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ON MICROLOCALISATION AND THE CONSTRUCTION OF FEYNMAN

PROPAGATORS FOR NORMALLY HYPERBOLIC OPERATORS

ONIRBAN ISLAM AND ALEXANDER STROHMAIER

Abstract. This article gives global microlocalisation constructions for normally hyperbolic
operators on a vector bundle over a globally hyperbolic spacetime in geometric terms. As an
application, this is used to generalise the Duistermaat-Hörmander construction of Feynman
propagators, therefore incorporating the most important non-scalar geometric operators. It is
shown that for normally hyperbolic operators that are selfadjoint with respect to a hermitian
bundle metric, the Feynman propagators can be constructed to satisfy a positivity property
that reflects the existence of Hadamard states in quantum field theory on curved spacetimes.
We also give a more direct construction of the Feynman propagators for Dirac-type operators
on a globally hyperbolic spacetime. Even though the natural bundle metric on spinors is
not positive-definite, in this case, we can give a direct microlocal construction of a Feynman
propagator that satisfies positivity.
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Introduction

If (M,g) is a globally hyperbolic spacetime then the Cauchy problem for any normally
hyperbolic operator, i.e., any operator of the form

� = −gij∂i∂j + lower order terms, i, j = 1, . . . , n := dimM
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(in local coordinates using Einstein’s summation convention) is well-posed. This implies the
existence of unique advanced and retarded fundamental solutions (propagators). The proper-
ties of these fundamental solutions are extremely important for the understanding of classical
wave propagation, such as the electromagnetic waves. They appear naturally because of
causality: the retarded fundamental solution propagates to the future, whereas the advanced
fundamental solution propagates to the past. In quantum field theory, the appearance of time
ordering and the enforcement of positivity of energy led to the development of another type
of fundamental solution, the Feynman propagator. It propagates positive energy solutions to
the future and negative energy solutions to the past and thus combines causality with the
notion of positivity of energy. Explicit formulae for Lorentz invariant Feynman propagators
for normally hyperbolic operators in Minkowski spacetime can be found in basic quantum
field theory textbooks. The usual construction employs the Fourier transform. However, on
a generic globally hyperbolic spacetime there is neither a Fourier transform nor any reason-
able notion of energy in the absence of a global time-like Killing vector field. A priori, it is,
therefore unclear what a Feynman propagator should be.

In the theory of partial differential equations, the notion of a parametrix is often useful in
the first stage on the construction of a true fundamental solution. A parametrix, per se, is an
inverse of the operator � modulo smoothing operators. Parametrices are considered equivalent
if they differ by smoothing operators. It was a deep insight of Duistermaat and Hörmander [22]
that there is a well-defined notion of Feynman parametrices and these parametrices are unique
up to smoothing operators. In other words, they are unique as parametrices. In fact, the no-
tion of distinguished parametrices for any general pseudodifferential operator of real principal
type is given in their seminal article where they have identified a geometric notion of pseudo-
convexity which allows to prove uniqueness of such parametrices. Roughly speaking, despite
of not having any notion of energy due to the lack of a global timelike Killing vector field,
there is still a microlocal notion of positivity of energy and a corresponding flow on the cotan-
gent bundle. This microlocal notion can be used to characterise Feynman parametrices: they
are distinguished by their wavefront sets rather than the support properties of the Fourier
transform.

Feynman parametrices play an extremely important role in quantum field theory on curved
spacetimes, and the theory has actually been developed to a certain extent first in the physics
literature. Canonical quantisation of linear fields can be done in two stages. In the first
step, one constructs a field algebra from the space of solutions of the respective equation of
motion [19, 20] and next, some state is required to construct a Hilbert space representation
of this field algebra. Whereas, in Minkowski spacetime, these two steps are usually combined
into one owing to the existence of the vacuum state, it is more fruitful to separate them in
curved spacetimes. The first step can be done without any problems, exactly the same way as
in Minkowski spacetime but the second step necessitates a notion of a reasonable state. It has
been realised that a state compels certain conditions in order to perform the usual operations
in perturbative quantum field theory [9,55,56]. One of the identified conditions is a restriction
of the type of singularity that one obtains from the state, the so called Hadamard condition.
Although Duistermaat and Hörmander were certainly aware of the developments in physics, it
was realised only much later by Radzikowski [76] that the expectation values of the timeordered
products with respect to states satisfying the Hadamard condition are Feynman propagators.
In fact, the construction of a Hadamard state is equivalent to the construction of a Feynman
propagator that satisfies a certain positivity property. The fact that this positivity property
holds for parametrices was already shown by Duistermaat and Hörmander. This property
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for parametrices implies the existence of such Feynman propagators and hence of Hadamard
states (see [67]).

Apart from its applications in physics, Feynman parametrices also play an increasingly
important role in mathematics. For instance, they appear in the context of Lorentzian index
theory as inverses modulo compact operators of the Dirac operator with Atyiah-Patodi-Singer
boundary conditions [5], local index theorem [6], and asymptotically static spacetimes [85].
These concepts also arise in Vasy’s treatment of asymptotically hyperbolic problems, see for
example [32] and references therein, where even a non-linear problem is discussed in this con-
text. Moreover, the notion of Feynman propagator also comes up naturally in the Lorentzian
generalisation of the Duistermaat-Guillemin-Gutzwiller trace formula [89].

So far, the Duistermaat and Hörmander’s construction of distinguished parametrices for
any pseudodifferential operator of real principal type has not been used much in the physics
literature probably due to its great generality and the associated complex notation. Their
main idea is, however, compelling and simple. The operator can be microlocally conjugated
to a vector field and it is therefore sufficient to construct a parametrix for the operator of differ-
entiation on the real line. There are two distinguished fundamental solutions for the operator
of differentiation. A choice of parametrix for each connected component of the characteristic
set of the operator results a distinguished parametrix. Thus, there are 2N distinguished para-
metrices for such a pseudodifferential operator if N is the number of connected components
of its characteristic set. For the wave operator, this gives 4 distinguished parametrices in
dimensions n ≥ 3 and 16 distinguished parametrices in n = 2.

The aim of this article is three fold. First, we would like to revise and simplify the construc-
tion of Duistermaat-Hörmander [22] in the special case of any normally hyperbolic operator.
The second aim is to fill a gap in the literature: microlocalisation and the corresponding con-
struction of distinguished parametrices in Duistermaat-Hörmander is covered in the literature
only for scalar operators. Several constructions in index theory, in trace formulae, and also
in physics require the existence and uniqueness of Feynman parametrices for operators acting
on vector bundles. It is known that most of the constructions carry over to the case of any
normally hyperbolic operator, since its principal symbol is scalar. There are, however, also
important differences that appear on the level of subprincipal symbol. In this article, we would
like to give a precise statement of microlocalisation (Theorems 2.10 and 2.11) for these class of
geometric operators. We then provide a detailed construction of Feynman parametrices (The-
orem 1.2) for vector bundles with complete proofs for their uniqueness and discuss the effect of
curvature of the bundle connection. In case, the vector bundle has a hermitian inner product
with respect to which the operator is formally selfadjoint, we show (Proposition 1.3) that the
construction can be carried out in such a way that the above-mentioned positivity property
holds. Third and finally, for any Dirac-type operator, we give (Theorem 1.5) a much more
direct construction of Feynman parametrices satisfying a positivity property. We also discuss
some consequences, including the usual propagation of singularities theorems (Theorem 2.13).
These are well known to hold for very general operators on vector bundles. For instance, the
propagation of polarisation sets has been proven by Dencker using microlocalisation in the
matrix setting [17].

As explained above the construction of Feynman propagators satisfying the positivity prop-
erty is equivalent to the construction of Hadamard states. There are by now several construc-
tions of Hadamard states, recently, even in the analytic category [36]. Amongst the methods
to construct them, there are direct ones using singularity expansions employing the Lorentzian
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distance function (the so-called Hadamard expansion) [8, 12, 27, 54, 67, 70, 81], spectral meth-
ods that rely on frequency splitting (deformation method) [28, 75], pseudodifferential meth-
ods [33, 34, 38, 39, 53, 60] (see also the recent monograph [37]), holography [13, 15, 35, 73] (see
also the exposition [16]), and even global methods [11,18,32,92]. Many of these constructions
can and have been generalised to the bundle case. Each comes with their advantages and
disadvantages. We are not trying to review the wealth of different methods but instead refer
to the above literature for further references.

1. The setup and the main results

Suppose that (M,g) is an n ≥ 2-dimensional globally hyperbolic spacetime, i.e., an oriented
and timeoriented Lorentzian manifold M of metric g-signature (−1,+1, . . . ,+1) that possesses
a smooth spacelike Cauchy hypersurface. Let E → M be a smooth complex vector bundle.
A linear differential operator � acting on smooth sections C∞(M ;E) of E is called normally
hyperbolic if its principal symbol σ� is scalar and equals to the metric g−1 on the cotangent
bundle T ∗M over M , i.e.,

σ�(x, ξ) := g−1
x (ξ, ξ)1End(E)

for any (x, ξ) ∈ T ∗M . Then, there is a unique connection ∇E : C∞(M ;E) → C∞(M ;E ⊗
T ∗M) and a unique potential V ∈ C∞

(
M ; End(E)

)
such that � takes the form (see e.g. [2,

Prop. 3.1], [4, Lem. 1.5.5 and 1.5.6])

� = − trg(∇
T ∗M⊗E ◦ ∇E) + V, ∇T ∗M⊗E := ∇LC ⊗ 1+ 1⊗∇E, (1)

where ∇LC is the Levi-Civita connection of M and trg : T ∗M ⊗T ∗M → R denotes the metric
trace: trg

(
(x, ξ) ⊗ (x, η)

)
:= g−1

x (ξ, η). This formula is sometimes called the Weitzenböck

formula and we will refer to the connection ∇E as the Weitzenböck connection. If E carries a
bundle metric such that � is formally selfadjoint then ∇E is compatible with this metric. We
do not, however, assume this unless stated otherwise.

Recall that C∞
sc (M ;E) denotes the space of spatially compact smooth sections of E. It is

defined as the set of all u ∈ C∞(M ;E) for which there exists a compact subset K of M such
that supp (u) ⊂ J(K) := J+(K)∪ J−(K) where J±(K) denotes the causal future/past of K.
It is a classical result that any normally hyperbolic operator on a globally hyperbolic spacetime
admits unique retarded and advanced Green’s operators Gret,adv : C∞

c (M ;E) → C∞
sc (M ;E)

with the characteristic property

supp
(
Gret,adv(u)

)
⊂ J±

(
supp (u)

)

for any compactly supported smooth section u ∈ C∞
c (M ;E) of E. Constructions in great

generality are due to Hadamard [45, 46] and to Riesz [79, 80]. Contemporary expositions
include, for example [4, 26, 43], and we refer here, for instance, the monographs [4, Cor.
3.1.4], [43, Prop. 4.1, Rem. 4.3 (b)] for a normally hyperbolic operator. We would also like to
mentioned the treatments [59, 82] for the Cauchy problem on an analytic globally hyperbolic
spacetime.

Throughout this paper we will not distinguish notationally between a continuous linear map
C∞
c → D

′ and its distributional kernel. This means that the Green’s operators Gadv, Gret

are also to be understood as distributions in D′(M ×M ;E ⊠ E∗). On a general manifold
M , operators will be thought of as maps between halfdensities. This allows pairings between
functions without using a volume form. In this way, the space of distributions D′(M ;E⊗Ω1/2)
is defined as the topological dual of C∞

c (M ;E∗ ⊗ Ω1/2), where Ω1/2 → M is the bundle of
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halfdensities over M . In case a Lorentzian (resp. Riemannian) metric is given on M , we
use the natural Lorentzian (resp. Riemannian) volume form to identify halfdensities with
functions, i.e., in this case, Ω1/2 has a canonical trivialisation in terms of the Lorentzian
(resp. Riemannian) volume form. In both situations, we will be notationally suppressing

Ω1/2, so all functions and sections will be considered halfdensity-valued. We will denote the
zero section removed cotangent bundle resp. the (co)lightcone bundle by Ṫ ∗M resp. Ṫ ∗

0M ,
and use Einstein’s summation convention.

Our convention of Fourier transform is

f̂(θ) :=

∫

Rn

f(x) e− i x·θdx

for any f ∈ L1(Rn,dx), where · is the Euclidean inner product. Suppose that U ⊂ Rn is

a non-empty open set. Recall that Ṫ ∗U ∋ (x0, ξ
0) /∈ WF(u) is not in the wavefront set

WF(u) of a distribution u ∈ D′(U ;E) if and only if there exists a compactly supported

section f on U non-vanishing at x0 ∈ U such that the Fourier transform of f̂u(ξ) is rapidly
decreasing in a conic neighbourhood of ξ0 [49, Prop. 2.5.5]. In fact, this definition makes
sense on smooth manifolds as the wavefront set transforms covariantly under a change of
coordinates. Details are available, for instance, in the monograph [50, Chap. VIII] and in the
exposition [88] customised for quantum field theory on curved spacetimes. If u ∈ D′(M ;E)

then WF(u) ⊂ Ṫ ∗M . The twisted wavefront set of a bidistribution A ∈ D′(M ×N ;E ⊠ F ∗)
is given by

WF′(A) := {(x0, ξ
0; y0,−η

0) ∈ Ṫ ∗M × Ṫ ∗N |(x0, ξ
0; y0, η

0) ∈WF(A)},

where F → N is a smooth complex vector bundle over a manifold N . The twisted wavefront
WF′(P ) of the Schwartz kernel of a pseudodifferential operator P is a subset of the diagonal

in Ṫ ∗M × Ṫ ∗M . Then, ES(P ) := {(x0, ξ
0) ∈ Ṫ ∗M |(x0, ξ

0;x0, ξ
0) ∈ WF′(P )} is called the

essential support1 of P . This is the smallest conic set such that P is of order −∞ in Ṫ ∗M \
ES(P ) (see e.g. [51, Prop. 18.1.26]).

Throughout the article, only the polyhomogeneous symbol class Sm (see Definition A.2) will
be used, so ΨDOm (resp. Im) will be the set of pseudodifferential operators (resp. Lagrangian
distributions) having polyhomogeneous total symbols. We will denote by Hs

loc(M ;E), the
space of sections onE that are locally in the Sobolev spaceHs with respect to any smooth chart
and smooth bundle chart. The space of sections in Hs

loc(M ;E) of compact support is denoted
by Hs

c (M ;E). As usual, the space Hs
loc(M ;E) is equipped with the locally convex topology

of convergence locally in Hs(M ;E). The space Hs
c (M ;E) is the union

⋃
K⋐M Hs

c (K;E) and
is equipped with the inductive limit topology, where the union runs over all compact subset
K of M . For details, we refer, for example [51, App. B1].

1.1. Feynman parametrices and propagators. A parametrix which is uniquely charac-
terised by its wavefront set is called a distinguished parametrix [22, Sec. 6.6].

Definition 1.1 (Feynman parametrices). Let (M,g) be a globally hyperbolic spacetime and

Ṫ ∗M, Ṫ ∗
0M → M the punctured cotangent bundle and the lightcone bundle over M , respec-

tively. The Feynman GF and the anti-Feynman GaF parametrices of a normally hyperbolic
operator acting on smooth sections of a vector bundle E → M over M , are parametri-
ces GF, GaF : C∞

c (M ;E) → C∞(M ;E) whose Schwartz kernels satisfy [22, p. 229] (see

1It is also known as the microsupport or wavefront set of a pseudodifferential operator.
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also [76, pp. 541-542])

WF′(GF) ⊂ ∆Ṫ ∗M ∪ C+, WF′(GaF) ⊂ ∆Ṫ ∗M ∪ C−, (2)

where ∆Ṫ ∗M := {(x, ξ;x, ξ) ∈ Ṫ ∗M × Ṫ ∗M} is the diagonal in Ṫ ∗M × Ṫ ∗M ,

C± :=
{
(x, ξ; y, η) ∈ Ṫ ∗

0M × Ṫ
∗
0M |∃s ∈ R≷0 : (x, ξ) = Φs(y, η)

}
(3)

are the forward and backward geodesic relations on Ṫ ∗
0M × Ṫ ∗

0M , and Φs is the "time s"

geodesic flow on T ∗M restricted to Ṫ ∗
0M where s is the flow parameter.

In this exposition, we give a vector bundle version of the classic result by Duistermaat-
Hörmander [22, Thm. 6.5.3] (see also [52, Thm. 26.1.14]) for normally hyperbolic operators.

Theorem 1.2 (Existence and uniqueness of Feynman parametrices). Let E →M be a smooth
complex vector bundle over a globally hyperbolic spacetime (M,g) and � a normally hyperbolic
operator on E. Then, there exist unique (modulo smoothing kernels) Feynman GF and anti-
Feynman GaF parametrices of �. Moreover, for every k ∈ R, GF and GaF extend to continuous
maps from Hk

c (M ;E) to Hk+1
loc (M ;E) with

GF −GaF ∈ I−3/2
(
M ×M,C ′; Hom(E,E)

)
, (4)

where I−3/2
(
M × M,C ′; Hom(E,E)

)
is the space of Lagrangian distributions (see Defini-

tion 2.2) associated to the geodesic relation

C ′ := {(x, ξ; y,−η) ∈ Ṫ ∗
0M × Ṫ

∗
0M |∃s ∈ R : (x, ξ) = Φs(y, η)}, (5)

where Φs is the "time s" geodesic flow on the cotangent bundle restricted to the lightcone bundle
Ṫ ∗
0M →M . Furthermore, GF −GaF is non-characteristic (see Definition C.1) at every point

of C.

A special case of this result for the massive Klein-Gordon operator was given by
Radzikowski [76, Prop. 4.2-4.4] as a direct consequence of [22, Thm. 6.5.3]. Employing
the distinguished global phase function approach of Fourier integrals operators [64], Capoferri
et al. [11, Thm. 5.2] have constructed these parametrices for scalar wave operators with time-
independent smooth potential in spatially compact globally hyperbolic ultrastatic spacetimes.
Recently, Lewandowski [67, Prop. 3.5] has published a direct construction for a real vector
bundle utilising the Hadamard series expansion along with the presentation of [4]. In contrast
to these, our proof is purely microlocal as in the original treatment [22, Thm. 6.5.3]. This
only requires a bundle version of microlocalisation as developed in due course (Theorems 2.10
and 2.11), which is along the lines of Dencker’s [17] proof of propagation of the polarization
sets albeit our presentation is more geometric.

In fact, the following positivity property can be shown.

Proposition 1.3. Let E → M be a smooth complex vector bundle over a globally hyperbolic
spacetime (M,g) and � a normally hyperbolic operator on E. Suppose that E is endowed with
a (non-degenerate) sesquilinear form (·|·) ∈ C∞(E∗ ⊗ E∗) such that � is formally selfadjoint
with respect to (·|·). Then, there exists a Feynman parametrix GF of � such that W :=
− i(GF − Gadv) is formally selfadjoint. Additionally, if (·|·) is positive-definite (hermitian)
then W can be chosen non-negative.

This is essentially a bundle version of that in Duistermaat-Hörmander [22, Thm. 6.6.2]
which was proven by deploying a refined microlocalisation of scalar pseudodifferential opera-
tors [22, Lem. 6.6.4]. We provide such a microlocalisation for � in (71).
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Finally, one can turn the Feynman parametrix GF into a Feynman propagator GF utilising
the well-posedness of the Cauchy problem for � on a globally hyperbolic spacetime.

