ψη〉)
)
(41)

to obtain
|〈φη|X|ψη〉|

≤
max|ϕη〉 |〈ϕη|X|ϕη〉|

4
(
‖|φη〉+ |ψη〉‖2 + ‖|φη〉 − |ψη〉‖2 + ‖|φη〉+ i|ψη〉‖2 + ‖|φη〉 − i|ψη〉‖2

)
= 2 max

|ϕη〉
|〈ϕη|X|ϕη〉| ,

(42)
from which the claimed inequality follows by maximizing over states |ψη〉 and |φη〉.

We now apply Proposition 1 to compute the fermionic seminorm of Trotter error,
obtaining ∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(

max
γγγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
. (43)

We find that the resulting error bound depends on the fermionic seminorm of nested
commutators, and the performance of digital quantum simulation can thus be potentially
improved by simultaneously exploiting commutativity of the Hamiltonian and prior knowl-
edge of the initial state. However, the main difficulty here is to give a tight estimate of∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η
, which seems technically challenging to address. To this end,

we develop two approaches for bounding the expectation/transition amplitude of general
fermionic operators in Section 3 and Section 4 and prove our main result Theorem 1,
establish the tightness of our bound in Section 5, and discuss applications and further
implications of our result in Section 6 and Section 7.

3 Recursive bound on the expectation of fermionic operators
In this section, we present our first approach for bounding the expectation of fermionic
operators, and thereby bounding the fermionic seminorm of Trotter error. We introduce
in Section 3.1 the main techniques used in our approach, including an operator Cauchy-
Schwarz inequality, a diagonalization procedure, and a Hölder-type inequality for the ex-
pectation value. We then describe our approach in detail and apply it to prove Eq. (2) of
our main result Theorem 1. The proof is based on induction: we analyze the base case in
Section 3.2 and the inductive step in Section 3.3, respectively.

3.1 Main techniques
Recall that the main technical challenge to estimate the simulation error of the electronic
Hamiltonian (1) is to bound the fermionic seminorm

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
, where γj =
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0, 1, H0 = V and H1 = T . Applying the commutation relations in Proposition 2, we see
that we need to analyze a general fermionic operator of the form

X =
∑
jjj,kkk,lll

wjjj,kkk,lll · · ·A†jx · · ·Nlz · · ·Aky · · · (44)

Our first approach starts by reexpressing the fermionic seminorm of X using the ex-
pectation of X†X:

‖X‖η = max
|ψη〉

√
〈ψη|X†X|ψη〉. (45)

We note that X†X is a positive semidefinite operator, and an upper bound of it with
respect to the partial ordering of positive semidefiniteness will therefore give a bound on
the expectation value. We achieve this by contracting the corresponding indices in X and
X†, using either an operator Cauchy-Schwarz inequality (Lemma 1) or diagonalization
(Lemma 2).

Lemma 1 (Operator Cauchy-Schwarz inequality [61, Proposition 3.4]). For any finite
lists of operators {Bj} and {Cj} with the same cardinality, we have

−
∑
j,k

B†jC
†
kCkBj ≤

∑
j,k

B†jC
†
kCjBk ≤

∑
j,k

B†jC
†
kCkBj , (46)

where Hermitian operators are partially ordered according to the positive semidefiniteness.

Proof. We have

0 ≤
∑
j,k

(CkBj ∓ CjBk)† (CkBj ∓ CjBk)

=
∑
j,k

(
B†jC

†
kCkBj ∓B

†
kC
†
jCkBj ∓B

†
jC
†
kCjBk +B†kC

†
jCjBk

)
= 2

∑
j,k

B†jC
†
kCkBj ∓ 2

∑
j,k

B†jC
†
kCjBk.

(47)

This implies
±
∑
j,k

B†jC
†
kCjBk ≤

∑
jk

B†jC
†
kCkBj , (48)

from which the claimed inequality follows.

Lemma 2 (Diagonalization). For any finite list of operators {Bj} and Hermitian coeffi-
cient matrix µ, we have

− ‖µ‖
∑
j

B†jBj ≤
∑
j,k

µj,kB
†
jBk ≤ ‖µ‖

∑
j

B†jBj , (49)

where Hermitian operators are partially ordered according to the positive semidefiniteness.

Proof. Since µ is Hermitian, we may diagonalize it to µ̃ by unitary transformation w as

µ = w†µ̃w, (50)

where µ̃ is a diagonal matrix with all eigenvalues of µ as the diagonal elements. We then
define B̃l := ∑

k wl,kBk so that∑
j,k

µj,kB
†
jBk =

∑
l

µ̃lB̃
†
l B̃l, (51)
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which implies
− ‖µ‖

∑
l

B̃†l B̃l ≤
∑
j,k

µj,kB
†
jBk ≤ ‖µ‖

∑
l

B̃†l B̃l. (52)

But ∑l B̃
†
l B̃l has identity as the coefficient matrix which is invariant under a change of

basis: ∑
l

B̃†l B̃l =
∑
j

B†jBj . (53)

This completes the proof.

By applying Lemma 1 or Lemma 2, we can get a bound of X†X with respect to the
partial ordering of positive semidefiniteness, with one pair of the corresponding indices
in X and X† contracted. Indeed, these techniques were used by Otte to establish the
boundedness of quadratic fermionic operators in infinite-dimensional Hilbert spaces [61].
However, the difficulty here is that we need to handle more complex products of fermionic
operators in the Trotter error estimate. To this end, we prove a Hölder-type inequality for
the expectation value, which allows us to apply Lemma 1 and Lemma 2 recursively to get
a desired bound.

Lemma 3 (Hölder-type inequality for expectation). For any finite lists of fermionic op-
erators {Bj} and {Ck} with the same cardinality,

max
|ψη〉
〈ψη|

∑
j

B†jC
†
jCjBj |ψη〉 ≤ max

|ψη〉
〈ψη|

∑
j

B†jBj |ψη〉max
k,|φξ〉
〈φξ|C†kCk|φξ〉, (54)

where we assume Bj map the η-electron subspace to the ξ-electron subspace and Cj are
number-preserving. In terms of the fermionic seminorm, we have∥∥∥∑

j

B†jC
†
jCjBj

∥∥∥
η
≤
∥∥∥∑

j

B†jBj
∥∥∥
η

max
k

∥∥∥C†kCk∥∥∥ξ . (55)

Proof. The claimed inequality follows from∥∥∥∑
j

B†jC
†
jCjBj

∥∥∥
η

=
∥∥∥∑

j

B†jΠξC
†
jCjΠξBj

∥∥∥
η

≤
∥∥∥∥∑

j

∥∥∥ΠξC
†
jCjΠξ

∥∥∥B†jBj∥∥∥∥
η

≤
∥∥∥∑

j

B†jBj
∥∥∥
η

max
k

∥∥∥ΠξC
†
kCkΠξ

∥∥∥
=
∥∥∥∑

j

B†jBj
∥∥∥
η

max
k

∥∥∥C†kCk∥∥∥ξ .
(56)

Using the above lemmas, we can now prove Eq. (2) of our main result Theorem 1 by
induction. We analyze the base case in Section 3.2 and the inductive step in Section 3.3.
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3.2 Single-layer commutator
We now prove Eq. (2) of our main result Theorem 1 by induction. In the base case, we
consider simulating the interacting-electronic Hamiltonian (1) using the first-order formula
S1(t). We know from (19) that

∥∥∥S1(t)− e−itH
∥∥∥
η
≤ t2

2 ‖[T, V ]‖η , (57)

where T = ∑
j,k τj,kA

†
jAk and V = ∑

l,m νl,mNlNm. Our goal is to show that

‖[T, V ]‖η = O
(
‖τ‖ ‖ν‖max η

2
)
. (58)

To this end, we apply Proposition 2 to expand the single-layer commutator [T, V ] into
linear combinations of fermionic creation, annihilation, and occupation-number operators.
We have

[T, V ] =
∑
j,k,l,m

τj,kνl,m
[
A†jAk, NlNm

]
=

∑
j,k,l,m

τj,kνl,mA
†
j [Ak, NlNm] +

∑
j,k,l,m

τj,kνl,m
[
A†j , NlNm

]
Ak

=
∑
j,k,m

τj,kνk,mA
†
jAkNm +

∑
j,k,l

τj,kνl,kA
†
jNlAk

−
∑
j,k,m

τj,kνj,mA
†
jNmAk −

∑
j,k,l

τj,kνl,jNlA
†
jAk.

(59)

At this stage, it is possible to directly bound the terms in the last equality using Lemma 1,
Lemma 2, and Lemma 3 from the previous subsection. However, we will further com-
mute the occupation-number operator in between the creation and annihilation operators,
obtaining

[T, V ] =
∑
j,k,m

τj,kνk,mA
†
jNmAk +

∑
j,k

τj,kνk,kA
†
jAk +

∑
j,k,l

τj,kνl,kA
†
jNlAk

−
∑
j,k,m

τj,kνj,mA
†
jNmAk −

∑
j,k

τj,kνj,jA
†
jAk −

∑
j,k,l

τj,kνl,jA
†
jNlAk.

(60)

This additional commutation leads to an error bound with the same asymptotic scaling
but a slightly larger prefactor. The benefit is that the analysis can be directly extended to
handle the inductive step in the next subsection.

Proposition 7 (Structure of single-layer commutator). Let H = T+V = ∑
j,k τj,kA

†
jAk+∑

l,m νl,mNlNm be an interacting-electronic Hamiltonian (1). Then, the commutator [T, V ]
has the expansion

[T, V ] =
∑
j,k,m

τj,kνk,mA
†
jNmAk +

∑
j,k

τj,kνk,kA
†
jAk +

∑
j,k,l

τj,kνl,kA
†
jNlAk

−
∑
j,k,m

τj,kνj,mA
†
jNmAk −

∑
j,k

τj,kνj,jA
†
jAk −

∑
j,k,l

τj,kνl,jA
†
jNlAk.

(61)

It is worth noting that the above six terms from the expansion of [T, V ] share a similar
structure. Specifically, they all consist of creation operator A†j , annihilation operator Ak,
and (possibly) occupation-number operator Nl, with one coefficient matrix τ and one
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j k

m

τ

ν

(a)
∑

j,k,m
τj,kνk,mA

†
jNmAk

j k
τ

ν

(b)
∑

j,k
τj,kνk,kA

†
jAk

j k

l

τ

ν

(c)
∑

j,k,l
τj,kνl,kA

†
jNlAk

j k

m

τ

ν

(d)
∑

j,k,m
τj,kνj,mA

†
jNmAk

j k
τ

ν

(e)
∑

j,k
τj,kνj,jA

†
jAk

j k

l

τ

ν

(f)
∑

j,k,l
τj,kνl,jA

†
jNlAk

Figure 1: Graph illustration of the expansion terms from the single-layer commutator [T, V ]. Here,
vertices in the graph denote the indices in the summation and edges represent the coefficients. Note
that the graphs can be made directional so that they are one-to-one corresponding to fermionic
operators, although this is not needed in our analysis and will not be further pursued here.

matrix ν. The main difference between these terms is that the coefficient matrix ν is
acting on different indices. See Figure 1 for a graph illustration of this structure.

We now bound the asymptotic scaling of the fermionic seminorm for each of the six
terms in the commutator expansion.

Proposition 8 (Fermionic seminorm of single-layer commutator). Let H = T + V =∑
j,k τj,kA

†
jAk +∑

l,m νl,mNlNm be an interacting-electronic Hamiltonian (1). Then,

1.
∥∥∥∑j,k,m τj,kνk,mA

†
jNmAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

2.
∥∥∥∑j,k τj,kνk,kA

†
jAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η;

3.
∥∥∥∑j,k,l τj,kνl,kA

†
jNlAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

4.
∥∥∥∑j,k,m τj,kνj,mA

†
jNmAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2;

5.
∥∥∥∑j,k τj,kνj,jA

†
jAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η;

6.
∥∥∥∑j,k,l τj,kνl,jA

†
jNlAk

∥∥∥
η
≤ ‖τ‖ ‖ν‖max η

2.

Proof. We present the proof of the first two statements here. The remaining justifications
proceed in a similar way and are left to Appendix A.
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Letting X = ∑
j,k,m τj,kνk,mA

†
jNmAk, we have ‖X‖η =

√
‖X†X‖η. Now,

X†X =
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1Aj1A

†
j2
Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2 ,

(62)

where τ̄j1,k1 is the complex conjugate of τj1,k1 and we have used the anti-commutation rela-
tionAj1A

†
j2

+A†j2Aj1 = δj1,j2I. For the second term, we letB†j1 = ∑
k1,m1 τ̄j1,k1 ν̄k1,m1A

†
k1
Nm1

and apply the operator Cauchy-Schwarz inequality (Lemma 1):

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄k1,m1τj2,k2νk2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2

=−
∑
j1,j2

B†j1A
†
j2
Aj1Bj2 ≤

∑
j1,j2

B†j1A
†
j2
Aj2Bj1 =

∑
j1

B†j1NBj1

=
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1NNm2Ak2

=
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2N

−
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2 .

