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Abstract: Twisting two adjacent layers of van der Waals materials with respect to each other
can lead to flat two-dimensional electronic bands which enables a wealth of physical phenomena.
Here, we generalize this concept of so-called moiré flat bands to engineer flat bands in all three
spatial dimensions controlled by the twist angle. The basic concept is to stack the material such
that the large spatial moiré interference patterns are spatially shifted from one twisted layer to
the next. We exemplify the general concept by considering graphitic systems, boron nitride and
WSe2, but the approach is applicable to any two-dimensional van der Waals material. For hexagonal
boron nitride we develop an ab-initio fitted tight binding model that captures the corresponding
three dimensional low-energy electronic structure. We outline that interesting three dimensional
correlated phases of matter can be induced and controlled following this route, including quantum
magnets and unconventional superconducting states.
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I. INTRODUCTION

In the past few years twisting adjacent layers of van der
Waals materials has emerged as a versatile route to con-
trol the ratio between kinetic, potential and vibrational
energy of two-dimensional systems. Central to the idea
of twistronics, the selective suppression of kinetic energy
scales permits tuning materials into a regime dominated
by electronic interactions, as well as precise control over
electronic filling via gating [1, 2]. Early experimental and
theoretical studies concentrated on graphetic systems of
different kinds, such as twisted bilayer graphene [3–7],
twisted double bilayer graphene [8–12], trilayer rhom-
bohedral graphene on hexagonal boron nitride [13, 14]
and twisted mono-bilayer graphene [15, 16]. More re-
cently, twisted transition metal dichalcogenides (TMD)
moved into the center of attention as another impor-
tant class of van der Waals materials, such as WSe2
[17–19], MoS2 [20–22], and TMD heterostructures [23–
26], allowing access to new regimes, beyond graphitic
systems. With more of these phenomena within exper-
imental reach twisted van der Waals materials are in-
creasingly viewed as potential avenues towards solid-state
based platforms of quantum control and quantum mate-
rials with properties on demand [2, 27]. Furthermore,
the twist angle allows to control those systems to such
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a high degree that moiré aided metrology outperforms
the current gold standard regarding structural questions
in van der Waals materials [28]. One important ques-
tion guiding theoretical and experimental research efforts
concerns the exploration of the tremendous combinatoric
space of chemical compositions of van der Waals mate-
rials to shed light onto the basic question of which ad-
ditional phenomena might be accessible using twistron-
ics. In the quickly expanding cosmos of twisted van der
Waals materials, one guiding principle remains the con-
trol of the low-energy degrees of freedom, which might
realize prototypical models of condensed matter research
in a more rigid, clean and penetrable context [2]. In
this spirit, and in addition to the directions already out-
lined above, twisted hexagonal boron nitride was shown
to harbor entire families of flat bands [29, 30] and twisted
two-dimensional magnets, such as CrI3, were identified to
realize moiré skyrmion lattices and noncollinear twisted
magnetic phases [31, 32]. Beyond realizing different
phenomena in two-dimensions using twist as a control
paradigm one might ask whether entirely different dimen-
sionalities can (effectively) be addressed. Twisted two di-
mensional monolayers of monochalcogenides (e.g. GeSe)
were shown to allow access to the one-dimensional limit
with twist [33, 34] providing the same unprecedented
level of control as in the two-dimensional counterparts.

However, a practical generalization of twistronics to
three dimensions with suppressed kinetic energy scales
remains an outstanding challenge (aside from the pos-
sibility of adding further synthetic dimensions [35, 36]).
Here, we address this by showing that stacking van der
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Waals materials in a predefined fashion allows to engineer
three dimensional moiré flat bands. With this advance
the realization of three dimensional systems controlled
by twistronics is no longer elusive, completing the list of
systems controlled by twistronics in one, two, and now
three dimensions. Our idea works generically and relies
mainly on basic geometric arguments. Importantly, it is
achievable within recent experimental advances to fabri-
cate bulk-like artificial twisted materials [37–39] and can
be applied to any of the many van der Waals materials,
which we will exemplify here for three important ma-
terials: graphitic systems, WSe2 and hexagonal boron
nitride. The last of these will be examined in more de-
tails and we provide a full ab initio characterization for
its three dimensional twist-dependent band structures.
We then consider the effects of correlations on the low-
energy bands and find three dimensional magnetic and
superconducting states which can be realized as a func-
tion of twist angle.

II. STACKING APPROACHES

The general idea is shown in Fig. 1 (a) relying on suc-
cessively stacking up lattice sites defined by the moiré
potential. In panel (b) we define the Brillouin zone, the
in-plane and out-of-plane directions k⊥ and k‖ as well
as a cartoon of the corresponding band widths used in
the following discussion. We are looking for ideal 3D
flat bands that satisfy the following conditions: (1) the
band width is controllable by twist angles at all three
dimensions; (2) the system is periodic along all three
dimensions such that it remains a well-defined crystal.
Therefore, our work is distinct from previous works that
study intrinsic 3D flat bands in some solids [40–42] with
a fixed band width and little tunability. Our approach
also is distinctly different to proposals such as the 3D
chiral twisted structure [43, 44] that render the system a
quasicrystal. To this end we start by considering three
different stacking patterns illustrated in Fig. 1 (c-e).