Theorem 1.4 (Existence of Hadamard bisolutions). Let E →M be a smooth complex vector
bundle over a globally hyperbolic spacetime (M,g) and � a normally hyperbolic operator on
E that is formally selfadjoint with respect to the non-degenerate sesquilinear form (·|·) ∈
C∞(E∗⊗E∗). Then, there exists a Feynman propagator GF for � such that ω := − i(GF−Gadv)
is formally selfadjoint with respect to (·|·). In addition, if (·|·) is hermitian then GF can be
chosen such that ω(ū∗ ⊗ u) ≥ 0 for any u ∈ C∞

c (M ;E). Thus, ω defines a Hadamard state.
Here C∞(M ;E) ∋ u 7→ ū∗ ∈ C∞(M ; Ē∗) is the fibrewise linear mapping induced by (·|·).

Duistermaat-Hörmander [22, p. 229] have actually considered a much wider class of oper-
ators, namely scalar pseudodifferential operators of real principal type on a smooth manifold.
The pivotal step of determining the appropriate smoothing operators required to obtain Feyn-
man propagators from respective parametrices was, however, left open. This indeterminacy
can be fixed in various ways on special spacetimes even in the absence of the timelike Killing
vector field. Such constructions have appeared in the literature on microlocal analysis. For ex-
ample, Gell-Redman et al. [32, Thm. 3.6] have treated the scalar wave operator in spaces with
non-trapping Lorentzian scattering matrices. Vasy has constructed Feynman propagators by
making assumptions on global dynamics for (i) scalar formally selfadjoint operators with real
principal symbol in closed manifolds [92, Thm. 1], and in spaces of Lorentzian scattering ma-
trices for (ii) wave operators in Melrose’s b-pseudodifferential algebraic framework [92, Thm.
7] and (iii) Klein-Gordon operators in Melrose’s scattering pseudodifferential algebraic formal-
ism [92, Thm. 10 and 12]. His idea is to identify the appropriate spaces where these operators
are invertible and then define the Feynman propagators as the inverse of those operators
satisfying the required properties — a generalisation of Feynman’s original "± i ǫ" prescrip-
tion. As a consequence, he has also achieved respective positivity properties for Feynman
parametrices [92, Cor. 5, 9, 11,13], in the same spirit as the ones obtained by Duistermaat-
Hörmander [22, Thm. 6.6.2]. A special case of Theorem 1.4 for the Klein-Gordon operator
minimally coupled to a static electromagnetic potential on a static spacetime has been proven
by Dereziński-Siemssen [18, Thm. 7.7]. In the spirit of the limiting absorption principle, they
have shown that the Feynman propagator can be considered as the boundary value of the
resolvent of the Klein-Gordon operator. Assuming Proposition 1.3 and ideas from [34, Sec.
3.3], Lewandowski [67, Thm. 4.3] has recently given a construction of Hadamard states for
Riemannian vector bundles.

Since the square of any Dirac-type operator is normally hyperbolic, Theorem 1.4 can be
used to show that Hadamard states exist for such an operator whenever the underlying vector
bundle is equipped with a hermitian form. However, the existence of a hermitian inner product
on which Dirac-type operators are formally selfadjoint is rather exceptional. The natural
inner product on spinors on a spacetime is not positive-definite rather indefinite and therefore
the positivity property for Feynman propagators cannot be concluded directly for a Dirac-
type operator on a globally hyperbolic spin-spacetime employing Theorem 1.4. Let

(
E →

M, (·|·)
)

be a vector bundle over a globally hyperbolic (not necessarily spin) spacetime (M,g),
endowed with a sesquilinear form (·|·) and let D be a Dirac-type operator on E that is formally
selfadjoint with respect to this sesquilinear form. Suppose that Σ is a smooth spacelike Cauchy
hypersurface of M and that N is a future-directed unit normal vector field on M along Σ. We
assume that

〈·|·〉 :=
(
σD(N

♭) ·
∣∣ ·
)

(6)
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is a fibrewise hermitian form on E, where σD is the principle symbol of D and ·♭ :
C∞(M ;TM) → C∞(M ;T ∗M) is the unique linear pointwise bijection. We now provide
another construction of Feynman propagators SF for D together with positivity, employing a
direct microlocal decomposition (see (80a)) of the Pauli-Jordan operator for D, in

Theorem 1.5. Let
(
E →M, (·|·), σD

)
be a smooth bundle of Clifford modules over a globally

hyperbolic spacetime (M,g) and D a Dirac-type operator on E that is formally selfadjoint with
respect to the sesquilinear form (·|·). Then, there exists a Feynman propagator SF for D such
that ω := − i(SF − Sadv) is formally selfadjoint. In addition, if there exists a hermitian form
〈·|·〉 on E satisfying (6), then SF can be chosen such that ω is non-negative with respect to
(·|·) and hence defines a Hadamard bisolution of D.

2. Microlocalisation

2.1. Fourier integral operators. Fourier integral operators originated from the study of the
singularities of solutions of hyperbolic differential equations by Lax [66] and in the context
of geometrical optics by Maslov [71]. Their local formulation has been later systematically
developed and globalised in the seminal articles by Hörmander [49] and by Duistermaat and
Hörmander [22] for scalar operators. The vector bundle version is available in Hörmander’s
monograph [52]. In this report, we will adopt a symbolic calculus viewpoint, as described
below.

Let E →M,F → N be two smooth complex vector bundles over smooth manifolds M,N
and let C be a homogeneous canonical relation from the punctured cotangent bundle Ṫ ∗N
of N to that Ṫ ∗M of M . In a nutshell, a Fourier integral operator associated with C is a
continuous linear map from C∞

c (N ;F ) to D′(M ;E) whose Schwartz kernel A is a Lagrangian
distribution [52, Def. 25.2.1]. We will now explain briefly what this means. Suppose that

Λ ⊂ Ṫ ∗M is a smooth, closed and conic Lagrangian submanifold. The space Im(M,Λ) of
Lagrangian distributions of order m ∈ R can be defined with respect to local coordinate
charts. To do this, we first explain the concept of a clean phase function [23, p. 71]. The
reader is referred to the monograph [91, pp. 414-428] for more details.

Definition 2.1. Let M be a smooth manifold and d a natural number not necessarily equal
to the dimension n of M . A real-valued smooth function ϕ on an open conic set U ⊂M × Ṙd,
homogeneous of degree one in θ ∈ Ṙd, is called a clean phase function of excess 0 ≤ e ≤ n if
dϕ 6= 0 and its fibre-critical set

Σ :=
{
(x0; θ

0) ∈ U | gradθϕ (x0; θ
0) = 0

}

is an n+ e-dimensional smooth submanifold of M × Ṙd, whose tangent space is given by the
kernel of d(gradθϕ). The number of linearly independent differentials d(∂ϕ/∂θi), i = 1, . . . , d
is equal to d−e on Σ. The phase function ϕ is called non-degenerate if e = 0 (see e.g. [51, Def.
21.2.15]).

A clean phase function on an open set U ⊂ U × Ṙd where U ⊂ Rn, defines an immersed
conic Lagrangian submanifold Λϕ ⊂ Ṫ

∗U via the homogeneous Lagrangian fibration [23, Lem.
7.1] (see also, e.g. [91, pp. 416-417], [72])

Σ ∋ (x; θ) 7→ (x,dxϕ) ∈ Λϕ. (7)

A Lagrangian distribution u ∈ Im(U,Λϕ) is, by definition, a distribution u ∈ D′(U) locally
given by an oscillatory integral of the form [49, (1.2.1) and Def. 3.2.2] (see also, e.g. [52, Prop.
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25.1.5’], [91, pp. 433-439])

u(x) := (2π)−(n+2d−2e)/4

∫

Rd

eiϕ(x;θ) a(x; θ) dθ, (8)

where dθ is the Lebesgue measure on Rd and a ∈ Sm+(n−2d−2e)/4(U × Ṙd) is a symbol (see
Definition A.1) with support in the interior of a sufficiently small conic neighbourhood of Σ
contained in the domain of definition of ϕ. It then follows that WF(u) ⊂ Λϕ [49, Thm. 3.2.6]
(see also, e.g. [91, Prop. 3.1 (p. 438)]).

As usual, the oscillatory integral is to be understood as a formal expression that does not
make sense for a fixed x rather it defines a distribution in the sense that for any test function
f ∈ C∞

c (U) we have

u(f) = (2π)−(n+2d−2e)/4

∫

Rd

∫

U
eiϕ(x;θ) a(x; θ) f(x) dxdθ.

Definition 2.2. Let E → M be a smooth complex vector bundle over a smooth manifold
M . Suppose that Λ is a smooth, closed and conic Lagrangian submanifold of the punctured
cotangent bundle Ṫ ∗M of M . A distribution u ∈ D′(M ;E) is called an element in the space
Im(M,Λ;E) of Lagrangian distributions of order m ∈ R, if it can be written as

u =
∑

α

uα

with locally finite supp (uα) ⊂ Uα ⊂ M such that the components (u1, . . . , urkE) of uα with
respect to a local chart and a bundle chart are in Im(Uα, Λϕα) with Λϕα ⊂ Λ.

The above of course implies that [52, Lem. 25.1.2]

WF(u) ⊂ Λ (9)

for any u ∈ Im(M,Λ;E). The original definition [49, Sec. 1.4] was based on representations
with non-degenerate phase functions. Subsequently, it has been globalised [49, Def. 3.2.2] and
extended for sections of vector bundles [52, Def. 25.1.1]. We refer to the monographs [52, pp.
4-10], [91, pp. 433-439] for a systematic study.

Remark 2.3. The parametrisation of a generic Lagrangian submanifold, Λϕ = {(x,dxϕ)}
by a phase function ϕ cannot be performed globally due to topological restriction given by
some cohomology class, known as the Maslov class. Furthermore, a phase function does not
uniquely characterise a Lagrangian submanifold, rather one must consider an equivalence class
of phase functions satisfying certain necessary and sufficient conditions, as originally analysed
for non-degenerate phase functions [49, Thm. 3.1.6], albeit it holds true more generally for
clean phase functions.

Technically speaking, let Ũ ⊂ M × Ṙd̃ be an open conic set such that there exists a
diffeomorphism υ : U ∈ (x; θ) 7→ (x; θ̃) ∈ Ũ which is homogeneous with respect to θ of

degree one and fibre-preserving, where θ̃ is a smooth function of (x; θ). Then, ϕ is said to be

(locally) equivalent to a phase function ϕ̃ on Ũ if υ∗ϕ̃ = ϕ [49, p. 134]. If ϕ resp. ϕ̃ are two

clean phase functions in conic neighbourhoods of their fibre-critical points (x0; θ
0) ∈ U × Ṙd

resp. (x0, θ̃
0) ∈ U × Ṙd̃ with the same excess e, then they are equivalent in some open conic

neighbourhoods of these points if and only if [91, Prop. 1.5 (p. 421)]

Σϕ ∋ (x; θ) 7→ (x,dxϕ) = (x,dxϕ̃)← [ (x, θ̃) ∈ Σϕ̃, (10a)

d = d̃, (10b)
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sgn
(
Hessθ ϕ (x; θ)

)
= sgn

(
Hessθ̃ ϕ (x; θ̃)

)
, (10c)

where sgn denotes the signature of the Hessian matrix Hessθ (resp. Hessθ̃) with respect to the

fibre variable θ (resp. θ̃).
When M is compact, the aforementioned obstructions require cohomological and k-

theoretic language to formulate which are somehow tangential to the subject matter. So we
refrain those precise formulae and refer [65] together with the earlier references cited therein.
The non-compact case is still an open issue. Notwithstanding, a global parametrisation can be
achieved, for instance, by an equivalence class of complex-valued non-degenerate phase func-
tions in the particular case whenever conic Lagrangian submanifolds are given by the graphs
of homogeneous symplectomorphisms [64, Lem. 1.2 and 1.7].

In order to define the class of Fourier integral operators, one substitutes the manifold M
by a product manifold M ×N and replaces the Lagrangian submanifold Λ by a homogeneous
canonical relation C ⊂ Ṫ ∗M × Ṫ ∗N which is closed in Ṫ ∗(M × N). In addition, the role
of the vector bundle E will be played by the vector bundle E ⊠ F ∗ → M × N . We will
usually abbreviate E ⊠ F ∗ → M × N by Hom(F,E) when it is clear from the context what
the base manifold is. A Fourier integral operator C∞

c (N ;F ) → D′(M ;E) associated with C,
of order m ∈ R, is defined as the continuous linear mapping whose Schwartz kernel A is an
element in Im

(
M ×N,C ′; Hom(F,E)

)
. As with the wavefront set the “twisted” relation C ′ is

defined by (x, ξ; y, η) ∈ C ′ ⇔ (x, ξ; y,−η) ∈ C. The bidistribution A can be described in local
coordinates as follows. Given a local chart and a local trivialisation, we can locally identify
A with a rkE × rkF -matrix of entries Ar

k ∈ I
m(U × V,C ′

ϕ), where U ⊂ RnM , V ⊂ RnN are
appropriate open subsets and [49, p. 134], [23, Lem. 7.1] (see also, e.g. [72], [51, (21.2.9)])

C ′
ϕ = {(x,dxϕ; y,dyϕ) ∈ Ṫ

∗M × Ṫ ∗N |(x, y; θ) ∈ Σ}, Σ := (gradθϕ)
−1(0) (11)

is a local representative of C, generated by a clean phase function ϕ on U × V × Ṙd with
excess e. By definition,

WF′(A) ⊂ C, WF′(Ar
k) ⊂ Cϕ. (12)

In a small conic neighbourhood of (x0, ξ
0; y0, η

0) ∈ C ′
ϕ, the singularity of Ar

k is described by a
model of the form [52, Prop. 25.1.5’]

Ãr
k(x, y) ≡ (2π)−(nM+nN+2d−2e)/4

∫

Rd

eiϕ(x,y;θ)ark(x, y; θ) dθ (13)

in the sense that in local coordinates (x0, ξ
0; y0, η

0) /∈WF(Ar
k − Ã

r
k).

We list some rudimentary properties of Lagrangian distributions below.

2.1.1. Principal symbol. Loosely speaking, this is the highest order contribution in the as-
ymptotic sense for a Lagrangian distribution A ∈ Im(M,Λ). The concept was introduced
by Hörmander [49, Thm. 3.2.5] for vanishing excess. Subsequently, its generalisation for
non-zero excess was given by Duistermaat and Guillemin [23, Lem. 7.2]. Later, a geometric
description of principal symbol of an arbitrary distribution on a manifold was provided by We-
instein [94, 95] who has also extended Hörmander’s analysis for vector bundles, Im(M,Λ;E).
A compendia of these results is availbale in the monographs [52, pp. 13-16], [91, pp. 439-450]
(see also, e.g. [72]). We start with the notation

Im−[1](. . .) := Im(. . .)/Im−1(. . .).
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The principal symbol map is be defined by the isomorphism [52, Thm. 25.1.9]

σ : Im−[1]
(
M×N,C ′; Hom(F,E)

)
→ Sm+

nM+nN
4

−[1]
(
C;M⊗H̃om(F,E)

)
, [A] 7→

[
σ[A]

]
, (14a)

where H̃om(F,E) → C is the pullback of the bundle Hom(F,E) → M × N to T ∗(M × N)
followed by restriction to C, M → C is the Keller-Maslov bundle (see Appendix B) over

C, and Sm+(nM+nN )/4
(
C;M ⊗ H̃om(F,E)

)
is the M ⊗ H̃om(F,E)-valued symbol space (see

Appendix A) on C. The principal symbol is then given explicitly in local coordinates below.
Since A ≡ (Ar

k), the principal symbol σA is locally identified with the matrix (σA)
r
k. There-

fore, the result in [52, Prop. 25.1.5’, p. 15] for scalar Lagrangian distributions translates to
vector bundles as

(σA)
r
k(x, ξ; y, η) :=

√
|dx||dξ|

∫

Cξ,η

a
r
k(x, y; θ

′, θ′′)
ei πsgn(Hessx,y;θ′ ϕ)/4

√
|det(Hessx,y;θ′ ϕ)|

dθ′′

mod Sm+
nM+nN

4
−1(Cϕ;Mϕ), (14b)

where ark is the top-order homogeneous term of a in (13), Hessx,y;θ′ ϕ is the Hessian of the
phase function ϕ parametrising Cϕ := (11), and Cξ,η := {(x, y; θ) ∈ Σ|dxϕ := ξ,dyϕ := η}
is the e-dimensional fibre over the corresponding homogeneous Lagrangian fibration Σ ∋
(x, y; θ) 7→ (x,dxϕ; y,dyϕ) ∈ C

′
ϕ. Here, dθ′′ is the Lebesgue measure on Ṙe and the variable

θ′′ is defined by the splitting2 Ṙd ∈ θ = (θ′, θ′′) ∈ Ṙd−e × Ṙe such that the projection Cξ,η ∋

(x, y; θ′, θ′′) 7→ θ′′ ∈ Ṙe has a bijective differential so that, for a fixed θ′′ = cst, ϕ(x, y; θ′, cst)
is non-degenerate.

2.1.2. Adjoint. To describe the adjoint of a Fourier integral operator we recall some standard
notions from linear algebra for our setup. Let E∗ →M be the dual vector bundle of E →M
and let x be any point in M . Then, Ēx is the complex conjugate of the vector space Ex,
defined as the set of all conjugate-linear maps from E∗

x to C and the identity Ex → Ēx is
conjugate-linear.

A Fourier integral operator A : C∞
c (N ;F ) → C∞(M ;E) has a unique formal adjoint in

the sense that, there exists a unique Fourier integral operator Ā∗ : C∞
c (M ; Ē∗)→ C∞(N ; F̄ ∗)

with the property ∫

N
(Ā∗φ)(y) v(y) :=

∫

M
φ(x) (Av)(x) (15)

for any φ ∈ C∞
c (M ; Ē∗) any v ∈ C∞

c (N ;F ). If C−1 denotes the inverse relation of C obtained
by interchanging T ∗M and T ∗N then its Schwartz kernel and principal symbol are given
by [52, Thm. 25.2.2]

Ā∗ ∈ Im
(
N ×M,C−1′; Hom(Ē∗, F̄ ∗)

)
, (16a)

σ[Ā∗] = s
∗(σ[A]

∗) ∈ Sm+
nM+nN

4
−[1]
(
C−1;MC−1 ⊗ H̃om(Ē∗, F̄ ∗)

)
, (16b)

where s : N ×M →M ×N is the interchanging map and MC−1 → C−1 is the Keller-Maslov
bundle over C−1. In any orthonormal frames of E and F , this yields

Ak
r (y, x) ≡ (2π)−(nM+nN+2d−2e)/4

∫

Rd

e− iϕ(y,x;θ)ākr (y, x; θ) dθ (17)

2Such a splitting is always possible due to the Thom splitting (also known as the parametrised Morse)
lemma (see e.g. [51, App. C. 6]).
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whenever A is given by (13), where as before ≡ means modulo smoothing kernels.

