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We discuss large deviation properties of continuous-time random walks (CTRW) and present a
general expression for the large deviation rate in CTRW in terms of the corresponding rates for
the distributions of steps’ lengths and waiting times. In the case of Gaussian distribution of steps’
lengths the general expression reduces to a sequence of two Legendre transformations applied to the
cumulant generating function of waiting times. The discussion of several examples (Bernoulli and
Gaussian random walks with exponentially distributed waiting times, Gaussian random walks with
one-sided Lévy and Pareto-distributed waiting times) reveals interesting general properties of such

large deviations.

I. INTRODUCTION

Continuous time random walk (CTRW) introduced in
Physics by Montroll and Weiss [I] is a generalization of
a simple random walk model, in which the steps follow
inhomogeneously in time. However, the precursors of this
model can be traced back to the times as early as 1903
in Actuarial Mathematics [2] (see [3] for a discussion).

In the standard variant of the CTRW, times of steps
follow a renewal process in which the waiting times for
subsequent steps are independent and identically dis-
tributed (i.i.d.) random variables. The model is then
fully defined by specifying the probability density func-
tion (PDF) of waiting times and of spacial displacements
in single steps (also being i.i.d. random variables) []. In
physics, CTRW is used to model systems showing anoma-
lous diffusion, e.g. situations when the mean square dis-
placements (MSD) (22(t)) does not grow linearly in time,
as predicted by Fick’s law, especially in the cases of sub-
diffusion, when (z2(t)) o t* with o < 1. Such anomalous
subdiffusion often arises due to the lack of the first mo-
ments of the distribution of waiting times. The anomaly
in MSD is accompanied by a non-Gaussian shape of PDF
of displacements during a given time ¢. This line of mod-
elling, following the pioneering work [5], is discussed in
the review articles [6] and [7], with some newer develop-
ments discussed in chapters of collective monographs [§]
and [9]. Many recent works have reported weaker type
of anomaly, in which the time-dependence of the MSD
is linear, but the form of the PDF is pronouncedly non-
Gaussian, especially at shorter times. The decay of the
tails of the PDFs is often exponential, see e.g. [T0HIZ]
as well as [I3HI5] and references therein. In Ref. [I4],
Barkai and Burov showed that such exponential decay is
a universal behavior of far tails in CTRW, presenting the
approach based on subordination of random processes
and large deviation theory. In Ref. [16], Wang, Barkai,
and Burov presented explicit calculations for the case of
exponential and Gamma- (Erlang) distributions of wait-
ing times also using large deviation theory.

The large deviation theory (LDT) is an important
mathematical tool, which first arose from the analysis of

the insurability and ruin problems, and found its appli-
cation also for a large class of other problems. In physics,
the interest to large deviations is partly due to its inti-
mate connection with the thermodynamical formalism,
which leads to additional insights in the thermodynami-
cal limit, and to new results [17].

In application to the problems of diffusion or anoma-
lous diffusion [I4], 6] the value of the large deviation
theory lies in the fact that it adequately describes the
behaviors of the PDF in its tails, and also shows where
these tails essentially begin, i.e. what part of the dis-
tribution is indeed reproduced by the typical approaches
aiming onto the adequate description of the PDF close
to its mode (like the fluid limits of simple or continu-
ous time random walks). While the very far tails, in
the asymptotic domain of LDT, may be hardly accessi-
ble to experiments, since the corresponding events might
be extremely rare, the knowledge of the transition from
central domain to the tail one (i.e. essentially the exper-
imentally accessible pre-asymptotical wing of the distri-
bution) might be of primary importance, especially when
the properties of the walks are important for the under-
standing of the outcomes prone to the influence of rare
fluctuations, like the chemical reactions are.

In the present work we build on this approach and
present a general expression for the large deviations’ rate
function in CTRW, which we use for discussing several
examples beyond the ones considered in [I4] [T6], where
we consider both the case when the mean WTD is finite
and the case when it diverges. For the case of Gaus-
sian step length distribution, as in [I6], the analysis is
especially simple, and the general expression reduces to
a sequence of two Legendre transformations of a cumu-
lant generating function of waiting times. We note that
a considerable work was done in mathematics to inves-
tigate large deviation properties of random walks (see
e.g. [18 [19] and references therein) and of CTRW (see
e.g. the discussion of the existence and general proper-
ties of large deviation rates in Refs. [20, 21]), but we
concentrate here on physical examples close to the ones
discussed in [14] [16].

The structure of the present work is as follows: In Sec.



[M] we conduct a preliminary discussion of the model and
introduce notation used throughout the work. In Sec. [IT]]
we derive the main result, which we use in the discussion
of several examples; first of them already given in this
section. In Sec. [[V] we consider the case with Gaussian
step length distribution, for which the expressions are es-
pecially simple. Here different further examples with and
without mean waiting times are considered, which are
enough for understanding the physics behind the large
deviations in CTRW. Sec. [Vl concludes the work. To
make the text self-contained, we present in Appendix [A]
sketches of the proofs of some standard properties of the
rate functions used in the main text, and in Appendix
[B] the demonstration, on a physical level of rigor, of the
known relation between the large deviation rates of lead-
ing and directing processes of CTRW. Appendix [C] gives
an additional discussion of the asymptotic behavior of
Legendre transformations in the case of Pareto distribu-
tions supporting intuitive arguments used in the main
text.