Firstly, we consider stacking monolayers of van der
Waals materials in an alternating fashion as depicted
in panel (c) of Fig. 1, meaning that every second layer
is aligned perfectly while adjacent layers have a rela-
tive twist angle between them. This can be regarded
as stacking twisted bilayers repeatedly. Following this
route moiré patterns form by the interference between
adjacent layers. This type of stacking has been inten-
sively investigated for the study of two dimensional flat
bands in twisted trilayer and multilayer graphene [45, 46].
Viewed top-down, the moiré lattice sites where in-plane
charge density localizes, align on top of each other. As
a consequence, the electronic bands become flat within
the plane; just as is the case for two twisted sheets of van
der Waals materials. Conversely, the alignment of moiré
regions along the out-of-plane direction retains substan-
tial band dispersion in this direction due to significant
amount of hybridization between moiré sites at adjacent

layers (see Fig. S1 in the SI for an example of 3D twisted
boron nitride with such stacking). While this allows to
effectively engineer quasi-one-dimensional systems with
very low residual coupling along the remaining two spa-
tial directions – an interesting opportunity of materials
engineering in its own rights (for a similar quasi-one-
dimensional system it was shown that in-plane confine-
ment albeit imposed by an magnetic field gives rise to a
3D quantum Hall effect [47])– it does not allow to realize
three dimensional moiré flat bands.

Secondly, one might consider the case in which twisted
van der Waals materials with flat bands in their two spa-
tial directions are stacked on top of each other with an
insulating buffer layer in between as shown in panel (d)
of Fig. 1. The properties and thickness of the buffer-layer
could then be adjusted such that the hopping from one
twisted sheet of van der Waals materials to the next sheet
is suppressed substantially. This would lead to flat elec-
tronic bands in all three spatial dimensions. However,
such an approach has multiple problems. First, the flat-
ness of the bands in the out-of-plane direction is mainly
determined by the residual coupling between neighbor-
ing moiré charge localization sites across the insulating
layers. This limits available band structures that can
be engineered quite substantially compared to the flex-
ible control that twist angle offers with respect to the
remaining two directions. Second, with a buffer layer,
there is no guarantee to keep the moiré sites across the
buffer layer well aligned, i.e., the centers of the moiré sites
of neighboring twisted pairs can relocate to different in-
plane positions when stacking up. This could introduce
significant amount of disorder along the out-of-plane di-
rection such that the system is no longer a well-defined
crystal.

To remedy the shortcomings of the previous two stack-
ing approaches, thirdly, we present an idea using a stack-
ing sequence in which the moiré charge localization sites
simply due to geometric considerations do not form atop
of each other, but are shifted with respect to the out-
of-plane directions of the van der Waals materials used.
Such a configuration can be constructed by expanding
the basic stacking unit, e.g., from a twisted bilayer to
a twisted double bilayer. This is visualized in panel (e)
of Fig. 1. Compared to the first approach, the repeat-
ing unit along the out-of-plane direction is changed from
layers 1,2 in Fig. 1(a) to layers 1-4 in Fig. 1(c). In this
approach, layers 2,3 and layers 4,1 remain at their intrin-
sic Bernal AB stacking or AA’ stacking sequence as in
the pristine bulk material and the twisting takes place
only between layers 1 and 2 as well as 3 and 4 in the
notation of Fig. 1(c). Although the in-plane crystal axis
of layer 2 is aligned with those of layer 3, the atomic po-
sitions of the two layers are translated with respect to
each other (as in intrinsic AB stacking), or flipped (as
in intrinsic AA’ stacking). The same happens for layer 4
and 1. This naturally displaces the moiré charge local-
ization sites in these layers with respect to each other,
which are now separated by the moiré length scale. As
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Figure 1. Stacking ideas to construct 3D flat bands. Panel (a) exemplifies the general idea of stacking up lattice sites
defined by the moiré potential in a successive way to approach the three dimensional limit. Panel (b) shows the Brillouin zone
and defines the out-of plane k⊥ and in-plane k‖ directions (left) as well as a cartoon of the corresponding band widths w⊥
and w‖ along these directions (right). Panels (c)-(e) show three different configurations to create three dimensional materials
out of stacks of two dimensional twisted van der Waals materials. The orange area indicate the moiré lattice sites where the
charge density localized. When these moiré lattice sites align atop of each other (c) the bands become flat in two of the three
directions only. When using spacer layers (d) the band width can be reduced in all three dimensions, but the band width along
the stacking direction cannot be controlled by the twist angle. If moiré lattice sites by geometric reasons (see main text) are
shifted from layer to layer (e), three dimensional flat bands with the flatness in all three dimensions being controlled by the
twist angle emerge.

the twist angle is decreased and the in-plane distance
between moiré sites increases, so does the distance be-
tween sites on adjacent bilayers. Therefore, the idea of
using natural (or intrinsic) bilayer as a stacking unit to
construct alternating patterns, allows to engineer robust
flat bands in all three dimensions, with the flatness being
continuously controlled by the twist. Thus, it satisfy the
condition (1) we set for a ideal flat band system. More-
over, as we will show below, such an approach will also
generate local stacking regions that resemble the stacking
sequence in the pristine bulk crystal, which can act as a
low-energy stabilization center to prevent disorder along
the out-of-plane direction. Therefore, this approach also
meets condition (2) of a nearly ideal robust flat band
crystallographic system.

