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The Sachdev-Ye-Kitaev (SYK) model is an all-to-all interacting Majorana fermion model for
many-body quantum chaos and the holographic correspondence. Here we construct fermionic all-
to-all Floquet quantum circuits of random four-body gates designed to capture key features of SYK
dynamics. Our circuits can be built using local ingredients in Majorana devices, namely charging-
mediated interactions and braiding Majorana zero modes. This offers an analog-digital route to
SYK quantum simulations that reconciles all-to-all interactions with the topological protection of
Majorana zero modes, a key feature missing in existing proposals for analog SYK simulation. We
also describe how dynamical, including out-of-time-ordered, correlation functions can be measured
in such analog–digital implementations by employing foreseen capabilities in Majorana devices.

The Sachdev-Ye-Kitaev (SYK) model is an interaction-
only toy model for quantum chaos [1–4], the gauge-
gravity duality [5], and non-Fermi liquid behavior [6–10].
Its Majorana fermion ingredients [5] motivated propos-
als [11, 12] for realizing SYK physics in the solid state
using Majorana zero modes [13–21]. (See also Refs. 22–
24 for approaches via bosonic digital quantum simula-
tions.) The SYK model however involves all-to-all inter-
actions [5, 6], which is hard to reconcile with the expo-
nential localization of topologically protected Majorana
zero modes [13–21]. Existing proposals, focused on ana-
log quantum simulations of the SYK Hamiltonian, hence
give up topological protection: they employ delocalized
Majorana modes [11, 12] and achieve an interaction-only
system by fine-tuning certain parameters to prevent bi-
linear terms arising from the overlapping wave functions.

In this work, we focus on the SYK dynamics and
suggest an approach that reconciles all-to-all interac-
tions with topological protection. Specifically, we in-
troduce a Majorana fermion model designed to gen-
erate interaction-only dynamics respecting SYK model
symmetries [25–27], and which is amenable for analog-
digital hybrid quantum simulations using topologically
protected Majorana zero modes. Our model is a strobo-
scopic model of many-body quantum chaos [28–41]; it can
be viewed [Fig. 1(a)] as an all-to-all quantum circuit [37–
41], with Majorana fermion lines [42, 43], defining a Flo-
quet operator [32–34]. Crucially, however, it also arises
from local ingredients matching foreseen capabilities of
Majorana devices, such as charging-energy-mediated in-
teractions [44, 45] and braid operations [Fig. 1(b)].

We also show how the same capabilities allow one to
measure dynamical fermionic SYK correlations (cf. Fig. 2
for a sketch). These even include out-of-time-ordered cor-
relation functions (OTOCs), often employed to charac-
terize the scrambling of quantum information [3, 50, 51],
but difficult to implement due to OTOCs involving back-
ward time evolution [52]. Our approach achieves a
topologically protected evolution reversal using double-
braids. These, together with charge measurements fol-
lowed by adaptive operations [42], allow for an interfero-

metric OTOC protocol [52] in our Majorana systems. As
we will show, one can even probe thermal correlations
by applying spectral algorithms [53] and the eigenstate
thermalization hypothesis to our Floquet system.

Our model generates the dynamics of Majorana
fermions γi, i = 1 . . . k via a Floquet operator defined as a
(2n−1)-layer [or depth-(2n−1)] all-to-all quantum circuit
[Fig. 1(a)]. Each layer generates evolution correspond-
ing to a random partition of k into bk/4c quartets (b. . . c
is the floor function): layer j acts via fj ≡

∏bk/4c
i=1 fj,i,

where fj,i for the ith quartet is

fj,i = exp
(
iJj,iγπj(4i−3)γπj(4i−2)γπj(4i−1)γπj(4i)

)
, (1)

with Jj,i a real random variable, and πj a permutation of
the k indices. [We thus partition by permuting the con-
tiguous partition (0123)(4567) . . .; when k mod 4 6= 0,
only the γπj(l) contained in quartets contribute to fj .] As
we shall later explain, to match the antiunitary symme-
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FIG. 1. (a) Our model as an all-to-all quantum circuit with
four-body gates (maroon) acting on Majorana fermion lines.
Shown is a Floquet operator F3 for k = 9. (b) Implement-
ing the circuit layers j − 1 (bottom) and j (top) via super-
conducting islands (gray rectangles). Each island hosts four
Majorana zero modes (blue disks, γπj−1(4i) and γπj(4i) in
black). Charging effects, controlled via coupling (cyan) to
a bulk superconductor [46–48], induce the four-body gate ui
[Eq. (3)] for island i. Braiding (blue lines), e.g., via ancilla
Majoranas [47, 49] generates the permuted indices πj(i).
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tries of the SYK Hamiltonian time evolution, the Floquet
operator must have the structure

Fn = f1f2 . . . fn−1fnfn−1 . . . f2f1. (2)

Our model can be viewed as a Brownian SYK system [37,
41] built directly from quantum gates (instead of deriving
from a time-continuous Hamiltonian) and with a Floquet
structure enforced by the antiunitary SYK symmetries.