II. PRELIMINARIES AND NOTATION

Continuous time random walk (CTRW) is a random
process which ensues due to subordination of a simple
random walk (RW) process z(n) to another random pro-
cess n(t), which gives us the number of steps done by
the random walk up to time ¢, and is called a directing
process, or operational time of the CTRW scheme [4].
The process x(n) is called with this respect a parent pro-
cess of the CTRW (see Refs. [22] 23] for a systematic
discussion and terminology). The “inverse” process t(n)
corresponding to the sum of independent, identically dis-
tributed waiting times in CTRW is called a leading pro-
cess.

Let the PDF of the parent process be p,(x), and the
probability to make exactly n steps up to time t be x,,(¢).
Then the PDF of displacements in CTRW is [4]

P t) = 3 pal@)xa(t).
n=0

For long ¢, the typical number of steps is very large, and
the operational time 7 = n can be taken to be continuous.
In this limit

p(’I,t) = /OOO f(.T,T)T(T, t)dTa (1)

where f(z,7) is a continuous approximation to (fluid
limit of) p,(x) and T(7,t) is the same kind of approx-
imation to x,(t). Eq. is called the integral formula
of subordination. In what follows we will only work in
this limit.

The parent and the leading processes of the CTRW
scheme are processes with independent and identically
distributed (i.i.d.) increments, i.e. correspond to sums
of i.i.d. random variables. Exactly such sums constitute

the elementary (and elemental) class of objects studied
in the theory of large deviations. Let z, be a sequence
of independent random variables, s, = (x1 + 2 + ... +
Zn)/n be the empirical mean of the first n elements in
the sequence, and P, (s) be the probability distribution
of s,. Then, under known conditions, there exists the
limit

. 1
C(s)=-— n11—>120 - In P,(s)
called the rate function (RF), or Cramér’s function, of
large deviations for s,, [17}[24,25]. The distribution of s,
for sufficiently large n is then given, up to a normalization
constant, by

P, (s) ~exp[—nC(s)].

When making the inverse variable transformation from
$p to the sum S, = x1 + 22+ ... +x, = ns, of the first n
random variables, one sees that its PDF takes the form

pa(8) ~ exp [ -nc (2] ®

up to an n-dependent normalization constant. Eq. (2
will be called the large deviation form for the PDF of the
corresponding sum. To avoid ambiguity, we will denote
the rate functions by scriptized letters.

At the beginning, only two PDFs are known: the one
of the single step lengths, and the one of the waiting
times. Therefore, in our discussion, we will start from
the rate functions of sums of independent and identi-
cally distributed random variables (step times and step
lengths), and derive the properties of all other rate func-
tions from two rate functions: Z(¢) and R(z), the ones
for the leading process and for the parent process (simple
RW), which can be readily calculated. The large devia-
tion forms for the PDFs of the corresponding sums are
then

f(z,7) ~ exp [—TR (%)} , (3)

and
p(t,7) ~ exp [—TI (iﬂ . ()

To easily manipulate the variables we have to keep the
arguments of all non-power-law functions dimensionless.
To do so, we introduce the natural units of length and
time. As a natural unit of length one may choose the
mean squared displacement in a single step, and as a
natural unit of time a characteristic time of a single step.
If the mean waiting time for a step exists, we will choose
this mean waiting time as the characteristic time. In
the cases when the mean waiting time diverges, for the
purpose of comparison of different situations, one should
choose a characteristic time such that the mean number
of steps (n(t)) made up to time ¢ is the same for all cases



compared. Note that this requirement is fulfilled when
choosing the mean waiting time, provided it exists, as
a characteristic time, as above. Thus, from here on, all
our quantities are dimensionless. The units can be easily
restored in the final expressions when necessary.

The two derived rate functions, the ones for the direct-
ing process and the one for the whole CTRW (a function
we seek to know) will be denoted by 7 (7) and X (z), re-
spectively. The large deviation forms for the PDFs of 7
and x are:

T(7,t) ~ exp [—tT (%)} , (5)
and

p(x,t) ~ exp {—tX (%)} . (6)

Before starting our derivation, let us go through some
important properties of the rate functions [I7] 24, [25].
The rate functions for the mean of i.i.d. random variables
are convex [25], see also Appendix @ Cramér’s theorem
states that the rate function C(z) is the convex conju-
gate (a Legendre-Fenchel transformation) of the cumu-
lant generation function £(¢q) = In{e®?) of the distribu-
tion of = (a simple explanation is given in Ref. [24]). For
the sake of brevity we will call this transformation sim-
ply a Legendre transformation, as it is done, say, when
transforming a Lagrange to a Hamilton function in me-
chanics. For strictly convex rate functions (i.e. for all
cases discussed in the present work) this transformation
is invertible. The inverse of a Legendre transformation
is given by a Legendre transformation again (an involu-
tion property). Two other properties of rate functions,
which are important for what follows, are that the rate
function is non-negative, and that it vanishes identically
at the value of x = p corresponding to the mean of the
distribution of the single variable. The rate function can
be defined on the whole real line (e.g. for a Gaussian dis-
tribution of x), on a half-line (like it is for waiting times),
or on a finite interval. Outside of its domain of defini-
tion (i.e. outside of the domain available for the initial
random variables) it is taken to be “literally infinite”, so
that the probability to have such values (the ones outside
the domain of definition) is strictly zero.