III. FLAT BANDS AND EFFECTIVE
LOW-ENERGY MODEL

We put this very general idea to the test by first per-
forming ab initio and tight-binding based characteriza-
tions of such stacked materials using bilayers of graphene,
WSe2 as well as hexagonal boron nitride. All of these
materials were successfully studied in the past for the
twisted single bilayer case rendering them ideal start-
ing points to explore the idea we put forward here.
The results are summarized for a twist angle of 1.3◦ for
graphene and 5.08◦ for both WSe2 and boron nitride in
Fig. 2. We show side and top views of the real space
stacking in panels (a)-(c) for graphene, WSe2 and boron
nitride, respectively. The unit cell for these bulk twisted
systems is formed by a twisted double bilayer as high-
lighted by dashed lines in the top row and the solid
brackets in the third row. The bottom panels of (a)-
(c) show the local stacking sequence in the three repre-
sentative regions shown in the middle row panels. The
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Figure 2. 3D Flat bands for different materials, Graphene, WSe2 and boron nitride . Atomic structures of 3D
twisted graphene (a), WSe2 (b), boron nitride (c). The top and the middle panels show the perspective and the top views of
the structures, respectively. The unit cells are indicated with dashed lines. The bottom panels show the local stacking sequence
in the region I, II and III indicated in the middle panels. The repeating units along the out-of-plane direction are indicated
with solid brackets. (d-f) The corresponding band structures for graphene at 1.3 degrees (d), for WSe2 at 5.08 degrees (e), and
for boron nitride at 5.08 degrees (f). For smaller angles the bands become increasingly flat and detach from other bands.

stacking sequence in region I is exactly the same as that
in the intrinsic untwisted bulk crystal (AB stacking as
in graphite, AA’ stacking as in 2H WSe2 and bulk boron
nitride). This region is expected to pin the in-plane align-
ment of the layers and naturally prevent accidental layer
displacements similar to what is discussed for the case of
twisted trilayer graphene [46]. In panels (d)-(f) we show
the respective band structures. Since the angle is not
very small for twisted WSe2 and twisted boron nitride,
the bands still show substantial dispersion and the set

of bands that is flattening, marked in red in Fig. 2, have
not fully separated from other bands yet (a more detailed
study of decreasing the twist angle further is given be-
low).The important feature to note is the width of the
red set of bands, with respect to variations of both the
out-of-plane k⊥ (A → Γ path in the Brillouin zone) and
in-plane k‖ (Γ → K → M → Γ path in the Brillouin
zone) momentum. Both of these band widths in- and
out-of-plane, called W‖ and W⊥ respectively, decrease as
the twist angle approaches smaller values (see below and
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SI). Eventually these bands separate from the rest giving
rise to perfectly isolated flat bands, with comparable ki-
netic energy scales in all three spatial dimensions, whose
magnitude can be tuned by the twist, as demonstrated
next.

We stress that the idea we present here is general and
allows three dimensional flat band engineering also in
other materials even beyond the ones discussed explicitly
above. However, we are going to illustrate the relevance
of this new concept to electronic band engineering tak-
ing the specific case of hBN (see Fig. S2 in the SI for the
case of WSe2). The choice of boron nitride is made for
convenience (and for being widely used as protective 2D
material), as the absence of sharp magic angles, makes
it particularly feasible to large scale numerics providing
a full-fledged ab-initio characterization of the material’s
band structure in three dimensions. As the relaxation
of twisted boron nitride does not significantly alter the
band structure according to the previous work [29], we
fix the atomic structure in the large-scale ab-initio calcu-
lations. Our results are summarized in Fig. 3. In panel
(a) we show top and side views of the charge localiza-
tion within the moiré unit cell and the position of the
B and N atoms. We choose intrinsic AA’ bilayers (as in
pristine bulk hBN) as the building blocks of our three
dimensional structure and therefore there are no ferro-
electric domains as recently reported for twisted bilayer
systems [48, 49]. Generalizing this constitutes an intrigu-
ing avenue of future research. In panel (b) we summa-
rize the ab-initio band structure obtained for different
twist angles. Importantly, as we approach smaller val-
ues of the twist angle, both the in-plane and out-of-plane
band width W‖ and W⊥, which are the same with such
stacking, decrease and the flat bands detach from the
other bands in the spectrum. Strong charge localization
marked by blue and golden spheres in panel (a) high-
light the emergence of a corresponding three dimensional
effective low-energy tight-binding model (see Supplemen-
tary Material S. II for details). The model we obtain for
the case of boron nitride is an in-plane triangular lattice
stacked out of plane, such that the lattice sites of one
plane reside in the center of the triangular lattice of the
next plane.

The success of fitting the flat bands within such a low-
energy tight-binding model including only short ranged
hoppings t1, t2 and t3 on the moiré scale as denoted
in panel (a) is demonstrated in panel (b). By fitting
the three hopping parameters to the full ab-initio band
structure for different angles, almost perfect agreement
is achieved (consistent with the earlier study of a sin-
gle twisted hBN bilayer [29]). The smaller panels left to
panel (b) show the extracted values of the hopping as
well as the overall bandwidth (in this case W⊥ = W‖),
demonstrating the success of three dimensional flat band
engineering by the twist proposed here. In particular, the
hopping parameters t1..3 of the low-energy model prove
that our initial claim of full twist angle control holds
in the case of twisted hBN: the interlayer hopping t3 is

nearly independent of the twist angle (small deviations
occur for larger twist angles due to mixing of low-energy
and valence bands, Fig. 3b), whereas the in-plane hop-
ping t2 and the mixed inter-/intralayer term t1 decrease
continuously. Such an effective low-energy model is im-
mensely useful as it can be treated much more efficiently.
As a direction of future research one should, building on
the above results, set up a continuum theory to further
analyze the emergence of three dimensional flat bands.