2.1.3. Algebra of Fourier integral operators. A necessary assumption for the product (com-
position) of two Fourier integral operators to be well-defined is that the first operator must
be properly supported. Then the defined composition may, however, still fail to be a Fourier
integral operator. For instance, the composition of two canonical relations does not necessarily
have the required properties to define another Fourier integral operator. In order to have a
well-defined product that is again a Fourier integral operator, we are obliged to assume that
their Schwartz kernels (Lagrangian distributions) are properly supported and the composition
of canonical relations is clean, proper and connected [93, Sec. 4.1], [23, Thm. 5.4] (see also,

e.g. [51, Thm. 21.2.14], [91, Def. 5.2 (p. 458)]). Given a complex vector bundle F̃ → Ñ over

a manifold Ñ , if A ∈ Im
(
M × Ñ , C ′; Hom(F̃ , E)

)
and B ∈ Im

′(
Ñ ×N,Λ′; Hom(F, F̃ )

)
with

the required restrictions, then [52, Thm. 25.2.3] (see also, e.g. [91, Thm. 5.3 (p. 461)])

AB := A ◦B ∈ Im+m′+e/2
(
M ×N, (C ◦ Λ)′; Hom(F,E)

)
, (18)

where e is the excess of the clean composition C ◦ Λ and its principal symbol is given by

σAB = σA ⋄ σB. (19)

The symbol ⋄ is to be understood as follows. One obtains the exterior tensor product σA⊠σB

followed by intersecting with the diagonal. Then the resulting quantity is integrated over the
compact e-dimensional fibre F(x,ξ;y,η) over (x, ξ; y, η) ∈ C ◦Λ. Finally, the endomorphism trace
is taken of the hindmost expressed.

The space of Fourier integral operators is not an algebra unless the canonical relation is
symmetric and transitive [41, Ex. 1 and comment on it in the following page]. In case, the
composition of the canonical relation C by itself is clean with excess zero, proper and connected
the space of Fourier integral operators

(
I•(M×M,C ′; Hom(E,E)), ◦

)
is an associative graded

algebra over the field C. The composition (19) of principal symbols constitutes a product which
is commutative only in the scalar case but non-commutative in general. We remark that the
product formula (19) becomes simpler (see (88)) when both C and Λ are graphs of some
homogeneous symplectomorphisms. The product is then always defined; see Appendix B for
details.

2.2. Connections and the subprincipal symbols of pseudodifferential operators.

The first important observation is that the subprincipal symbol of a pseudodifferential oper-
ator with scalar principal symbol transforms like a (partial-) connection 1-form under change
of bundle charts (see e.g. [58, Prop. 3.1]). This is perhaps not surprising given that the
subprincipal symbol appears as a constant term in transport equations. Connections that
are naturally defined from transport equations have appeared first in the work of Dencker
on propagation of polarization sets [17, p. 365-366]. They are often referred to as Dencker
connections in the mathematical physics literature. For the Maxwell system, Dencker found
that this connection equals to the Levi-Civita connection. For the spin-Dirac operator, it
was verified, for example, in [53] that the Dencker connection is indeed the spin-connection.
We will now explain the precise relation between geometrically defined connections and the
parallel transport induced by the subprincipal symbol in a systematic way.
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For a scalar P ∈ ΨDOm(M), the subprincipal symbol σsubP is a well defined function on

Ṫ ∗M , given by [22, (5.2.8) and Prop. 5.2.1] (see also, e.g. [51, Thm. 18.1.33 and (18.1.33′)])

σsubP = pm−1 +
i

2

∂2σP

∂xi∂ξi
, i = 1, . . . , n, (20)

where σP is the principal symbol and pm−1 is the next (cf. Definition A.2) to the leading
order homogeneous term in the total symbol of P when expressed as an operator acting on
halfdensities. If P ∈ ΨDOm(M ;E) then it can be locally represented by a rkE × rkE-
matrix of pseudodifferential operators, if we fix a local bundle frame (e1, . . . , erkE) of E. The
subprincipal symbol of P is then defined with respect to this local frame as the rkE × rkE-
matrix-valued function on Ṫ ∗M given by the subprincipal symbols of the elements of the
matrix representing P . We will see below that under a change of bundle frames, this matrix will
transform like a connection 1-form along the Hamiltonian vector field in the sense explained
below.

Let us summarise the transformation properties of the subprincipal symbol. In case P ∈
ΨDOm(M ;E),m ∈ R has a scalar principal symbol and Q ∈ ΨDOs(M ;E), s ∈ R properly
supported, we have the following multiplication formula [23, (1.4)]

σsubPQ = σsubP σQ + σP σ
sub
Q +

1

2 i
XP (σQ), (21)

where XP = {σP , ·} is the Hamiltonian vector field generated by the principal symbol σP of
P . We also have [23, (1.3)]

σsub
Pk = k σk−1

P σsubP (22)

for any k ∈ N. Moreover, if P is elliptic and Q is a parametrix of P , then we have

σsubQ = −σ−2
P σsubP (23)

and in this sense the above formula also holds for any negative integer k.
Now, let us show that the subprincipal symbol indeed has the claimed transformation prop-

erty under a change of bundle charts. In fact we show a microlocal version of this statement
(see also [47]).

Proposition 2.4. Let M be a manifold and let m, s ∈ R, N ∈ N. Assume
P ∈ ΨDOm(M,Mat(N)) having a scalar principal symbol σP . Suppose that Q ∈
ΨDOs(M,Mat(N)) is non-characteristic at some (x0, ξ

0) ∈ Ṫ ∗M and that Q̃ ∈
ΨDO−s(M,Mat(N)) is a microlocal parametrix for Q in an open conic neighbourhood U of

(x0, ξ
0). Then the subprincipal symbol of Q̃PQ is

σsubQ̃PQ(x, ξ) = (σ−1
Q σsubP σQ)(x, ξ)− i

(
σ−1

Q XP (σQ)
)
(x, ξ)

for any (x, ξ) ∈ U , where XP is the Hamiltonian vector field generated by σP .

Proof. First note that (x0, ξ
0) /∈ ES(Q̃PQ− P − Q̃[P,Q]). Since P has a scalar principal

symbol, the order of [P,Q] is m + s − 1, and hence the order of Q̃[P,Q] is m − 1. Thus,
σsub

Q̃PQ
= σsubP + σQ̃[P,Q] on U . It remains to compute the principal symbol of [P,Q]. Since the

principal symbol of P is scalar-valued, we obtain the commutator relation (see e.g. [58, (14)])

σ[P,Q] = − i{σP , σQ}+ [σsubP , σQ], (24)

as a consequence of the multiplication formula (21). Therefore, on U , we get σQ−1[P,Q] =

− iσ−1
Q {σP , σQ}+ σ−1

Q σPσQ − σP and the result follows. �



14 O. ISLAM AND A. STROHMAIER

Let P ∈ ΨDOm(M,Mat(N)), Q ∈ ΨDOm′

(M,Mat(N)), R ∈ ΨDOm′′

(M,Mat(N)) be
properly supported. Then, an application of the product formula (21) yields

σsubPQR = σsubP σQσR + σPσ
sub
Q σR + σPσQσ

sub
R

+
1

2 i

(
σP{σQ, σR}+ {σP , σQ}σR +

∂σP

∂xi
σQ

∂σR

∂ξi
−
∂σP

∂ξi
σQ

∂σR

∂xi

)
(25)

If P and Q have scalar principal symbols then σsubQPQ = 2σPσQσ
sub
Q + σ2Qσ

sub
P . This entails the

following result.

Proposition 2.5. Let M be a manifold and let m, s ∈ R, N ∈ N. Suppose that P ∈
ΨDOm(M,Mat(N)), Q ∈ ΨDOs(M,Mat(N)) having scalar principal symbols and that Q has
vanishing subprincipal symbol. Then σsubQPQ = σ2Q σ

sub
P .

Definition 2.6. Let E →M be a smooth complex vector bundle over a manifold M and let
P ∈ ΨDOm(M ;E),m ∈ R. A connection ∇E on E will be called P -compatible if and only if

Γ
(
(dxπ)XP

)
(x, ξ) = i σsubP (x, ξ)

for all (x, ξ) ∈ Char(P ), where σsubP resp. Char(P ) are the subprincipal symbol resp. the

characteristic set of P , Γ is the connection 1-form of ∇π∗E and π : Ṫ ∗M → M is the punc-
tured cotangent bundle. In other words, a P -compatible connection ∇E indices the covariant
derivative

∇π∗E
XP

= XP + Γ
(
(dπ)XP

)

on the bundle π∗E → Ṫ ∗M along the Hamiltonian vector field XP generated by the principal
symbol of P .

This definition makes sense because both quantities, Γ and σsubP have the same transforma-
tion law under change of bundle frames as shown in Proposition 2.4. Hence XP + i σsubP has
an invariant meaning.

Proposition 2.7. Let E → M be a smooth complex vector bundle over a manifold M and
m, s ∈ R. Suppose that P ∈ ΨDOm(M ;E) has a scalar principal symbol σP and that ∇E

is a P -compatible connection. Assume that Q ∈ ΨDOs(M ;E) has a scalar principal symbol.
Assume further that for every point in M there is an open neighbourhood and a local trivialisa-
tion of E such that Q has vanishing subprincipal symbol with respect to this local trivialisation.
Then ∇E is QPQ-compatible.

Proof. We fix one bundle frame to check this. Define P̃ = QPQ. Then XP̃ = {σP̃ , ·} =

{σ2Q σP , ·} = σ2Q{σP , ·} + 2σP σQ{σQ, ·}. When restricted to covectors in Char(P ) this equals

σ2Q{σP , ·} = σ2QXP . Hence, on Char(P ) we have

∇π∗E
XP̃
−XP̃ = σ2Q

(
∇π∗E

XP
−XP

)
= iσ2Q σ

sub
P = i σsubQPQ = i σsubP̃

as an application of Proposition 2.5. �

The main observation is now that the Weitzenböck connection defined by � is compatible
with this operator in the above sense.

Theorem 2.8. Let E →M be a smooth complex vector bundle over a spacetime (M,g). Sup-
pose that � is a normally hyperbolic operator on E and that ∇E is the Weitzenböck connection.
Then ∇E is �-compatible.
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Proof. Since the potential V in (1) is of order zero, it does not contribute to the subprin-
cipal symbol. We will check compatibility in a local frame (e1, . . . , erkE). In local co-
ordinates (xµ), µ = 1, . . . , n, one has ∇E

µ = ∂µ + Γµ where Γ is the connection 1-form

of the Weitzenböck connection: ∇E
µ ei = Γj

µiej . The Weitzenböck formula (1) then reads

− trg
(
∇T ∗M⊗E ◦∇E

)
+ V = −gµν∇E

µ∇
E
ν + gµνΓLC ρ

µν∂ρ +V1 for some potential V1 and where

ΓLC is the Levi-Civita connection. This expression is the formula for the operator acting on
functions. The formula (20) for the subprincipal symbol needs to be applied to the full symbol
of the operator acting on halfdensities. Since we have the canonical Lorentzian volume form√
|det g|dx1 ∧ . . .∧ dxn on M , the formula for � on halfdensities in local coordinates is given

by

|det g|
1
4 � |det g|−

1
4 = −gµν∇E

µ∇
E
ν −

∂gµν

∂xµ
∂ν + V2 (26)

for some potential V2. Using this representation, we see that the subprincipal symbol of � is

σsub
�

(x, ξ) = −2gµνΓµξν . (27)

The Hamiltonian vector field of the principal symbol of � in local coordinates is given by

X� = 2gµνξµ
∂

∂xν
−
∂gµν

∂xα
ξµξν

∂

∂ξα
. (28)

Hence, (dxπ)X� = 2gµνξµ∂xν and we can see that Γ
(
(dxπ)X�)

)
= 2gµνΓµξν = iσsub

�
(x, ξ). �

As a simple application of this theorem and Proposition 2.7 we have

Corollary 2.9. Let E → M be a smooth complex vector bundle over a spacetime (M,g).

Suppose that � is a normally hyperbolic operator on E and that Q ∈ ΨDO−1/2(M ;E) is
properly supported with a scalar principal symbol. Assume that for each point in M , there is
an open neighbourhood over which E admits a local trivialisation such that the subprincipal
symbol of Q vanishes with respect to this local trivialisation. Then ∇E is Q�Q-compatible,
i.e., the Weitzenböck connection is compatible with the first-order operator Q�Q.

2.3. Microlocal conjugate of a normally hyperbolic operator. Two pseudodifferential
operators are called microlocally conjugate if they can be conjugated to one another by an
elliptic Fourier integral operator once they have been appropriately localised in cotangent
space. The key point is that under some natural assumptions any first-order pseudodiffer-
ential operator can be microlocally conjugated to a vector field. This is originally due to
Duistermat-Hörmander [22, Prop. 6.1.4] for scalar operators of real principal type, which has
been extended to vector bundles by Dencker [17] who formulated microlocal conjugate of a
system of classical pseudodifferential operators locally of real principal type. More precisely,
Dencker transformed the system of operators to a scalar pseudodifferential operator P (mod-
ulo smoothing operators) with vanishing subprincipal symbol by conjugating with a system
of elliptic pseudodifferential operators. Then, he depicted the microlocal conjugation of P
with D1 := − i1Mat(N)∂1 by appropriate elliptic Fourier integral operators associated with
the graph of a symplectomorphism locally connecting Char(P ) to Char(D1).

In this section, we will explain microlocalisation in an intrinsic geometric language and
present Dencker’s result in a slightly more general form. Let us now consider compactly sup-
ported complex-matrix valued smooth functions C∞

c

(
Rn,CN

)
on Euclidean space Rn and let
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D1 : C∞
c

(
Rn,CN

)
→ C∞

c

(
Rn,CN

)
. We will show now that any first order pseudodifferen-

tial operator P of real principle type on E having a scalar principal symbol is microlocally
conjugate to D1 in the sense of (30c) in the theorem below.

U U ′

π∗Hom(E,E)U Mat(N)

κ

σP

κ̂

σD1

C∞
c (M ;E) C∞

c (Rn,CN )

C∞
c (M ;E) C∞

c (Rn,CN )

B

P

B̃

D1

Figure 1. A schematic diagram of microlocalisation. The diagram on the
right commutes in a microlocal sense near the point (x0, ξ

0) and the map κ̂ is
defined by σP = κ̂(σD1

) = σB ◦ σD1
◦ σB̃.

Theorem 2.10 (Microlocalisation). Let E → M be a smooth complex vector bundle of rank
N over an n-dimensional manifold M . Suppose that P ∈ ΨDO1(M ;E) is a properly supported
first-order pseudodifferential operator on E with real scalar principal symbol σP such that:

(a) σP (x0, ξ
0) = 0 for some element (x0, ξ

0) in the punctured cotangent bundle Ṫ ∗M and
(b) the Hamiltonian vector field XP of σP and the radial direction are linearly independent

at (x0, ξ
0).

Then for any m ∈ R, there exist

(i) a homogeneous symplectomorphism κ from an open conic neighbourhood U ′ of

(0, η1dy
1) in Ṫ ∗Rn to an open conic coordinate chart

(
U , (x1, . . . , xn; ξ1, . . . , ξn)

)
of

(x0, ξ
0) in Ṫ ∗M such that

κ∗σP = ξ11Hom(E,E) (29)

and
(ii) properly supported Lagrangian distributions B ∈ Im

(
M × Rn, Γ ′; Hom(CN , E)

)
and

B̃ ∈ I−m
(
Rn ×M,Γ−1′; Hom(E,CN )

)
so that BB̃, B̃B both are zero-order pseudodif-

ferential operators and

WF′(B) ⊂ U(x0,ξ0;0,η1dy1), WF′(B̃) ⊂ U ′
(0,η1dy1;x0,ξ0)

, (30a)

(x0, ξ
0) /∈ ES(BB̃ − IE), (0, η1dy

1) /∈ ES(B̃B − I), (30b)

(x0, ξ
0) /∈ ES(BD1B̃ − P ), (0, η1dy

1) /∈ ES(B̃PB −D1), (30c)

where Γ is the graph of κ, D1 := − i1Mat(N)∂/∂y
1 : C∞

c (Rn,CN )→ C∞
c (Rn,CN ), and

U(x0,ξ0;0,η1dy1) resp. U ′
(0,η1dy1;x0,ξ0)

are small conic neighbourhoods of (x0, ξ
0; 0, η1dy

1) ∈

Ṫ ∗M × Ṫ ∗Rn resp. (0, η1dy
1;x0, ξ

0) ∈ Ṫ ∗Rn × Ṫ ∗M .

In addition, if m = 0 and E →M is endowed with a sesquilinear form (·|·) with respect to

which P is formally selfadjoint then B̃ can be chosen as the adjoint of B provided that CN is
endowed with a standard sesquilinear form of the same signature as (·|·).

In case, m = 0 and E → M is equipped with a P -compatible connection ∇E then the
principal symbols of B resp. B̃ can be chosen 1 near (x0, ξ

0; 0, η1dy
1) resp. (0, η1dy

1;x0, ξ
0)

with respect to a frame that is parallel along XP .
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Whenever,
(
E → M, (·|·),∇E

)
is a vector bundle with a P -compatible connection ∇E and

a sesquilinear form (·|·) such that P is formally selfadjoint with respect to (·|·), and m = 0,
then we can choose B such that the principal symbol of B equals 1 near (x0, ξ

0; 0, η1dy
1) with

respect to a frame that is unitary and parallel along XP , and B̃ = B∗.

A schematic of this notion has been portrayed in Figure 1.

Proof. We will prove the proposition imitating the strategy used for the scalar version [22,
Prop. 6.1.4 and Lem. 6.6.4] (see also [52, Prop. 26.1.3]). The existence of κ satisfying (29) is
guaranteed by a homogeneous Darboux theorem [22, Lem. 6.6.3] (see also [51, Thm. 21.3.1])

which prerequisites our hypotheses (a) and (b). Suppose that b ∈ Sm
(
Γ ;M ⊗ H̃om(CN , E)

)

has an inverse in a conic neighbourhood of (x0, ξ
0; 0, η1dy

1) ∈ Γ . Then we can obtain a
properly supported B1 ∈ I

m
(
M × Rn, Γ ′; Hom(CN , E)

)
such that WF′(B1) ⊂ U(x0,ξ0;0,η1dy1)

and B1 is non-characteristic (see Definition C.1) at (x0, ξ
0; 0, η1dy

1) from the construction
given in Appendix B.

By Theorem C.2, there exists a unique microlocal parametrix B̃1 ∈ I−m
(
Rn ×M,Γ−1′;

Hom(E,CN )
)

such that (30b) is satisfied . Since B1 and B̃1 have reciprocal principal symbols

to each other on U(x0,ξ0;0,η1dy1), B̃1PB1 has the principal symbol η11Mat(N) on U ′ due to (29)
and the Egorov Theorem D.1. Furthermore

(0, η1dy
1) /∈ ES(B̃1PB1 −D1 −Q), (31)

for some Q ∈ ΨDO0(Rn,Mat(N)).