(63)

This implies

X†X ≤
∑
j1

∑
k1,m1,k2,m2

τ̄j1,k1 ν̄k1,m1τj1,k2νk2,m2A
†
k1
Nm1Nm2Ak2N

=
∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

(∑
m1

ν̄k1,m1A
†
k1
Nm1

)(∑
m2

νk2,m2Nm2Ak2

)
N.

(64)

Note that ∑j1 τ̄j1,k1τj1,k2 gives the (k1, k2) matrix element of τ †τ . Then, we define
C†k1

= ∑
m1 ν̄k1,m1A

†
k1
Nm1 and perform diagonalization (Lemma 2):

∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

(∑
m1

ν̄k1,m1A
†
k1
Nm1

)(∑
m2

νk2,m2Nm2Ak2

)

=
∑
k1,k2

(
τ †τ

)
k1,k2

C†k1
Ck2 ≤

∥∥∥τ †τ∥∥∥∑
k1

C†k1
Ck1

=
∥∥∥τ †τ∥∥∥∑

k1

∑
m1,m2

ν̄k1,m1νk1,m2A
†
k1
Nm1Nm2Ak1 .

(65)

Now that the indices k1 and k2 are contracted, we can apply the Hölder-type inequality
for the expectation value (Lemma 3). To this end, we let D†k1

= ∑
m1 ν̄k1,m1Nm1 and

compute∥∥∥∥∥∥
∑
k1

∑
m1,m2

ν̄k1,m1νk1,m2A
†
k1
Nm1Nm2Ak1

∥∥∥∥∥∥
η

=

∥∥∥∥∥∥
∑
k1

A†k1
D†k1

Dk1Ak1

∥∥∥∥∥∥
η

≤

∥∥∥∥∥∥
∑
k1

A†k1
Ak1

∥∥∥∥∥∥
η

max
k1

∥∥∥D†k1
Dk1

∥∥∥
η−1

.

(66)
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The first factor can be directly bounded as∥∥∥∥∥∥
∑
k1

A†k1
Ak1

∥∥∥∥∥∥
η

= ‖N‖η = η. (67)

For the second factor, we have

D†k1
Dk1 =

∑
m1,m2

ν̄k1,m1νk1,m2Nm1Nm2 =
∑

m1,m2

ν̄k1,m1νk1,m2Nm1Nm2Nm1

≤ ‖ν‖2max
∑

m1,m2

Nm1Nm2Nm1 = ‖ν‖2max N
2,

(68)

which implies ∥∥∥D†k1
Dk1

∥∥∥
η−1
≤ ‖ν‖2max η

2. (69)

Combining (64), (65), (66), (67), and (69) establishes the first statement.
For the second statement, we let X = ∑

j,k τj,kνk,kA
†
jAk and compute

X†X =
∑

j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
Aj1A

†
j2
Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
Ak2 −

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj2,k2νk2,k2A
†
k1
A†j2Aj1Ak2 .

(70)
Applying Lemma 1,

X†X ≤
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
Ak2 +

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
A†j2Aj2Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
Ak2 +

∑
j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
NAk2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄k1,k1τj1,k2νk2,k2A
†
k1
Ak2N

=
∑
k1,k2

∑
j1

τ̄j1,k1τj1,k2

 ν̄k1,k1νk2,k2A
†
k1
Ak2N.

(71)
Performing diagonalization using Lemma 2, we have

X†X ≤ ‖τ‖2
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1N. (72)

Note that we could directly bound the above operators as ‖τ‖2 ‖ν‖2max N
2 and thereby

complete the proof. But we choose to instead apply Lemma 3 so that the analysis can
then be directly extended to analyze multilayer nested commutators. We have

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥‖τ‖2
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1N

∥∥∥∥∥∥
η

= ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

ν̄k1,k1νk1,k1A
†
k1
Ak1

∥∥∥∥∥∥
η

≤ ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

A†k1
Ak1

∥∥∥∥∥∥
η

max
k1
‖ν̄k1,k1νk1,k1I‖η−1 ≤ ‖τ‖

2 ‖ν‖2max η
2.

(73)

The proof of the second statement is now completed. See Appendix A for the proof of the
remaining statements.
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3.3 Multilayer nested commutators
We now analyze the error of simulating the interacting-electronic Hamiltonian (1) using a
general pth-order formula Sp(t). We know from (43) that∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(

max
γγγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
, (74)

where H0 = V = ∑
l,m νl,mNlNm and H1 = T = ∑

j,k τj,kA
†
jAk. Our goal is to show that

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η

= O
(
(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η

2
)

(75)

for each multilayer nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
.

To this end, we assume that
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
is expressed as a fermionic operator

of the form ∑
jjj,kkk,lll

wjjj,kkk,lll · · ·A†jx · · ·Nlz · · ·Aky · · · (76)

and analyze its commutator with either T or V . For the commutator with T , we have from
Proposition 2[
A†jAk, A

†
jx

]
= δk,jxA

†
j ,

[
A†jAk, Aky

]
= −δky ,jAk,

[
A†jAk, Nlz

]
= δk,lzA

†
jAk−δj,lzA

†
jAk.

(77)
To develop some intuitions about these commutations, we introduce the notion of fermionic
chain, which refers to a product of fermionic operators that has a creation operator on the
left and an annihilation operator on the right. Then, the above commutations either extend
an existing fermionic chain (in the case where commutator is taken with A†jx or Aky), or
create a new chain (in the case where commutator is taken with Nlz). On the other hand,
we also apply Proposition 2 to compute the commutator with V :[
NlNm, A

†
jx

]
= δm,jxNlA

†
jx

+ δl,jxA
†
jx
Nm = δm,jxA

†
jx
Nl + δl,jxA

†
jx
Nm + δm,jxδl,jxA

†
jx
,

[NlNm, Akx ] = −δm,kxNlAkx − δl,kxAkxNm = −δm,kxNlAkx − δl,kxNmAkx − δm,kxδl,kxAkx .
(78)

Unlike the commutator with T , these commutations do not extend an existing chain or
create a new chain. Rather, their effect is to append occupation-number operators to an
existing chain.

We now apply (77) and (78) iteratively to expand a general multilayer nested commu-
tator

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
. We summarize the structure of the resulting operator in the

following proposition.

Proposition 9 (Structure of multilayer nested commutators). Let H = T+V = ∑
j,k τj,kA

†
jAk+∑

l,m νl,mNlNm be an interacting-electronic Hamiltonian as in (1). Then, each nested
commutator

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
where H0 = V and H1 = T is a linear combination of

fermionic chains:

X =
∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 (79)

for some integer q ≤ p. Here, we have Bx,y = ∑
l νl,jxNl,

∑
m νjx,mNm, νjx,jxI and

Accepted in Quantum 2021-06-03, click title to verify. Published under CC-BY 4.0. 22



j2 k2 j1 k1

j′2 k′2 j′1 k′1
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ν

ν

τ δ τ
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Figure 2: Graph illustration of the fermionic chain X =
∑

jjj,kkk τj2,k2δk2,j1τj1,k1A
†
j2
C2,1B1,1Ak1 with

C2,1 = νk2,k2 . Here, B1,1 =
∑

jjj′,kkk′ β1,2τj′
2,k′

2
δk′

2,j′
1
τj′

1,k′
1
A†

j′
2
B′

2,1C
′
2,1Ak′

1
is a fermionic subchain with

β1,2 = νj′
2,j1 , B′

2,1 =
∑

l′ νl′,j′
2
Nl′ and C ′

2,1 =
∑

m′ νk′
2,m′Nm′ . Vertices in the graph denote the

indices in the summation, whereas edges represent the coefficients. We color a vertex if there is no
fermionic operator corresponding to this index (due to taking nested commutators).

Cx,z = ∑
l νl,kxNl,

∑
m νkx,mNm, νkx,kxI, or they define fermionic subchains:

Bx,y =
∑
jjj′,kkk′

βx,x′0

q′∏
x′=1

τj′
x′ ,k
′
x′

q′−1∏
x′=1

δk′
x′+1,j

′
x′
·A†j′

q′

q′∏
x′=1

∏
y′

B′x′,y′
∏
z′

C ′x′,z′

Ak′1 ,
Cx,z =

∑
jjj′′,kkk′′

χx,x′′0

q′′∏
x′′=1

τj′′
x′′ ,k

′′
x′′

q′′−1∏
x′′=1

δk′′
x′′+1,j

′′
x′′
·A†j′′

q′′

q′′∏
x′′=1

∏
y′′

B′′x′′,y′′
∏
z′′

C ′′x′′,z′′

Ak′′1 .
(80)

The definition of fermionic subchain is similar to that of the fermionic chain, except we
have βx,x′0 = νj′

x′0
,jx, νjx,j′

x′0
, νk′

x′0
,jx, νjx,k′

x′0
for some x′0 ≤ q′ and χx,x′′0 = νj′′

x′′0
,kx, νkx,j′′

x′′0
,

νk′′
x′′0
,kx, νkx,k′′

x′′0
for some x′′0 ≤ q′′.9 See Figure 2 for a graph illustration of this structure.

Furthermore, there are at most 6pp! fermionic chains in each
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
.10

Within each chain, coefficient τ appears |γγγ| times and ν appears p+ 1− |γγγ| times, where
|γγγ| := ∑p+1

s=1 γs. All Bx,y, Cx,z and hence the entire chain are number-preserving.

Proof. We will analyze the structure of multilayer nested commutators by induction. In the
base case where p = 1, we have [Hγ2 , Hγ1 ] = [T, V ]. This commutator has the expansion
(61) with six terms, each of which is indeed a fermionic chain and number-preserving,
containing coefficient τ and ν each once. This completes the proof of the base case.

Assuming the claim holds for the nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
, we now

consider the structure of
[
Hγp+2 , · · · [Hγ2 , Hγ1 ]

]
. By induction, this nested commutator is

9For readability, we have omitted the dependence of jjj,kkk, jjj′, kkk′, jjj′′, kkk′′ in the definition of fermionic
chain and subchain. When written in full, operator Bx,y = Bx,y(jjj,kkk) will depend on jjj,kkk and similar
modifications apply to other operators.

10The exact number of fermionic chains does not matter as long as it only depends on p.
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a linear combination of

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
[
T,A†jq

] q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

[T,Bx,y]
∏
z

Cx,z

)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

[T,Cx,z]
)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
[T,Ak1 ] ,

(81)

and ∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
[
V,A†jq

] q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

[V,Bx,y]
∏
z

Cx,z

)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

[V,Cx,z]
)
Ak1 ,

∑
jjj,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·A
†
jq

q∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
[V,Ak1 ] .

(82)

In each case, we see from (77) and (78) that the result is again a fermionic chain. Specif-
ically, commutators

[
T,A†jq

]
and [T,Ak1 ] increase the “length” of the current fermionic

chain from q to q + 1; commutators [T,Bx,y] and [T,Cx,z] either create a fermionic sub-
chain or give the zero operator, or they can be computed recursively when Bx,y and Cx,z
are fermionic subchains; commutators

[
V,A†jq

]
and [V,Ak1 ] do not increase the length q

of the current fermionic chain, but they increase the number of Bx,y and Cx,z by one;
commutators [V,Bx,y] and [V,Cx,z] either give the zero operator, or they can be computed
recursively if Bx,y and Cx,z are fermionic subchains.

Each application of commutation rules (77) and (78) increases the number of terms
by a factor of at most 3. The nested commutator

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
contains products

of at most 2(p + 1) elementary fermionic operators, giving at most 6p+1(p + 1)! terms in
total. Meanwhile, the number of τ or ν increases by one depending on whether Hγp+2 = T
or Hγp+2 = V . The claim about the number preservation can be verified directly. This
completes the inductive step.

Proposition 10 (Fermionic seminorm of fermionic chain and subchain). Let H = T+V =∑
j,k τj,kA

†
jAk + ∑

l,m νl,mNlNm be an interacting-electronic Hamiltonian (1). Then, we
can bound the fermionic seminorm of the fermionic chain X in (79) as

‖X‖η ≤ ‖τ‖
q η

q∏
x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)
, (83)

Accepted in Quantum 2021-06-03, click title to verify. Published under CC-BY 4.0. 24



whereas fermionic subchains Bx,y, Cx,z in (80) can be similarly bounded as

‖Bx,y‖η ≤ ‖τ‖
q′ ‖ν‖max η

q′∏
x′=1

∏
y′

max
j′
x′

∥∥Bx′,y′∥∥η−1
∏
z′

max
k′
x′

∥∥Cx′,z′∥∥η−1

 ,
‖Cx,y‖η ≤ ‖τ‖

q′′ ‖ν‖max η
q′′∏

x′′=1

∏
y′′

max
j′′
x′′

∥∥Bx′′,y′′∥∥η−1
∏
z′′

max
k′′
x′′

∥∥Cx′′,z′′∥∥η−1

 .
(84)

Proof. We will prove this bound using Lemma 1, Lemma 2, and Lemma 3 in a similar way
as in Proposition 8. Specifically, we write X = ∑

jq A
†
jq
Djq , where

Djq =
∑
j1,...,
jq−1,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
q∏

x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (85)

Then,

X†X =
∑
jq1 ,jq2

D†jq1
Ajq1

A†jq2
Djq2

=
∑
jq1

D†jq1
Djq1

−
∑
jq1 ,jq2

D†jq1
A†jq2

Ajq1
Djq2

. (86)

Applying the operator Cauchy-Schwarz inequality (Lemma 1), we obtain

X†X ≤
∑
jq1

D†jq1
Djq1

+
∑
jq1 ,jq2

D†jq1
A†jq2

Ajq2
Djq1

=
∑
jq1

D†jq1
Djq1

N. (87)

Next, we write Djq = ∏
y Bq,yEjq , where

Ejq =
∑
j1,...,
jq−1,kkk

q∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
∏
z

Cq,z

q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (88)

Invoking the Hölder-type inequality for the expectation value (Lemma 3), we get

‖X‖η =
√
‖X†X‖η ≤ η

1/2
√√√√∥∥∥∑

jq1

D†jq1
Djq1

∥∥∥
η
≤ η1/2

√√√√∥∥∥∑
jq1

E†jq1
Ejq1

∥∥∥
η

∏
y

max
jq
‖Bq,y‖η−1 .