IV. CORRELATED PHASES OF MATTER

We employ the effective low-energy tight-binding
model to outline a putative unexplored phase dia-
gram that could be accessible via the three dimensional
twistronics approach. To this end, we consider a local
Hubbard interaction U added to the effective flat band
model for θ = 3.15◦ as discussed above. We note that
a more realistic model should include longer ranged in-
teractions as well, which should be characterized from
first principles. Such a study is unfortunately beyond the
scope of the present work and most likely requires a fun-
damental methodological advance to treat the huge three
dimensional unit cell (containing many tens of thousands
of atoms at small twist angles). Here, however, we pro-
vide the first step along a characterization of elusive and
exciting correlation effects and aim to identify interest-
ing states of matter already present at the level of a
Hubbard interaction. To achieve this we first perform
a random phase approximation (RPA) study of the sys-
tem (see Supplementary material S. III) and identify a
plethora of magnetic instabilities. A putative magnetic
phase diagram is summarized in panel (a) of Fig. 4. As
expected we find ferromagnetic (FM) ordering tendencies
as the flat bands are either filled or empty, albeit with a
rather large critical Ucrit driving the transition. Due to
the bipartiteness of the lattice (sublattice A and B be-
ing charge localization sites marked by blue and golden
spheres in Fig. 3(a)) we find antiferromagnetic (AFM)
ordering at half filling. In between these two phases a
more general spin density wave with filling dependent
ordering vector q emerges. q is illustrated in panel (b)
of Fig. 4, while panel (c) illustrates the magnetic order-
ing in real space for four different examples depending
on the filling: FM, AFM or a spin density wave with a
wave vector lying either in the in-plane (q‖) or out-of-
plane (q⊥) direction. We note that the ordering vectors
in general do not align with the crystal axes and there-
fore, although the underlying mechanisms that determine
ordered states (such as Fermi surface nesting or van Hove
singularities) are analogous to the two-dimensional case,
the phases we find here cannot be described in terms of
quasi two-dimensional planes.

For interaction values U < Ucrit there is no magnetic
ordering and the system is paramagnetic. In this regime,
spin and charge fluctuations may provide an effective
pairing glue between the electrons leading to the for-
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Figure 3. Low-energy model of three dimensional twisted boron nitride (thBN). (a) Stacking pattern and moiré
unit cell of thBN for θ = 5.08◦. Emerging charge accumulation points (olive green) form an effective lattice that resembles
AA-stacked hexagonal multilayers, where one site is shifted by D/2 in z-direction (blue and gold spheres). (b) Results from our
ab initio fitted tight-binding (TB) approach (see Supplementary Material S. II for details) for different twist angles θ, taking
up to next-nearest neighbor inter- and intralayer hopping terms t1,..,t3 into account. The band width decreases continuously
with the twist angle and, eventually, the low-energy bands detach from the rest of the spectrum.

mation of Cooper pairs. To pin down the pairing in-
stability mediated by spin and charge fluctuations, we
take the RPA corrected interaction vertex in the fluctua-
tion exchange approximation (see Supplementary Mate-
rial S. III) and linearize the superconducting gap equa-
tion around the critical temperature Tc for slight electron
doping µ = µ0 +5 meV around half filling of the three di-
mensional flat bands µ0 = 2.546 eV. In this scenario, only
scattering events between Cooper pairs in the vicinity of
the Fermi surface sheets Cα,β , Fig. 4 (d), contribute no-
tably to the formation of a superconducting state with
order parameter ∆µ

k. The fact that (i) the Fermi sur-
face sheets Cα are (almost) perfectly connected by the
nesting vector Qα at which particle-particle scattering is
strongest and (ii) the effective pairing glue contained in
the spin-singlet channel is purely repulsive for all scat-
tering events, electron-electron pairing is conditioned on
a relative sign change between the pairing form factors
µ connected by the vector Qα i.e. ∆µ

k = −∆µ
k+Qα

. The
linearized gap equation may be written as an eigenvalue
problem where the eigenfunctions ∆µ

k corresponding to
the largest eigenvalue λ yield the symmetry of the most

prominent superconducting state, Fig. 4 (e). Our cal-
culations reveal that the leading gap parameter is of
spin-singlet type and is two-fold degenerate with sym-
metry classification (dxz, dyz). The two d-wave solutions
are characterized by a nodal line along the kx- and ky-
direction of the Brillouin zone and thus the system will
minimize its Ginzburg-Landau free energy F below Tc
by assuming the chiral linear combination (dxz ± idyz)
(see Supplementary Material S. III) which breaks time-
reversal symmetry.