Turning to the implementation of our model in Majo-
rana devices, we sketch the building blocks in Fig. 1(b):
4bk/4c of the k Majorana zero modes are distributed over
bk/4c superconducting islands, with each island hosting
four Majoranas. The Majorana wave functions have ex-
ponentially small overlap, hence bilinear contributions to
the energy can be neglected. By adjusting the coupling
(e.g., via Josephson junctions [46, 54–59]) of island i to
a superconducting reservoir, one can switch between two
regimes: (i) strong coupling, where charging effects are
absent hence the island Hamiltonian is zero and (ii) weak
coupling, where the island Hamiltonian depends only on
the island fermion parity with a splitting energy Ei [60].
By operating in the weak coupling regime for time ti,
island i undergoes time evolution

ui = exp (iJiγ4i−3γ4i−2γ4i−1γ4i) , (3)

where the dimensionless coupling Ji = tiEi.

We generate πj via random braids [18, 28]. A suitable

braid operator Rj , acting as Rjγπj−1(i)R
†
j = sj,iγπj(i),

permutes indices as πj−1(i)→ πj(i). (Here sj,i = ±1, de-
pending on the details of the braid Rj [61].) While Rj is
in general nonlocal, it can be built from nearest-neighbor
braids, e.g., using the bubble sort algorithm [43]. [This
achieves any πj in at most O(k2) steps.] By changing
the gate times ti → tj,i after each braiding we get the
random couplings Jj,i. We can thus implement fj and
hence Fn using Majorana islands.

This implementation uses digital and analog ingredi-
ents each to their advantages: The digital ingredients,
i.e., the braids, are topologically protected [18]. The ui,
in contrast, do not have a topologically protected digi-
tal implementation, and even their approximate digital
synthesis would come with overhead [43, 62, 63]. These
are thus best suited as analog ingredients. Their ana-
log nature notwithstanding, we emphasize that Ji need
not match any fine-tuned value; the only requirement to
generate Fn is that the Ji be reproducible.

Our protocol for measuring dynamical correlations
(Fig. 2) implements global quenches from certain initial
states. We focus on initial states of the form Υa|Ω〉 where
Υa is a Majorana monomial and |Ω〉 is the fermionic vac-
uum. (Our protocol directly generalizes to other initial
states; our choice is motivated by capabilities in Ma-
jorana devices.) Starting from such product states, we
quench the system by evolving with the interaction-only

(b) OTOC

(a)    body function

time

FIG. 2. Protocol for measuring Majorana monomial corre-
lations with respect to the fermionic vacuum |Ω〉 = |Ωsys〉 ⊗
|Ωj̄〉 ⊗ |Ωk̄〉. Here |Ωsys〉 and |Ωj̄,k̄〉 are vacua of system and
ancilla fermions, respectively. (a) For Cab in Eq. (4), we apply
the generalized exchange Wb,2j̄ (cyan), m Floquet operators
Fn (beige), and Λ(Υaγ2k̄) [Eq. (9), pink], on the initial state.
Each Fn consists of 2n − 1 operators fj (light blue) for the
jth circuit layer; cf. Eq. (2). (b) For OTOCs, we generate F†n
for backward time evolution via double braids (bottom).

operator Fn. The resulting overlaps, for example

Cab(m) = 〈Ω|(F†n)mΥaFmn Υb|Ω〉 (4)

shown in Fig. 2(a), capture correlations between Υb at
the initial time and Υa at the mth time step. The real
part of Cab(m) equals the retarded correlation function
with respect to |Ω〉. Here we focus on fermion-parity-
odd Υa,b as these carry fundamental fingerprints of SYK-
like correlations [26, 27]. The OTOC has similar, albeit
slightly more complex, structure [Fig. 2(b) and Eq. (12)].