(89)
We now write Ejq = ∑

kq τjq ,kqFkq , where

Fkq =
∑

j1,...,jq−1,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
∏
z

Cq,z

q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (90)

Then, ∑
jq1

E†jq1
Ejq1

=
∑

kq1 ,kq2

∑
jq1

τ̄jq1 ,kq1
τjq1 ,kq2

F †kq1
Fkq2

. (91)

We perform diagonalization using Lemma 2, obtaining∑
jq1

E†jq1
Ejq1

≤
∥∥∥τ †τ∥∥∥∑

kq1

F †kq1
Fkq1

. (92)
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Next, we write Fkq = ∏
z Cq,zGkq , where

Gkq =
∑

j1,...,jq−1,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−1∏
x=1

δkx+1,jx ·
q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 . (93)

Invoking again the Hölder-type inequality for the expectation value (Lemma 3), we get

‖X‖η ≤ ‖τ‖ η
1/2
√√√√∥∥∥∑

kq1

G†kq1
Gkq1

∥∥∥
η

∏
y

max
jq
‖Bq,y‖η−1

∏
z

max
kq
‖Cq,z‖η−1 . (94)

Note that we can write Gkq = ∑
jq−1 δkq ,jq−1Hjq−1 with

Hjq−1 =
∑

j1,...,jq−2,
k1,...,kq−1

q−1∏
x=1

τjx,kx

q−2∏
x=1

δkx+1,jx ·
q−1∏
x=1

(∏
y

Bx,y
∏
z

Cx,z

)
Ak1 , (95)

which implies ∑
kq

G†kqGkq =
∑
jq−1

H†jq−1
Hjq−1 . (96)

We can now iterate this procedure q times to get

‖X‖η ≤ ‖τ‖
q η1/2

√∥∥∥∑
k1

A†k1
Ak1

∥∥∥
η

q∏
x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)

= ‖τ‖q η
q∏

x=1

(∏
y

max
jx
‖Bx,y‖η−1

∏
z

max
kx
‖Cx,z‖η−1

)
.

(97)

This completes the proof of (83).
Essentially the same argument can be applied to bound the fermionic seminorm of

fermionic subchains. The only difference is that we have additional coefficients βx,x′0 in
Bx,y and respectively χx,x′′0 in Cx,z. But their indices will be contracted in the x′0th and
x′′0th iteraction of the above analysis and the coefficients can then be bounded by ‖ν‖max,
which completes the proof of (84).

We now apply Proposition 9 to expand each nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
into fermionic chains and use Proposition 10 to bound their fermionic seminorm. The τ
factors are already bounded by their spectral-norm ‖τ‖ in Proposition 10. To proceed, we
need to further bound each ‖Bx,y‖η−1 and ‖Cx,z‖η−1 separately. We have11

∥∥∥∑
l

νl,jxNl

∥∥∥
η−1

=
√∥∥∥∑

l1,l2

ν̄l1,jx1
νl2,jx2

Nl1Nl2

∥∥∥
η−1
≤ ‖ν‖max η,

∥∥∥∑
m

νjx,mNm

∥∥∥
η−1

=
√∥∥∥ ∑

m1,m2

ν̄jx1 ,m1νjx2 ,m2Nm1Nm2

∥∥∥
η−1
≤ ‖ν‖max η,

‖νjx,jxI‖η−1 ≤ ‖ν‖max

(98)

11Note that one could also diagonalize the coefficient matrix ν†ν and get a bound in terms of ‖ν‖. How-
ever, such a bound will be loose for the electronic-structure simulation and will not be further considered
here.
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for Bx,y and similar estimates hold for Cx,z. In the case where Bx,y or Cx,z creates a
fermionic subchain, we can estimate recursively using Proposition 10. In particular, we
will introduce a factor of ‖ν‖max η each time a subchain is created.

We know from Proposition 9 that the number of τ factors in each chain agrees with the
number of H1 = T in the nested commutator, whereas the number of ν factors coincides
with the number of H0 = V . Since the number of fermionic chains is at most 6pp!, we
obtain the bound∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η

= O
(
‖τ‖|γγγ| (η ‖ν‖max)p+1−|γγγ|η

)
. (99)

Here, we have 1 ≤ |γγγ| ≤ p as [T, T ] = [V, V ] = 0. This completes the proof of Eq. (2) of
our main result Theorem 1.

4 Path-counting bound on the expectation of fermionic operators
We now present the second strategy for bounding the expectation of fermionic operators,
and apply it to estimate the fermionic seminorm of Trotter error. Recall from (43) that∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(

max
γγγ

∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
tp+1

)
, (100)

where H0 = V = ∑
l,m νl,mNlNm, H1 = T = ∑

j,k τj,kA
†
jAk and γj ∈ {0, 1}. Hence to ana-

lyze the Trotter error, it suffices to bound the fermionic seminorm
∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η
.

We develop a general bound on this quantity in Section 4.1 based on a path-counting
technique. We then use it to analyze the simulation of d-sparse interacting electrons in
Section 4.2, proving Eq. (3) of our main result Theorem 1.

It is worth noting that our approach can also be adapted to establish (9), a bound
slightly weaker than our main result (2) but sufficient for our applications. See Appendix B
for details.

4.1 Path-counting bound
We start by bounding the transition amplitude between any two states in terms of the
expectation value. Since

[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
is antihermitian, we have∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η

= max
|ψη〉

∣∣〈ψη| [Hγp+1 , · · · [Hγ2 , Hγ1 ]
]
|ψη〉

∣∣ . (101)

We now aim to bound the expectation

|〈X〉| =
∣∣〈ψη| [Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
|ψη〉

∣∣ (102)

for any |ψη〉. To this end, we first expand |ψη〉 as:

|ψη〉 =
∑

ccc∈{0,1}n,|ccc|=η
αccc|ccc〉, (103)

where ccc is a configuration with η electrons, and the number of ones in ccc is given by the
Hamming weight |ccc| = ∑n−1

j=0 cj . Using the notation

µ0 = ν, µ1 = τ, H0
jk = NjNk, H1

jk = A†jAk, (104)
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we expand everything to get

|〈X〉| =
∣∣∣∣ ∑
jp+1,kp+1

. . .
∑
j1,k1

∑
ccc1

∑
ccc2

ᾱccc1αccc2µ
γp+1
jp+1kp+1

. . . µγ1
j1k1
〈ccc1|

[
H
γp+1
jp+1kp+1

, . . .
[
Hγ2
j2k2

, Hγ1
j1k1

]]
|ccc2〉

∣∣∣∣
(105)

≤ ‖τ‖|γγγ|max ‖ν‖
p+1−|γγγ|
max

∑
ccc1

∑
ccc2

|αccc1 | |αccc2 | ×∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∣∣∣〈ccc1|
[
H
γp+1
jp+1kp+1

, . . .
[
Hγ2
j2k2

, Hγ1
j1k1

]]
|ccc2〉

∣∣∣ ,
(106)

where ccc1, ccc2 are configurations with η electrons, and 〈j, k〉 only sum over indices such that
the corresponding µγj,k 6= 0 (either τ or ν depending on γ).

Using the commutation relations in Equation (77) and (78), we know that the nested
commutator

[
H
γp+1
jp+1kp+1

, . . .
[
Hγ2
j2k2

, Hγ1
j1k1

]]
can be written as a sum of

(−1)a . . . A†j . . . Nl . . . Ak . . . , (107)

for some a ∈ {0, 1} and a sequence of elementary fermionic operators. We call each term
P a fermionic path and write P B

(
H
γp+1
jp+1kp+1

, . . . ,Hγ1
j1k1

)
to mean P is one of the terms

in the expansion of the nested commutator. If the nested commutator evaluates to zero,
then we consider the set{

P such that P B
(
H
γp+1
jp+1kp+1

, . . . ,Hγ1
j1k1

)}
(108)

to be an empty set. One possible expansion of the nested commutator is presented in
Proposition 9. This allows us to make a further expansion to yield

|〈X〉| ≤ cτν
∑
ccc1

∑
ccc2

|αccc1 | |αccc2 |
∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) |〈ccc1|P |ccc2〉| , (109)

where cτν = ‖τ‖|γγγ|max ‖ν‖
p+1−|γγγ|
max . We use the following proposition to characterize |〈ccc1|P |ccc2〉|.

Lemma 4. For any computational basis state |ccc〉 where ccc is a fermionic configuration,
and fermionic path

P = (−1)a . . . A†j . . . Nl . . . Ak . . . , (110)

we have either P |ccc〉 is a computational basis state with some phase ±1 or P |ccc〉 = 0.

Proof. The proof follows from a simple induction. For the base case, we have P = (−1)a
without any fermionic operator, so P |ccc〉 is a computational basis state with some phase
±1. Now we consider the three cases: P = NlP

′, P = AkP
′, or P = A†jP

′. By induction,
we have P ′|ccc〉 is a computational basis state |ccc′〉 with some phase ±1 or P ′|ccc〉 = 0. The
latter is trivial. For the former case, we go through the following three cases.

• If Nl is applied on |ccc′〉, we check if site-l has an electron in configuration ccc′. If site-l
has an electron, then Nl|ccc′〉 = |ccc′〉; otherwise, Nl|ccc′〉 = 0.

• If Ak is applied on |ccc′〉, we check if site-k has an electron in configuration ccc′. If site-
k has an electron, then Ak|ccc′〉 will remove the site-k electron and add some phase
according to the rule in Equation (29); otherwise, Ak|ccc′〉 = 0.
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• If A†j is applied on |ccc′〉, we check if site-j has an electron in configuration ccc′. If site-j
does not have an electron, then A†j |ccc′〉 will create an electron at site-j and add some
phase according to the rule in Equation (28); otherwise, A†j |ccc′〉 = 0.

Therefore, P |ccc〉 is either a computational basis state with some phase ±1 or P |ccc〉 = 0.

Corollary 1. We have that |〈ccc1|P |ccc2〉| is either 0 or 1. Furthermore,
∑
ccc1∈S |〈ccc1|P |ccc2〉| ≤

‖P |ccc2〉‖ for any set S of configurations.

Next, we define a graph G = (V, E) where the vertices V are the second-quantized
configurations with η electrons, and the weighted adjacency matrix for the edges E is
defined as

wccc1,ccc2 =
∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) |〈ccc1|P |ccc2〉| . (111)

The weight wccc1,ccc2 counts the number of fermionic paths that can take |ccc2〉 to |ccc1〉. Note
that this graph may contain self-loops (equivalent to wccc1,ccc1 > 0) as there are fermionic
paths that leave |ccc1〉 unchanged or simply add a phase of −1. We now define the degree of
ccc2 as

deg(ccc2) =
∑
ccc1

wccc1,ccc2 + wccc2,ccc1

2 (112)

=
∑
ccc1

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) |〈ccc1|P |ccc2〉|+ |〈ccc2|P |ccc1〉|
2 (113)

=
∑
ccc1

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) |〈ccc1|P |ccc2〉|+
∣∣∣〈ccc1|P †|ccc2〉

∣∣∣
2 (114)

≤
∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |ccc2〉‖+
∥∥∥P †|ccc2〉

∥∥∥
2 , (115)

which is equivalent to counting the number of fermionic paths that evaluate nonzero on
the initial state |ccc2〉. The last inequality follows from Corollary 1. We now introduce the
following lemma which relates the maximum degree and the quadratic form (109) we wish
to bound.

Lemma 5. For any real symmetric matrix w ∈ Rk×k with nonnegative entries and nor-
malized real vectors v ∈ Rk with ‖v‖ = 1, we have12∑

i,j

wi,jvivj ≤ max
i

∑
j

wi,j , (116)

Proof. Let u1 be an eigenvector corresponding to the largest eigenvalue λ1 of w with
‖u1‖ = 1. By the Rayleigh quotient theorem [38, Theorem 4.2.2],

vTwv ≤ uT1 wu1 = λ1 (117)

12Note that this can alternatively be proved by analyzing the Geršgorin discs; see for example [38,
Corollary 6.1.5]. Had we not taken the expectation in (101) and symmetrized the weighted adjacency
matrix in (112), we would have needed a stronger bound here [38, 5.6.P21].
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for any v ∈ Rk with ‖v‖ = 1, where vT denotes the vector transpose of v. Consider
i∗ = argmaxj(u1)j . We assume (u1)i∗ > 0 without loss of generality, for otherwise we
multiply u1 by −1. Then, we have

uT1 wu1 = λ1 = (wu1)i∗
(u1)i∗

=
∑
j wi∗,j(u1)j

(u1)i∗
≤
∑
j

wi∗,j ≤ max
i

∑
j

wi,j . (118)

This concludes the proof.