In conclusion our work generalizes the idea of two di-
mensional twistronics to the three dimensional realm.
The main notion relies on cleverly stacking adjacent lay-
ers in such a way that the hopping between adjacent
charge puddles in all three dimensions gets successively
suppressed as the twist angle is lowered. We argue that
the proposed stacking method is robust towards small
twist angle imperfections and inhomogeneities which
might vary within one plane or between adjacent layers.
Even more so, since our construction relies purely on ge-
ometric arguments even in the presence of imperfections
these would simply reflect in slightly inhomogeneous hop-
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Figure 4. Correlated phases in three dimensional twisted hexagonal boron nitride for twist angle θ = 3.15◦.
(a-c) The RPA analysis reveals a variety of magnetic states including antiferromagnetic order (AFM) at charge neutrality,
ferromagnetic order (FM) for strong electron/hole doping as well as general spin-density waves q-SDW with periodic patterns
in all three spatial dimensions. (d) For µ = µ0 + 5meV the Fermi surface of thBN is almost perfectly nested along the
vector Qα resulting in a strong enhancement of particle-particle scattering between these sheets. In particular, the preferred
superconducting gap symmetry (e) is two-fold degenerate and of type (dxz, dyz). Below Tc, the system will minimize its
Ginzburg-Landau free energy by assuming the chiral linear combination (dxz ± idyz) and thus the gap parameter breaks
time-reversal symmetry.

pings, like they are present in any (not perfectly clean)
crystal and which do not change the overall physics sig-
nificantly. On the contrary, controlled variations of the
twist angle might allow to control the effective disorder
and therefore provide a long sought after inroad into tun-
able strongly disordered systems, from a condensed mat-
ter perspective. With this we add the three dimensional
realm to the list of low-energy models that can effec-
tively be realized in moiré structures. As a side product
we also provide an alternative of engineering effectively
quasi-one-dimensional structures, by placing the moiré
sites on top of each other (first scenario in Fig. 1). This
is not at the center of attention in this work but allows to
access similar physics as discussed in the context of the
quantum Hall effect in Ref. [47]. We already reported
on the rich behavior of correlation driven phases in engi-
neered three dimensional flat bands above, but another
intriguing avenue of future research should also address
the question of three dimensional flat band engineering
for purposes of controlling topological properties. This
provides a very rich playground that directly opens up
by our approach and the future will tell which topolog-

ical phenomena, such as Weyl physics, and correlated
phases beyond the ones discussed here might be tunable
by three dimensional twistronics.
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S I. COMPUTATIONAL DETAILS FOR 3D TWISTED GRAPHENE, WSE2 AND

BORON NITRIDE

For the calculations of 3D twisted graphene, we construct the unit cell with a twisted

double bilayer graphene at twist angles close to 0 degree, and impose periodic boundary

condition along all three dimensions. As it is not realistic to optimize such a large system

with density functional theory (DFT) calculations, we fix the lattice constant along the

out-of-plane direction to be 13.415 Å, and set the in-plane lattice constant according to

the twist angles such that it corresponds to 2.46 Å for a 1x1 cell. The atomic structure

is relaxed using the LAMMPS code [1] with the same parameters as described in [2]. The

intralayer interactions within each graphene layer are modeled via the second-generation

reactive empirical bondorder (REBO) potential [3]. The interlayer interactions are modeled

via the Kolmogorov-Crespi (KC) potential [4], using the recent parametrization of [5]. The

relaxation is performed using the fast inertial relaxation engine (FIRE) algorithm [6].

We calculate the band structures for 3D twisted graphene using the tight-binding

parametrization proposed in Ref. [7]

H0 =
∑

i,j

t(ri − rj)c
†
icj. (1)

Here, the operator c(†)i annihilates (creates) an electron in the pz orbital of the carbon atom

at site ri. The pz electrons are coupled via Slater-Koster hopping parameters tij = t(ri− rj)

t(d) = t‖(d) + t⊥(d)

=
(
1− n2

)
γppπ exp

[
λ2

(
1− |d|

c

)]
+ n2γppσ exp

[
λ1

(
1− |d|

a

)]
.

(2)

Due to the internal twist between adjacent graphene sheets, a sufficient description of the

interlayer hopping must include contributions from ppπ bonds γppπ = −2.8 eV as well as

from ppσ bonds γppπ = 0.48 eV [7]. To this end, the factor n = d·êz
|d| captures the out-of plane

component of the electron transfer integral. Furthermore, ez is a unit vector which points

perpendicular to the graphene sheets, c = 3.364 Å is the interlayer spacing of graphite,

a = 1.42 Å is the distance between neighboring carbon atoms and λ1 = 3.15 and λ2 = 7.462

describe the exponential cutoff of the electron hopping.
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Figure S 1. Band structures of 3D twisted boron nitride with type I stacking at 5.08 degrees (a)
and 3.89 degrees (b). The band width of the top valence band along the in-plane at kz=0 decreases
with twist angles, while the band width along the out-of-plane direction remains highly dispersive.

For the calculations of 3D twisted WSe2 and boron nitride, we perform first principles

calculations based on DFT as implemented in the Vienna Ab initio Simulation Package

(VASP) [8] following similar methods used in previous works [9, 10]. Plane-wave basis sets

are employed with an energy cutoff of 550 eV for WSe2 and 400 eV for boron nitride. The

projector augmented wave method (PAW) [11] is used to construct the pseudopotentials felt

by the valence electrons. For the calculations of 3D twisted WSe2, the exchange-correlation

functionals are treated within the generalized gradient approximation (GGA) [12]. All the

atoms are relaxed until the force on each atom is less than 0.01 eV/Å. Van der Waals interac-

tions are included using the method of Tkatchenko and Scheffler [13] during the relaxation.

For the calculations of 3D twisted boron nitride, the exchange-correlation functionals are

treated within the local density approximation (LDA). As shown in the previous work [10],

the flat bands near the top of the valence band of twisted boron nitride do not change much

upon relaxation. Therefore, as the calculations for 3D twisted boron with twist angles down

to 2.28 degree are very heavy, we perform these large scale calculations for 3D twisted boron

nitride without relaxation.