To discuss symmetries, we first recall the fermion par-
ity operator P [13] and the antiunitary T± [26, 27].
Fermion parity, satisfying P 2 = 1, is the even product

P = P † =

{
ik/2γ1γ2 · · · γk even k

i(k+1)/2γ1γ2 · · · γkγ∞ odd k,
(5)

where for odd k, to get an even product, we intro-
duced the Majorana γ∞ at “infinity” [26, 64]. (γ∞ does
not contribute to the dynamics.) For a set of k Ma-
joranas, there is one or more antiunitary T such that
Tγq 6=∞T

−1 = γq 6=∞ [64, 65]. Following Ref. 26, we distin-
guish two possibilities, depending on the interplay with
parity: we introduce T± according to T±PT

−1
± = ±P .

Depending on k, one or both of T± are present and sat-
isfy T 2

± = +1 or T 2
± = −1 [25, 26, 64, 65].

We can now discuss the symmetries of our model and
show that they match those deriving from the SYK
Hamiltonian HSYK. Just as HSYK (and hence the evo-
lution USYK = exp (−iHSYKt) over time t), the gates
fj,i and hence Fn conserve fermion parity: [A,P ] = 0
where A = HSYK, USYK, fj,i, or Fn. This allows the
decomposition into blocks with parity eigenvalue p = ±1
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as A = diag(A+, A−). The SYK Hamiltonian (for b-
body interactions with b mod 4 = 0) also has T± as

symmetries [25, 26] and T±H
(p)
SYKT

−1
± = H

(±p)
SYK . Hence,

T±U
(p)
SYKT

−1
± = [U

(±p)
SYK ]†. To match this, we require

T±F (p)
n T−1

± = [F (±p)
n ]†. (6)

The structure introduced in Eq. (2) achieves precisely
this, as can be seen using T±f

p
j,iT

−1
± = [f±pj,i ]†.

We next discuss how T+ and T− influence the spectrum
of Fn. Since Fn is unitary and [Fn, P ] = 0, we have

Fn|ψpµ〉 = eiθ
p
µ |ψpµ〉, (7)

with real θpµ and P |ψpµ〉 = p|ψpµ〉. The states |ψpµ〉 are

also eigenstates of F†n with eigenvalue e−iθ
p
µ . When T+ is

present, |ψpµ〉 and T+|ψpµ〉 are eigenstates of Fn with the
same eigenvalue and same parity; this impacts the level

spacing statistics within each parity block F (p)
n [25]. The

symmetry T−, conversely, relates opposite parity sectors.
When T− is present, the states |ψpµ〉 and T−|ψpµ〉 both

have eigenvalue eiθ
p
µ , but opposite p. This symmetry

does not affect the level-spacing statistics within F (p)
n ,

but leads to cross-parity correlations [4, 26, 27]. The fea-
tures detected by Eq. (4) with parity-odd Υa,b include
these cross-parity correlations.

We now turn to the correlation functions, starting with
Cab in Eq. (4). We define the Majorana monomial

Υa = iqa(qa−1)/2γi1(a)γi2(a) · · · γiqa (a) (8)

as a product of qa Majorana fermions, where {ij(a)}
denotes a set of indices unique for each a. All Υa are
Hermitian, unitary, and for odd qa change fermion par-
ity: PΥa = (−1)qaΥaP . Before discussing the behavior
of Cab, we briefly comment on how it can be detected
via braiding and nondestructive parity measurements. A
central ingredient is a controlled fermionic gate

Λ(Υaγ2k̄) = exp

(
π

2
Υaγ2k̄

1

2
(1 + iγ2j̄−1γ2j̄)

)
(9)

= exp
(π

4
Υaγ2k̄

)
exp

(
i
π

4
Υaγ2k̄γ2j̄−1γ2j̄

)
,

where γ2k̄, γ2j̄−1, γ2j̄ are ancilla Majoranas. The latter
pair defines a control fermionic mode: when their par-
ity iγ2j̄−1γ2j̄ = 1, the operator iΥaγ2k̄ is applied to the
target fermionic modes; when iγ2j̄−1γ2j̄ = −1, the tar-
get modes are left unchanged. Because Λ(Υaγ2k̄) is the
product of two π/4 exponentials, it can be implemented
by an adaptive combination of braids and nondestructive
parity measurements [42, 43]. The next ingredient is the
preparation of the state

|Ψ〉 = Λ(Υaγ2k̄)Fmn Wb,2j̄ |Ω〉 (10)

with Wa,j̄ = exp(πΥaγj̄/4) [66]. We show the prepara-
tion of |Ψ〉 in Fig. 2(a). A straightforward calculation