To keep equations concise we will introduce the follow-
ing nonstandard notation for the Legendre transforma-
tion: Let g(z) be a convex function defined on the cor-
responding interval, and let a function f(z) of variable z
be its Legendre transformation defined as

9(2) = sup, {zz — f(2)}.

The Legendre transformation is an operator which makes
a mapping f(x) — g(z). Our notation will keep track of
the variable’s names in the corresponding functions

The direction of the arrow is connected with the order
of the symbols: the operator £ acts on the function of x

standing right from it, and transforms the function f of
variable z into a function g of variable z (the names of
the variables are changed from right to the left). Since we
choose to denote the variable’s names in the notation for
the operator, we don’t have to put them in the functions
at all (but we will).

The main result of the present article is as follows:

_R(z) +I(£)]
f )

with Z(2) = E{Zeq}ﬁ(q) and R(z) = E{ZHI}D(Q) where
L(q) = () = [;7 e (t)dt with ¢(t) being the PDF of
waiting times (waiting time density, WTD), and D(q) =
(e1%) = [ e A(z)dz with A(z) being the PDF of dis-
placements in a single step (steps’ lengths density, SLD).
For a Gaussian distribution of single steps’ lengths dis-
cussed in [I4] [16], the result can be put in a closed form
involving only the Legendre transformations

X(z) = _E{fzz/Qeg} [f_lﬁ{geq}ﬁ(q)} . (8)

X(z)= —stglp { (7)

III. THE LARGE DEVIATIONS RATE FOR
CTRW

Let us now derive the forms, Eq. and . Substi-
tuting the large deviation forms for PDFs of the parent
and directing processes (Eqs. and , respectively)
into the integral formula of subordination, Eq. , one

gets
p(z,t) ~ /000 exp [77'72 (%) —tT (%)] dr.

On the Lh.s., we introduce the large deviation form of
the whole CTRW (Eq. ()

cp [ (2)]~ [ [ (2) - or ()] o

and change to the new variables z = z/t and § = t/7:

o[B80 ()

Now, we use the relation between the RF for the leading
and directing processes, which is given by

T(r) = 1T (1> , )

T

exp [—tX (2)] ~

see Ref. [26]. The proof of this relation (and the discus-
sion of conditions under which it holds) implies a longer
chain of mathematical discussions. Although this rela-
tion is known, we sketch a simple explanation on the
physical level of rigor is given in Appendix

Using this relation one gets

exp [—tX (2)] ~ /OOO g% exp {—t {R (;5) + I(f)} } de.




This integral can then be solved by the Laplace’s method
[27]. Thus, we can write

ool 2] o { i[9 ZOT

where the pre-exponential term is disregarded, since it
does not contribute to the large deviations when taking
the limit lim;—, o In[p(z, t)]/t. Equating the arguments of
the exponentials, we get

X (2)

sup

5 {_R(zf) +I(§)] ’

£

which is our main result, Eq. . Note that, the infi-
mum was changed for the supremum of the negative of
the expression, which will be useful to later relate this
quantity to a Legendre transformation in the case of a
Gaussian SLD. Since the large deviation rates R(z) and
Z(t) are readily given by the Legendre transformations
of the corresponding cumulant generating functions, the
corresponding supremum can be easily calculated for the
cases of interest. In what follows, we consider in some
detail the case brought to our attention by the works
[14, 16], namely, the case of Gaussian distribution of sin-
gle step lengths. For this case, the RF X (z) follows from
the cumulant generating function of waiting times by two
Legendre transformations (see below). However, first, as
an example, let us analyse the simplest random walk, i.e.,
the Bernoulli one.

A. CTRW with a fixed step length

As a first example, let us consider the Bernoulli random
walk, with steps of fixed length +1 taken with probability

J

X(z):1+\/1+z2{—1+ln\/1+z2

(e

which is the function with a quadratic behavior close to
2z =0, X(2) ~ 22/2+0(z%), and with the large-z asymp-
totics being X (2) ~ |z|(1 — In2 4 In|z|) (note that the
function is not “cut” at a finite value of z, at difference
to the large deviation rate of the parent process).