S II. LOW-ENERGY TIGHT-BINDING MODEL FOR TWISTED BORON NI-

TRIDE

The low-energy physics of twisted hBN (thBN) is captured by an effective three-

dimensional tight-binding (TB) model that includes hopping terms between emerging charge

3



Figure S 2. Band structures of 3D twisted WSe2 with type III stacking at 5.08 degrees (a) and
3.89 degrees (b). The band width along both the in-plane and the out-of-plane directions decreases
with twist angles.

localization points at Q1 = (1
3
, 1
3
, 1
2
) and Q2 = (2

3
, 2
3
, 0) in the moiré unit cell. The coordi-

nates are given with respect to the in-plane (‖) and out-of plane (⊥) Bravais lattice vectors

L‖1 = (L, 0, 0), L‖2 = R(π/3)L1 and L⊥3 = (0, 0, D). The lattice constant D is fixed, while L

is twist-angle dependent and it describes the spatial extent of the moiré pattern, see table

1.

The effective structure defined by the charge accumulation points resembles AA-stacked

graphene multilayers, where one of the two inequivalent sites, i.e. Q1, is shifted by D/2 in

z-direction. Hence, in each of the two "effective" planes with z-coordinate 0 and D/2 , the

charge puddles form a triangular lattice with lattice constant L.

The simplest SU(2) symmetric TB model that can be constructed for this configuration is

a single-orbital two-band model that takes up to next-nearest neighbor intra- and interlayer

hopping terms between the charge puddles into account

H0 = t1
∑

〈i,j〉
c†icj + t2

∑

〈i,j〉‖

c†icj + t3
∑

〈i,j〉⊥

c†icj. (3)

Here, t1 denotes the hopping amplitude between neighboring Q1- and Q2-sites , whereas t2

and t3 denote hopping processes between two Q1 (Q2) sites in either the same or different

layers. The hopping parameters are determined by fitting the energy eigenvalues of H0 to

the flat bands of the ab-initio band structure of thBN. The single-particle spectrum for the

4



periodic system is then modeled by the following Bloch Hamiltonian

H0 =
∑

k

hk =
∑

k


h0(k) h1(k)

h∗1(k) h0(k)


 , (4)

which is labeled in the order of the two charge localization points Q1,Q2. The matrix

elements are obtained by a Fourier transform of the real-space hopping matrix Eq. (3) to

(Bloch) momentum space

h0(k) = 2t2 [cos(k · (L1 − L2)) + cos(k · L1) + cos(k · L2)] + 2t3cos(k · L3),

h1(k) = t1
[
1 + e−ik·L1 + e−ik·L2

] [
1 + e−ik·L3

]
.

(5)

The matrix hk can then be diagonalized in orbital space for each momentum k to obtain

the bandstructure εb(k) and orbital-to-band transformation ubr(k), b = 1..N :

H0 =
∑

k,b

εb(k)γ†k,bγk,b with γk,b = ubr(k)ck,r. (6)

twist angle
θ

Hopping parameters
(meV)

Lattice constants
(Å)

t1 t2 t3 L D

5.08◦ 14.59 -4.35 0.00 28.31 12.92
3.89◦ 8.16 -1.56 2.08 37.00 12.92
3.15◦ 5.29 -1.17 1.72 45.70 12.92
2.64◦ 3.18 -0.68 2.04 63.10 12.92

Table 1. Hopping parameters of the effective SU(2)-symmetric tight-binding model for different
twist angles θ according to Fig. 3 in the main text. The structure constants D and L (see Fig. ??(a))
describe the spatial extent of the moiré cell in in-plane and out-of-plane direction, respectively.
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S III. FLUCTUATION EXCHANGE APPROXIMATION IN MULTI-ORBITAL

SYSTEMS

A. 3D multi-orbital susceptibility

We define the free Matsubara Green’s function in orbital-momentum (frequency) space

as

gr,r′(iω,k) = (iω − (H0(k))r,r′)
−1 =

∑

b

ubr(k)gb(iω,k)ub∗r′ (k) =
r r′

(b,k)
(7)

where ubr are the orbital-to-band transformations that render the unperturbed Hamiltonian

H0 and the free Green’s function gb(iω,k) = (iω − eb(k))−1 diagonal. The orbital indices

r = {Q1,Q2} are restricted to the same unit cell and the momenta k lie in the first Brillouin

zone. To this end, we define the free polarization function χ̂0(q) = χ0r,r′ (q) as

χ0r,r′ (q) = χ0r,r′ (q, iω) =
1

Nβ

∑

k,ω′
gr,r′(iω

′,k)gr′,r (i(ω′ + ω) ,k + q). (8)

The Matsubara summation occuring in Eq. (8) can be evaluated analytically giving the

well-known Lindhard function for multi-orbital systems

χ0r,r′ (q, iω) =
1

N

∑

k,b,b′

nF (εb′(k))− nF (εb(k + q))

iω + εb′(k)− εb(k + q)
ub
′

r (k)ub
′∗

r′ (k)ub∗r (k + q)ubr′(k + q), (9)

where nF (ε) = (1 + eβε)−1 is the Fermi function.