Using Lemma 5, we obtain an upper bound of |〈X〉|

|〈X〉| ≤ cτν
∑
ccc1

∑
ccc2

|αccc1 | |αccc2 |
∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) |〈ccc1|P |ccc2〉| (119)

= cτν
∑
ccc1

∑
ccc2

wccc1,ccc2 |αccc1 | |αccc2 | = cτν
∑
ccc1

∑
ccc2

wccc1,ccc2 + wccc2,ccc1

2 |αccc1 | |αccc2 | (120)

≤ cτν max
ccc2

∑
ccc1

wccc1,ccc2 + wccc2,ccc1

2 = cτν max
ccc

deg (ccc) (121)

in terms of the maximum degree of the graph G. Finally, we arrive at the following
proposition by combining the above bound with Equation (115).

Proposition 11 (Path-counting bound of fermionic seminorm). Let H = T + V =∑
j,k τj,kA

†
jAk +∑l,m νl,mNlNm be an interacting-electronic Hamiltonian as in (1). Then,

each nested commutator
[
Hγp+1 , · · · [Hγ2 , Hγ1 ]

]
, where H0 = V and H1 = T , can be bounded

as ∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]
]∥∥
η
≤ ‖τ‖|γγγ|max ‖ν‖

p+1−|γγγ|
max max

cccη
deg (cccη) , (122)

where |γγγ| = ∑p+1
q=0 γq and cccη is a fermionic configuration with η electrons. Here, the degree

of configuration cccη is defined as

deg (cccη) =
∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) 1
2
(
‖P |cccη〉‖+ ‖P †|cccη〉‖

)
, (123)

where for q = 1, . . . , p+ 1, 〈jq, kq〉 sum over indices jq, kq such that µνqjq ,kq 6= 0, fermionic
path PB

(
H
γp+1
jp+1kp+1

, . . . ,Hγ1
j1k1

)
goes over all the terms P = (−1)a . . . A†j . . . Nl . . . Ak . . . in

the expansion of
[
H
γp+1
jp+1kp+1

, . . .
[
Hγ2
j2k2

, Hγ1
j1k1

]]
, and µ0 = ν, µ1 = τ, H0

jk = NjNk, H
1
jk =

A†jAk.

4.2 Counting fermionic paths for d-sparse interactions
As an illustrative example, let us consider an upper bound of maxccc deg(ccc) for electronic
Hamiltonians with d-sparse interactions. We will use the commutation relations in Equa-
tion (77) and (78), restated below[
A†jAk, A

†
jx

]
= δk,jxA

†
j ,

[
A†jAk, Aky

]
= −δky ,jAk,

[
A†jAk, Nlz

]
= δk,lzA

†
jAk−δj,lzA

†
jAk.

(124)[
NlNm, A

†
jx

]
= δm,jxNlA

†
jx

+ δl,jxA
†
jx
Nm, [NlNm, Akx ] = −δm,kxNlAkx − δl,kxAkxNm.

(125)
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We start with an intuitive argument. For every q = 2, . . . , p+ 1, we have[
H
γq
jqkq

, . . .
[
Hγ2
j2k2

, Hγ1
j1k1

]]
=

∑
PB
(
H
γq−1
jq−1kq−1

,...,H
γ1
j1k1

)
[
H
γq
jqkq

, P
]
, (126)

where P only contains fermionic operator acting on sites j1, k1, . . . , jq−1, kq−1. From the
commutation relations (124) and (125), we see that at least one of jq, kq must match one
of the indices j1, k1, . . . , jq−1, kq−1. Furthermore, for every jq, there are at most d kq’s that
have non-zero coefficient in τjq ,kq (for γq = 1) or νjq ,kq (for γq = 0). Hence, we have the
following bound ∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) 1 = O(ndp+1). (127)

The n factor follows from the fact that only one index can be freely choosen between
0, . . . , n − 1. And for any pair of indices 〈jq, kq〉, one of them has to match the previous
indices, while the other one can only choose from the d indices under the sparsity constraint.
Hence we have the dp factor in the asymptotic bound.

However, this analysis can be further improved using certain properties of P . Specif-
ically, we will show that the rightmost fermionic operator in P can be either an annihi-
lation operator A or an occupation-number operator N . This means that, for ‖P |cccη〉‖ to
be nonzero, the rightmost fermionic operator of P must act on the η occupied sites in the
configuration cccη. Therefore, we have the bound∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |cccη〉‖ = O(ηdp+1). (128)

Similarly, we have∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P †|cccη〉‖ = O(ηdp+1). (129)

Combining with the Trotter error bound (43) and the path-counting bound (122), we
obtain ∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
‖τ‖|γγγ|max ‖ν‖

p+1−|γγγ|
max dp+1ηtp+1

)
. (130)

Finally, since 1 ≤ |γγγ| = ∑p+1
q=1 γq ≤ p, we have

‖τ‖|γγγ|max ‖ν‖
p+1−|γγγ|
max ≤ (‖τ‖max + ‖ν‖max)p ‖τ‖max ‖ν‖max . (131)

This sketches the proof of the scaling in Eq. (3) of Theorem 1. A rigorous proof using
induction is given in Proposition 12.

Proposition 12 (Sparse path-counting bound). Under the same assumption as in Propo-
sition 11, if each column and row of coefficient matrices τ, ν has at most d nonzero ele-
ments, ∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |cccη〉‖ = O(ηdp+1), (132)

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

)
∥∥∥P †|cccη〉∥∥∥ = O(ηdp+1). (133)
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Proof. We will prove the following claims by induction on q = 2, . . . , p+ 1.

• All fermionic paths P start with either N or A, but not A† (we refer to the rightmost
operator as the starting point).

• All fermionic paths P have at most q + 1 elementary fermionic operators.

• The number of fermionic paths P that start with a fermionic operator acting on a
specific site i is at most (2d)qq!/2.

The base case q = 2 can be easily verified by noting that we only need to consider [T, V ]
or [V, T ]. Using the commutation relations given in Eq. (124) and (125), we can see in
both cases that the fermionic paths all start with either N or A. For every site i, there
are at most 4d2 fermionic paths starting with site i. Furthermore, every fermionic path
consists of 3 elementary fermionic operators. These results establish all the bullet points
for the base case of q = 2.

For every q > 2, we use the induction hypothesis for q − 1 to prove the desired result.
If γq = 1, then we will take another commutator with T = ∑

jq ,kq τjq ,kqA
†
jq
Akq . We can

see that all fermionic paths P B
(
H
γq
jqkq

, . . . ,Hγ1
j1k1

)
come from the expansion of

[A†jqAkq , P
′], ∀〈jq, kq〉, ∀P ′ B

(
H
γq−1
jq−1kq−1

, . . . ,Hγ1
j1k1

)
. (134)

Using the commutation rule [X,Y1 . . . Yκ] = ∑κ
k=1 Y1 . . . Yk−1[X,Yk]Yk+1 . . . Yκ, we can

show that all the claims hold for q as follows. First, if all the fermionic paths P ′ B(
H
γq−1
jq−1kq−1

, . . . ,Hγ1
j1k1

)
start with either N or A, then all the paths P B

(
H
γq
jqkq

, . . . ,Hγ1
j1k1

)
will start with either N or A. This follows from the commutation relations: [A†jAk, Akq ] =
−δky ,jAk and

[
A†jAk, Nlz

]
= δk,lzA

†
jAk − δj,lzA

†
jAk. Furthermore, since P ′ has at most

(q − 1) + 1 = q elementary fermionic operators, the expansion of [A†jqAkq , P
′] will have at

most q + 1 elementary fermionic operators.
We now prove an upper bound for the number of fermionic paths starting from a

specific site i. If we take the commutator of A†jqAkq with a fermionic operator that is
not the starting operator in P , then the starting operator is not affected. Because of the
sparsity constraint and the δ function created by the commutation relation in Eq. (124),
we have created at most 2d(q − 1)× more fermionic paths starting with site i. Now if
we take the commutator of A†jqAkq with the starting operator Aky (for some index ky) in
the fermionic path P ′, then the starting operator becomes Akq and we have an additional
δky ,jq . In this case, kq can start from any site, but there will be at most d choices of jq,
hence d choices of ky. This means we have created at most 2d× more fermionic paths
starting with each site. The case where Nlz is the starting operator can be analyzed in a
similar way. Together, we have created at most 2dq× more fermionic paths starting with
each site. This leads to an upper bound of

2dq(2d)q−1(q − 1)!/2 = (2d)qq!/2 (135)

fermionic paths for each fixed starting site. The analysis for γq = 0 proceeds in a similar
way using Eq. (125). This completes the inductive step for q.

Performing the induction over q from 2 to p + 1 shows that the number of fermionic
paths starting with site i is at most

(2d)p+1(p+ 1)!/2 = O(dp+1). (136)
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Because P starts with either A or N , ‖P |cccη〉‖ would be nonzero only if the starting
fermionic operator acts on one of the η occupied sites in the configuration cccη. Hence there
are at most ηO(dp+1) fermionic paths with non-zero ‖P |cccη〉‖. Finally, recall from Lemma 4
that ‖P |cccη〉‖ is either 0 or 1. Therefore,∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |cccη〉‖ = O(ηdp+1). (137)

A similar argument can be used to prove the other claimed bound∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

)
∥∥∥P †|cccη〉∥∥∥ = O(ηdp+1). (138)

The argument uses the property that all fermionic paths P end with either N or A† but
not A, which again follows from the commutation relations (124) and (125). The proof is
now completed.

It is worth mentioning that the path-counting approach can also be used to analyze the
simulation of non-sparse electronic Hamiltonians. The resulting bound, as given by (9), is
slightly weaker than Eq. (2) of Theorem 1, but suffices for our applications to be discussed
in Section 6.1. See Appendix B for details and proofs.

5 Tightness
We have already established multiple bounds in Theorem 1 on the fermionic seminorm of
the Trotter error. However, a common issue with the Trotterization algorithm is that its
error estimate can be very loose for simulating specific systems. Here, we prove Theorem 2
that demonstrates the tightness of our analysis for the interacting-electronic Hamiltonian
(1).

Specifically, we construct concrete examples of interacting-electronic Hamiltonian H =
T + V and lower-bound the fermionic seminorm of nested commutators: ‖[T, . . . [T, V ]]‖η
in Section 5.1 and ‖[V, . . . [V, T ]]‖η in Section 5.2. We show that the results almost match
the upper bounds in Theorem 1. Since Trotter error depends on these nested commutators,
this shows that our result is nearly tight modulo an application of the triangle inequality.

5.1 Lower-bounding ‖[T, . . . [T, V ]]‖η
We construct the electronic Hamiltonian H = T + V , where

T =
n−1∑
j,k=0

A†jAk, V =
n
2−1∑
x,y=0

NxNy. (139)

Note that we may without loss of generality assume that n is even, for otherwise we restrict
to the first n− 1 spin orbitals. Comparing with the definition of the interacting-electronic
model (1), we see that the coefficient matrix τ is an all-ones matrix with spectral norm
‖τ‖ = n, whereas ν contains an all-ones submatrix on the top left corner with max-norm
‖ν‖max = 1. Our goal is to lower-bound the fermionic seminorm ‖[T, . . . [T, V ]]‖η.
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Due to the complicated commutation relations between T and V , a direct computation
of [T, . . . [T, V ]] seems technically challenging. Instead, we perform a change of basis by
applying the fermionic Fourier transform

FFFT†·A†j ·FFFT = 1√
n

n−1∑
l=0

e−
2πijl
n A†l , FFFT†·Ak·FFFT = 1√

n

n−1∑
m=0

e
2πikm
n Am. (140)

This gives

T̃ = FFFT† · T · FFFT = nN0,

Ṽ = FFFT† · V · FFFT = 1
n2

∑
j,k,l,m

n
2−1∑
x=0

e
2πix(k−j)

n

n
2−1∑
y=0

e
2πiy(m−l)

n

A†jAkA†lAm. (141)

We also define the η-electron states for η ≤ n
2 :

|ψ̃η〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉+ |100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉√
2

, |φ̃η〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉+ i|100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉√
2

.

(142)
The following proposition shows that the above choice of operators and states almost
saturates the fermionic seminorm of nested commutators.