To find the operators B and B̃ with the claimed properties, we construct properly supported
elliptic B2, B̃2 ∈ ΨDO0(Rn,Mat(N)) such that (recall, ≡ means modulo smoothing operators)

B̃2B2 ≡ I, (32)

B̃2(D1 +Q)B2 ≡ D1, (33)

and we set B := B1B2 and B̃ := B̃2B̃1. Then (32) and (33) together with (31) imply

(0, η1dy
1) /∈ ES(B̃2(B̃1B1 − I)B2) = ES(B̃B − I),

(0, η1dy
1) /∈ ES(B̃2(B̃1PB1 −D1 −Q)B2) = ES(B̃PB −D1),

which proves the second half of (30b) and (30c), and the first half follows immediately after

we multiply from left and right by B and by B̃.
It therefore remains to construct B2 and B̃2 such that (32) and (33) hold. By the

existence of a parametrix (see e.g. [51, Thm. 18.1.24]), for every elliptic operator B2 ∈
ΨDO0(Rn,Mat(N)) there exists B̃2 ∈ ΨDO0(Rn,Mat(N)) such that B̃2B2 − I and B2B̃2− I
are smooth. Multiplying (33) by B2 from the left we arrive at the equivalent condition for (33)
that

[D1, B2] ≡ −QB2 (33′)

for some elliptic B2. We will now construct a solution of (33′) order by order, starting with
the principal symbol. The principal symbol of (33′) vanishes provided

− i
{
σD1

, σB2

}
+ σQσB2

= 0, (34)

as the the subprincipal symbol of D1 vanishes; cf. (24). If q is the principal symbol of Q, then
the preceding equation yields

∂b0
∂y1

= − i qb0 (35)
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for the principal symbol b0 of B2. This is a first-order differential equation, hence a unique
solution exists, given the initial condition b0(y

1 = 0, ·) = 1CN and this solution depends
smoothly on q. By construction, b0(y, η) is homogeneous of degree zero and det(b0(y, η)) is
non-vanishing. Therefore b−1

0 exists and is homogeneous of degree zero. Defining a prop-
erly supported B2,0 ∈ ΨDO0(Rn,Mat(N)) with homogeneous principal symbol b0, we now

successively construct B2,k ∈ ΨDO−k(Rn,Mat(N)) so that, for every k ∈ N:

[D1, B2,0 + . . .+B2,k] +Q(B2,0 + . . .+B2,k) = Rk+1 ∈ ΨDO−(k+1)(Rn,Mat(N)). (36)

This is equivalent to the corresponding homogeneous principal symbols bk of B2,k and rk of
Rk of degree −k, to satisfy

− i
∂bk
∂y1

+ qbk = −rk. (37)

This equation can be solved by the Duhamel principle and the solution reads

bk(y, η) = − i b0(y, η)

∫ y1

0
b−1
0 (t, y2, . . . , yn; η) rk(t, y

2, . . . , yn; η) dt. (38)

Then, using asymptotic summation of the symbols of B2,k (see Definition A.2), we can now
construct an operator B2 satisfying (33′).

The case when P is formally selfadjoint:

We are going to prove that the operators B and B̃ can be chosen microlocally unitary in
case P is formally selfadjoint with respect to (·|·). We endow the space C∞

c (Rn,CN ) with a
standard sesquilinear scalar product of the same signature as (·|·). The operator D1 is then
formally selfadjoint. Futhermore, we make the choice m = 0. Acting with B ∈ I0

(
M ×

Rn, Γ ′; Hom(CN , E)
)

from the left of (30c) gives the equivalent microlocal conjugate relation
between

(x0, ξ
0; 0, η1dy

1) /∈WF′(PB −BD1) (39)

P and D1. Taking its adjoint we have (0, η1dy
1;x0, ξ

0) /∈ WF′(B∗P −D1B
∗) where B∗ ∈

I0
(
Rn ×M,Γ−1′; Hom(E∗,CN )

)
and consequently

(0, η1dy
1) /∈ ES(B∗PB −D1B

∗B),

(0, η1dy
1) /∈ ES(B∗PB −B∗BD1).

Thus (0, η1dy
1) /∈ ES([B∗B,D1]) and B is non-characteristic at (0, η1dy

1). Now the operator
B∗B is a pseudodifferential operator and since iD1 is differentiation with respect to y1, the
total symbol of the commutator [B∗B,D1] is the − i times the y1-derivative of the total symbol
of B∗B. Thus, on the the level of symbols, the above implies that the total symbol of B∗B is
the sum of a term independent of y1 and a term that is rapidly decaying in a conic neighbour-
hood U ′ of (0, η1dy

1). It is bounded below on U ′ because of the ellipticity of B∗B there. By
Proposition F.2, one can find a selfadjoint properly supported Ψ ∈ ΨDO0(U ′,Mat(N)) whose
principal symbol is the same as that of B and such that

(0, η1dy
1) /∈ Char(Ψ), (41a)

(0, η1dy
1) /∈ ES(Ψ∗Ψ −B∗B), (41b)

(0, η1dy
1) /∈ ES([Ψ,D1]), (41c)

where U ′ is the projection of U ′ on Rn. Note that Proposition F.2 (stated for operators acting
on the same bundle) can be used only in a local trivialisation of E by an orthonormal frame
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that identifies the fibre of E with CN in such a way that the sesquilinear forms are identified.
It is at this stage that we must require the sesquilinear forms to have the same signature.
Here, the last property follows from the fact that the construction of the full symbol of Ψ
in Proposition F.2 involves only multiplication and asymptotic summation of symbols. The
property of a symbol being a sum of two terms, one independent of y1 and another rapidly
decaying on U ′, is preserved under these operations. The full symbol of Ψ is therefore also of
this form.

The ellipticity (41a) entails a unique microlocal parametrix Φ for Ψ . In other words, there
exists a properly supported Φ ∈ ΨDO0(U ′,Mat(N)) such that

(0, η1dy
1) /∈ Char(Φ), (42a)

(0, η1dy
1) /∈ ES(ΦΨ − I)⇔ (0, η1dy

1) /∈ ES(ΨΦ− I). (42b)

Note, (42a), (41b) and (41c) imply that

(0, η1dy
1) /∈ ES(Φ∗Ψ∗ΨΦ− Φ∗B∗BΦ),

(0, η1dy
1) /∈ ES(Φ[Ψ,D1]Φ).

This, accounting (42b) entails that

(0, η1dy
1) /∈ ES(I − (BΦ)∗BΦ),

(0, η1dy
1) /∈ ES([Φ,D1]),

which completes the proof since (x0, ξ
0; 0, η1dy

1) /∈ WF′(B[D1, Φ]) and therefore with
B8 := BΦ we have (x0, ξ

0; 0, η1dy
1) /∈WF′(PB8 −B8D1).

The case of connection P -compatibility:

We assume that ∇E is P -compatible. Since the construction of the symbols of B and B̃ are
local, we can fix a local frame and local coordinates. We will reduce the general situation to
the case when the subprincipal symbol of P vanishes near (x0, ξ

0).

(i) The case of vanishing subprincipal symbol : We assume that P is given in local coordi-
nates with respect to some bundle frame and that in this frame σsubP = 0 near (x0, ξ

0).

Let P̃ be a scalar operator with the same principal symbol as P and with vanishing
subprincipal symbol. Using Weyl-quantisation, the operators B1 and B̃1 can be con-
structed in such a way that Egorov’s theorem holds up to the subprincipal symbol
level [86, Thm. 1]. We can choose these operators in this fashion that their principal

symbols are constant 1 and that the subprincipal symbol of B̃1P̃B1 (resp. B1D1B̃1)
vanishes near (0, η1dy

1) (resp. (x0, ξ
0)). We will now use the same construction as

before starting with B1 and B̃1. Then the principal symbol q of the remainder term Q
vanishes. The construction of B2 and B̃2 then yields operators with total symbols that
are scalar and constant principal symbols equal to 1. We conclude that, in case the
subprincipal symbol of P vanishes near (x0, ξ

0), the operators B and B̃ can be chosen
as scalar operators with principal symbols that are constant along the flow lines of XP

and XD1 .
(ii) The case of non-vanishing subprincipal symbol : We will microlocally transform P

to a scalar pseudodifferential operator P̃ . To be specific, for any properly supported
P̃ ∈ ΨDO1(M), we want to have a B̂ ∈ ΨDO0(M ;E) such that B̂ is non-characteristic

at (x0, ξ
0) and (x0, ξ

0) /∈ ES(PB̂ − B̂P̃ I). We construct this operator locally and
therefore fix a local frame for the bundle E near the point x0. In the pullbacked bundle
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π∗E → Ṫ ∗M , we can also construct a local frame that is parallel along XP with respect
to ∇π∗E

XP
. This local parallel frame is constructed by choosing a local transverse to XP

and use the original frame on this transverse. Parallel transport along the flow lines
of XP then gives the desired frame. The change of frame matrix from the original
frame to the parallel frame is then a local section b of Hom(π∗E, π∗E) → Ṫ ∗M . By
construction, this frame is homogeneous of degree zero. We now choose an elliptic zero-
order pseudodifferential operator B̂ whose principal symbol σB̂ equals b on U . Let B̌
be a parametrix for B̂. The subprincipal symbol of B̌P B̂ equals − iXPσB̂ + [σsubP , σB̂]
on U , using (24). By P -compatibility, this is exactly the formula for the connection 1-
form in the parallel local bundle frame and it therefore vanishes. By Proposition 2.4,
this is precisely the formula for the subprincipal symbol of B̌P B̂ on U and hence,
P̃ ≡ B̌P B̂ has a vanishing subprincipal symbol on U .

This reduces the problem to the case of vanishing subprincipal symbol discussed
earlier and let B3 and B̃3 are the corresponding scalar Fourier integral operators. This
means B and B̃ are of the form B := B̂B3 and B̃ := B̃3B̌. Since the principal symbol
of B̂ is the transition function to a parallel frame and B3 is a scalar operator, these
imply that the principal symbols of B and B̃ can be chosen 1 with respect to a parallel
frame along XP .

The case of selfadjoint P with connection P -compatibility:

Finally, suppose that P is formally selfadjoint with respect to (·|·) and that ∇E is P -

compatible. The above construction of B̂ can be repeated using an orthonormal frame of
E and another orthonormal frame of π∗E that is parallel along XP . One obtains an operator
that has principal symbol 1 near (x0, ξ

0) with respect to the parallel orthonormal frame. Now
one repeats the construction of Ψ as before and note that the principal symbol can be kept as
1 in that way to turn B into a microlocally unitary operator in the sense that B̃ = B∗ with
the desired properties. �

We will now show microlocalisation of � as a consequence of the preceding result by re-
placing the generic manifold M by a Lorentzian (not necessarily globally hyperbolic) manifold
(M,g). In particular, the role of the characteristic point (x0, ξ

0) of P in Theorem 2.10 (a) will
be played by any lightlike covector on (M,g) and thus, the integral curves of XP on Char(P )
are actually lightlike geodesics on the cotangent bundle (cf. (28)).

Theorem 2.11. Let E → M be a smooth complex vector bundle of rank N over an n-
dimensional Lorentzian manifold (M,g) and � : C∞

c (M ;E) → C∞
c (M ;E) a normally hy-

perbolic operator. Denote by ∇E, the Weitzenböck connection associated with � and by
Γ , the graph of the homogeneous symplectomorphism from an open conic neighbourhood U ′

of (0, η1dy
1) in Ṫ ∗Rn to an open conic coordinate chart

(
U , (x, ξ)

)
centered at any light-

like covector (x0, ξ
0) on (M,g). Then, for any m ∈ R, one can find properly supported

Lagrangian distributions A ∈ I−1/2+m
(
M × Rn, Γ ′; Hom(CN , E)

)
and Ã ∈ I−1/2−m

(
Rn ×

M,Γ−1′; Hom(E,CN )
)

so that AÃ, ÃA both are pseudodifferential operators of order −1 and

WF′(A) ⊂ U(x0,ξ0;0,η1dy1), WF′(Ã) ⊂ U ′
(0,η1dy1;x0,ξ0)

, (45a)

(x0, ξ
0) /∈ Char(AÃ), (0, η1dy

1) /∈ Char(ÃA), (45b)

(0, η1dy
1) /∈ ES(Ã�A−D1). (45c)
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Here, Char(AÃ) is the characteristic set of AÃ, D1 = − i1Mat(N)∂/∂y
1 : C∞

c

(
Rn,CN

)
→

C∞
c

(
Rn,CN

)
, and U(x0,ξ0;0,η1dy1) resp. U ′

(0,η1dy1;x0,ξ0)
are small conic neighbourhoods of

(x0, ξ
0; 0, η1dy

1) ∈ Ṫ ∗M × Ṫ ∗Rn resp. (0, η1dy
1;x0, ξ

0) ∈ Ṫ ∗Rn × Ṫ ∗M .
In addition, if m = 0 and E → M is endowed with a sesquilinear form (·|·) with respect

to which � is formally selfadjoint then A can be chosen as a scalar operator with respect to a
unitary bundle frame that is parallel along the geodesic flow and microlocally A = Ã∗ if CN is
endowed with a standard sesquilinear form of the same signature as (·|·).

Proof. The strategy is, as usual, to reduce � to a first-order operator so that Theorem 2.10
can be applied. To do so, choose a properly supported elliptic formally selfadjoint pseudodif-
ferential operator L on E of order −1/2 having a homogeneous scalar principal symbol l. This
operator is chosen such that near each point in M there exists a local trivialisation of E such
that the subprincipal symbol of L vanishes with respect to this trivialization. Such an opera-
tor always exists, as it can be constructed locally and then patched to a global operator using
a suitable partition of unity. Then L�L is a first-order pseudodifferential operator whose
principal symbol l2(x, ξ) g−1

x (ξ, ξ)1End(E) vanishes on (x0, ξ
0). By Theorem 2.8 and Corol-

lary 2.9, ∇E is compatible with both � and L�L, respectively. Therefore the hypotheses of
Theorem 2.10 are satisfied and we have

(x0, ξ
0) /∈ ES(BD1B̃ − L�L), (0, η1dy

1) /∈ ES(B̃(L�L)B −D1), (46)

where the Lagrangian distributions B and B̃ are constructed as in Theorem 2.10. The con-
clusion entails by putting A := LB and Ã := B̃L where L̃ is a parametrix for L. In case � is
formally selfadjoint, we choose L formally selfadjoint as well. �

Remark 2.12. We have microlocally conjugated � to D1 around a lightlike covector in the
preceding theorem (45c). It is also possible to refine the construction as follows. Let I be a

compact interval in R and γ : I → Ṫ ∗M an integral curve of XP :

σP ◦ γ = 0. (47)

If the composition of γ and the projection Ṫ ∗M → Ṫ ∗M/R+ is injective then one can find a
conic neighbourhood V ′ of I × {(0, η1dy

1)} and a smooth homogeneous symplectomorphism

̺ from V ′ to an open conic neighbourhood ̺(V ′) ⊂ Ṫ ∗M of γ(I) such that [52, Prop. 26.1.6]

̺
(
I × {(0, η1dy

1)}
)
= γ(I), ̺∗σP = ξ11End(E). (48)

Imitating the proof of Theorem 2.10, one can microlocalise P to D1 on γ(I) (see [52, Prop.
26.1.3′] for the scalar version).

As a consequence, on a Lorentzian manifold (M,g), if Γ is the graph of ̺ then the proof
of Theorem 2.11 shows that, for any m ∈ R, there exists Lagrangian distributions A ∈
I−1/2+m

(
M × Rn,Γ′; Hom(CN , E)

)
and Ã ∈ I−1/2−m

(
Rn × M,Γ−1′; Hom(E,CN )

)
so that

AÃ, ÃA both are pseudodifferential operators of order −1 and

WF′(A) ⊂ VΓ, WF′(Ã) ⊂ V ′Γ−1 , (49a)

γ(I) ∩Char(AÃ) = ∅, (I × {(0, η1dy
1)}) ∩Char(ÃA) = ∅, (49b)

(I × {(0, η1dy
1)}) ∩ ES(Ã�A−D1) = ∅, (49c)

where VΓ,V
′
Γ−1 are small conic neighbourhoods of Γ restricted to γ(I) and its inverse, respec-

tively.



22 O. ISLAM AND A. STROHMAIER

We close this section by a simple application of Theorem 2.10 to derive a bundle version of
Hörmander’s propagation of singularity theorem [48], [22, Thm. 6.1.1’], as for instance, stated
in Taylor [90, Thm. 4.1, p. 135] (for Sobolev wavefront sets) and Dencker [17, Thm. 4.2] (for
the polarisation set). Since C∞(M ;E) =

⋂
s∈RH

s
loc(M ;E), such a refinement of the usual

notion of (smooth) wavefront set is captured by the Sobolev wavefront set. For any s ∈ R,
the Sobolev wavefront set WFs(u) of a distribution u ∈ D′(M ;E) relative to Sobolev space
Hs

loc(M ;E) is defined by [22, p. 201]

WFs(u) :=
⋂

Ψ∈ΨDO0(M ;E)
Ψu∈Hs

loc(M ;E)

Char(Ψ) =
⋂

Ψ∈ΨDOs(M ;E)
Ψu∈L2

loc(M ;E)

Char(Ψ),

where Char(Ψ) is the characteristic set of Ψ and the intersection is over all properly supported

Ψ. Locally this means, for any open subset U of Rn, Ṫ ∗U ∋ (x0, ξ
0) /∈ WFs(u) is not in the

Sobolev wavefront set of a distribution u ∈ D′(U ;E) if and only if there exists a compactly
supported section f on U non-vanishing at x0 ∈ U such that the weighted Fourier transform

(1+ |ξ|2)s |f̂u(ξ)|2 is integrable in a conic neighbourhood of ξ0. An accumulation of important
properties of this finer wavefront set is available, for example, in [61, App. B]. A propagation
of Hs-regularity is now presented below. The result is similar to that of Taylor but formulated
in a geometric fashion and proved in a different way employing microlocalisation on vector
bundles developed in Theorem 2.10.

Theorem 2.13 (Propagation of Sobolev regularity). Let E →M be a smooth complex vector
bundle over a manifold M and u ∈ D′(M ;E). Suppose that, for some m ∈ R, a pseudodif-
ferential operator Φ ∈ ΨDOm(M ;E) on E of order m satisfies the hypotheses (a) and (b)
of Theorem 2.10 and that I be an interval on an integral curve (on cotangent bundle) of the
Hamiltonian vector field generated by the principal symbol of Φ such that I ∩WFs(Φu) = ∅.
Then either I ∩WFs+m−1(u) = ∅ or I ⊂WFs+m−1(u).

Proof. Once Theorem 2.10 is at our disposal, the rest of the proof is the same as its scalar
version [22, Thm. 6.1.1’] (see also [52, Thm. 26.1.4]). For completeness we give the details
here. By conjugating Φ with appropriate pseudodifferential operators we reduce the statement
to the case m = 1. In other words, one can just consider P in Theorem 2.10 instead of Φ to
conclude the assertion by utilising the Sobolev continuity properties of pseudodifferential (see
e.g. [51, p. 92]) and Fourier integral operators (see e.g. [52, Cor. 25.3.2]). Via microlocalisation
(Theorem 2.10), the analysis further boils down to P = D1, s = 0 and (x0, ξ

0) = (0, η1dy
1) by

choosing the order of the Fourier integral operator B in Theorem 2.10 equals to −s. Then,
the claim follows from the form (see (51)) of the advanced and retarded fundamental solutions
of D1 and these map from L2

c(R
n,CN ) to L2

loc(R
n,CN ). �

2.4. Proof of Theorem 1.2. We will make use of the strategy used by Duistermaat-
Hörmander [22, Thm. 6.5.3] (see also [52, Thm. 26.1.14]) for a scalar pseudodifferential
operators of real principal type and simplify their arguments by exploiting the global hyper-
bolicity of spacetime (M,g). To begin with, we show that the Feynman parametrix is unique,
if it exists.