B. Random-phase approximation for multi-orbital systems

To study correlated states of matter in thBN that arise due to the presence of electron-

electron interaction, we employ a repulsive Hubbard term for electrons with opposite spin

σ ∈ {−1, 1} with σ = −σ residing on site r in moiré supercell R

V =
1

2

∑

R,ri,σ

UnR,ri,σnR,ri,σ =
1

2N

∑

k,k′,q

∑

r,σ

Uc
†r
k,σc

†r
k′,σc

r
k′−q,σc

r
k+q,σ (10)
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Here, the occupation number operator is defined as nR,ri,σ = c†R,ri,σcR,ri,σ. We calculate

the renormalized interactions within the random-phase approximation (RPA) to analyze

the electronic instabilities mediated by spin-fluctuation exchange between electrons to high

order in the bare coupling U . Admittedly, this approach is biased as it does not capture the

interwind fluctuations in different two-particle scattering channels, which would require the

use of unbiased fRG techniques.

r1, k1, ↓ r2, k2, ↓

r1, k1 + q, ↑ r2, k2 + q, ↑

=

r1, k1, ↓ r1, k2, ↓

r1, k1 + q, ↑ r1, k2 + q, ↑

U +

r k ↓

r k+q ↑

r′

r′

U (11)

The renormalized interaction in RPA approximation Eq. (11) is then given by V̂RPA(q) =

U/[1 + Uχ̂0(q)]. Magnetic instabilities can be classified according to a generalized Stoner

criterion: The effective (RPA) interaction diverges, when the smallest eigenvalue λ0 of

χ̂0(q, iω) reaches −1/U , marking the onset of magnetic order for all interaction strengths

U ≥ Ucrit. = −1/λ0. The corresponding eigenvector v(0)(q, iω) is expected to dominate the

spatial structure of orbital magnetisation.

C. Pairing Symmetry

We may write the general particle-particle scattering vertex between electrons with op-

posite momenta (k1,−k1)→ (k2,−k2) as

V =
1

2N

∑

s,s′

∑

r1,...,r4

∑

k1,k2

Γr1r2→r3r4
k1,−k1→k2,−k2

c
†r3
k2s
c
†r4
−k2s′c

r2
−k1s′c

r1
k1s

=

r2,−k1, s′ r4,−k2, s′

r1, k1, s r3, k2, s

Γr1r2→r3r4
k1,−k1→k2,−k2

(12)

For interaction values U < Ucrit the magnetic instabilities prescribed by the RPA analysis

might not be strong enough to actually occur. In this paramagnetic regime, spin and charge

fluctuations contained in the transverse and longitudinal spin channel can give rise to an

effective interaction between electrons that may lead to the formation of Cooper pairs. The

7



diagrams can be separated into spin-singlet and spin-triplet contributions, depending on

whether pairing same/opposite spins, i.e. s 6= s′ (singlet) or s = s′ (triplet). In general, we

may separate the dependence of the gap parameter on momentum, spatial and spin degrees

of freedom

∆ r1r2
ks1s2 = f(k, r1, r2)χ(s1, s2). (13)

Since for spin singlet gaps the spin function χ(s1, s2) is antisymmetric under exchange

of indices, i.e. χ(s1, s2) = −χ(s2, s1), the spatial and momentum dependence must be

symmetric in order to fulfill the Pauli principle. For spin triplet gaps we hence require

f(k, r1, r2) = −f(−k, r2, r1). Since the system is assumed to be paramagnetic, pairing

same/opposite spins yields the same result after explicitly symmetrizing/anti-symmetrizing

the interaction vertex in orbital-momentum space.

Restricting the pairing to Kramer’s degenerate pairs (k1, ↑) and (−k1, ↓), the particle-

particle scattering vertex in FLEX approximation is given by transverse (t) and longitudinal

(l) spin fluctuations. For simplicity, we will use the abbreviation Γr1r2→r3r4
k1,−k1→k2,−k2

= Γr1,r2
k1,k2

in

the following. The diagrams contributing to these spin channels are shown below.

The effective spin-mediated interaction in the opposite spin channel thus becomes

Γr1r2→r3r4
k1,−k1→k2,−k2

= δr1,r3δr2,r4

[
Û +

U3χ̂2
0(ql)

1− U2χ̂2
0(ql)

]
+ δr1,r4δr2,r3

[
− U2χ̂0(qt)

1 + Uχ̂0(qt)

]
(14)

The spin-dependence of the susceptibilities occuring in the diagrammatic expansion above

can be neglected due to the emergent SU(2) symmetry in the paramagnetic phase. To

obtain the effective interaction in the singlet (s) and triplet (t) channel, we symmetrize/anti-

symmetrize the interaction vertex, i.e.

Γs/t =
1

2

r2,−k1, s′ r4,−k2, s′

r1, k1, s r3, k2, s

+ σ

r2,−k1, s′ r3, k2, s

r1, k1, s r4,−k2, s′

(15)

D. Linearized Gap Equation

Assuming that spin- and charge fluctuation provide the superconducting glue in the

system, we confine our considerations to the vicinity of the Fermi surface and only treat
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r2,−k1, ↓ r1,−k2, ↓

r1, k1 + q, ↑ r2, k2 + q, ↑

=Γt
r1,r2
2k1,k2

r1 k

r1k + qt

r2

r2

U U +

k k′

k+qtk′+qt

U U U + ...