4

1/2, respectively, and the simplest possible leading pro-
cess, a Poisson process with rate 1, i.e. with ¥(t) = e~
The Bernoulli random walk is essentially the first exam-
ple of Refs. [24] and [25]. For this case

Applying Stirling formula we get in the first order in N
N
Inpy(s) = -5 [(1—=38)In(1—35)4 (14 s)In(1+ s)]
with s = S/N, so that

R(r) = 3 [(1 =) (1 ) + (1 + 2) (1 + 2)]

This function is parabolic around 0 and diverges for
x — £1 (and is “literally infinite” outside of the interval
(=1,1)). The function Z(§) = E{qu}ﬁ(q) correspond-
ing to a Poisson process can be readily calculated (and
essentially is known since long ago), and reads

I(¢)=¢—1—Iné. (10)

The supremum in Eq., for fixed z is achieved at £ =
1/v/1+4 22, and X(z) is readily evaluated:

\/117>+(1+\/117>1n(1+\/117>]}, (11)

(

IV. CTRW WITH GAUSSIAN DISTRIBUTION
OF STEPS LENGTHS

For the Gaussian distribution of step lengths the large
deviations rate for the parent process is given by

Introducing this result into Eq. , one obtains

a?¢  I(¢)

X (z) = —sgp [—2 - 5] ) (12)



which is given by a Legendre transformation of the func-
tion Z(§)/€ taken at the value of the Legendre variable
z = —x? /2. Using our notation for the Legendre transfor-
mations and the fact that Z(§) = E{Ekq}ﬁ(q) we arrive
at the final result in a closed form

X(2) = —£( s2/ee) 5713{&_(1}5((1)} ;

Eq. (8). Now we use this formula for discussing sev-
eral important examples and then make some conclusions
about the behavior of the large deviation rate functions
of CTRW with Gaussian step lengths’ distribution for
very large deviations (z > 1).

A. Exponential waiting times

Let us assume that the waiting times follow a Poisson
process, with 1 (t) = e~% and a rate function given by
Eq. . Now, we define the function

I(ﬁ)_1 1  In¢

= e

and perform the Legendre transformation
d In¢
z = dfgg(ﬁ) = 572

so that
1
¢ o[- 20

where Wy(+) is the Lambert function. Then, according to
Eq. , we change the variable to z = —2/2 and invert
the sign:

2

X(z) =1—exp BWO(a:Q)} + % exp [ - ;Wo(l“Q)}

+ 1Wo(a?) exp [;Womﬂ 1)

Using the properties of the Lambert function, the two
limits, of small and of large z, can be found. For x >> 1,
Wo(z?) ~ Inz? + Inlnz?, and X(x) ~ |z|v/2In]|z]|.
On the other hand, for x << 1, Wy(2?) ~ 22, and
performing a Taylor expansion around zero, one has
X(z) ~ 22/2 + O(x*) corresponding to a Gaussian. Fig.
[} shows a comparison between the rate functions for the
Bernoulli case with exponential WTD, Eq. , and for
the Gaussian SLD with exponential WTD, Eq. (L3]). One
can see that, as x — 0, both curves coincide and show
a parabolic behavior which is a consequence of the Cen-
tral Limit Theorem (CLT). For > 1 the curves diverge,
with the one for the Bernoulli RW growing faster. This
shows that the large deviation rate of CTRWs is sensitive
to the single step length distribution (and can be used as
a probe for such). This discussion reproduces the results
of Ref. [16].

20 — Bernoulli

—- Gaussian

FIG. 1. A comparison of the rate functions X(z) for a
Bernoulli CTRW and CTRW with Gaussian distribution of
step lengths, both with exponential WTID, Eq. (II). For
z < 1, both curves have the same parabolic behavior, which
is a consequence of the CLT, see the text for details.

B. One-sided Lévy law

Now we take 1(t) to follow a one-sided Lévy law with
exponent «. Its Laplace characteristic function ¢(s) =
(e==t) reads: (s) = JoSw(t)e stdt = exp(—os®) with
0 <a <1 (for s> 0) and o being the scale parameter.
To allow for further comparison with the behavior for
the Pareto-distributed waiting times, we fix this to be
o = 1/T(a+ 1). This fixes the characteristic time of a
step. The mean number of steps (n(t)) done during the
time ¢ is then

(n(t)) = te.

Let us denote Cp = D(a + 1)Y*.  Thus, ¢(s) =

exp[—(s/CL)?], so that f(q) = (e?) = 1(—q) is given
by

(14)

exp[—(—q)*/C¢] ¢ <0
f-(q):{ p[ (+qu) / L} Z;O

and

—(~q)*/C¢ q<0
£(Q):{ (J(i)oo/LZSO'

Now, we perform the Legendre transform:

_dal=gtt (Cpr\ e

which leads to



Now

a6 =28 — - a)(g“L)la“afa,

and now the second Legendre transformation can be per-
formed:

d « I—a 9o
z= dfgg(f) = _<CL> £ 1.,

¢ (C) (-9 E5.

with

«

Finally, the rate function of displacements reads

bRy
X(z)=(2-a)2 7= (O‘> 2|75, (15)
CrL
For a — 1 it tends to a parabolic RF of a Gaussian, for
a — 0 to a wedge-like RF of ultraslow diffusion with a
purely exponential PDF tails, see [4].