FIG. 3. Numerically evaluated q-body correlations Cq(m) =∑
a|qa=q ReCa,a(m)/

(
k
q

)
, rescaled by the Hilbert space dimen-

sion M and averaged over up to 216 realizations of Jj,i taken
from a box distribution Jj,i ∈ [−20, 20]. Statistical error bars
are smaller than the line width. Panels (a)–(b) show q = 1
and panels (c)–(d) show q = 3 for k = 18 (cross-parity corre-
lations set by absence of T+) and k = 19 Majoranas (cross-
parity correlations set by T 2

+ = −1). The dashed lines show
plateau estimates based on random eigenstates subject only
to symmetry constraints—the same estimates hold for the
plateaus in Hamiltonian SYK evolution [27].

shows that Cab(m) corresponds to the ancilla averages

ReCab(m) = i〈Ψ|γ2k̄γ2j̄−1|Ψ〉 (11a)

ImCab(m) = i〈Ψ|γ2j̄γ2k̄|Ψ〉. (11b)

The same result also holds for any generic state |Ω〉 in
Eq. (10), so long as iγ2j̄−1γ2j̄ = 1.

The behavior of Cab shows that the Floquet operator
Fn captures key symmetry-related features of Hamilto-
nian SYK dynamics. In Fig. 3, we show the numeri-
cally evaluated ReCaa(m) averaged over a large ensem-
ble of couplings Jj,i, and averaged over all operators Υa

with fixed qa. As in Hamiltonian SYK dynamics, we
find a ramp and plateau at long times with specific k-
dependent features: The ramp connects either smoothly
(when T 2

+ = +1), with a sharp corner (in absence of T+),
or with a kink (T 2

+ = −1) to a plateau, which reflects
the cross-parity level spacing statistics [4, 27, 67]. The
plateau itself reflects the presence and square of T− [27];
it toggles between zero and nonzero values with qa and k,
with the latter arising only when (ΥaT−)2 = 1 [27]. Since
T±ΥaT

−1
± = (−1)qa(qa−1)/2Υa, the square (ΥaT−)2 =

(−1)naT 2
− with 2na = qa−1. The operator Fn even cap-

tures quantitative features: the nonzero plateau values
match excellently those found for Hamiltonian SYK dy-
namics [27]. These signatures, arising already for n & 10
when k = 18, 19, also show that generating SYK-like
chaos needs far fewer four-body gates than the number
of interaction terms in the SYK Hamiltonian. (We ex-
pect n ∼ log3 k to suffice when the standard deviation
σJj,i ≥ 2π [68].)
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The operator Λ(Υaγ2k̄) also enables us to measure the
(unregularized [69]) OTOC with respect to any state |Ω〉
(so long as iγ2j̄−1γ2j̄ = 1),

Fab(m) = 〈Ω|Υa(m)Υb(0)Υa(m)Υb(0)|Ω〉, (12)

where Υa(m) = (F†n)mΥaFmn . Measuring Fab(m) re-
quires backward time evolution. Crucially, in our ap-
proach this is possible without reversing the energy split-
tings (i.e., without sending Jj,i → −Jj,i). Instead, we
backward evolve via the double braid R2

ii′ = γiγi′ : this
sends [70]

R2
ii′γi(R

†
ii′)

2 = −γi, R2
ii′γi′(R

†
ii′)

2 = −γi′ , (13)

but leaves all other Majoranas invariant. Due to

R2
πj(4i),πj(4i+1)fj,ifj,i+1(R†πj(4i),πj(4i+1))

2 = f†j,if
†
j,i+1,

(14)
this double braid effectively reverses time. To reverse the
whole system’s time evolution, we apply double braids to
all pairs of islands [71], giving

DjfjD
†
j = f†j , Dj =

bk/8c∏
i=1

R2
πj(8i−4),πj(8i−3). (15)

The operator

F†n = D1f1D
†
1D2f2D

†
2 . . . DnfnD

†
n . . . D2f2D

†
2D1f1D

†
1

(16)
generates the evolution reverse to Fn.