Proposition 13. Define T̃ , Ṽ as in (141) and |ψ̃η〉, |φ̃η〉 as in (142). Then,

∣∣〈ψ̃η|
p︷ ︸︸ ︷[

T̃ , . . .
[
T̃ , Ṽ

]]
|ψ̃η〉

∣∣, p odd∣∣〈φ̃η| [T̃ , . . . [T̃︸ ︷︷ ︸
p

, Ṽ
]]
|φ̃η〉

∣∣, p even

 = npη

π
+O (np) . (143)

A proof of this proposition is given in Appendix C. By rescaling the Hamiltonian
constructed in (141), we can demonstrate the tightness of our bound as follows. For any
s, w > 0, we define the rescaled Hamiltonian

T = s

n

n−1∑
j,k=0

A†jAk, V = w

n
2−1∑
x,y=0

NxNy. (144)

Comparing with the definition of the interacting-electronic model (1), we see that ‖τ‖ = s
and ‖ν‖max = w. The above proposition then shows that∥∥∥ [T, . . . [T︸ ︷︷ ︸

p

, V
]]∥∥∥

η
=
∥∥∥ [T̃ , . . . [T̃︸ ︷︷ ︸

p

, Ṽ
]]∥∥∥

η
= Ω (spwη) , (145)

where we have used the unitary invariance of the fermionic seminorm in the first equality.
This establishes the first claimed bound in (5) of Theorem 2.

Note that a similar example can be constructed to demonstrate the tightness of our
bound for simulating sparse electronic Hamiltonians. Specifically, suppose we have u,w > 0
and positive integer 2 ≤ d ≤ η ≤ n

2 .
13 We may assume without loss of generality that d is

even, for otherwise we use d− 1. We then define

T = u
d−1∑
j,k=0

A†jAk, V = w

d
2−1∑
x,y=0

NxNy. (146)

13The special case d = 1 can be handled separately by choosing T = uA†0A1 + uA†1A0 and V = wN0.
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Comparing with the definition of the interacting-electronic model (1), we see that ‖τ‖max =
u and ‖ν‖max = w. We also perform a fermionic Fourier transform to define T̃ and Ṽ , but
only to the first d spin orbitals

FFFT†d ·A
†
j · FFFTd =

 1√
d

∑d−1
l=0 e

− 2πijl
d A†l , 0 ≤ j ≤ d− 1,

A†j , j ≥ d.

FFFT†d ·Ak · FFFTd =


1√
d

∑d−1
m=0 e

2πikm
d Am, 0 ≤ k ≤ d− 1,

Ak, k ≥ d.

(147)

Then, a similar calculation shows that∥∥∥ [T, . . . [T︸ ︷︷ ︸
p

, V
]]∥∥∥

η
=
∥∥∥ [T̃ , . . . [T̃︸ ︷︷ ︸

p

, Ṽ
]]∥∥∥

η
= Ω ((ud)pwd) . (148)

This establishes the first claimed bound in (6) of Theorem 2.

5.2 Lower-bounding ‖[V, . . . [V, T ]]‖η
Recall from the previous section that we have constructed the electronic Hamiltonian
(139) to prove the tightness of our bound. Comparing to the definition of the interacting-
electronic model (1), we see that the coefficient matrix τ has spectral norm ‖τ‖ = n,
whereas coefficient matrix ν has max-norm ‖ν‖max = 1. Our goal in this subsection is to
lower-bound the fermionic seminorm ‖[V, . . . [V, T ]]‖η. To this end, we define the η-electron
states for η ≤ n

2 :

|ψη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ i|

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

,

|φη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

.

(149)

Similar to the previous subsection, we may assume that n is even. We have the following
proposition showing that the fermionic seminorm of nested commutators is nearly attained.

Proposition 14. Define T , V as in (139) and |ψη〉, |φη〉 as in (149). Then,

∣∣〈ψη|
p︷ ︸︸ ︷[

V, . . .
[
V , T

]]
|ψη〉

∣∣, p odd∣∣〈φη| [V, . . . [V︸ ︷︷ ︸
p

, T
]]
|φη〉

∣∣, p even

 = 2pηp +O
(
ηp−1

)
. (150)

A proof of this proposition is given in Appendix D. By rescaling the Hamiltonian
constructed in (141), we can demonstrate the tightness of our bound as follows. For any
s, w > 0, we define the rescaled Hamiltonian as in (144). Comparing with the definition
of the interacting-electronic model (1), we see that ‖τ‖ = s and ‖ν‖max = w. The above
proposition then shows that∥∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T
]]∥∥∥

η
= Ω ((wη)ps/n) . (151)
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This establishes the second claimed bound in (5) of Theorem 2.
Note that a similar example can be constructed to demonstrate the tightness of our

bound for simulating sparse electronic Hamiltonians. Specifically, for u,w > 0 and integer
2 ≤ d ≤ η ≤ n

2 ,
14 we define the electronic Hamiltonian as in (146). Comparing with the

definition of the interacting-electronic model (1), we see that ‖τ‖max = u and ‖ν‖max = w.
A similar calculation then shows that∥∥∥ [V, . . . [V︸ ︷︷ ︸

p

, T
]]∥∥∥

η
= Ω ((wd)pu) . (152)

This proves the second claimed bound in (6) of Theorem 2.

6 Applications
The class of interacting-electronic Hamiltonians (1) encompasses various quantum systems
arising in physics and chemistry, for which the performance of digital quantum simulation
can be improved using our result. As for illustration, we consider improving quantum sim-
ulation of the plane-wave-basis electronic structure in Section 6.1 and the Fermi-Hubbard
model in Section 6.2.

6.1 Plane-wave-basis electronic structure
Simulating the electronic-structure Hamiltonians is one of the most promising applications
of digital quantum computers. Recall that in the second-quantized plane-wave basis, such
a Hamiltonian takes the form

H = 1
2n

∑
j,k,µ

κ2
µ cos[κµ · rk−j ]A†jAk

− 4π
ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2
µ

Nj + 2π
ω

∑
j 6=k
µ6=0

cos[κµ · rj−k]
κ2
µ

NjNk,
(153)

where ω is the volume of the computational cell, κµ = 2πµ/ω1/3 are n vectors of plane-
wave frequencies, µ are three-dimensional vectors of integers with elements in the interval
[−n1/3, n1/3], rj are the positions of electrons, ζι are nuclear charges, and r̃ι are the nuclear
coordinates. We further rewrite the second term as

−4π
ω

∑
j,ι,µ6=0

ζι cos[κµ · (r̃ι − rj)]
κ2
µ

Nj = − 4π
ωη

∑
j,k,ι,µ 6=0

ζι cos[κµ · (r̃ι − rj)]
κ2
µ

NjNk, (154)

which is valid since we estimate the simulation error within the η-electron manifold. Com-
paring with the definition of interacting-electronic model (1), we see that

τj,k = 1
2n
∑
µ

κ2
µ cos[κµ · rk−j ],

νl,m = − 4π
ωη

∑
ι,µ 6=0

ζι cos[κµ · (r̃ι − rl)]
κ2
µ

+ 2π
ω

∑
µ6=0

cos[κµ · rl−m]
κ2
µ

(1− δl,m) .
(155)

14Similar to above, the special case d = 1 can be handled using T = uA†0A1 + uA†1A0 and V = wN0.
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To proceed, we need to bound the spectral norm ‖τ‖ and the max-norm ‖ν‖max of the
coefficient matrices. We have

‖τ‖ = O
(
n2/3

ω2/3

)
, ‖τ‖max = O

( 1
n1/3ω2/3

)
, ‖ν‖max = O

(
n1/3

ω1/3

)
, (156)

where the first equality follows from [6, Eq. (F10)], the second equality follows from [6, Eq.
(F11)–(F13)] and the third equality follows from [6, Eq. (F7) and (F9)]. We also consider
a constant system density η = O (ω) following the setting of [6]. Applying Theorem 1, we
find that a pth-order formula Sp(t) can approximate the evolution of electronic-structure
Hamiltonian with Trotter error∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η

2tp+1
)

= O
((

n2/3

η2/3 + n1/3η2/3
)p

n1/3η2/3tp+1
)
.

(157)

This approximation is accurate for sufficiently small t. To evolve for a longer time, we divide
the evolution into r steps and use Sp(t/r) within each step, which gives an approximation
with error∥∥∥S r

p (t/r)− e−itH
∥∥∥
η
≤ r

∥∥∥Sp(t/r)− e−i
t
r
H
∥∥∥
η

= O
((

n2/3

η2/3 + n1/3η2/3
)p

n1/3η2/3 t
p+1

rp

)
.

(158)
To simulate with accuracy ε, it suffices to choose

r = O
((

n2/3

η2/3 + n1/3η2/3
)
n1/3pη2/3p t

1+1/p

ε1/p

)
. (159)

Note that this can also be achieved using the weaker bound (9) from path counting, since
both ‖τ‖ and n ‖τ‖max have the same asymptotic scaling.

To simplify our discussion, we consider digital quantum simulation with constant time
and accuracy, obtaining

r = O
((

n2/3

η2/3 + n1/3η2/3
)
n1/p

)
. (160)

We further implement each Trotter step using the approach of [54, Sect. 5], and obtain a
quantum circuit with gate complexity

g = O
((

n5/3

η2/3 + n4/3η2/3
)
n1/ppolylog(n)

)
. (161)

which implies

g =
(
n5/3

η2/3 + n4/3η2/3
)
no(1) (162)

by choosing the order p sufficiently large.
Up to a negligible factor no(1), this gate complexity improves the best previous result

of the electronic-structure simulation in the second-quantized plane-wave basis. This is
because our approach improves the performance of digital quantum simulation by simul-
taneously exploiting commutativity of the Hamiltonian and prior knowledge of the initial
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state, whereas previous results were only able to employ at most one of these information.
Indeed, previous work [6, Appendix G] gave a Trotterization with error bound∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
(‖τ‖+ ‖ν‖max η)p−1 ‖τ‖ ‖ν‖max η

p+2tp+1
)
. (163)

Their approach used the initial-state information by computing the Trotter error within
the η-electron manifold, but the commutativity of the Hamiltonian was ignored, giving a
simulation with gate count

(
n5/3η1/3 + n4/3η5/3

)
no(1) worse than our result. On the other

hand, the work [27, Proposition F.4] used commutativity of the Hamiltonian to show∥∥∥Sp(t)− e−itH
∥∥∥
η

= O
(
(‖τ‖max + ‖ν‖max)p−1 ‖τ‖max ‖ν‖max n

p+2tp+1
)
. (164)

and gave a simulation with complexity n7/3

η1/3 n
o(1), whereas Ref. [54] gave an interaction-

picture approach with cost O
(
n8/3

η2/3 polylog(n)
)
. Our new result matches these when η and

n are comparable to each other, but can be much more efficient in the regime where η is
much smaller than n.

Interestingly, our asymptotic result remains conditionally advantageous even when
compared with the first-quantized simulations. There, the best previous approach is the
interaction-picture approach [7] with gate complexity O

(
n1/3η8/3polylog(n)

)
, larger than

our new complexity when n = O
(
η2−2/(p+1)polylog(n)

)
. A related approach was described

in [7] based on qubitization, which has a similar performance comparison with our result.15

See Table 1 for details.
We mention however that there is one caveat when ignoring the factor no(1) in our

above discussion. This is achieved by choosing the order p of Trotterization sufficiently
large, which can result in a gate complexity with an unrealistically large prefactor de-
pending on the definition of higher-order formulas.16 Nevertheless, recent work suggests
that Trotterization remains advantageous for simulating the plane-wave-basis electronic
structure even with a low-order formula [42], to which our paper provides new theoretical
insights.

6.2 Fermi-Hubbard model
We also consider applications of our result to simulations of the Fermi-Hubbard Hamilto-
nian, which models many important properties of interacting electrons. This Hamiltonian
is defined as

H = −s
∑
〈j,k〉,σ

(
A†j,σAk,σ +A†k,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (165)

where 〈j, k〉 denotes a summation over nearest-neighbor lattice sites and σ ∈ {0, 1}.
We note that this Hamiltonian can be represented in terms of a sparse interacted

Hamiltonian. Indeed, in the one-dimensional case, we have

H = −s
∑
j,σ

(
A†j,σAj+1,σ +A†j+1,σAj,σ

)
+ v

∑
j

Nj,0Nj,1, (166)

15It is a subject for future work to compare the concrete resources required by our approach and those
required by the first-quantized approach of [75].

16For the pth-order Suzuki formula, we have a factor of 5p in the gate complexity, although this may be
different for different formulas.
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where j = 0, 1, . . . , n − 1 and σ = 0, 1. Comparing with the definition of interacting-
electronic model (1), we see that

τ = −s
∑
j

(|j〉〈j + 1|+ |j + 1〉〈j|)⊗(|0〉〈0|+|1〉〈1|), ν = v

2
∑
j

|j〉〈j|⊗(|0〉〈1|+ |1〉〈0|) ,

(167)
so the coefficient matrices τ and ν are 2-sparse. Similar analysis holds for the higher-
dimensional Fermi-Hubbard model, with the sparsity d = 2m wherem is the dimensionality
of the lattice.