2.4.1. Uniqueness. Suppose that GL (resp. GR) is a left (resp. right) Feynman parametrix of
�, i.e., the off-diagonal contribution of WF′(GL, GR) is given by C+ (defined in Definition 1.1).
To prove that GL − GR is a smoothing operator, we would like to argue that GL�GR is
congruent both to GL and to GR modulo smoothing operators. But GL and GR are not
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properly supported which makes this a non-trivial task. To circumvent this difficulty, one
employs the fact that GLHGR is defined when H is a pseudodifferential operator having
Schwartz kernel of compact support in M ×M and then H : D′(M ;E)→ E ′(M ;E).

If (x, ξ; y, η) ∈ WF′(GLHGR) but (x, ξ), (y, η) are in the complement of ES(H), then
(x, ξ; z, ζ), (z, ζ; y, η) ∈ C+ for some (z, ζ) ∈ ES(H). This follows from the behaviour of
wavefront sets under composition of kernels, as available, for instance in [50, Theorem 8.2.10],

and the fact that WF′(H) ⊂ ∆Ṫ ∗M . This entails that (x, ξ), (y, η), and (z, ζ) are on the same

lightlike geodesic (strip) γ(s) on Ṫ ∗M with (z, ζ) in between the other two points.
Since (M,g) is assumed to be globally hyperbolic, J(K) is compact for any compact K ⊂

M . Therefore, if the projections of endpoints of γ on M are in K then the projection c(s) of
γ(s) on M stays over J(K), as shown in Figure 2. Consequently, if singsupp (H) ∩ J(K) = ∅
then WF′(GLHGR) cannot have any point over K × K. Let χ ∈ C∞

c (M ;E) such that χ is
identically 1 on J(K) and define Mχ be the corresponding multiplication operator. We observe
that [Mχ,�] vanishes identically on J(K). Thus, WF′(GL[Mχ,�]GR) contains no point over
K ×K and so it is true for

(Ṫ ∗K × Ṫ ∗K) ∩WF′(GL −GR) = (Ṫ ∗K × Ṫ ∗K) ∩WF′(GLMχ�GR −GL�MχGR)

= (Ṫ ∗K × Ṫ ∗K) ∩WF′(GL[Mχ,�]GR)

= ∅. (50)

Since K is arbitrary, we conclude that GL−GR is a smoothing operator and similarly for the
anti-Feynman parametrix.

K

J(K)

c(s)
χ

c(s)

1

Figure 2. A schematic visualisation of a consequence of global hyperbolicity
of spacetime (M,g) to entail the uniqueness of Feynman parametrices. Here,
c is a lightlike geodesic on M and time flows from left to right.

2.4.2. Construction. Notice that �GR = I +R is equivalent to (GR)
∗�∗ = I +R∗ and, since

the adjoint �∗ of � is also a normally hyperbolic operator, the existence of left parametrices
with the listed properties in this theorem follows from the existence of right parametrices for �.
It is, therefore, sufficient to construct a right parametrix for � with the required regularities.

To begin with, let us denote Rn ∋ x = (x1, x′) ∈ R × Rn−1 and note that the Schwartz
kernels of the advanced and retarded fundamental solutions

F ret,adv
1 = ± i Θ

(
± (y1 − z1)

)
⊗ δ(y′ − z′), (51)

F1 := F ret
1 − F adv

1 = i δ(y′ − z′) =
i

(2π)n−1

∫

Rn−1

ei(y
′−z′)θ′dθ′ (52)
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of D1 satisfy [22, Prop. 6.1.2] (see also [52, Prop. 26.1.2])

WF′(F adv,ret
1 ) = ∆Ṫ ∗Rn

⋃
Cadv,ret
1 , (53)

Cadv,ret
1 := {(x, ξ; y, η) ∈ C1 |x

1 ≶ y1}, (54)

C1 := {(x, ξ; y, η) ∈ T
∗Rn × T ∗Rn |x′ = y′, ξ′ = η′ 6= 0, ξ1 = 0 = η1}, (55)

F1, χF
adv,ret
1 ∈ I−1/2(Rn ×Rn, C ′

1), (56)

where Θ is the Heaviside step function and χ is a smooth function on Rn×Rn vanishing near
the diagonal. As before, the integral (52) is an oscillatory integral that needs to be understood
in the sense of a distribution.

We are now going to present a bundle version of the following result by Duistermaat-
Hörmander [22, Lem. 6.5.4] (see also [52, Lem. 26.1.15]). The proof simply carries over to
the setting of bundles yet we include the details here for completeness.

Lemma 2.14. We use the set up and terminology as in Theorem 2.11: � and D1 are microlo-
cally conjugate to each other, A, Ã are the conjugating Lagrangian distributions with m = 0,

and U is a conic neighbourhood of any lightlike covector (x0, ξ
0) in T ∗M . Suppose that F ret,adv

1
are the Schwartz kernels of the retarded and advanced fundamental solutions of D1 and that
χ ∈ C∞

c (Rn × Rn,R) is identically 1 in a neighbourhood of the diagonal and vanishes outside
another sufficiently small neighbourhood of the diagonal. If T ∈ ΨDO0(M ;E) with ES(T ) ⊂ U

and F± := A(χF ret,adv
1 )ÃT , then

WF′(F±) ⊂ ∆Ṫ ∗M ∪ C±, (57a)

�F± = T +R±, R± ∈ I−1/2
(
M ×M,C±′; Hom(E,E)

)
, (57b)

F+ − F− ∈ I−3/2
(
M ×M,C ′; Hom(E,E)

)
. (57c)

Proof. The properties (53) and (56) immediately entail (57a) and (57c). To show (57b), the
definition of F± implies

�F± = (�A− L̃BD1)(χF
ret,adv
1 )ÃT + L̃BD1(χF

ret,adv
1 )ÃT, (58)

where L̃ and B are those appearing in (46). Since � and D1 are microlocal conjugates to one
another, (45c) can be re-expressed as (cf. (46))

(x0, ξ
0; 0, η1dy

1) /∈WF′(�A− L̃BD1). (45c′)

Then, there is a conic neighbourhood V of (0, η1dy
1) such that (�A − L̃BD1)v is smooth

for any v ∈ D′(Rn,CN ) when WF(v) ⊂ V. Since WF′(χF ret,adv
1 ) can be made arbitrary

close to the diagonal in Ṫ ∗Rn × Ṫ ∗Rn by choosing the support of χ close to the diagonal in
Rn × Rn, we can pick an appropriate χ and a conic neighbourhood W of (0, η1dy

1) such

that WF
(
(χF ret,adv

1 )v
)
⊂ V provided WF(v) ⊂ W. If ES(T ) ⊂ κ(W) then the first term

in the right-hand side of (58) is smooth and we are left with the last term of that equation.

One computes D1(χF
ret,adv
1 ) = I + R̃± where R̃± := Dx1

(
χ(x, y)

)
F adv,ret
1 ∈ I−1/2

(
Rn ×

Rn, C ′
1;Mat(N)

)
. Since L̃BÃT −T = (L̃BB̃L− I)T is smooth as long as ES(T ) is sufficiently

close to (x0, ξ
0), it follows that �F± − T = R± where R± − L̃BR̃±ÃT is smooth, which

concludes the proof. �

To end the proof of Theorem 1.2, we choose a locally finite covering {Uα} of Ṫ ∗M by open
cones Uα such that Lemma 2.14 is applicable when ES(T ) ⊂ Uα. Denoting the projection of
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Uα on M by Uα and picking Uα so that Uα are also locally finite, we set

I =
∑

α

Tα, ES(Tα) ⊂ Uα, supp (Tα) ⊂ Uα × Uα. (59)

Then, for every α, A(χF ret,adv
1 )ÃTα can be chosen in accord with the Lemma 2.14 so that

supp
(
A(χF ret,adv

1 )ÃTα
)
⊂ Uα × Uα, and hence the sum

F± :=
∑

α

A(χF ret,adv
1 )ÃTα (60)

is well-defined which satisfies the claimed properties (2) and (4). Note that, if χ is taken

as a function of y − z then χF ret,adv
1 is a convolution by a measure of compact support and

therefore it continuously maps Hs
c (R

n,CN ) to Hs
c (R

n,CN ). By the mapping properties of
pseudodifferential and Fourier integral operators, [49, Thm. 4.3.1] (see also [52, Cor. 25.3.2]),

A, Ã, Tα are continuous maps from Hs
c to Hs

c . Since the sum of kernels is locally finite this
shows that F± continuously map Hs

c (M ;E) into Hs
loc(M ;E) for all s ∈ R.

Until now, we have just shown that �F± = I + R±. By Lemma F.1, we can choose
G± ∈ I−3/2

(
M ×M,C±′; Hom(E,E)

)
so that �G± − R± is smooth. Moreover, G± extend

to continuous mappings from Hs
c (M ;E) to Hs

loc(M ;E) for every s ∈ R. This follows from
mapping properties of Fourier integral operators, for example, Theorem 25.3.8 in [52], bearing
in mind that the corank of the symplectic form σΓ (see Appendix B) on Γ is two. Since locally
a Fourier integral operator on a bundle is a matrix of scalar Fourier integral operators, this
theorem can be applied here directly. Therefore,

GF,aF := F± −G± (61)

is a right parametrix which has this continuity property.
Furthermore, the construction shows that F+−F− and thus GF−GaF is non-characteristic

on ∆Ṫ ∗
0M , as can be seen from the integral representation (52) of F1 and wavefront set

properties of A, Ã. Since �(GF−GaF) is smooth, it follows that its principal symbol satisfies
a first-order homogeneous differential equation along the lightlike geodesic by Theorem E.1
and (27). Therefore GF−GaF is non-characteristic everywhere: WF′(GF−GaF) = C and then

it can be concluded that WF′(GF,aF) ⊃ C± because of WF′(GF,aF) ⊂ ∆Ṫ ∗M ∪ C±. Finally,
the fact

∆Ṫ ∗M = WF′(I) = WF′(�GF,aF) ⊂WF′(GF,aF)

together with Lemma F.1, complete the proof.

2.5. Pauli-Jordan operator as a Lagrangian distribution. Let E → M be a smooth
complex vector bundle over a globally hyperbolic spacetime (M,g) and � a normally hyper-
bolic operator on E. As mentioned in Section 1, � admits unique advanced Gadv and retarded
Gret propagators whose wavefront sets are given by

WF′(Gret, adv) ⊂ ∆Ṫ ∗M ∪Cret, adv, (62)

where the retarded and the advanced geodesic relations are define by

Cret, adv := {(x, ξ; y, η) ∈ Ṫ ∗
0M × Ṫ

∗
0M |∃s ∈ R : (x, ξ) = Φs(y, η), x ∈ J

±(y)}. (63)

In this section we will inscribe the Pauli-Jordan operator

G := Gret −Gadv : C∞
c (M ;E)→ C∞

sc (M ;E) (64)
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for � as a Fourier integral operator. The result has been proven by Duistermaat-
Hörmander [22, Thm. 6.6.1] for any scalar pseudodifferential operator of real principal type,
but a systematic derivation for the bundle version is not so easy to find.

As a preparation, we remark that there is a natural density dvC on the geodesic relation C
and hence on the forward/backward geodesic relations C±, as originally due to Duistermaat
and Hörmander [22, p. 230] for a generic manifold M , which simplifies considerably for
a globally hyperbolic spacetime (M,g) as reported by Strohmaier and Zelditch [89, (52),
Rem. 7.1]. By definition (5), for each (x, ξ; y, η) ∈ C there is a unique s ∈ R such that

(x, ξ) = Φs(y, η) so that C can be identified with an open subset of R× Ṫ ∗
0M . On a globally

hyperbolic spacetime (M,g), the set of lightcones Ṫ ∗
0M → M has the structure of a conic

contact manifold where the Hamiltonian

Hg : C
∞(M ;T ∗M)→ R, (x, ξ) 7→ Hg(x, ξ) :=

1

2
g−1
x (ξ, ξ) (65)

induced by the spacetime metric g vanishes identically and its Hamiltonian reduction is the
the space N of scaled-lightlike geodesic strips. Note that N is a symplectic manifold and hence
it admits the Liouville form dvN . The prefactor 1/2 in the preceding definition has been used
in order to identify the relativistic Hamiltonian flow with the geodesic flow. Denoting by s̃,
the dilation parameter on Ṫ ∗

0M , the natural halfdensity on C is given by
√
|dvC | :=

√
|ds| ⊗

√
|ds̃| ⊗

√
|dvN |. (66)

Note, this halfdensity differs from that by Duistermaat-Hörmander by a factor of 2 because
they used the Hamiltonian flow of g−1 to parametrise N , in contrast to the flow of the
Hamiltonian vector field Xg/2 generated by Hg. Moreover, this density is conserved under

geodesic flow: £Xg/2
dvC = 0. The densities on C± follow from the fact Ṫ ∗

0M = Ṫ ∗
0,+M⊔Ṫ

∗
0,−M

in n ≥ 3.
Employing Theorems 1.2, E.1 and Definition 2.6, we imitate the proof for the scalar ver-

sion [22, Thm. 6.6.1] to obtain

Theorem 2.15. Let E → M resp. π : Ṫ ∗M → M be a vector bundle resp. the punctured
cotangent bundle over a globally hyperbolic spacetime (M,g) and � a normally hyperbolic oper-
ator on E. Then, the Schwartz kernel G of the Pauli-Jordan operator for � is the Lagrangian
distribution

G ∈ I−3/2
(
M ×M,C ′; Hom(E,E)

)
,

σG =
i

2

√
2π|dvC | ⊗mw,

Char(G) ∩ C = ∅,

where dvC is the natural volume form on the geodesic relation C, m is the section of the
Keller-Maslov bundle M → C constructed in [22, pp. 231-232], and w is the unique element
of C∞

(
C;π∗Hom(E,E)C

)
that is diagonally the identity endomorphism and off-diagonally

covariantly constant

∇π∗Hom(E,E)

Xg/2
w = 0

with respect to the �-compatible Weitzenböck covariant derivative ∇π∗Hom(E,E)

Xg/2
along the geo-

desic vector field Xg/2.



FEYNMAN PROPAGATORS 27

3. Hadamard states from Feynman parametrices

In this section we will show that the unique (up to smoothing operators) Feynman
parametrix GF := (61) constructed in Theorem 1.2 can be turned into a Green’s operator
GF - the Feynman propagator for �. We will see later that this is equivalent to constructing a
Hadamard 2-point distribution. As remarked by Duistermaat-Hörmander [22, Thm. 6.6.2], in
the case of functions there is a remarkable positivity property. Namely, that one can modify
GF by a smoothing operator R such that

W +R := − i(GF −Gadv) +R

is non-negative in the sense that (W + R)(ū ⊗ u) ≥ 0 for any u ∈ C∞
c (M). This means, of

course that, there exists a Feynman parametrix that has this property with R = 0. Thus,
there is a Feynman parametrix that satisfies W ≥ 0 in the above sense. We state this here for
the case of vector bundles.

Proposition 1.3. Let E → M be a smooth complex vector bundle over a globally hyperbolic
spacetime (M,g) and � a normally hyperbolic operator on E. Suppose that E is endowed with
a (non-degenerate) sesquilinear form (·|·) ∈ C∞(E∗ ⊗ E∗) such that � is formally selfadjoint
with respect to (·|·). Then, there exists a Feynman parametrix GF of � such that W :=
− i(GF − Gadv) is formally selfadjoint. Additionally, if (·|·) is positive-definite (hermitian)
then W can be chosen non-negative.

Proof. Taking the adjoint GF∗� ≡ I of the Feynman parametrix GF we find that WF′(GF∗) ⊂
∆Ṫ ∗M ∪ C− by Definition 1.1. Thus GaF := GF∗ is an anti-Feynman parametrix. Now
differences of parametrices are solutions of the homogeneous equation up to smooth kernels.
By propagation of singularities (Theorem 2.13), differences of parametrices have a wavefront
set that consists of lightlike covectors and is invariant in both arguments under the geodesic
flow. It follows that

WF′(GF −Gadv) ⊂ C+, WF′(GaF −Gret) ⊂ C+,

WF′(GaF −Gadv) ⊂ C−, WF′(GF −Gret) ⊂ C−.

Since GF+GaF− (Gadv+Gret) = GF−Gadv+GaF−Gret = GaF−Gadv+GF−Gret it follows
that WF′(GF +GaF − (Gadv +Gret)) = C+ ∩C− = ∅. In other words, we have

GF +GaF ≡ Gadv +Gret. (68)

As (Gret)∗ = Gadv this implies that (GF−Gadv)∗+(GF−Gadv) ≡ 0. Therefore, − i(GF−Gadv)
can be chosen formally self-adjoint by modifying GF by a smoothing operator.

The correctness of the preceding relation (68) can also be seen as follows. The distin-
guished parametrices are unique and therefore coincide, modulo smoothing operators, with
the ones constructed via microlocalisation. For each element in the characteristic set we use
microlocalisation in a neighbourhood and have to make a choice of propagator amongst the
two distinguished propagators for D1. The choices for Feynman and anti-Feynman are op-
posites in the sense that for each such point they correspond to opposite choices. The same
is true for the retarted and advanced fundamental solutions. Therefore the sums coincide,
modulo smoothing operators, as both sums represent microlocally the sum of retarted and
advanced propagator.
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To address the positivity, first consider the operator D1 as in Section 2.3 and observe that
− i times its causal propagator F1 is positive by (52):

− iF1(ū
∗ ⊗ u) ≥ 0. (69)

To account for W , we note that A and A∗ in Theorem 2.11 preserve wave front sets and
thus, one obtains (x0, ξ

0; 0, η1dy
1) /∈WF′(W −AF1A

∗) from parametrix differences. Patching
such microlocally constructed solutions together is however a priori not preserving positivity.
Therefore we need a refined version of microlocalisation and hence respective homogeneous
Darboux theorem.

On an n-dimensional globally hyperbolic spacetime (M,g) with Cauchy hypersurface (Σ, h),
the space of lightlike (unparametrised) geodesics is a 2n−3-dimensional smooth conic manifold
which can be naturally identified with the cotangent unit sphere bundle S∗Σ→ Σ with respect
to the metric h [69]. We choose L, a formally selfadjoint elliptic operator of order −1/2 with
scalar principal symbol and vanishing subprincipal symbol as in the proof of Theorem 2.11.
One can always choose the principal symbol of L such that XL�L is a complete vector field [22,
Thm. 6.4.3 and p. 234] (see also [52, Lem. 26.1.11 and 26.1.12], [89, Prop. 2.1]). Since the

bundle of forward/backward lightlike covectors Ṫ ∗
0,±M → M are connected components of

the bundle of lightlike covectors Ṫ ∗
0M → M , there exists a homogeneous diffeomorphism

Ṫ ∗
0M → (S∗Σ⊕ S∗Σ)×R×R+ such that XL�L is mapped to the vector field ∂/∂s when the

variable in S∗Σ × R × R+ are denoted by (·, s, ·). In this setting, a refined Darboux theorem
yields that, for every lightlike covectors (x0, ξ

0) on (M,g), there is an open conic coordinate
chart

(
U , (x1, . . . , xn; ξ1, . . . , ξn)

)
and a homogeneous symplectomorphism

κ : U → U ′, (x, ξ) 7→ κ(x, ξ) :=
(
y1(x, ξ), . . . , yn(x, ξ); η1(x, ξ), . . . , ηn(x, ξ)

)
,

bijectively mapping U to an open conic neighbourhood U ′ of κ(x0, ξ
0) := (0, η1dy

1) in Ṫ ∗Rn

such that (
κ−1

)∗
σP = ξ1 1End(E), (70)

Char(D1) := {(y, η) ∈ Rn × Ṙn | y1 = 0} is symmetric with respect to the plane y1 = 0 and
convex in the direction of y1-axis, and U ′ ∩Char(D1) is invariant under the translation along

the y1-axis. Since dκ−1(XL∗�L) = 1Mat(N)∂/∂y
1, it follows that U ∩ Ṫ ∗

0M is invariant under
X� [22, Lem. 6.6.3].