(a) Diagrams contributing to the transverse spin-fluctuation mediated pairing interaction Γtr1,r2
2k1,k2

. The
momentum transfer occurring in the polarization function in RPA is given by qt = k1+k2 due to momentum

conservation.

r2,−k1, ↓ r2,−k2, ↓

r1, k1 + q, ↑ r1, k2 + q, ↑

=Γl
r1,r2
2k1,k2

r2,−k1, ↓ r2,−k2, ↓

r1, k1 + q, ↑ r1, k2 + q, ↑

U +

r2,−k1, ↓ r2,−k2, ↓

r1, k1 + q, ↑ r1, k2 + q, ↑
k+ql↓

k↓

rr1
k′+ql↑

k′↑
r2r

+ ...

(b) Diagrams contributing to the longitudinal spin-fluctuation mediated pairing interaction Γlr1,r2
2k1,k2

. The
momentum transfer occurring in the polarization function in RPA is given by ql = k1 − k2 due to momentum
conservation. Only an even number of particle-hole bubbles is allowed in the diagrammatic expansion in order
to preserve the spin in the upper and lower leg of the pairing interaction. The diagrams that are resummed
in the longitudinal channel are connected to the particle-hole susceptibility describing screening effects of the

bare Coulomb interaction.

scattering processes of a Cooper pair from state (k,−k) on fermi surface Cb to the state

(k′,−k′) on fermi surface Cb′ . To this end, we project the pairing vertex Eq. (14) from

orbital to band space and only take intra-band scattering into account

Γbb
′

s/t(k,k
′) = Re

[ ∑

r1,r2,r3,r4

Γs/tub
∗

r1(k)ub
∗

r2(−k)ub
′

r3(k
′)ub

′
r4(−k′)

]
. (16)

The momenta k and k′ are restricted to the various fermi surface sheets {C}, such that

k ∈ Cb and k′ ∈ Cb′ with b and b′ being the band indices of the fermi sheets. Neglecting the

frequency dependence of Γ, we can proceed further by considering only the real part of the

pairing interaction. We then solve the linearized gap equation in order to obtain strength

and pairing symmetry of the superconducting order parameter, which takes the form of a
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generalized eigenvalue problem

− 1

VBZ

∑

b′

˛

FSb′

Γbb
′

s/t(k,k
′)

vb
′
F (k′)

∆b′(k′) = λ∆b(k). (17)

Here, vbF (k) = |∇εb(k)| is the Fermi velocity at k′ in band b. The largest eigenvalue λ > 0

for a given interaction kernel Γbb
′

s/t(k,k
′), will lead to the highest transition temperature

Tc and the corresponding eigenfunction ∆b(k) determines the symmetry of the gap. The

effective lattice model obtained from the charge accumulation points has point group D3h.

The symmetry of the gap can thus by classified according to the irreducible representations

of D3h that are listed in Table 2.

The linearized gap equation (17) only accounts for the leading pairing symmetry at

the transition temperature Tc of the superconducting phase. In the case of degenerate

eigenvalues (e.g. d-wave instabilities {dxz, dyz}) belonging to a two-dimensional irreducible

representation, an arbitrary linear combination might be favored for T < Tc. In order to find

the linear combination that is preferred by the system below the transition temperature, we

compute the free energy of the system

F = E − TS =
1

N

∑

k,b

[
Eb(k)nF (Eb(k))− |∆b(k)|

Eb(k)
tanh

(
Eb(k)

2T

)]

+
T

N

∑

k,b

[nF (Eb(k)) ln(nF (Eb(k))) + nF (−Eb(k)) ln(nF (−Eb(k)))] .

(18)

Here, Eb(k) is the energy of the Bogoliubov quasi-particles resulting from diagonalization of

the BdG Hamiltonian

HBdG =
∑

k,b

ψ†bk



εb(k)− µ ∆b(k)

∆†b(k) −εb(−k) + µ


ψbk =

∑

k,b

ψ†bk [δb(k) · τ ]ψbk, (19)

where δb(k) = (<[∆b(k)],=[∆b(k)], εb(k) − µ)T and τ are the Pauli matrices. In the ex-

pression of the free energy Eq. (18), we only account for states at the Fermi surface as

contributions from k points far away from the Fermi surface are negligible εb(k)� |∆b(k)|.

At the filling µ ≈ µ0 + 5meV studied in the manuscript, the leading pairing symmetry is

the d-wave which belongs to a two-dimensional irreducible representation. To minimize the
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Figure S 3. Free energy of the linear combination ∆b(k) = sin(θ)dxz(k) + cos(θ)eiφdyz(k) corre-
sponding to the leading pairing symmetry at µ ≈ µ0 +5meV. The system minimizes its free energy
by choosing the linear combination dxz(k)± idyz(k).

free energy of the system we make the ansatz

∆b(k) = sin(θ)dxz(k) + cos(θ)eiφdyz(k), (20)

where the form factors are are given by dxz(k) = sin(kx)sin(kz) and dyz(k) = sin(ky)sin(kz).

The free parameters θ and φ are extracted by minizing the free energy of the system

Eq. (18). In Fig. 3 we show that the linear combination ∆b
k ∝ [dxz(k)± idyz(k)] =

[sin(kx)sin(kz)± isin(ky)sin(kz)] is generally preferred for the given filling.

singlet triplet
s pz

(dx2−y2 , dxy) · pz (dx2−y2 , dxy)

(dxz, dyz) (px, py)

fx(x2−3y2) · pz fx(x2−3y2)

fy(y2−3x2) · pz fy(y2−3x2)

Table 2. Pairing symmetries for the effective lattice model of thBN separated into contributions to
spin singlet and triplet channel.
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