We can therefore apply Theorem 1 to conclude that a pth-order formula Sp(t) approx-
imates the evolution of Fermi-Hubbard Hamiltonian with Trotter error∥∥∥Sp(t)− e−itH

∥∥∥
η

= O
(
(s+ v)p−1sv2m(p+1)ηtp+1

)
= O

(
ηtp+1

)
, (168)

assuming s, v, and m are constant. For r steps of Trotterization, we apply the triangle
inequality to get

∥∥∥S r
p (t/r)− e−itH

∥∥∥
η
≤ r

∥∥∥Sp(t/r)− e−i
t
r
H
∥∥∥
η

= O
(
η
tp+1

rp

)
. (169)

To simulate with constant time and accuracy, it thus suffices to choose

r = O
(
η1/p

)
, (170)

giving gate complexity17

g = O
(
nη1/p

)
. (171)

The Fermi-Hubbard model only contains nearest-neighbor interactions and, according
to [22], can be near optimally simulated with O

(
n1+1/p

)
gates. On the other hand,

recent work [28] shows that Trotterization algorithm has gate complexity O
(
nη1+1/p

)
when restricted to the η-electron manifold. Our result improves over those previous work by
combining the sparsity of interactions, commutativity of the Hamiltonian and information
about the initial state.

7 Discussion
We have given improved quantum simulations of a class of interacting electrons using
Trotterization, by simultaneously exploiting commutativity of the Hamiltonian, sparsity
of interactions, and prior knowledge of the initial state. We identified applications to
simulating the plane-wave-basis electronic structure, improving the best previous result
in second quantization up to a negligible factor while conditionally outperforming the
first-quantized simulation. We obtained further speedups when the electronic Hamiltonian
has d-sparse interactions, which gave faster Trotterization of the Fermi-Hubbard model.
We constructed concrete electronic systems for which our bounds are almost saturated,
providing a provable guarantee on the tightness of our analysis.

17By exploiting locality, we can perform e−itV with O (n) gates. An additional logarithmic factor will
be introduced if we implement e−itT using the fermionic Fourier transform. However, this can be avoided
by further decomposing T = Todd +Teven as in [22], so that H = Todd +Teven +V . The analysis of Trotter
error proceeds in a similar way as in Section 4, which establishes the claimed gate complexity of O

(
nη1/p).
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Our focus has been on the asymptotic performance of digital quantum simulation
throughout this paper. However, we believe that the techniques we have developed can also
be used to give quantum simulations with low constant-prefactor overhead, for instance,
through a more careful application of our Proposition 9, Proposition 10, Proposition 11
and Proposition 12. Such improvements would especially benefit the simulation of plane-
wave-basis electronic structure, where many pairs of Hamiltonian terms commute and the
number of electrons can be significantly smaller than the spin-orbital number. Existing nu-
merical studies almost exclusively used the second-order Suzuki formula [5, 19, 42, 65, 84]
and their results did not fully leverage the commutativity of the Hamiltonian and the
initial-state knowledge, which may then be improved by the techniques presented here
using general Trotterization schemes.

Our analysis is applicable to a class of electronic Hamiltonians of the form H =∑
j,k τj,kA

†
jAk + ∑

l,m νl,mNlNm. By imposing further constraints on the coefficients, we
may somewhat sacrifice this generality but instead get further improvement on the simula-
tion performance. One possibility is to consider the subclass of systems that are translation-
invariant, i.e., τj,k = τj+q,k+q and νl,m = νl+q,m+q. This translational invariance is used in
the circuit implementations for both our applications (electronic-structure Hamiltonians
and Fermi-Hubbard model), but is nevertheless ignored in the proof of our upper bounds
(Theorem 1) and tightness result (Theorem 2). By incorporating additional features of the
Hamiltonian such as translational invariance, it is plausible that our current complexity
estimate can be further improved.

A natural problem that has yet to be addressed here is the simulation of electronic-
structure Hamiltonians in a more compact molecular basis. Such Hamiltonians typically
take the form H = ∑

j,k hj,kA
†
jAk + ∑

j,k,l,m hj,k,l,mA
†
jAkA

†
lAm, more complex than the

electronic model (1) considered here. In this case, the exponentials of the two-body terms∑
j,k,l,m hj,k,l,mA

†
jAkA

†
lAm do not have a convenient circuit implementation and our current

approach is not directly applicable. This motivates further developments of hybrid quantum
simulation, in which Trotterization is combined with more advanced quantum algorithms
to speed up digital quantum simulation. We leave a detailed study of such problems as a
subject for future work.

More generally, we could consider digital quantum simulations of other types of physical
systems, such as bosonic systems [70] or fermion-boson interacting systems [72]. We hope
our techniques could offer insights to such problems and find further applications in digital
quantum simulation beyond what have been discussed here.
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A Analysis of single-layer commutator
In this appendix, we complete the proof of Proposition 8 that bounds the terms arising in
the commutator analysis of first-order formula.
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For the third statement of Proposition 8, we let X = ∑
j,k,l τj,kνl,kA

†
jNlAk and compute

X†X =
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj2,k2νl2,k2A
†
k1
Nl1Aj1A

†
j2
Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2

−
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj2,k2νl2,k2A
†
k1
Nl1A

†
j2
Aj1Nl2Ak2 .

(172)

Applying the operator Cauchy-Schwarz inequality (Lemma 1) similarly as in (63),

X†X ≤
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2

+
∑

j1,k1,l1,j2,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1A

†
j2
Aj2Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τ̄j1,k1 ν̄l1,k1τj1,k2νl2,k2A
†
k1
Nl1Nl2Ak2N.

(173)

We now perform diagonalization using Lemma 2, obtaining

X†X ≤ ‖τ‖2
∑

k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1N. (174)

Using the Hölder-type inequality for the expectation value (Lemma 3), we have

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥‖τ‖2
∑

k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1N

∥∥∥∥∥∥
η

= ‖τ‖2 η

∥∥∥∥∥∥
∑

k1,l1,l2

ν̄l1,k1νl2,k1A
†
k1
Nl1Nl2Ak1

∥∥∥∥∥∥
η

≤ ‖τ‖2 η

∥∥∥∥∥∥
∑
k1

A†k1
Ak1

∥∥∥∥∥∥
η

max
k1

∥∥∥∥∥∥
∑
l1,l2

ν̄l1,k1νl2,k1Nl1Nl2

∥∥∥∥∥∥
η−1

,

(175)
where

∥∥∥∑k1 A
†
k1
Ak1

∥∥∥
η

= η and
∥∥∥∑l1,l2 ν̄l1,k1νl2,k1Nl1Nl2

∥∥∥
η−1
≤ ‖ν‖2max η

2. This completes
the proof of the third statement of Proposition 8.

For the fourth statement, we let X = ∑
j,k,m τj,kνj,mA

†
jNmAk and compute

X†X =
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj2,k2νj2,m2A
†
k1
Nm1Aj1A

†
j2
Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2

−
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj2,k2νj2,m2A
†
k1
Nm1A

†
j2
Aj1Nm2Ak2 .

(176)

Applying the operator Cauchy-Schwarz inequality (Lemma 1),

X†X ≤
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2

+
∑

j1,k1,m1,j2,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1A

†
j2
Aj2Nm2Ak2

=
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2N.

(177)
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We now use the Hölder-type inequality for the expectation value (Lemma 3) to get∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥
∑

j1,k1,m1,k2,m2

τ̄j1,k1 ν̄j1,m1τj1,k2νj1,m2A
†
k1
Nm1Nm2Ak2N

∥∥∥∥∥∥
η

≤ η

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1

∥∥∥∥∥ ∑
m1,m2

ν̄j1,m1νj1,m2Nm1Nm2

∥∥∥∥∥
η−1

.

(178)

The second fermionic seminorm can be directly bounded as
∥∥∥∑m1,m2 ν̄j1,m1νj1,m2Nm1Nm2

∥∥∥
η−1
≤

‖ν‖2max η
2, whereas the first seminorm can be bounded using diagonalization (Lemma 2)∥∥∥∥∥∥

∑
j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤

∥∥∥∥∥∥
∑
k1

∥∥∥τ †τ∥∥∥A†k1
Ak1

∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥ η. (179)

This completes the proof of the fourth statement of Proposition 8.
For the fifth statement, we let X = ∑

j,k τj,kνj,jA
†
jAk and compute

X†X =
∑

j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj2,k2νj2,j2A
†
k1
Aj1A

†
j2
Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2 −

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj2,k2νj2,j2A
†
k1
A†j2Aj1Ak2 .

(180)
Applying the operator Cauchy-Schwarz inequality (Lemma 1),

X†X ≤
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2 +

∑
j1,k1,j2,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j2A
†
k1
A†j2Aj2Ak2

=
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2N.

(181)
We now use the Hölder-type inequality for the expectation value (Lemma 3) to get∥∥∥X†X∥∥∥

η
≤

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1 ν̄j1,j1τj1,k2νj1,j1A
†
k1
Ak2N

∥∥∥∥∥∥
η

= η

∥∥∥∥∥∥
∑

j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1
‖ν̄j1,j1νj1,j1I‖η−1 .

(182)

The second fermionic seminorm can be directly bounded by ‖ν‖2max, whereas we perform
diagonalization to the first seminorm (Lemma 2):∥∥∥∥∥∥

∑
j1,k1,k2

τ̄j1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥

∥∥∥∥∥∥
∑
k1

A†k1
Ak1

∥∥∥∥∥∥
η

=
∥∥∥τ †τ∥∥∥ η. (183)

This completes the proof of the fifth statement of Proposition 8.
For the sixth statement, we let X = ∑

j,k,l τj,kνl,jA
†
jNlAk and compute

X†X =
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj2,k2νl2,j2A
†
k1
Nl1Aj1A

†
j2
Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2

−
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj2,k2νl2,j2A
†
k1
Nl1A

†
j2
Aj1Nl2Ak2 .

(184)
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Applying the operator Cauchy-Schwarz inequality (Lemma 1),

X†X ≤
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2

+
∑

j1,k1,l1,j2,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1A

†
j2
Aj2Nl2Ak2

=
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2N.

(185)

We now use the Hölder-type inequality for the expectation value (Lemma 3) to get

∥∥∥X†X∥∥∥
η
≤

∥∥∥∥∥∥
∑

j1,k1,l1,k2,l2

τj1,k1νl1,j1τj1,k2νl2,j1A
†
k1
Nl1Nl2Ak2N

∥∥∥∥∥∥
η

= η

∥∥∥∥∥∥
∑

j1,k1,k2

τj1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

max
j1

∥∥∥∥∥∥
∑
l1,l2

νl1,j1νl2,j1Nl1Nl2

∥∥∥∥∥∥
η−1

.

(186)

The second fermionic seminorm can be directly bounded by ‖ν‖2max η
2, whereas we perform

diagonalization to the first seminorm (Lemma 2):∥∥∥∥∥∥
∑

j1,k1,k2

τj1,k1τj1,k2A
†
k1
Ak2

∥∥∥∥∥∥
η

≤
∥∥∥τ †τ∥∥∥

∥∥∥∥∥∥
∑
k1

A†k1
Ak2

∥∥∥∥∥∥
η

=
∥∥∥τ †τ∥∥∥ η. (187)

This completes the proof of the sixth statement of Proposition 8.

B Counting fermionic paths for non-sparse interactions
In this appendix, we use the path-counting technique to prove (9) for non-sparse interacting
electrons. We will make use of the following commutation relations[
A†jAk, A

†
jx

]
= δk,jxA

†
j ,

[
A†jAk, Aky

]
= −δky ,jAk,

[
A†jAk, Nlz

]
= δk,lzA

†
jAk − δj,lzA

†
jAk,

(188)[
NlNm, A

†
jx

]
= δm,jxNlA

†
jx

+ δl,jxNmA
†
jx
− δl,kxδm,kxA

†
jx
, (189)

[NlNm, Akx ] = −δm,kxAkxNl − δl,kxAkxNm + δl,kxδm,kxAkx , (190)

which are slightly different from the ones used before. These relations can be derived in a
similar way as in Equation (77) and (78).

Our analysis of the non-sparse interactions mirrors that of the sparse case in Section 4.2.

Proposition 15 (Non-sparse path-counting bound). Under the same assumption as in
Proposition 11, we have∑

〈jp+1,kp+1〉
. . .

∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |cccη〉‖ = O
(
n|γγγ|ηp+2−|γγγ|

)
, (191)

∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

)
∥∥∥P †|cccη〉∥∥∥ = O

(
n|γγγ|ηp+2−|γγγ|

)
. (192)

Proof. We will prove the following claims by induction on q = 2, . . . , p+ 1.
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• All fermionic paths P are products of A†iAj and Nk.

• All fermionic paths P have at most q + 1 elementary fermionic operators.

• The number of fermionic paths P that start with a fermionic operator acting on a
specific site i is at most 3q−1q!n

∑q

q′=1 γq′η
∑q

q′=1(1−γq′ ).

The base case q = 2 can be easily verified by noting that we only need to consider [T, V ]
or [V, T ]. For every site i, there are at most 6nη fermionic paths starting with this site, all
of which are products of A†iAj and Nk. This is because there are at most three summation
indices. The rightmost index must be equal to i and the indices for Nk, Aj have at
most η choices, while the remaining index has n possible choices, giving a total of nη
choices. The additional factor of 6 comes from the number of different expansion terms
in Equation (188), (189), (190). Furthermore, every fermionic path consists of at most 3
fermionic operators. These established the claims for the base case q = 2.