Suppose that V1,V2 are closed conic neighbourhoods of (x0, ξ
0) such that V1 ⊂ U and

V2 ⊂ int(V1) while Vι ∩ Ṫ
∗
0M, ι = 1, 2 are invariant under the geodesic flow and that κ(Vι) are

convex in the y1-direction and symmetric about the plane y1 = 0. Remark 2.12 then entails
that there exists a properly supported A ∈ I−1/2

(
M ×Rn, Γ ′

1; Hom(CN , E)
)

so that A∗A and
AA∗ both are pseudodifferential operators of order −1 and

Char(A) ∩ Γ ′
2 = ∅, (71a)

Char(A∗A) ∩ κ(V2) = ∅, Char(AA∗) ∩ V2 = ∅, (71b)

ES(A∗�A−D1) ∩ Γ2 = ∅, (71c)

where Γ1 and Γ2 are the graphs of the restriction of κ to V1 and to V2, respectively.
It follows from Theorem 1.2 and (71) that we can microlocally conjugate W to iF1 (see [22,

p. 237] for the scalar version):

WF′
(
W −A(− iF1)A

∗
)
∩ (V2 × V2) = ∅, V2 ∩ Ṫ

∗
0M ⊂

{
Ṫ ∗
0,±M

}
. (72)
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Lemma 3.1. For a normally hyperbolic operator � as in Proposition 1.3 and Lagrangian
distributions A given by (71), let Ψ ∈ ΨDO0(M ;E) such that ES([Ψ,�]) ∩ Ṫ ∗

0M = ∅ and

ES(Ψ) ⊂ V2, Ṫ
∗
0M ∩ V2 ⊂ Ṫ

∗
0,±M . Then

WΨΨ∗ = ΨA(− iF1)A
∗Ψ∗ mod C∞

(
M ×M ; Hom(E,E)

)
.

Proof. The idea of the proof is to use microlocalisation to reduce this to the special case
P = D1. To reach the conclusion our main task is then to compute the relevant commutators
which is straightforward and exactly analogous to the scalar counterpart [22, Lem. 6.6.5]. So,
we only sketch the main steps for completeness. The ellipticity (71a) allows us to relate any
properly supported Ψ ∈ ΨDO0(M ;E) and Ψ ′ ∈ ΨDO0(Rn,Mat(N)) with ES(Ψ) ⊂ V2 and
ES(Ψ ′) ⊂ V ′2 by

Ψ ′ ≡ A∗ΨA, Ψ ≡ AΨ ′A∗.

A direct computation shows ES([Ψ ′,D1])∩Char(D1) = ∅ which implies that the derivative of
the symbol of Ψ ′ with respect to y1 is of order −∞ in a neighbourhood of Char(D1). Denoting
the convolution by the Dirac measure at (h, 0, . . . , 0) by τh, we can rewrite (52) as F1 =

∫
τhdh

and observe that τhΨ
′ − Ψ ′τh is of order −∞ in a conic neighbourhood of Char(D1). Since

Char(D1) is invariant under translation in the y1-direction, one has

∀v ∈ E ′(Rn,CN ) : WF([τh, Ψ
′]v) ∩ Char(D1) = ∅.

The result follows after the integration with respect to h and a few algebraic manipulations. �

One observes that ΨA(− iF1)A
∗Ψ∗ is non-negative by (69) since AA∗ is non-negative with

respect to the hermitian form on E. Thus, the only thing left to conclude Proposition 1.3
is that the identity can be expressed as a sum of operators of the form ΨΨ∗ discussed in
Lemma 3.1, provided the prerequisites in this lemma are satisfied. Aiming to show this, we
consider a closed conic neighbourhood V3 of any lightlike covector (x0, ξ

0) on (M,g) where

V3 ⊂ int(V2) and V3 ∩ Ṫ
∗
0M is invariant under the geodesic flow. One can prove that there

exists Ψ ∈ ΨDO0(M ;E) with ES(Ψ) ⊂ V2 such that Ψ has a non-negative (homogeneous)

principal symbol equal to 1 on V3 and ES([Ψ,�])∩ Ṫ ∗
0M = ∅ [22, Lem. 6.6.6]. In other words,

the hypotheses in Lemma 3.1 can be satisfied for Ψ . Taking a suitable cover of Ṫ ∗
0M , one can

use these operators to construct a family of operators Ψα ∈ ΨDO0(M ;E) satisfying

ES(Ψα)
⋂
Ṫ ∗
0M ⊂ Ṫ

∗
0,±M, (73a)

ES

(
I −

∑

α

ΨαΨ
∗
α

)⋂
Ṫ ∗
0,±M = ∅, (73b)

ES([�, Ψα])
⋂
Ṫ ∗
0M = ∅. (73c)

The construction of such a family that provides a microlocal partition of unity is carried out
in detail in [22, p. 238]. The proof follows the usual stategy of summing the operators and
multiplying from left and right by the root of a parametrix. One can verify that the hypotheses
in Lemma 3.1 are preserved under this construction. To finalise the proof of Proposition 1.3
we simply write

W =
∑

α

WΨαΨ
∗
α ≡

∑

α

ΨαAα

(
− iF1)A

∗
αΨ

∗
α, (74)

which terminates the proof as every term on the right hand side of (74) is nonnegative with
respect ot the hermitian form on E. �
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Of course, at the end one is interested in true solutions rather than parametrices. In fact
there is a simple way, employing well-posedness of the Cauchy problem for �, modifying the
Feynman parametrix into a Feynman propagator preserving the aforementioned positivity.

Theorem 1.4 (Existence of Hadamard bisolutions). Let E →M be a smooth complex vector
bundle over a globally hyperbolic spacetime (M,g) and � a normally hyperbolic operator on
E that is formally selfadjoint with respect to the non-degenerate sesquilinear form (·|·) ∈
C∞(E∗⊗E∗). Then, there exists a Feynman propagator GF for � such that ω := − i(GF−Gadv)
is formally selfadjoint with respect to (·|·). In addition, if (·|·) is hermitian then GF can be
chosen such that ω(ū∗ ⊗ u) ≥ 0 for any u ∈ C∞

c (M ;E). Thus, ω defines a Hadamard state.
Here C∞(M ;E) ∋ u 7→ ū∗ ∈ C∞(M ; Ē∗) is the fibrewise linear mapping induced by (·|·).

We postpone to proof this to make the following observations. Let (Σ, h) be a Cauchy
hypersurface of (M,g) and assume f0, f1 ∈ C

∞
c (Σ, EΣ). Since M is globally hyperbolic, we

will denote a point inM as (t, x) ∈ R×Σ. Then we can define the distributions f1⊗δΣ, f0⊗δ
′
Σ ∈

E ′(M ;E) by

f1 ⊗ δΣ(φ) :=

∫

Σ
φ(x) f1(x) dvh(x), f0 ⊗ δ

′
Σ(φ) :=

∫

Σ
(∂Nφ)(x) f0(x) dvh(x), (75)

where φ ∈ C∞
c (M ; Ē∗), N is a future directed unit normal vector field onM along Σ, and dvh is

the Riemannian volume form on Σ; recall that Ē∗ is the conjugate-dual bundle (Section 2.1.2)
of E induced by the sesquilinear form (·|·) on E. We denote by WΣ ⊂ E

′(M ;E), the span
of the set of distributions of this form. By a duality argument both retarded and advanced
fundamental solutions extend to continuous maps E ′(M ;E) → D′(M ;E), and if G is the
causal propagator (Theorem 2.15) and f := f0 ⊗ δ

′
Σ + f1 ⊗ δΣ, then u = G(f) is a smooth

solution of �u = 0 with Cauchy data (f0, f1) on Σ (see e.g. [4, Lem 3.2.2], [59, Thm. 3.20]).
Assume that w� and �̄∗w are smooth for any bidistribution w ∈ D′(M ×M ;E ⊠ Ē∗).

Let us denote by E ′N∗Σ(M ;E), the set of compactly supported distributions with wavefront
set contained in the conormal bundle N∗Σ of Σ. This space is endowed with a natural lo-
cally convex topology [49, p. 125] with respect to which C∞

c (M ;E) is sequentially dense in
E ′N∗Σ(M ;E) (see e.g. [50, Thm. 8.2.3] or the exposition [88, Sec. 4.3.1] for details). The
bidistribution w can be defined as a sequentially continuous bilinear form on E ′N∗Σ(M ;E).
Since WΣ ⊂ E

′
N∗Σ(M ;E), the form w is then also defined on WΣ.

Lemma 3.2. Let
(
E →M, (·|·)

)
be a smooth complex hermitian vector bundle over a globally

hyperbolic spacetime (M,g) whose Cauchy hypersurface is Σ. Suppose that � is a normally
hyperbolic operator on E and that w ∈ D′(M ×M,E ⊠ Ē∗) is a bisolution of �. Then, w is
non-negative with respect to (·|·) if and only if w(f̄∗ ⊗ f) ≥ 0 for any f ∈ WΣ where WΣ is
the span of distributional Cauchy data (75) of �.

Proof. First note that, since w is a bisolution it extends to a separately sequentially continuous
bilinear form on E ′N∗Σ(M ; Ē∗)×E ′N∗Σ(M ;E). We denote the extension by the same letter. As
this form is a bisolution it vanishes on �̄∗C∞

c (M ; Ē∗)×C∞
c (M ;E) and also on C∞

c (M ; Ē∗)×
�C∞

c (M ;E). By sequential continuity and sequential density of C∞
c in E ′N∗Σ, it follows that

w vanishes on �̄∗E ′N∗Σ(M ; Ē∗) × E ′N∗Σ(M ;E) and on E ′N∗Σ(M ; Ē∗) × �E ′N∗Σ(M ;E). We will
show that any u ∈ C∞

c (M ;E) can be written as u = f + �φ for some f ∈ WΣ and for some
φ ∈ E ′N∗Σ(M ;E), and the analogous statement holds for the conjugate-dual bundle and the
conjugate-dual normally hyperbolic operator. This obviously implies the statement.
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To see that this is indeed the case, observe that �(Gu) = 0 and therefore, if (f0, f1) is the
Cauchy data of G(u) on Σ and f the corresponding element inWΣ, then we have G(u) = G(f).
This implies that G(u − f) = 0. Hence Gret and Gadv applied to u − f are the same. Thus
φ := Gret(u−f) must be a compactly supported distribution because of the support properties
Gret,adv and the global hyperbolicity of M . By propagation of singularities (Theorem 2.13),
this distribution must be again in E ′N∗Σ(M ;E) and we have u − f = �φ. The same proof
works for the bundle Ē∗ and the operator �̄∗. �

Finally, we are prepared to show the existence of Feynman propagators for �. Moreover,
if there exists a hermitian form on E then Feynman propagators can be chosen non-negative
with respect to this form and hence implying existence of 2-point bidistributions corresponding
to Hadamard states.

Proof of Theorem 1.4. Let W be the parametrix for � constructed in Proposition 1.3. Since
the wavefront set of W does not intersect with the conormal bundle N∗Σ of any Cauchy hy-
persurface Σ in M , we fix a Σ and restrict W and its normal derivative to create distributional
Cauchy data on Σ × Σ. Suppose that E is endowed with a hermitian form (·|·) such that W
is non-negative with respect to (·|·). Then the restriction of W on Σ is non-negative as well.
Next we construct ω ∈ D′(M ×M ;E ⊠ Ē∗) employing the solution operator with the same
distributional Cauchy data as W on Σ× Σ. This will be a bisolution of � with the property

(
ω(ū∗ ⊗ u) ≥ 0, ∀u ∈ E ′N∗Σ(M ;E)

)
⇔ ω ≥ 0, (76)

by the sequential density of C∞
c (Σ;EΣ) in E ′N∗Σ(M ;E) and Lemma 3.2. Note that R = ω−W

is smooth since it solves the inhomogeneous problem with zero Cauchy data, which entails
that

G
F := GF + iR (77)

is the Feynman propagator with the required positivity property. �

4. Feynman propagators for Dirac-type operators

In this section we will construct Feynman propagators for a Dirac-type operator. We recall
that a first-order linear partial differential operator D on a vector bundle E → M over a
Lorentzian manifold (M,g) is called Dirac-type, if its principal symbol σD satisfies the Clifford
relation (see e.g. [3, Sec. 2.5, 3.2] for details):

(
σD(x, ξ)

)2
= g−1

x (ξ, ξ)1End(E)

for any (x, ξ) ∈ T ∗M . Hence, the operator D2 is normally hyperbolic and σD defines a Clifford
multiplication which turns E into a bundle (E → M,σD) of Clifford modules over M . We
equip E with a sesquilinear form (·|·) such that D is formally selfadjoint. Then, under the
assumption mentioned in Section 1, one has a hermitian form 〈·|·〉 on E satisfying (6). Of
course, this positive-definite inner product depends on the choice of the unit normal vector
field.

If D is formally selfadjoint with respect to (·|·) then the first condition in Theorem 1.4 is
satisfied and we obtain Feynman propagator SF forD immediately by setting SF := DGF where
GF is the Feynman propagator for D2. Nevertheless, the existence of Hadamard states cannot
be deduced due to the positivity issue. One may wish to consider formally selfadjointness of
D with respect to 〈·|·〉 so that the hypotheses of Theorem 1.4 are satisfied resulting existence
of Hadamard states. But this turns out to be too restrictive to encompass all Dirac-type
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operators on a globally hyperbolic spacetime (see Sections 5.5 and 5.6 for concrete examples)
and so we refrain to impose the condition. However, we will show below that there is a more
direct way to construct Feynman parametrices satisfying positivity, and hence Hadamard
states.

To begin with, recall that the manifold of lightlike covectors Char(D2) = Ṫ ∗
0M

on a globally hyperbolic spacetime has only two connected components when3: n ≥
3: the forward lightcone Ṫ ∗

0,+M and the backward lightcone Ṫ ∗
0,−M . Therefore,

the geodesic relation C := (5) has four different orientations4 [22, p. 218] (see
also [76, p. 540]) (C+, C−), (C−, C+), (Cadv, Cret), (Cret, Cadv) corresponding to the set

{Ṫ ∗
0M, Ṫ ∗

0,+M, Ṫ ∗
0,−M, ∅} of connected components of Ṫ ∗

0M , where C± and Cret, adv are defined

by (3) and (63), respectively. This enables to have a microlocal decomposition of Pauli-Jordan
operator G for D2 as

G ≡W+ −W−, (78a)

W±D2 ≡ D2W± ≡ 0, (78b)

W± ∈ I−3/2
(
M ×M,C±′; Hom(E,E)

)
, (78c)

where W+ := − i(GF − Gadv),W− := − i(Gret − GaF) and we recall that ≡ means modulo
smoothing kernels. This decomposition follows from (68).

We look for an analogue of the preceding result for D. In particular, Char(D) =

Char(D2) = Ṫ ∗
0M . On a globally hyperbolic spacetime (M,g), D admits unique advanced,

retarded and non-unique (anti-)Feynman Green’s operators:

Sadv, ret,F, aF := DGadv, ret,F, aF.

We decompose the Pauli-Jordan operator

S := Sret − Sadv : C∞
c (M ;E)→ C∞

sc (M ;E) (79)

for D as S+ + S− up to smoothing operators, where S± :=
∑

αQ
±
αSQ

±
α , (Q±

α )
∗Q±

α are

microlocal partition of unity such that DQ±
α ≡ Q

±
αD, and ES(Q±

α ) ⊂ ∆Ṫ0,±M . Consequently,

S ≡ S+ + S−, (80a)

S±D ≡ DS± ≡ 0, (80b)

S± ∈ I−1/2
(
M ×M,C±′; Hom(E,E)

)
, (80c)

by an application of (18). The operator Q±
α can be constructed by choosing any [q±α ] ∈

S0−[∞]
(
Ṫ ∗M,Hom(E,E)

)
as its left total symbol such that esssupp(q±α ) ⊂ Ṫ ∗

0,±M ; in other

words q±α is of order −∞ near y ∈ M and in a conic neighbourhood of η for all (y, η) in the
complement of esssupp(q±). Furthermore, we pick supp (q±α ) slightly away from the projection
of ES(Q±

α ) on M so that [D,Q±
α ] is smooth. We note that

Lemma 4.1. As in the terminologies of Theorem 1.5, let S be the Pauli-Jordan operator for
D. Then iS is non-negative with respect to (·|·).

3In two dimensions, Ṫ ∗
0M has four connected components.

4By an orientation of a geodesic relation C, it is meant that any splitting of C \ ∆Ṫ ∗
0 M into a disjoint

union of open C+, C− ⊂ C which are inverse relations [22, p. 218].
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Proof. Let u, v ∈ C∞(M ;E) having compact supp (u) ∩ supp (v) and let K be a compact set
having a smooth boundary ∂K with an outward unit normal vector N and volume element
dv. Then the Green-Stokes formula yields (see e.g., [20, (1.7)] or [3, (9)])∫

K

(
(Du|v)x − (u|Dv)x

)
dvg(x) = − i

∫

∂K
(σD(N

♭)u|v)x′ dv(x′),

where dvg is the Lorentzian volume form on (M,g). Setting u := Sretw and v := Sw for
any w ∈ C∞

c (M ;E) the above formula entails (w| iSw) ≥ 0 due to the compactness of
supp

(
Sretu

)
⊂ J+(supp (u)). �

Therefore, (u|iS±u) ≥ 0 by (80a). Furthermore,

WF′(Sadv, ret,F, aF) = WF′(Gadv, ret,F, aF) ⊂ ∆∗ ∪ Cadv, ret F, aF (81)

by (62) and (3). We observe that the Lagrangian distribution SF − Sadv ∈ I−1/2
(
M ×

M,C+′; Hom(E,E)
)

is a bisolution of the homogeneous Dirac equation. Then, it follows

from (80b) and (80c) that S+ ≡ SF − Sadv. Therefore
(
u
∣∣ i(SF − Sadv)u

)
is non-negative.

Hence, we arrive at the assertion which is the analogue of Proposition 1.3 for Dirac-type
operators.

As before, in order to turn i(SF − Sadv) into an exact distributional bisolution ω, we
are going employ the well-posedness of the Cauchy problem for D on a globally hyperbolic
spacetime [74, Thm. 2]. For any f ∈ C∞

c (Σ;E|Σ), we define distributional Cauchy data f⊗δΣ
by

f ⊗ δΣ(φ) :=

∫

Σ
φ(x)

(
σD(x,N

♭) f(x)
)
dvh(x) (82)

for any φ ∈ C∞(M ;E∗), where we have used the notation (t, x) ∈ R × Σ ∼= M . By XΣ ⊂
E ′N∗Σ(M ;E), we denote the set of distributions of the above form where E ′N∗Σ(M ;E) is as
before. As in the previous section, any bidistribution w ∈ D′(M ×M ;E ⊠E∗) such that wD
and Dw are smooth in distributional sense, can be defined as a sequential continuous bilinear
form on XΣ.