To evaluate the OTOC, we prepare the state

|Ψ〉 = Λ(Υbγ2k̄)(F†n)mΥaγ2k̄Fmn Wb,2j̄ |Ω〉, (17)

as shown in Fig. 2(b). Apart from the ingredients for
Eq. (4), this requires only the application of Υaγ2k̄, which
is the square of a π/4 exponential, hence also imple-
mentable by braids and nondestructive parity measure-
ments. Using this state, the real and imaginary part of
the OTOC can be measured using

ReFab(m) = i〈Ψ|γ2j̄−1γ2k̄|Ψ〉, (18a)

ImFab(m) = i〈Ψ|γ2k̄γ2j̄ |Ψ〉. (18b)

A key aspect of SYK dynamics are holographic features
in thermal OTOCs. To study such OTOCs in our dynam-
ical model, we must infuse thermal physics into our Flo-
quet system. To this end, we focus on Fn with |θµ| < π/2
for all µ; in this case we can interpret θµ = τεµ as an en-
ergy εµ times the Floquet period τ and define a thermal
ensemble. Upon invoking the eigenstate thermalization
hypothesis [72–74] for this ensemble, one can probe ther-
mal features by using suitable (approximate) eigenstates
of Fn for |Ω〉. Such eigenstates can be prepared using
a variant of quantum phase estimation [53, 75], while

FIG. 4. Numerically evaluated single-Majorana OTOC F =∑
i 6=i′ ReFii′/(k(k − 1)) averaged over up to 211 realizations

of box-distributed Jj,i ∈ [−0.01, 0.01]. The number k of Ma-
joranas is shown by the colors. All curves are for n = 35;
the OTOCs do not appreciably change upon increasing n fur-
ther. Solid (dashed) lines show βJeff = 3 (βJeff = 20); the
statistical error bars are smaller than the line width.

matching the corresponding θµ to β/τ (with inverse tem-
perature β) can be done via analytical results on the SYK
density of states [76] (which also describe the distribution
of θµ to a good approximation).

In Fig. 4, we show OTOC numerics based on this
matching procedure. We focus on short times, take
Υa,b → γi,i′ , and show results for βJeff = 3, 20. Here
Jeff is the coupling strength of a (fictitious) SYK Hamil-
tonian, τJeff = σθ

√
4k2(k − 4)!/(k − 1)! [26, 76], where

σ2
θ = (4n − 3)bk/4cσ2

Jj,i
+ O(σ4

Jj,i
) for σJj,i � 2π [77].

(We keep σ2
θ � π so that a link to thermal physics is

possible; a comparison to Ref. 78 suggests that this re-
mains consistent with chaos even for k � 1 and for n
increasing with k to reach convergence.) The spacing be-
tween OTOCs for different system sizes increases with
β for k ≥ 20, suggesting a Lyapunov exponent decreas-
ing with lowering temperature [79]. Both this, and the
faster (slower) decay for larger β when k < 20 (k > 20)
resemble closely the OTOCs in the SYK model [1–5, 79].

In this work, we introduced Floquet quantum cir-
cuits for generating quantum chaotic dynamics akin to
the SYK model. Our circuits capture key dynami-
cal SYK features, as we have demonstrated via ramps
and plateaus in q-body correlations Cab and via low-
temperature OTOCs. While we focused on four-body cir-
cuits, our model directly generalizes to one with b-body
gates; there, owing to the same symmetries, we expect
analogous features to arise whenever b mod 4 = 0.

We have also suggested an analog-digital hybrid imple-
mentation for our model and the measurement of Cab and
the OTOCs. The digital components are braiding and
state preparation, the analog components are the gates
fj,i for evolving Majorana quartets. This hybrid ap-
proach consists only of well-known Majorana operations
and combines the best of the analog and digital worlds:
its digital parts enjoy topological protection, while its
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analog gates appear where digital execution would incur
considerable overhead (e.g., due to magic state distilla-
tion and gate synthesis [43, 62, 63]). Beyond these, a
native fermionic implementation (instead of qubit-based
bosonic simulation) of a fermionic model has further ad-
vantages due to the matching locality properties of sim-
ulation and model ingredients [42, 43].

Our SYK quantum circuits suggest several further di-
rections, including studying local forms of the model
or effects leading to nonunitary SYK quantum circuits.
Such nonunitary circuits should not only have analog-
digital hybrid implementations, but may also arise natu-
rally from perturbations to unitary SYK circuits, which
makes exploring their physics especially interesting.

This work was supported by the ERC Starting
Grant No. 678795 TopInSy and the EPSRC grant
EP/S019324/1.
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