For every q > 2, we now use the induction hypothesis for q− 1 to prove the claims for
q. If γq = 1, then we take another commutator with T = ∑

jq ,kq τjq ,kqA
†
jq
Akq . We can see

that all fermionic paths P B
(
H
γq
jqkq

, . . . ,Hγ1
j1k1

)
come from the expansion of

[A†jqAkq , P
′], ∀〈jq, kq〉, ∀P ′ B

(
H
γq−1
jq−1kq−1

, . . . ,Hγ1
j1k1

)
. (193)

Using the commutation rule [X,Y1 . . . Yκ] = ∑κ
k=1 Y1 . . . Yk−1[X,Yk]Yk+1 . . . Yκ, we show

that the claims hold for q as follows. When we take the commutation of A†jqAkq with
A†j or Ak, we know from (189) that one free index will be introduced, resulting in an
additional factor of n. When we take the commutation of A†jqAkq with Nl, we will remove
the fermionic operator Nl and replace it with A†jqAkq , which removes a factor of η and adds
an additional factor of nη. Additionally, there are at most (q− 1) + 1 fermionic operators
in P ′. Hence the number of fermionic paths P that start with a fermionic operator acting
on site i is at most

(2q)3q−2(q − 1)!nn
∑q−1

q′=1 γq′η
∑q−1

q′=1(1−γq′ ) ≤ 3q−1q!n
∑q

q′=1 γq′η
∑q

q′=1(1−γq′ ). (194)

Furthermore, in both cases, we add at most one additional fermionic operator. Therefore,
all fermionic paths will have at most (q − 1) + 1 + 1 = q + 1 fermionic operators. And
[A†jqAkq , P

′] remains a product of A†iAj and Nk.
The inductive step for γq = 0 follows from a similar argument. The first two claims can

be directly verified. For the last claim, we proceed in a slightly different way as follows.
When we take the commutator of N †jqNkq with A†j or Ak, we will add Njq or Nkq to the
fermionic path, which results in an additional factor of η. When we take the commutator
of N †jqNkq with Nk, the commutator is equal to zero. Hence the number of fermionic paths
that start with a fermionic operator acting on site i is at most

(3q)3q−2(q − 1)!ηn
∑q−1

q′=1 γq′η
∑q−1

q′=1(1−γq′ ) ≤ 3q−1q!n
∑q

q′=1 γq′η
∑q

q′=1(1−γq′ ). (195)

We have thus shown that the claims hold for q.
Performing the induction on q from 2 to p + 1 shows that the number of fermionic

paths starting with site i is at most

3p(p+ 1)!n
∑p+1

q=1 γqη
∑p+1

q=1(1−γq) = O
(
n
∑p+1

q=1 γqη
∑p+1

q=1(1−γq)
)
. (196)
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Because each fermionic path P is a product of A†iAj andNk, ‖P |cccη〉‖ would be nonzero only
if the rightmost fermionic operator acts on one of the η occupied sites in the configuration
cccη. Hence there are at most ηO(n

∑p+1
q=1 γqη

∑p+1
q=1(1−γq)) fermionic paths with non-zero

‖P |cccη〉‖. Finally, recall from Lemma 4 that ‖P |cccη〉‖ is either 0 or 1. Therefore, we
have ∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
PB
(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

) ‖P |cccη〉‖ = O
(
n
∑p+1

q=1 γqη
1+
∑p+1

q=1(1−γq)
)
. (197)

The other bound∑
〈jp+1,kp+1〉

. . .
∑
〈j1,k1〉

∑
P †B

(
H
γp+1
jp+1kp+1

,...,H
γ1
j1k1

)
∥∥∥P †|cccη〉∥∥∥ = O

(
n|γγγ|ηp+2−|γγγ|

)
(198)

can be similarly proved using the fact that the leftmost fermionic operator of P † must act
on one of the η occupied sites in any fixed configuration.

We can combine the above proposition with the path-counting bound (Proposition 11)
to obtain ∥∥[Hγp+1 , · · · [Hγ2 , Hγ1 ]

]∥∥
η

= O
(
(n ‖τ‖max)|γγγ|(η ‖ν‖max)p+1−|γγγ|η

)
. (199)

Finally, we use the Trotter error bound (43) to obtain∥∥∥Sp(t)− e−itH
∥∥∥
η

= O
(
(n ‖τ‖max + η ‖ν‖max)p−1 ‖τ‖max ‖ν‖max nη

2tp+1
)
, (200)

completing the proof of (9).
Note that this bound is slightly worse than Eq. (2) of Theorem 1, as the norm inequality

‖τ‖ ≤ n ‖τ‖max always holds but not necessarily saturates. However, in the electronic-
structure application, it indeed holds that ‖τ‖ and n ‖τ‖max have the same asymptotic
scaling, so (2) and (9) give digital quantum simulations with the same asymptotic gate
complexity. See Section 6.1 for further discussions.

C Lower-bounding ‖[T, . . . [T, V ]]‖η
In this appendix, we prove Proposition 13 that lower-bounds ‖[T, . . . [T, V ]]‖η for the elec-
tronic Hamiltonian (139). After the fermionic Fourier transform (140), we have

T̃ = FFFT† · T · FFFT = nN0,

Ṽ = FFFT† · V · FFFT = 1
n2

∑
j,k,l,m

n
2−1∑
x=0

e
2πix(k−j)

n

n
2−1∑
y=0

e
2πiy(m−l)

n

A†jAkA†lAm, (201)

which gives the commutator[
T̃ , Ṽ

]
= 1
n

∑
k,l,m

H0klm −
1
n

∑
j,l,m

Hj0lm + 1
n

∑
j,k,m

Hjk0m −
1
n

∑
j,k,l

Hjkl0 (202)

with

Hjklm = τjklmA
†
jAkA

†
lAm, τjklm =

n
2−1∑
x=0

e
2πix(k−j)

n

n
2−1∑
y=0

e
2πiy(m−l)

n

 . (203)
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For η ≤ n
2 , we will choose the initial state from the two-dimensional subspace spanned

by

|ψ̃0〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉, |ψ̃1〉 = |100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉. (204)

Denoting the projection to this subspace as Π̃ = |ψ̃0〉〈ψ̃0| + |ψ̃1〉〈ψ̃1|, we have that Π̃
commutes with T̃ = nN0, which means Π̃[T̃ , . . . [T̃ , Ṽ ]]Π̃ = [T̃ , . . . Π̃[T̃ , Ṽ ]Π̃]. We simplify
the effective commutator Π̃[T̃ , Ṽ ]Π̃ based on the following observations:

1. A†0AkA
†
lAm: This will always nullify |ψ̃0〉 from left. For 〈ψ̃1|A†0AkA

†
lAm|ψ̃1〉 to

be nonzero, we must let one of {k,m} be 0, while the other is equal to l. For
〈ψ̃1|A†0AkA

†
lAm|ψ̃0〉 to be nonzero, we must let one of {k,m} be 1, while the other

is equal to l.

2. A†jA0A
†
lAm: For 〈ψ̃0|A†jA0A

†
lAm|ψ̃0〉 to be nonzero, we must let l = 0 and j = m.

For 〈ψ̃0|A†jA0A
†
lAm|ψ̃1〉 to be nonzero, we must let one of {j, l} be 1, while the other

is equal to m. For 〈ψ̃1|A†jA0A
†
lAm|ψ̃1〉 to be nonzero, we must let j = 0 and l = m.

For 〈ψ̃1|A†jA0A
†
lAm|ψ̃0〉 to be nonzero, we must let j = 0, l = 0 and m = 1.

3. A†jAkA
†
0Am: For 〈ψ̃0|A†jAkA

†
0Am|ψ̃0〉 to be nonzero, we must let k = 0 and j = m.

For 〈ψ̃1|A†jAkA
†
0Am|ψ̃0〉 to be nonzero, we must let one of {k,m} be 1, while the

other is equal to j. For 〈ψ̃1|A†jAkA
†
0Am|ψ̃1〉 to be nonzero, we must let m = 0 and

j = k. For 〈ψ̃0|A†jAkA
†
0Am|ψ̃1〉 to be nonzero, we must let m = 0, k = 0 and j = 1.

4. A†jAkA
†
lA0: This will always nullify |ψ̃0〉 from right. For 〈ψ̃1|A†jAkA

†
lA0|ψ̃1〉 to

be nonzero, we must let one of {j, l} be 0, while the other is equal to k. For
〈ψ̃0|A†jAkA

†
lA0|ψ̃1〉 to be nonzero, we must let one of {j, l} be 1, while the other

is equal to k.

After removing double-counting and canceling redundant terms, we obtain

Π̃
[
T̃ , Ṽ

]
Π̃ =

��
����1

n

∑
l

H00ll + 1
n

∑
l

H01ll

�
���

���
+ 1
n

∑
k

H0kk0 + 1
n

∑
k

H0kk1

�����− 1
n
H0000 −

1
n
H0111

���
����

− 1
n

∑
j

Hj00j −
1
n

∑
l

H10ll −
1
n

∑
j

Hj01j
�

���
���

− 1
n

∑
l

H00ll −
1
n
H0001

�
����+ 1
n
H0000 + 1

n
H1011︸ ︷︷ ︸
0

�
���

���
+ 1
n

∑
j

Hj00j + 1
n

∑
j

Hjj01 + 1
n

∑
j

Hj10j

�
���

���
+ 1
n

∑
j

Hjj00 + 1
n
H1000

��
���− 1

n
H0000−

1
n
H1101︸ ︷︷ ︸
0

��
���

��
− 1
n

∑
j

Hjj00 −
1
n

∑
j

Hjj10

����
���

− 1
n

∑
k

H0kk0 −
1
n

∑
k

H1kk0

��
���+ 1

n
H0000 + 1

n
H1110.

(205)
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We merge the remaining twelve terms into four groups:

1. The first group contains terms

1
n

∑
l

H01ll −
1
n

∑
l

H10ll + 1
n

∑
j

Hjj01 −
1
n

∑
j

Hjj10

= 1
n

∑
l

τ01llA
†
0A1A

†
lAl −

1
n

∑
l

τ10llA
†
1A0A

†
lAl + 1

n

∑
j

τjj01A
†
jAjA

†
0A1 −

1
n

∑
j

τjj10A
†
jAjA

†
1A0

= N

n
2−1∑
x=0

e
2πix
n

A†0A1 −N

n
2−1∑
x=0

e−
2πix
n

A†1A0.

(206)
We will see that this is the dominant contribution to the effective commutator that
is at least Ω (nη).

2. The second group contains terms

− 1
n
H0111 −

1
n
H0001 + 1

n
H1000 + 1

n
H1110

=− 1
n
τ0111A

†
0A1A

†
1A1 −

1
n
τ0001A

†
0A0A

†
0A1 + 1

n
τ1000A

†
1A0A

†
0A0 + 1

n
τ1110A

†
1A1A

†
1A0

=−

n
2−1∑
x=0

e
2πix
n

A†0A1 +

n
2−1∑
x=0

e−
2πix
n

A†1A0 = O (n) ,

(207)
which does not dominate the result scaling.

3. The third group contains terms

1
n

∑
k

H0kk1 −
1
n

∑
k

H1kk0 = 1
n

∑
k

τ0kk1A
†
0AkA

†
kA1 −

1
n

∑
k

τ1kk0A
†
1AkA

†
kA0

= 1
n
τ0001A

†
0A1 + 1

n

∑
k

τ0kk1AkA
†
kA
†
0A1

− 1
n
τ1110A

†
1A0 −

1
n

∑
k

τ1kk0AkA
†
kA
†
1A0

= 1
n
τ0001A

†
0A1 + 1

n

∑
k

τ0kk1A
†
0A1 −

1
n

∑
k

τ0kk1A
†
kAkA

†
0A1

− 1
n
τ1110A

†
1A0 −

1
n

∑
k

τ1kk0A
†
1A0 + 1

n

∑
k

τ1kk0A
†
kAkA

†
1A0,

(208)
where

1
n
τ0001A

†
0A1 −

1
n
τ1110A

†
1A0 = 1

2

n
2−1∑
x=0

e
2πix
n

A†0A1 −
1
2

n
2−1∑
x=0

e−
2πix
n

A†1A0 = O (n) ,

(209)
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and

1
n

∑
k

τ0kk1A
†
0A1 −

1
n

∑
k

τ1kk0A
†
1A0

= 1
n

∑
k

n
2−1∑
x=0

e
2πixk
n

n
2−1∑
y=0

e
2πiy(1−k)

n

A†0A1 −
1
n

∑
k

n
2−1∑
x=0

e
2πix(k−1)

n

n
2−1∑
y=0

e−
2πiyk
n

A†1A0

=

n
2−1∑
x=0

e
2πix
n

A†0A1 −

n
2−1∑
x=0

e−
2πix
n

A†1A0 = O (n) .

(210)
We rewrite the remaining terms as

− 1
n

∑
k

τ0kk1A
†
kAkA

†
0A1 + 1

n

∑
k

τ1kk0A
†
kAkA

†
1A0

=− 1
n

∑
k

n
2−1∑
x=0

e
2πixk
n

n
2−1∑
y=0

e
2πiy(1−k)

n

A†kAkA†0A1

+ 1
n

∑
k

n
2−1∑
x=0

e
2πix(k−1)

n

n
2−1∑
y=0

e−
2πiyk
n

A†kAkA†1A0.