C. Pareto distributions

Now let us consider two other WTDs, namely the
Pareto distributions of types I and II with parameter a
(for the sake of brevity these will be sometimes referred
to as Pareto I and Pareto II distributions). Both dis-
tributions have the same asymptotic behavior for long
times, 1 (¢) o< t=17 but differ with respect to their short
time behavior. The distributions with 0 < « < 1 are
fat-tailed and do not possess the mean, the distributions
with o > 1 do possess the mean waiting time.

To be able to compare them to each other, and to
a Lévy distribution for o« € (0,1), one has to fix the
time scale. For a > 1, both Pareto distributions possess
a mean waiting time, so the scaling factor is this last
quantity. For 0 < a < 1, we scale the distributions in
such a way that the mean number of steps (n(t)) for a
given t is the same for both distributions and exactly the
same as for the Lévy case (Eq. (I4)). Thus, the Pareto
type I WTD 4(t) is defined as

0 0>t>Cy
Y(t) = o (16)
aCYy
o+l t= CI

where C; = [[(1 + a)T'(1 — )] Y/ if a < 1, or O =
(o — 1)/ if @ > 1. Its Laplace transform reads

J(s) = aCfs°T(—a,Crs), (17)

with T'(z,y) being an upper incomplete I-function. On
the other hand, the Pareto type II WTD can be defined
as

aC'y

P(t) = (Crr 4o

(18)

where Cr; = [['(1+a)T(1 —a)] Y if a < 1, and C7; =
(o — 1) if @ > 1. Tts Laplace transform reads

U(s) = aC%s%eCTI°T (—a, Cr18). (19)

Due to the presence of incomplete Gamma functions, the
Legendre transforms have to be performed numerically,
by solving algebraic equations.

Fig. [2] shows a comparison between the rate functions
X (z) of displacements in the CTRW with Gaussian STD
and the three following WTDs which do not possess mean
waiting time: one-sided Lévy law with a = 0.5, and
Pareto I and II distributions, both with o = 0.5, all
with the same (n(t)) as given by Eq. (14). As in the
case of the distributions with finite mean waiting times,
the curves coincide in the central domain (although now
they are not Gaussian but are given by Eq. ), but
deviate for x large.

I I
v fy
15 N ;s —
Lo I
vy ;S
/
L ‘.‘ \\\ I/I 7 J
. /
\'\\ I/ ./.
g /
10— \ ; _|
X(x) 8
5L |
3 - La=05
| K - Plla=05] |
— PIla=0.5
ol 1 \ \ \
-10 -5 0 5 10

FIG. 2. A comparison of the rate functions X'(z) for the
CTRW with Gaussian SLD and the WTDs following a one-
sided Lévy law, and Pareto type I and type II distributions,
all with with @ = 0.5 and the same (n(t)) as given by Eq.

).

Fig. shows the corresponding comparison between
the Pareto type I and Pareto type II WTDs for the cases
a = 1.5 and a = 2.5 when they do possess the mean
waiting time. In this case the behavior for small x is
universally parabolic, as it should be, but the RFs for
Pareto type I WTDs universally grow faster at large x
than those for Pareto type II WTDs with the same «.

We now discuss in more detail these asymptotic growth
properties discussing the domain of very large deviations.
The cases of the Pareto distributions give enough physi-
cal intuition to understand the general behavior of very
large deviations.



FIG. 3. A comparison of the rate function X (z) for the CTRW
with Gaussian SLD and the following WTDs: Pareto I dis-
tributions with o = 1.5, 2.5, and Pareto II with o = 1.5,2.5.
Here, the variable z is the quotient between the position and
the time. All these WTDs have a mean waiting time. Note
the difference in the asymptotic behavior, which for the case
of Pareto I is quadratic (Eq. ), whereas for the Pareto 11
is linear with a slowly varying correction (Eq. (23)).

V. VERY LARGE DEVIATIONS FOR PARETO
WAITING TIME DENSITIES

Physically, the behavior of very large deviations (z% —
00) is dominated by realizations in which the number of
steps is unusually large, and thus is governed by the be-
havior of ¢ (t) for very short ¢. Therefore the two Pareto
cases serve as examples for the cases when (t) tends to
a constant limit for ¢ — 0 (Pareto II), and when it van-
ishes identically for ¢t — 0 (Pareto I). There is no wonder
that the Lévy case with 1(0) = 0, but shooting up faster
than any power of ¢ for non-vanishing but small ¢, shows
the behavior in-between of these two extrema.

Note that the expressions for both Pareto distributions
(Egs. and (I8)) are the same for all values of the
parameter «, the only difference being the values of the
scaling parameters C; and C7;. Hence, all subsequent
results hold independent of the value of a.