Lemma 4.2. As in the terminologies of Theorem 1.5, let w ∈ D′(M × M ;E ⊠ Ē∗) be a
bisolution of D. Then (u|wu) ≥ 0 if and only if w(ū∗ ⊗ u) ≥ 0 for all u ∈ XΣ.

Proof. The proof is completely analogous to the proof of Lemma 3.2 with � replaced by D, and
the Cauchy data (75) and Pauli-Jordan operator G ((64)), replaced by the Cauchy data (82)
and Pauli-Jordan operator S ((79)), respectively. �

Following exactly the route taken from Proposition 1.3 to Theorem 1.4, the construction
yields a Feynman propagator that satisfies the positivity condition.

Theorem 1.5. Let
(
E →M, (·|·), σD

)
be a smooth bundle of Clifford modules over a globally

hyperbolic spacetime (M,g) and D a Dirac-type operator on E that is formally selfadjoint with
respect to the sesquilinear form (·|·). Then, there exists a Feynman propagator SF for D such
that ω := − i(SF − Sadv) is formally selfadjoint. In addition, if there exists a hermitian form
〈·|·〉 on E satisfying (6), then SF can be chosen such that ω is non-negative with respect to
(·|·) and hence defines a Hadamard bisolution of D.

5. Examples

We list below several operators arising in the context of quantum field theories on a globally
hyperbolic spacetime (M,g).
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5.1. Covariant Klein-Gordon operator. Let E → M be a trivial line bundle, that is, its
sections are just complex-valued smooth functions C∞(M) onM . The covariant Klein-Gordon
operator is defined by

� := −div ◦ grad + m2 + λR : C∞(M)→ C∞(M),

where m2 ∈ R+ is a parameter, physically interpreted as mass-squared of a linear Klein-Gordon
field, λ is a coupling and R is the Ricci scalar of M . The special case of � when m, λ = 0 is
called the d’Alembert/relativistic wave operator. Since the natural inner product on C∞(M)
is positive-definite with respect to which � is formally selfadjoint (see e.g. [3, Example 2.13]),
Theorem 1.4 applies and positive Feynman propagators can be constructed using this method.

5.2. Connection d’Alembert operator. Let E → M be a smooth complex vector bundle
and ∇E a connection on E. We endow M with the Levi-Civita connection ∇T ∗M on the
cotangent bundle T ∗M . These connections induce a connection ∇ := ∇T ∗M⊗1E+1T ∗M⊗∇

E

on the vector bundle T ∗M ⊗E →M . The connected d’Alembert operator is then defined by
the composition of following three maps

� : C∞(M ;E)
∇E

→ C∞(M ;T ∗M ⊗ E)
∇
−→ C∞(M ;T ∗M ⊗ T ∗M ⊗ E)

tr⊗I
−−−→ C∞(M ;E),

where trg is the metric trace (as defined after (1)) and I is the identity operator on E.
A straightforward computation shows that this operator is normally hyperbolic (see e.g. [3,
Example 2.14]). Then, Theorem 1.4 entails that � admits a Feynman propagator whereas the
conclusion for positivity depends on the positivity of the inner product with respect to which
� is formally selfadjoint.

5.3. Hodge-d’Alembert operator. Let E := ∧kT ∗M be the bundle of k-forms. The Hodge-
d’Alembert operator is defined by

� := −(δd + dδ) : C∞(M ;∧kT ∗M)→ C∞(M ;∧kT ∗M),

where d is the exterior derivative and δ is coexterior differential. By the Bochner formula, the
Weitzenböck connection is the Levi-Civita connection on k-forms and hence this connection
is to be used for microlocalisation. It can be shown that � is a normally hyperbolic operator
(see e.g. [3, Example 2.15]). There thus exists a Feynman propagator. Since the natural inner
product with respect to which this operator is formally selfadjoint is not positive-definite
unless k = 0 or k = n, we cannot conclude non-negativity directly. For example for k = 1
non-negativity is only expected on a subset as is usual for gauge theories.

5.4. Proca operator. The Proca operator acting on covectors A on M is defined as

P := δd +m2 : C∞(M ;T ∗M)→ C∞(M ;T ∗M), m ∈ R \ {0},

which is not normally hyperbolic. Nevertheless, P is equivalent to the normally hyperbolic
operator δd+dδ+m2 on C∞(M ;T ∗M) together with the Lorenz constraint δA = 0. Therefore,
a Feynman propagator for δd + dδ + m2 can be constructed by this method. The positivity
issue is same as in Section 5.3.
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5.5. Twisted Dirac operators. Let S → M be a spinor bundle over a globally hyperbolic
spacetime (M,g) admitting5 a spin-structure. The Levi-Civita connection ∇LC on (M,g)
induces a spin connection ∇S on S. Let E → M be a smooth vector bundle endowed with a
connection ∇E. These two connections induce another connection ∇ := ∇S ⊗ 1E + 1S ⊗∇

E

on the twisted spinor bundle S ⊗ E → M and the twisted Dirac operator is defined by (see,
e.g. [1] for details)

/D := − i c ◦ g−1 ◦ ∇ : C∞(M ;S ⊗ E)→ C∞(M ;S ⊗ E),

where γ : TM → End(S) is the Clifford mapping, pointwise defined by

γ(X)γ(Y ) + γ(Y )γ(X) = 2g(X,Y )1End(S)

for any X,Y ∈ TxM and the Clifford multiplication c : TM ⊗ S ⊗ E → S ⊗ E is given
by X ⊗ ψ ⊗ u 7→ (γ(X)ψ) ⊗ u. The Schrödinger [83]-Lichnerowicz [68] formula entails (see
e.g. [74, Example 1])

/D
2
= ∇∗∇+

R

4
+ F,

where R is the scalar curvature of M and F is the Clifford multiplied curvature of ∇E. Clearly,
/D
2

is a normally hyperbolic operator and thus /D is of Dirac-type. This formula also shows that
the Weitzenböck connection is the twisted spin-connection ∇ on the twisted spinor bundle and
therefore it induces the /D-compatible connection on Hom(S ⊗ E,S ⊗ E)→ T ∗M , which is to
be used for microlocalisation. Since /D is formally selfadjoint with respect to the natural inner
product (·|·) on S⊗E, a Feynman propagator for /D exists by Theorem 1.4 yet the existence of
Hadamard states cannot be concluded due to the fact that (·|·) is not positive-definite unless
(M,g) is a Riemannian manifold. However, since (M,g) is globally hyperbolic, there exist
smooth spacelike Cauchy hypersurfaces Σt := {t}×Σ with future-directed unit vector field N
normal to Σt so that γ(N)· defines the Clifford multiplication to achieve the hermitian form
〈·|·〉 satisfying (6). Then, Theorem 1.5 is applicable and we have a Feynman propagator with
the desired positivity with respect to (·|·).

5.6. Rarita-Schwinger operator. Let S →M be a complex spinor bundle over a Lorentzian
spin manifold (M,g) and γ the Clifford multiplication given by T ∗M⊗S ∋ (ξ, u) 7→ γ(ξ)u ∈ S.
One has the representation theoretic splitting

T ∗M ⊗ S = ι(S)⊕ S3/2, S3/2 := kerγ.

Here, the embedding ι of S into T ∗M ⊗ S is locally defined by ι(u) := −ei ⊗ γ(ei)u/n where
{ei}1≤i≤n is an orthonormal basis of TM . Suppose that /D := i(1⊗γ)◦∇ is the twisted Dirac
operator (cf. Section 5.5) on T ∗M ⊗ S. Then, the Rarita-Schwinger operator is defined as
(see e.g. [3, Def. 2.25])

R := (I − ι ◦ γ) ◦ /D : C∞(M ;S3/2)→ C∞(M ;S3/2). (83)

The characteristic set Char(R) of R coincides with the set of lightlike covectors in dimensions
n ≥ 3 (see e.g. [3, Lem. 2.26]) and R is a formally selfadjoint differential operator whose
Cauchy problem is well-posed when (M,g) is globally hyperbolic albeit R2 is not a normally
hyperbolic operator (see e.g [3, Rem. 2.27]). Moreover, any hermitian form satisfying (6) does
not exist in n ≥ 3 [3, Example 3.16].

5A spacetime (M, g) admits a spin-structure if and only if the second Stiefel–Whitney class of M vanishes.
We note that a spin structure always exists on a 4-dimensional globally hyperbolic spacetime.
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Originally, Rarita and Schwinger (in Minkowski spacetime) considered the twisted Dirac
operator /D restricted to S3/2 but not projected back to S3/2 [78, (1)] (see also, e.g. [57, Sec.
2] for Riemannian and [3, Rem. 2.28] for Lorentzian spin manifolds), that is,

/D|C∞(M ;S3/2) : C
∞(M ;S3/2)→ C∞(M ;T ∗M ⊗ S) (84)

in order to ensure the correct number of propagating degrees of freedom for spin-3/2 fields
(see, for instance, the reviews [77,87] for physical motivation and different approaches used in
Physics literature). The corresponding Rarita-Schwinger operator is then an overdetermined
system and this constrained system limits possible curvatures of the spacetime [40] (see e.g. [57,
p. 856], [44]): (Ric−Rg/n)∗u = 0, where Ric and R are respectively the Ricci tensor and Ricci
scalar curvature of M . In other words, the corresponding Rarita-Schwinger field exists only
on Einstein spin manifolds. However, the Rarita-Schwinger operator corresponding to the
restricted twisted spin-Dirac operator (84) does not admit a Green’s operator [3, Rem. 2.28].

Since the Cauchy problem for R is well-posed on a globally hyperbolic spacetime, the
Rarita-Schwinger operator (83) admits unique advanced and retarded propagators. Albeit

Char(R) = Ṫ ∗
0M = Char( /D), the existence of a (anti-)Feynman propagator cannot be con-

cluded from Theorem 1.5 as R is not a Dirac-type operator.

5.7. Higher spin operators. The straightforward attempts to generalise Dirac operator on
Minkowski spacetime for arbitrary spin [21] in curved spacetimes6 leads to difficulties (see,
e.g, [31, p. 324] for a panoramic view and the reviews [77, 87]). A crucial advancement came
through Buchdahl operator (in Riemannian manifold) [10] (see [3, Exam. 2.24] for a Lorentzian
formulation) whose square turns out to be a normally hyperbolic operator [3, p. 8], yet the
minimum coupling principle seems violated and a "by hand" proposal is required in the original
idea of Buchdahl. These minor imperfections were cured by Wünsch [96], by Illege [29, 30]
and by Illege and Schimming [31] for the massive case deploying the 2-spinor formalism in 4-
dimensional curved spacetimes. In particular, the square of Buchdahl operator (as modified by
Wünsch and Illge) is a normally hyperbolic operator on certain twisted bundles. In contrast,
there are a few open questions for the massless case [25] (see also the reviews [77, 87] for the
contemporary status and other formulations used in Physics literature). Hence, the existence
of a Feynman propagator is evident either by Theorem 1.4 or Theorem 1.5 but the issue of
positivity is non-conclusive at this stage.
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Appendix A. Symbols

The multiindex notation will be used in this section, that is, for a multiindex α ∈
Nd
0,N0 := N ∪ {0}, d ∈ N we set |α| := |α1| + . . . + |αd| and we define partial derivatives

Dα
x := (− i)|α|∂|α|/∂(x1)α1 . . . ∂(xn)αn .

6Not necessarily be globally hyperbolic.
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Definition A.1. Let U be an open subset of an n-dimensional Euclidean space Rn. The
set Sm

1,0(U × Rd) of symbols of order m ∈ R and type (1, 0), is defined as the set of all

complex-valued smooth functions a on U × Rd such that, for every compact set K ⊂ U and
all multiindices α ∈ Nd

0, β ∈ Nn
0 , the estimate (see e.g. [51, Def. 18.1.1])

|Dβ
x∂

α
θ a (x; θ)| ≤ cα,β;K(1 + |θ|)m−|α|

is valid for some constant cα,β;K for any x ∈ K and any θ ∈ Rd.

The above symbol class, known as the Kohn-Nirenberg symbol class, is too general for this
exposition. In particular, it is sufficient to restrict our attention to a subclass of Sm

1,0, known
as the classical symbol class. In order to introduce this subclass we recall that a function a
on U × Rd of degree k is called positively homogeneous if a(x, λθ) = λka(x, θ) for all |θ| > 1
and λ > 1.

Definition A.2. Let U be an open subset of an n-dimensional Euclidean space Rn and let m
be any real number. The set Sm(U × Rn) of polyhomogeneous symbols is defined as the set
of all a ∈ Sm

1,0(U × Rd) such that (see e.g. [51, Def. 18.1.5])

a(x; θ) ∼
∑

k∈N0

am−k(x; θ)χk(θ),

where am−k is positively homogeneous of degree m − k when |θ| > 1 and χk is a smooth
function on Rd that vanishes identically near θ = 0 such that χk(θ) = 1 if |θ| ≥ 1.

Here ∼ symbolises the asymptotic summation, by which it is meant that, for any a ∈
Sµ0(U × Rd) such that supp (a) ⊂

⋃
supp (ak), one has (see e.g. [51, Prop. 18.1.3])

a−
N−1∑

k=0

ak ∈ S
µN
1,0 (U × Rd)

for every N ∈ N, where (ak)k∈N0 ∈ Smk
1,0 (U × Rd) with mk → −∞ as k → ∞ and µN :=

maxk≥N mk.

We set S∞ :=
⋃

m∈R S
m, S−∞ :=

⋂
m∈R S

m, and Sm−[m′] := Sm/Sm−m′

.

Note that for any element a in Sm(U × Rd), an equivalence class [a] in the quotient space
Sm−[1](U ×Rd) can be identified with the leading order term am in Definition A.2. Thus, the

space Sm−[1](U ×Rd) is naturally identified with the space of smooth homogeneous functions
on U × Rd of degree m.

Recall, a smooth manifold M endowed with a smooth, proper, and free action of the
multiplication group R+ is called a conic manifold. Canonical relations are example of conic
manifolds. It is evident that Sm−[1](M ) can be defined analogously (see [49, p. 87] and,
e.g. [51, Def. 21.1.8] for details).

The generalisation to (complex) matrix-valued symbols Sm
(
·,Mat(N)

)
, N ∈ N is straight-

forward. We refer, for instance, the monograph [84, Sec. 1.5.1-1.5.3, 4.4.1-4.4.3] for details.

Appendix B. Fourier integral operators associated with symplectomorphisms

Let T ∗M → M,T ∗N → N be the cotangent bundles over manifolds M,N and prM ,prN :

M ×N →M,N are the projection maps. The simplest canonical relation Γ ′ ⊂ Ṫ ∗M × Ṫ ∗N
with respect to the symplectic form pr∗MωM + pr∗NωN is defined by the twisted graph Γ ′ of a

homogeneous symplectomorphism κ : Ṫ ∗N → Ṫ ∗M , where ωM , ωN are symplectic forms on
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T ∗M,T ∗N . This enforces dimM = dimN =: n. In this case, it is always possible to choose
coordinates y = (yi) on the image of y0 ∈ N under some local chart such that [52, Prop.
25.3.3]

Γϕ = {(x,dxϕ; gradηϕ, η)}, det
∂2ϕ

∂xi∂ηj
(x, η) 6= 0, (85)

by making use of a non-degenerate phase function ϕ(x, η) on an open conic neighbourhood of

(x0, η
0) ∈M × Ṫ ∗

y0N .
As a consequence, the simplest class of Fourier integral operators C∞

c (N ;F ) → D′(M ;E)
are those whose Schwartz kernels are elements in Im

(
M × N,Γ ′; Hom(F,E)

)
where E →

M,F → N are smooth complex vector bundles and m ∈ R. As explained in Section 2.1, any
element A of this space of Lagrangian distributions can be locally represented as a matrix(
Im(Rn × Rn, Γ ′

ϕ)
)r
k

of entries [49, pp. 169-173] (for details, see e.g. [52, Sec. 25.3], [91, pp.
461-465])

Ar
k(x, y) ≡

∫

Rn

ei(ϕ(x,η)−y·η)ark(x, y, η)
dη

(2π)n
, (86)

where k = 1, . . . , rkF ; r = 1, . . . , rkE and the total symbol ark is of homogeneous of degree
m, having support in the interior of a small conic neighbourhood of (x0, η

0) contained in the
domain of definition of ϕ.

In order to describe the principal symbol of Im
(
M×N,Γ ′; Hom(F,E)

)
, one notes that Γ is

naturally a symplectic manifold with respect to the symplectic form ωΓ := Pr∗M ωM = Pr∗N ωN ,
where PrM ,PrN are the projections from Γ to T ∗M,T ∗N . The natural symplectic half-
density Ω1/2Γ (notationally suppressed in Section 2.1.1) in the principal symbol σA(x, ξ; y, η) ∈

Sm+n/2
(
Γ ;M⊗ H̃om(F,E)⊗Ω1/2Γ

)
of A can be factored out so that the order m+(n+n)/4

of the halfdensity valued principal symbol is reduced to m as Ω1/2Γ is of order n/2. Therefore,
the principal symbol map

σ· : I
m−[1]

(
M ×N,Γ ′; Hom(F,E)

)
→ Sm−[1]

(
Γ ;M⊗ H̃om(F,E)

)
(87a)

is locally given by (see e.g. [52, p. 27])

(σA)
r
k(x, η) := ark

(
xi,

∂ϕ

∂ηi
; ηi

) ∣∣∣∣det
[
∂2ϕ

∂xi∂ηj

]∣∣∣∣
−1/2

m mod Sm−1(·), (87b)

where m is the contribution of the Keller-Maslov bundle M→ Γ ◦ Λ as explained below.
The Keller-Maslov bundle M → C over a conic Lagrangian submanifold C ⊂ Ṫ ∗M is a

complex line bundle obtained from some principal bundle with structure group Z/4Z [49, p.
148] (see also, e.g. [51, Def. 21.6.5]). It is trivial as a vector bundle. For our purpose,
it is constructed as follows. Let ϕ be a non-degenerate phase function for C, whose fibre-
critical manifold is Σ. Employing Hessϕ, one has the integer-valued map: Σ ∋ (x; θ) 7→
sgn
(
Hessθ ϕ (x; θ)

)
∈ Z. This function can be somewhat discontinuous as the Hessian can

be singular at some elements of Σ. We now consider an open conic (Leray7-) covering {Lα}
of C, indexed by a countable set with the corresponding non-degenerate phase functions ϕα

and the fibre-critical manifolds Σα. It follows from (10) that the mapping [49, (3.2.15)] (for
details, see e.g. [72], [42, Sec. 5. 13], [91, pp. 408-412])

sαβ : Σα ∩Σβ → Z, (x; θα, θβ) 7→

7This means that finite intersection of Lα’s are either empty or diffeomorphic to the open ball.
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sαβ(x; θ
α, θβ) :=

1

2

(
sgn
(
Hessθ ϕβ (x; θ

β)
)
− dβ − sgn

(
Hessθ ϕα (x; θ

α)
)
+ dα

)

is constant for all connected intersections Σα ∩ Σβ. Let αβ : Σα ∩ Σβ → Lα ∩ Lβ be the

homogeneous immersion. Thereby, ταβ := e
i/2πsαβ◦

−1
αβ : Lα ∩ Lβ → Ċ, clearly satisfies the

cocycle property together with |ταβ| = 1. Hence, the collection of non-zero complex numbers
{ταβ} for all α and β such that Lα and Lβ are not disjoint, defines our transition function
and the global construction of M is achieved by taking the disjoint union M :=

⊔
α(Lα × C)

modulo the equivalence relation
(
(x, ξα), cα

)
∼
(
(x, ξβ), cβ

)
⇔ (x, ξα) = (x, ξβ) ∈ Lα ∩ Lβ, cα = ταβcβ .