(211)

4. The fourth group contains terms

− 1
n

∑
j

Hj01j + 1
n

∑
j

Hj10j

=− 1
n

∑
j

τj01jA
†
jA0A

†
1Aj + 1

n

∑
j

τj10jA
†
jA1A

†
0Aj

=− 1
n
τ1011A

†
1A0 + 1

n

∑
j

τj01jA
†
jAjA

†
1A0 + 1

n
τ0100A

†
0A1 −

1
n

∑
j

τj10jA
†
jAjA

†
0A1.

(212)
Similar to the previous case, we have

− 1
n
τ1011A

†
1A0 + 1

n
τ0100A

†
0A1 = O (n) , (213)

whereas the remaining terms can be rewritten as

1
n

∑
j

τj01jA
†
jAjA

†
1A0 −

1
n

∑
j

τj10jA
†
jAjA

†
0A1

= 1
n

∑
j

n
2−1∑
x=0

e−
2πixj
n

n
2−1∑
y=0

e
2πiy(j−1)

n

A†jAjA†1A0

− 1
n

∑
j

n
2−1∑
x=0

e
2πix(1−j)

n

n
2−1∑
y=0

e
2πiyj
n

A†jAjA†0A1.

(214)
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To summarize, the effective commutator Π̃
[
T̃ , Ṽ

]
Π̃ has action

Π̃
[
T̃ , Ṽ

]
Π̃ = N

n
2−1∑
x=0

e
2πix
n

A†0A1 −N

n
2−1∑
x=0

e−
2πix
n

A†1A0

− 2
n

∑
k

n
2−1∑
x=0

e
2πixk
n

n
2−1∑
y=0

e
2πiy(1−k)

n

A†kAkA†0A1

+ 2
n

∑
k

n
2−1∑
x=0

e
2πix(k−1)

n

n
2−1∑
y=0

e−
2πiyk
n

A†kAkA†1A0 +O (n) .

(215)

We now take the expectation of this operator with respect to the state

|ψ̃η〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉+ |100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉√
2

. (216)

Using the limit

lim
z→0

( 2
1− e2πiz + 1

πiz

)
= 1 = lim

z→0

(
− 2

1− e−2πiz + 1
πiz

)
, (217)

we have

〈ψ̃η|

N
n

2−1∑
x=0

e
2πix
n

A†0A1 −N

n
2−1∑
x=0

e−
2πix
n

A†1A0

 |ψ̃η〉
= η〈ψ̃η|

(
2

1− e 2πi
n

A†0A1 −
2

1− e− 2πi
n

A†1A0

)
|ψ̃η〉

=− nη

πi
〈ψ̃η|

(
A†0A1 +A†1A0

)
|ψ̃η〉+O (η) = −nη

πi
+O (η) .

(218)

On the other hand,

1
n
〈ψ̃η|

−∑
k

n
2−1∑
x=0

e
2πixk
n

n
2−1∑
y=0

e
2πiy(1−k)

n

A†kAkA†0A1 +
∑
k

n
2−1∑
x=0

e
2πix(k−1)

n

n
2−1∑
y=0

e−
2πiyk
n

A†kAkA†1A0

 |ψ̃η〉
= 1
n
〈ψ̃η|

− n−1∑
k=n−η+1

1− eπik

1− e 2πik
n

1− eπi(1−k)

1− e
2πi(1−k)

n

A†0A1 +
n−1∑

k=n−η+1

1− eπi(k−1)

1− e
2πi(k−1)

n

1− e−πik

1− e− 2πik
n

A†1A0

 |ψ̃η〉+O (n) = O (n) ,

(219)
where the last equality holds since for integer k exactly one of k and k − 1 is even. We
have thus proved

〈ψ̃η|
[
T̃ , Ṽ

]
|ψ̃η〉 = −nη

πi
+O (n) . (220)

The above argument can be extended to analyze multilayer nested commutators. In-
deed, for initial state

|φ̃η〉 = |010 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉+ i|100 · · · 0
η−1︷ ︸︸ ︷

1 · · · 1〉√
2

, (221)

we have

〈φ̃η|
[
T̃ ,
[
T̃ , Ṽ

]]
|φ̃η〉 = −n

2η

πi
〈φ̃η|

(
A†0A1 −A†1A0

)
|φ̃η〉+O

(
n2 + nη

)
= n2η

π
+O

(
n2
)
,

(222)
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and similar results hold for general nested commutators [T̃ , . . . [T̃ , Ṽ ]]. This completes the
proof of Proposition 13.

For sparse interactions, we have u,w > 0, positive integer 2 ≤ d ≤ η ≤ n
2 and consider

the electronic Hamiltonian (146). Similar to the above analysis, we compute the commu-
tators by performing the fermionic Fourier transform, but only to the first d spin orbitals,
obtaining

T̃ = FFFT†d · T · FFFTd = udN0,

Ṽ = FFFT†d · V · FFFTd = w

d2

d−1∑
j,k,l,m=0


d
2−1∑
x=0

e
2πix(k−j)

d




d
2−1∑
y=0

e
2πiy(m−l)

d

A†jAkA†lAm.
(223)

We choose the initial state from the two-dimensional subspace spanned by

|ψ̃0,d〉 = |
d︷ ︸︸ ︷

011 · · · 1 0 · · · 0
η−d+1︷ ︸︸ ︷
1 · · · 1〉, |ψ̃1,d〉 = |

d︷ ︸︸ ︷
101 · · · 1 0 · · · 0

η−d+1︷ ︸︸ ︷
1 · · · 1〉 (224)

and denote the projection to this subspace as Π̃d = |ψ̃0,d〉〈ψ̃0,d| + |ψ̃1,d〉〈ψ̃1,d|. Then, the
effective commutator Π̃d

[
T̃ , Ṽ

]
Π̃d has action

Π̃d

[
T̃ , Ṽ

]
Π̃d = uw

d−1∑
j=0

Nj


d
2−1∑
x=0

e
2πix
d

A†0A1 −
d−1∑
j=0

Nj


d
2−1∑
x=0

e−
2πix
d

A†1A0

− 2uw
d

d−1∑
k=0


d
2−1∑
x=0

e
2πixk
d

d
2−1∑
y=0

e
2πiy(1−k)

d

A†kAkA†0A1

+ 2uw
d

d−1∑
k=0


d
2−1∑
x=0

e
2πix(k−1)

d

d
2−1∑
y=0

e−
2πiyk
d

A†kAkA†1A0 +O (uwd) .

(225)

We then define the state

|ψ̃η,d〉 = |
d︷ ︸︸ ︷

011 · · · 1 0 · · · 0
η−d+1︷ ︸︸ ︷
1 · · · 1〉+ |

d︷ ︸︸ ︷
101 · · · 1 0 · · · 0

η−d+1︷ ︸︸ ︷
1 · · · 1〉√

2
, (226)

so that

〈ψ̃η,d|
[
T̃ , Ṽ

]
|ψ̃η,d〉 = −uwd

2

πi
+O (uwd) . (227)

The calculation can be extended to multilayer nested commutators, using either |ψ̃η,d〉 or

|φ̃η,d〉 = |
d︷ ︸︸ ︷

011 · · · 1 0 · · · 0
η−d+1︷ ︸︸ ︷
1 · · · 1〉+ i|

d︷ ︸︸ ︷
101 · · · 1 0 · · · 0

η−d+1︷ ︸︸ ︷
1 · · · 1〉√

2
(228)

as the initial state.
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D Lower-bounding ‖[V, . . . [V, T ]]‖η
In this appendix, we prove Proposition 14 that lower-bounds ‖[V, . . . [V, T ]]‖η for the elec-
tronic Hamiltonian (139). Recall that we have H = T + V with

T =
n−1∑
j,k=0

A†jAk, V =
n
2−1∑
x,y=0

NxNy, (229)

which implies the commutator

[V, T ] =
n
2−1∑
x=0

Nx

( ∑
0≤j≤n2−1
n
2≤k≤n−1

−
∑

n
2≤j≤n−1
0≤k≤n2−1

)
A†jAk +

( ∑
0≤j≤n2−1
n
2≤k≤n−1

−
∑

n
2≤j≤n−1
0≤k≤n2−1

)
A†jAk

n
2−1∑
y=0

Ny.

(230)
For η ≤ n

2 , we will choose the initial state from the two-dimensional subspace spanned
by

|ψ0〉 = |

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉, |ψ1〉 = |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉. (231)

Denoting the projection to this subspace as Π = |ψ0〉〈ψ0| + |ψ1〉〈ψ1|, we have that Π
commutes with

∑
0≤x≤n2−1Nx. Meanwhile,

Π
( ∑

0≤j≤n2−1
n
2≤k≤n−1

−
∑

n
2≤j≤n−1
0≤k≤n2−1

)
A†jAkΠ = A†0An

2
−A†n

2
A0. (232)

This shows that the effective commutator Π[V, T ]Π has the action

Π[V, T ]Π =
n
2−1∑
x=0

Nx

(
A†0An

2
−A†n

2
A0
)

+
(
A†0An

2
−A†n

2
A0
) n

2−1∑
y=0

Ny. (233)

We now take the expectation of this operator with respect to the state

|ψη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ i|

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

, (234)

which gives

〈ψη|[V, T ]|ψη〉 = 〈ψη|

n
2−1∑
x=0

Nx

(
A†0An

2
−A†n

2
A0
)

+
(
A†0An

2
−A†n

2
A0
) n

2−1∑
y=0

Ny

 |ψη〉
= 2η〈ψη|

(
A†0An

2
−A†n

2
A0
)
|ψη〉+O (1) = (−1)η2iη +O (1) .

(235)

This proves the desired scaling for the single-layer commutator. This argument can be
extended to analyze multilayer nested commutators. Indeed, for initial state

|φη〉 =

|

n
2︷ ︸︸ ︷

0 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 10 · · · 0〉+ |

n
2︷ ︸︸ ︷

1 1 · · · 1︸ ︷︷ ︸
η−1

0 · · · 0 00 · · · 0〉

√
2

, (236)
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we have

〈φη|[V, [V, T ]]|φη〉 = 〈φη|

n
2−1∑
x=0

Nx

2 (
A†0An

2
+A†n

2
A0
)
|φη〉

+ 2〈φη|

n
2−1∑
x=0

Nx

(A†0An
2

+A†n
2
A0
)n

2−1∑
y=0

Ny

 |φη〉
+ 〈φη|

(
A†0An

2
+A†n

2
A0
)n

2−1∑
y=0

Ny

2

|φη〉 = (−1)η−14η2 +O (η) ,

(237)
and similar results hold for general nested commutators [V, . . . [V, T ]]. This completes the
proof of Proposition 14.

For sparse interactions, we have u,w > 0, positive integer 2 ≤ d ≤ η ≤ n
2 and consider

the electronic Hamiltonian (146). Similar to above, we have the commutator

[V, T ] = uw

d
2−1∑
x=0

Nx

( ∑
0≤j≤ d2−1
d
2≤k≤d−1

−
∑

d
2≤j≤d−1
0≤k≤ d2−1

)
A†jAk + uw

( ∑
0≤j≤ d2−1
d
2≤k≤d−1

−
∑

d
2≤j≤d−1
0≤k≤ d2−1

)
A†jAk

d
2−1∑
y=0

Ny.

(238)
We choose the initial state from the two-dimensional subspace spanned by

|ψ0,d〉 = |
d︷ ︸︸ ︷

01 · · · 1︸ ︷︷ ︸
d
2

10 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉, |ψ1,d〉 = |
d︷ ︸︸ ︷

11 · · · 1︸ ︷︷ ︸
d
2

00 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉 (239)

and denote the projection to this subspace as Πd = |ψ0,d〉〈ψ0,d| + |ψ1,d〉〈ψ1,d|. Then, the
effective commutator Πd[V, T ]Πd has the action

Πd[V, T ]Πd = uw

d
2−1∑
x=0

Nx

(
A†0A d

2
−A†d

2
A0

)
+ uw

(
A†0A d

2
−A†d

2
A0

) d
2−1∑
y=0

Ny. (240)

Choosing the initial state

|ψη,d〉 =

|
d︷ ︸︸ ︷

01 · · · 1︸ ︷︷ ︸
d
2

10 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉+ i|
d︷ ︸︸ ︷

11 · · · 1︸ ︷︷ ︸
d
2

00 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉

√
2

, (241)

we have
〈ψη,d|[V, T ]|ψη,d〉 = (−1)

d
2 iuwd+O (uw) . (242)

The calculation can be extended to multilayer nested commutators, using either |ψη,d〉 or

|φη,d〉 =

|
d︷ ︸︸ ︷

01 · · · 1︸ ︷︷ ︸
d
2

10 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉+ |
d︷ ︸︸ ︷

11 · · · 1︸ ︷︷ ︸
d
2

00 · · · 0 0 · · · 0
η− d2︷ ︸︸ ︷

1 · · · 1〉

√
2

, (243)

as the initial state.
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