A. Pareto Type I WTD

First, let us consider the Pareto I WTD (Eq. (16)),
and let us work with its Laplace transform as given by
Eq. (I7). The small time behavior (¢t — 0) of the WTD is
mirrored in the asymptotic behavior of its Laplace trans-
form for s — oo, see Appendix [C] for additional discus-
sions. For the Pareto I PDF this asymptotic behavior is
given by

U(s) ~ aCrls™le s (20)

which form can alternatively be obtained either by us-
ing the asymptotic expansion of the incomplete Gamma
function, or by evaluating the corresponding integral for
the Laplace transform using the Laplace method. From
this form it follows that

L(¢) =Ina—InCr —In(—q) + Cyq.
Performing the Legendre transformation we get

_dﬁ(q)_ 1 1
t= dq —CI q — q—CI_tv

and finally obtain
Z(t) = —In(t — Cy)

in the leading order. Now,

Z(§) _ In(f-Cr)
9(§) = e = e
and the second Legendre transform can be performed:
L _dg© 1 =)
2 d¢ §€—-Cr) &2

Making the change of variable u = & — Cy, it can be
rewritten as

x? _ 1 Inu
(u+ Cy)?

2 u(u+C)

Very large and negative values of the 1.h.s. correspond to
u — 0, so that

T 1 Inu

- - + R
2 UC] CIQ
To invert this expression, one can apply de Bruijn’s The-

orem for slowly varying functions, see [28]. Hence, one
ends up with

ln(01x2)} |

2
= 1
v C]I2 [ + 0%12

and, going back to the variable ¢:

e= 2 [1—1—

C].IQ

In(Crz?)
C2x?

:|+C[.

Finally, the asymptotic behavior (|x| — +00) of the rate
function for the CTRW has the form

G

X(x) 5

2
2
x4+ — In|x|, 21
o ol (1)
which is basically a quadratic behavior with a correction
given by a slowly varying function. Note that, apart from

the value of the constant C7 being a function of «, Eq.
does not depends on the parameter .



B. Pareto Type II WTD

Let us now consider the case of a Pareto II WTID (Eq.
), which in the Laplace domain is given by Eq. (19)).
Following the same procedure as for the Pareto I WTD,
let us consider the asymptotic behavior (s — co) of Eq.

given by
W(s) ~ aCpy's ™,

(the difference with Eq. is the absence of the expo-
nential cutoff for very large s), which allow us to obtain
the asymptotics of the cumulant generating function:

L(¢) =Ina—InCrr —In(—q). (22)
Applying the Legendre transformation we get:
acr 1 1
t = ﬂ = —— — q=——,
dq q t

so that the function Z(¢) in the leading order is given by

Z(t) = —Int.

Then we construct
L() _ _Ing
3 £’

and perform the second Legendre transformation

e _dg(e) _ ~1+n(g)

2 d¢ £

The values of || — oo correspond to £ — 0, so that

ﬁ_ In¢

2 e

To invert this expression, one applies again the de
Bruijn’s Theorem. Hence, the inverse reads

€ = |z|7'/21n|z].

Finally, the asymptotic behavior (|z| — +00) of the rate
function for the CTRW is

X(x) ~ |z]\/21n|x|, (23)

which is an essentially linear behavior, with a correction
given by a slowly varying function. This result does not
depend on the value of the parameter « at all (and not
only up to the parameter values, like in the Pareto I case).

C. Erlang distributions

A similar analysis can be performed for Gamma-
distributions (Erlang distributions) discussed in [14} [16]

)\ntn—le—)\t

P(t) = NCE

with n € {1,2,3,...}, and A € (0,00). The Laplace
characteristic function of the Erlang distributions has the
following form

U(s) = A" (A+s) 7"

Then the asymptotic form of £(g) differs from Eq.(22)
only by an additional proportionality factor in front of

In(—q):
L(g) = —nln(—q),

in the limit ¢ — —oo. Therefore, the essentially linear
behavior with a slowly varying correction ensues. The
difference between the Lévy and Pareto type I cases on
one hand and Pareto type II and Erlang cases on the
other hand is the fact that for the first class of distri-
butions the WTD vanishes at zero together with all its
derivatives, while in the second situation this is no longer
the case. The full classification of possible behaviors will
be discussed elsewhere. The lesson learned from these
examples is that the essentially linear behavior of the
large deviation rate function in CTRW is not universal
but is pertinent to the specific classes of the waiting time
distributions. The large deviation behavior of displace-
ments probes the WTD for very short waiting times and
is therefore a test for microscopic dynamics of the system.

VI. SUMMARY

In this paper, we presented a general procedure to com-
pute the rate function for large deviations of displace-
ments in CTRW in a general setting, i.e. for any step
length distribution and any waiting time distribution.
The situation with Gaussian step length distribution is
especially simple. In this case the rate function for dis-
placement is given by a sequence of Legendre transforms
of the cumulant generating function for waiting times.
The general discussion is accompanied by analysing im-
portant particular examples like the one-sided Lévy and
the Pareto-distributed waiting times. This discussion
shows that the large deviation in displacement probe the
waiting time density for very short times. The essentially
linear behavior of the rate function for very large devia-
tions is specific only for situations in which waiting time
density does not vanish too fast when the waiting times
approach zero.
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Appendix A: Properties of the rate function

For completeness, we present here a sketch of the proof
for some of the properties of the rate function, the ones
mentioned in the main text of this work. For a more de-
tailed discussion of the proof, see [29]. The rate function
C(x) is defined as

C(z) = St;p[qx —In f(q)] (A1)

where f(q) = (e?”) is the moment generating function
(note that we define £(g) = In f(g) in the main text).

With the definition, Eq., the rate function is a
convex non-negative function which satisfies C(z = p) =
0. We will prove here this last statement. In order to
prove the convexity, we simple compute for A € (0, 1)

ClAz1 + (1 — N)zo] =
= sup{q[Az1 + (1 — )22 — In f(q)}
q
= sup{Algz1 —In f(q)] + (1 = A)lgz2 — In f(q)]}
q
< Asup[gzy —In f(g)] + (1 — A) sup[gz2 — In f(q)]
q q
= AC(z1) + (1 = N)C(x2).
Now, to prove the non-negativity of the rate function,
let us use the fact that f(0) = 1, so In f(0) = 0. Now,
since C(z) > gz — In f(gq), taking ¢ = 0 implies C(z) >
0z —In f(0) = 0 and the non-negativity is established.

Now, let us use Jensen’s inequality which can be applied
since f(q) is a convex function, then

f(q) = {exp(qz)) < exp(q{x)) = exp(qpu).

Next, by applying the natural logarithm in both sides of
the inequality, it can be expressed as

gp—In f(g) <0.

e [~ (1)) ~—4t [ e [-rz (£)]
)} ﬂ dt’

The expression in the non-exponential part of both Egs.

and (B3),

or

t/

[Fonlat

d

~ —

dr

T

t

exp [ftT (

f@) = I(x) — 2T’ (z)

Finally, because of the non-negativity of the rate func-
tion, one concludes

C(u) =0 =minC(z).

z€R

Appendix B: Relation between the rate functions for
the leading and directing processes

The relation between the large deviation rates for the
leading and the directing process of the CTRW scheme
foots on the known relation between the cumulative dis-
tribution functions (CDFs) for the leading and directing
processes [22, [30]. Let p(r|t) = T(r,t) be probability
density to have exactly 7 steps up to time ¢ (i.e. the
probability density of 7 conditioned on t), and p(¢|7) the
corresponding density of the time of the last step condi-
tioned on the number of steps. Then, from the fact that
t is monotonically non-decreasing function of 7, the inte-
gral relation between the two follows. In the continuous
limit this relation takes the form

[e%s) t
/ p(T'|t)dr" = / p(t'|T)dt’.
T 0

We note that the rate function Z(z) is already known.
From the general properties of the rate functions it fol-
lows that Z(z) is a convex function, monotonically non-
growing (in our case, essentially monotonically decaying)
for z < 2y with zg being equal to the mean waiting time,
and monotonically non-decaying (in our case growing)
for z > zy. If the mean diverges, the function is always
monotonically decaying. From Eq. it follows that

(B1)

t
p(t'|r)dt,
0

p(rlt) =

or, equivalently,

4 1—/tp(t'7)dt’ :i/oop(t/h')dtl
dr o dr J, '

Substituting the large deviation forms we get

FEE) -5 E)] [ ()]

i)} dt'  (B3)

p(rlt) =

t/
T

t/ !/

_7 ¢
T

T

_ 4

(B2)

(with = ¢'/7) is nonnegative for © < 2y and non-
positive for x > zp. The first statement (for x > 0)
follows immediately from the fact that Z(z) is nonneg-



ative and its derivative for x < zp non-positive. The
second statement is slightly finer and follows from the
the relation

9(2) =2 9(y) +9'(¥)(z — ) (B4)

for convex differentiable functions, which we rewrite as

9(y) —yg'(v) < g(z) — g'(y)=.

Now one takes g(y) = Z(y) and z = zp, so that g(z¢) =
Z(zp) vanishes, and notes that for y > z, the derivative
¢'(y) = T'(y) is nonnegative. Therefore the prefactors of
the exponentials in both integrals on the r.h.s. of Egs.
and are non-negative (essentially, positive for
non-degenerated cases). For z < zy the function 7 (z) is
monotonically decaying (Z'(z) < 0), and the argument
of the exponential is therefore monotonically growing to-
wards the upper integration boundary. For z > zy the
function Z (z) is monotonically growing (Z’(z) > 0), and
the absolute maximum of the integrand is achieved on
the lower integration boundary.

To get the relation between Z and 7T, the argument of
the function on the L.h.s. has to be kept constant. Fixing
x = t/7 and changing the variable of integration on the
r.h.s. to 2’ =t//7 one obtains:

exp {—Tx’f G)] ~r / )] exp [T (27)] i,

where the limits of integration {a, b} are {0, z} in case of

Eq.(B2)) and {x, 00} in case of Eq.(B3)). Assuming that in
the vicinity of z, Z(z') = Z(x) +Z'(x)(z' — 2) + o(x — 2'),
both integrals can be estimated as

|f ()]
|Z' (=)

exp [-7Z (2)],
i.e. in the exponential order of magnitude

exp |:—’T$T (i)] ~exp [-7I (z)],

from which Eq.@ follows.

Appendix C: Asymptotics of very large deviations
for Pareto cases.

In the main text we relied on our physical intuition,
and used the limiting form for ¢(s) and therefore of £(q)
for large absolute values of the arguments to calculate the
Legendre transformation. Here we present some mathe-
matical facts in support of our intuition.

The properties of L(g) = In J(—q) derive from those of
12;(5) Some of these properties are general. Thus, {/;(s) <
1 and monotonically non-increasing (12(5) is completely

monotonic [31]). Therefore £(g) = Intg(—g) < 0 and
is monotonically non-decreasing for all —oo < ¢ < 0.
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The asymptotics of L£(q) follow from such of v(s). For
q — —oo the function tends to —oo; for ¢ — 0_ it tends
to zero.

The Pareto distributions belong to a class of in-
finitely divisible distributions [32]. For these distribu-
tions ¥(s) = e~ (), where the function ¢(s) is the one
with completely monotonic derivative, and with ¢(0) =0
[31]. Therefore L(q) = —¢(—q) is infinitely differentiable
on (—o00,0_) and convex.

For our discussions we however need only the proper-
ties of the two lower derivatives of £(g), which are com-
mon for all distributions with support on the right half-
line, i.e. for all waiting time distributions, provided these
are not the delta-functions, like in simple random walks.

We show that both Q(q) = £'(¢) and Q'(q) = L"(q)
are strictly positive for all —oo < ¢ < 0 (the last state-
ment means that L£(g) is strictly convex). Denoting
fl@) = ¥(—q) = [, e?y(t)dt, as in the main text, we
get f'(q) = [;° etty(t)dt, f"(q) = [ eTt*y(t)dt. All
three integrals are convergent for ¢ < 0, the first one is
always positive, and the last two are strictly positive for
all ¥(t) # 0(t) (which holds in the Pareto case). The
positivity of @ follows from its representation

f'(q)
flq)’

where both the numerator and the denominator are pos-
itive and finite (for ¢ < 0). Turning to £"”(q) we write

vy d e ) fle) = [F ()P
O30 ST Pw

The denominator is positive and finite. Now we write the
expression in the numerator as a double integral:

f"(a)

Qq) =

2

) =1 () =
/oo /Oo(tllz _ t”t/)eq(tl+t2)1/)(t”)1/)(t/)dt//dtl
o Jo
and symmetrize this expression:

/oo /Oo(t,/z _ t//t/)eq(tl+t2)¢(t”)¢(t’)dt”dt/ _
0 0
1 o0 o]
5 |:/ / (t//2 _ t”t/)eq(tl+t2)w(t”)¢(t/)dt//dt/
0 0
[SSEEReS
+/ / (t/2 _ t//t/)eq(tl+t2)w(t//)w(t/)dt//dt/
0 0

— / / (t// _ t/)Qe(I(tl—H’Q)¢(t//)¢(t/)dt”dt/
0 0

to see that it is greater than zero for all ¢(t) # §(t — a).
Therefore for our examples £”(¢q) > 0 (for —oco < ¢ < 0),
and thus Q(¢) = £'(¢) is a continuous, monotonically
increasing function, which thus is invertible. Moreover,
Q(q) > 0 for all ¢ < 0.

The natural variable £ = Q(q) = £L(q) of the Legendre-
transformed function is therefore a monotonic function of



q. The inverse function ¢ = Q~1(¢) (which defines the in-
verse transformation ¢ = dZ/d¢) exists, and is monotonic
in &, namely a monotonically growing function thereof.
Since Q’'(q) = L"(q) is strictly positive, the inverse func-
tion Q~1(€) is differentiable as well. The continuity and
differentiability of all involved functions within their def-
inition intervals (with exclusion of the endpoints) allows
us for exchanging the limiting transitions, i.e. to consider
the limits of the Legendre transformations as Legendre-
transformations of the limiting forms of the functions.

Now we return to our Pareto distributions. For ¢ —
—oo the value of € tends to a positive constant Cy (for
type I distribution) or to zero (for type 2 distribution).
For ¢ — 0_ it turns either to a positive constant u (if
the mean exists), which is larger than C7 or 0 for type I
and type II distributions, respectively, or diverges going
to +oo (if the mean is absent). The function Z(§) being
the Legendre transformation of £(q) is therefore defined
either on a finite or on an infinite interval right from

11

Emin > 0 (being C7 or zero). It is important to note that
in all cases the allowed values of £ are positive: £ > 0.

According to Eq. the value of € which delivers the
supremum necessary to calculate X(x) is given by the
solution of the equation

o d [IS)] _I(9) 521'(5)5’

which we now consider for x — oco. The derivative of the
numerator

2 dg

d
d¢
is negative for all £ > 0, so that the whole expression
Eq. is a continuous and monotonically decreasing
function of £&. Therefore the solution to Eq., provided
it exists, is a decreasing function of z2. In this situation,

going to the limit 2 — oo corresponds to ¢ — &min,
which on its turn corresponds to ¢ — —oco and s — co.

[Z(€) = Z'(§)¢] = —€2"(¢)
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