We remark that the composition AB of properly supported Lagrangian distributions A ∈
Im
(
M × Ñ , Γ ′,Hom(F̃ , E)

)
and B ∈ Im

′(
Ñ × N,Λ′; Hom(F, F̃ )

)
is always well-defined and

AB ∈ Im+m′+e/2
(
M ×N, (Γ ◦ Λ)′; Hom(F,E)

)
defines a Fourier integral operator associated

to the graph (canonical relation) Γ ◦ Λ of the composition of symplectomorphisms Ṫ ∗N ∋
(y, η) 7→ (ỹ, η̃) 7→ (x, ξ) ∈ Ṫ ∗M . In this case, the principal symbol is given by [49, p. 180] (see
also [91, (6.11), p. 465])

σAB =
∑

(z,ζ) | (x,ξ;z,ζ)∈Γ,(z,ζ;y,η)∈Λ

σA(x, ξ; z, ζ)
(
σB(z, ζ; y, η)

)
. (88)

If the respective vector bundles are hermitian then the algebra of Lagrangian distributions is
a ∗-algebra.

Appendix C. Parametrices for elliptic Fourier integral operators

In this section we will introduce the notion of ellipticity [22, p. 186] for a Fourier integral
operator and show that an approximate inverse always exists for such an operator.

Definition C.1. Let E → M,F → N be complex smooth vector bundles over manifolds
M,N . Suppose that Γ is the graph of a homogeneous symplectomorphism from Ṫ ∗N to
Ṫ ∗M and that M → Γ is the Keller-Maslov bundle over Γ . A Lagrangian distribution A ∈
Im
(
M × N,Γ ′; Hom(F,E)

)
is called non-characteristic at (x0, ξ

0; y0, η
0) ∈ Γ if its principal

symbol a ∈ Sm
(
Γ ;M⊗ H̃om(F,E)

)
has an inverse ∈ S−m

(
Γ ;M−1 ⊗ H̃om(E,F )

)
in a conic

neighbourhood of (x0, ξ
0; y0, η

0). A is called elliptic if it is non-characteristic at every point of
Γ . The complement of non-characteristic points is called by the characterisitic set Char(A)
of A [52, Def. 25.3.4].

We note that (86) and (87b) imply that the non-characteristic points belongs to WF′(A).
If Γ−1 is also a graph and A is elliptic, properly supported, then A has a unique parametrix
G, i.e.,

GA− IF ∈ ΨDO−∞(N ;F ), AG− IE ∈ ΨDO−∞(M ;E). (89)

A proof of the microlocal version of this claim is going to be presented shortly after one devises
a variant of Lagrangian distributions where the closedness assumption on the Lagrangian
submanifold has been relaxed.

Let C ⊂ Ṫ ∗M × Ṫ ∗N be a conic Lagrangian submanifold which is not necessarily closed
and let K ⊂ C a conic subset which is closed in Ṫ ∗(M ×N). By Im

(
M,K; Hom(F,E)

)
, one

denotes the set of all matrices with elements (13) together with the additional condition that
the restriction of ark (appearing in (13)) to some conic neighbourhood in RnM × RnN × Rd of
the pullback of C \K by the Lagrangian fibration (terms as defined in (11)) Σϕ ∋ (x, y; θ) 7→
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(x,dxϕ; y,dyϕ) ∈ Cϕ, is in the class S−∞(·). Then, the analogue of the isomorphism (14a)
reads

Im−[1]
(
M ×N,K ′; Hom(F,E)

)
∼= Sm−[1]

(
K;M⊗ H̃om(F,E)

)
, (90)

where Sm
(
K;M ⊗ H̃om(F,E)

)
denotes the set of a ∈ Sm

(
C;M ⊗ H̃om(F,E)

)
such that

a ∈ S−∞ on C \K [22, p. 187].

Theorem C.2. Let E → M and F → N are smooth complex vector bundles over manifolds
M,N . Suppose that Γ is the graph of a homogeneous symplectomorphism κ from an open conic
subset V ⊂ Ṫ ∗N into Ṫ ∗M and that K ⊂ Γ is a conic subset which is closed in Ṫ ∗(M ×N).

Then, for any conic subset U ⊂ V such that U (resp. κ(U)) is closed in Ṫ ∗N (resp. Ṫ ∗M), if
A ∈ Im

(
M ×N,K ′; Hom(F,E)

)
,m ∈ R is non-characteristic on {

(
κ(U),U

)
} ⊂ Γ then there

exists an elliptic G ∈ I−m
(
N ×M,K−1′; Hom(E,F )

)
such that

ES(GA− IF ) ∩ U = ∅, ES(AG− IE) ∩ κ(U) = ∅,

where IE ∈ ΨDO0(M ;E) and IF ∈ ΨDO0(N ;F ) are identity operators. The parametrix G is

unique in the sense that
(
U ,κ(U)

)
6⊂WF′(G− G̃) for any other parametrix G̃ of A.

Proof. We will follow the same arguments used to proof the scalar-version of this assertion [22,
Prop. 5.1.2]. Let a be the principal symbol of A in the sense of (90). By hypotheses, there

exists a b ∈ S−m
(
K;M−1⊗ H̃om(E,F )

)
such that ba = σIF

in a conic neighbourhood of ∆U .
By utilising appropriate microlocal partition of unities Ψ (resp. Φ) subordinated to U (resp.
κ(U)), one chooses b = 0 outside of a sufficiently small conic neighbourhood of {

(
κ(U),U

)
},

where U is identified with ∆U (via projection). Then, we have a properly supported B0 ∈
I−m

(
N ×M,K−1′; Hom(E,F )

)
whose principal symbol is σΨbσΦ = b, and by the composition

of Lagrangian distributions, there exists a properly supported R ∈ ΨDO−1(N ;F ) such that
B0A = IF − R. Next, we want to invert IF − R by making use of the Neumann series:
(IF −R)

−1 =
∑

k∈N0
Rk. Set Bk := RkB0 ∈ I

−m−k
(
N ×M,K−1′; Hom(E,F )

)
and then

IF = (IF −R)
∞∑

k=0

Rk =
N−1∑

k=0

Rk(IF −R) +
∞∑

k=N

Rk(IF −R) =
N−1∑

k=0

BkA+RN .

Let G be defined by the asymptotic summation: G :∼
∑

k∈N0
Bk. Then inserting the last

equation one obtains

GA− IF =

(
G−

N−1∑

k=0

Bk

)
A−RN ∼

∞∑

k=N

BkA−R
N ∈ ΨDO−N (N ;F )

for every N ∈ N, which in turn proves the first part of the theorem as a right parametrix can
be constructed analogously.

To prove the uniqueness, we suppose that G̃ is another right parametrix for A. Then
{(
U ,κ(U)

)}
6⊂WF′(G) = WF′(GAG̃) = WF′(G̃)

and similarly for the left parametrix. �

Appendix D. Egorov theorem

In this section, we will present a vector bundle version of the Egorov theorem [24], slightly
general than in the exiting literature [17], [7, Thm. 3.2], [62, Thm. 1.7], [63, Thm. 6.1], [58,
Prop. 3.3], [34, Prop. A.3].
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Theorem D.1 (Egorov’s theorem). Let E → M (resp. F → N) be a smooth complex vec-

tor bundle and πM : Ṫ ∗M → M (resp. πN : Ṫ ∗N → N) the punctured cotangent bundle

over a manifold M (resp. N). Assume that κ : Ṫ ∗N → Ṫ ∗M is a homogeneous symplecto-
morphism whose graph is denoted by Γ . Suppose that A ∈ Im

(
M × N,Γ ′; Hom(F,E)

)
, B ∈

I−m
(
N ×M,Γ−1′; Hom(E,F )

)
,m ∈ R are properly supported Lagrangian distributions and

that P ∈ ΨDOm′

(M ;E),m′ ∈ R is a properly supported pseudodifferential operator having a
scalar principal symbol σP . Then, BPA is a properly supported pseudodifferential operator
ΨDOm′

(N ;F ) whose principal symbol is

σBPA = σBA · κ
∗σP ,

Here κ∗σP is the pull-back of σP to Ṫ ∗N understood as scalar section of π∗NEnd(F ).

Proof. We will use the same strategy employed for proving the scalar version of the prin-
cipal symbol formula [52, Thm. 25.3.5]. By repeated applications of the composition (88)

of Lagrangian distributions, we have PA ∈ Im+m′(
M × N,Γ ′; Hom(F,E)

)
and BPA ∈

ΨDOm′

(N ;F ). In order to compute σPA, one lifts σP to Γ via the pullbacks of the projector

Ṫ ∗M× Ṫ ∗N → Ṫ ∗M followed by the inclusion Γ →֒ Ṫ ∗M× Ṫ ∗N . Then σPA = σPσA. Equiva-
lently, one can lift κ∗σP to Ṫ ∗M×Ṫ ∗N via the projector Ṫ ∗M×Ṫ ∗N → Ṫ ∗N and then consider
it as a homomorphism on Γ as before. Thus PA − AR ∈ Im+m′−1

(
M × N,Γ ′; Hom(F,E)

)

if R ∈ ΨDOm′

(N ;F ) having the principal symbol κ∗σP . As σP is scalar, therefore

BPA−BAR ∈ ΨDOm′−1(N ;F ) which entails the claim. �

Appendix E. Products of operators with vanishing principal symbol

In this section we will compute the principal symbol of the product of a pseudodifferential
operator with a Lagrangian distribution when the principal symbol of the pseudodiferential
operator vanishes. It turns out that Lie derivative plays a pivotal role in this regard so we
recall a few rudimentary formulae. Let u be a halfdensity valued section of a vector bundle
E →M over a manifold M and ∇ a connection on E. Recall, the Lie derivative of u along a
vector field X on M is defined by £Xu := d/ds

∣∣
s=0

(Ξ∗
su) where Ξ∗

s is the pullback via the flow

Ξs : M → M of X and the parallel transport map Ξ̂s induced by ∇. We need an expression
in local coordinates (x1, . . . , xn) on M , X = Xi∂/∂xi, and a local frame (e1, . . . , erkE) in E.

Then
√
|dx| is a nowhere-vanishing section of the halfdensity bundle over M . Given a section

u = ukek ⊗
√
|dx| the Leibniz rule then entails that (see e.g [52, (25.2.11)])

£Xu =

(
Xi ∂u

r

∂xi
+

1

2
div(X)ur

)
er ⊗

√
|dx|+ ur£X(er)⊗

√
|dx|. (91)

Theorem E.1. Let E, Ṫ ∗M → M (resp. F, Ṫ ∗N → N) be a complex smooth vector bundle
and the punctured cotangent bundle over a manifold M (resp. N) and m,m′ ∈ R. Assume that
A ∈ Im(M ×N,C ′; Hom(F,E)) is a Lagrangian distribution associated with the homogeneous

canonical relation C from Ṫ ∗N to Ṫ ∗M . Suppose that P ∈ ΨDOm′

(M ;E) be a properly
supported pseudodifferential operator with a scalar principal symbol σP and a subprincipal
symbol σsubP , and that σP vanishes on the projection of C in Ṫ ∗M . Then, PA ∈ Im+m′−1(M×
N,C ′; Hom(F,E)) and its principal symbol is

σPA =
(
− i£XP

+ σsubP

)
σA,
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where £XP
is the Lie derivative along the Hamiltonian vector field XP of σP , lifted to a

function on Ṫ ∗M × Ṫ ∗N , so XP is tangential to C.

Proof. Since the principal symbol is locally defined, our strategy is to make use of the partition
of unity to boil down the statements in the level of manifolds and employ the scalar-version of
this statement [22, Thm. 5.3.1] (see also [52, Thm. 25.2.4], [91, pp. 451-454]). The differences
in the proof between the scalar and the bundle versions are essentially bookkeeping, yet we
provide the main steps for completeness. Locally, the transition functions of M are constant
so the Maslov factor can be ignored while computing the Lie derivative. Moreover, σA is
a matrix-valued density on C ′ and thus the last term in (91) does not contribute. It is

always possible to choose a local coordinate (xi, ξi; y
j , ηj) around (x, ξ; y, η) ∈ Ṫ ∗M × Ṫ ∗N

such that xiξi + yjηj − H is a non-degenerate phase function for C, where H is a smooth
positively homogeneous R-valued function of degree 1 on an open conic neighbourhood of
(ξ, η) ∈ Ṫ ∗

xM × Ṫ
∗
yN [51, Thm. 21.2.16], [52, Lem. 25.2.5]). Then

Al
k(y, z) ≡ (2π)−3(nM+nN )/4

∫

RnM+nN

ei(ηiy
i+ζjzj−H(η,ζ)) alk(η, ζ) dη dζ,

where alk ∈ Sm−(nM+nN )/4(RnM+nN ) having support in a conic neighbourhood of (yi =
∂H/∂ηi, z

j = ∂H/∂ζj). For any v ∈ C∞
c (N ;F ), it follows from the definition of the Fourier

transformation that

Âl
kv

k(ξ) = (2π)nM− 3
4
(nM+nN )

∫

RnN

e− iH(ξ,ζ)alk(ξ, ζ) v̂
k(−ζ) dζ,

where we have made use of the Fubini’s theorem for oscillatory integrals [49, (1.2.4)]. Since
P is properly supported, one obtains

(P r
l A

l
kv

k)(x) = (2π)−
3
4
(nM+nN )

∫

RnM

dξ

∫

RnN

dζ ei x·ξ−iH(ξ,ζ)(σtotP )rl (x, ξ) a
l
k(ξ, ζ) v̂

k(−ζ),

where (σtotP )rl is the total symbol of P in the chosen coordinate-charts and bundle-charts. The
preceding equation entails that the Schwartz kernel of PA is

(P r
l A

l
k)(x, y) = (2π)−

3
4
(nM+nN )

∫

RnM

dξ

∫

RnN

dη ei(x·ξ+y·η−H)(σtotP )rl (x, ξ) a
l
k(ξ, η).

One can decompose (σtotP )rl = prl + p̃rl where (prl ) := (σP )
r
l and p̃rl is the remainder terms. By

hypothesis, p = 0 on the projection of C in Ṫ ∗M . By means of Taylor’s series one can write

prl (x, ξ) =
∂(x · ξ + y · η −H)

∂ξi
f rl,i(x, ξ, η),

where f rl,i is homogeneous of degree m′ with respect to (ξ, η), given by the mean value theorem:

f rl,i(x, ξ, η) =

∫ 1

0

∂prl
∂xi

(
λx+ (1− λ)

∂H

∂ξ
, ξ
)
dλ.

In particular, f rl,i|C = (∂xiprl )(∂ξiH, ξ). It is always possible to assume that a vanishes in a
neighbourhood of 0 and then an integration by parts gives for PA:

P r
l A

l
k = (2π)−

3
4
(nM+nN )

∫

RnM+nN

ei(x·ξ+y·η−H)
(
p̃rl a

l
k −Dξi(f

r
l,ia

l
k)
)
dξ dη.
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Let âlk be the leading order term in alk. Then alk = âlk(ξ, η)
√
|dξ| |dη| is the principal symbol

of A and the preceding equation implies

(σPA)
r
k =

(
p̃rl a

l
k −Dξi(f

r
l,i)a

l
k − f

r
l,iDξi(a

l
k)
)
x= ∂H

∂ξ

√
|dξ| |dη|

whenever (ξ, η) are taken as coordinates on C. We will suppress the bundle indices from
afterwards as there is no scope for confusion.

By definition, XP = ∂p/∂ξi ∂/∂xi− ∂p/∂xi ∂/∂ξi. So, Char(P ) is a hypersurface near (x, ξ) and

XP spans the symplectic-orthogonal (in Ṫ ∗M) of its tangent space. Now we pullback p(x, ξ)

via the projector Ṫ ∗M× Ṫ ∗N → Ṫ ∗M to consider it as a function p(x, ξ; y, η) on Ṫ ∗M× Ṫ ∗N .
The restriction of this function p(x, ξ; y, η) on C ′ is only a function of (ξ, η) as xi = ∂H/∂ξi
and yj = ∂H/∂ηj on C ′. Thus, XP on C must be of the form

−
∂

∂xi
(
p(x, ξ)

) ∂
∂ξi

= −fi(x, ξ, η)
∂

∂ξi
, xi =

∂H

∂ξi
,

in our chosen parametrisation of C and it is pointwise tangent to C. We compute

£XP
a = −fi

(∂H
∂ξ

, ξ, η
)
Dξi(a)− (Dξifi)

(∂H
∂ξ

, ξ, η
)
a−

i

2

∂2p

∂xj∂ξj

(∂H
∂ξ

, ξ
)

and insert this into the hindmost expression of σPA to reach our goal:

σPA = (− i£XP
+ σsubP )a mod Sm+m′−2(. . .),

where we have used

∂2p

∂xjξj
(x, ξ) =

∂fj
∂ξj

(x, ξ, η) −
∂2H

∂ξj∂ξi
(ξ, η)

∂fi
∂xj

(x, ξ, η) +
(
xi −

∂H

∂ξi
(ξ, η)

) ∂fi
∂xj∂ξj

(x, ξ, η)

when evaluated at x = ∂H/∂ξ. �

Appendix F. A few technical results

In this appendix, we collect the following results used in different places in this paper.
The first result has been proven for scalar pseudodifferential operators [22, Thm. 5.3.2] (see
also [52, Lem. 26.1.16]), which we tailor for normally hyperbolic operators.

Lemma F.1. Let � be a normally hyperbolic operator on a smooth complex vector bundle
E → M over a globally hyperbolic spacetime (M,g). Assume that C± are the forward and
backward geodesic relations (3). If B ∈ Im+1

(
M ×M,C±′; Hom(E,E)

)
,m ∈ R then one can

find A ∈ Im
(
M ×M,C±′; Hom(E,E)

)
such that �A−B is smoothing.

Proof. Our task is to solve the equation �A ≡ B for a given B. Let A0 ∈ Im
(
M ×

M,C±′; Hom(E,E)
)
. Since σ� = g−1 vanishes on the lightcone bundle Ṫ ∗

0M the Lagrangian
distribution �A0 is of order m + 1. By Theorem E.1, its principal symbol is given by
σ�A0

=
(
− i £X�

+ σsub
�

)
σA0

and �A0 −B ∈ I
m(. . .) if

(
− i £X�

+ σsub
�

)
σA0

= σB.

Identifying halfdensities with functions and making use of the fact that the Keller-Maslov
bundles (Appendix B) M± → C± are trivial as vector bundles, we write σA0

= a0m and
σB = bm where m is a non-vanishing section of M± and a0, b are scalar symbols of degree
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respectively m,m+ 1. The preceding equation then reads (− iX� + σsub
�

)a0 = b by (91). In
other words, inserting (28) and (27) in the last equation yield

(
−
∂gµν

∂xi
ξµξν

∂

∂ξi
+ 2gijξj

∂

∂xi
+ 2gijΓi

iξj

)
a0 = b. (92)

This is a transport equation along the vector field X�. The equation therefore has a unique
solution for a given initial condition and WF′(A0) ⊂ C

±.
We will now apply the same line of argument to B1 := B − �A0 ∈ Im(. . .), that is,

one considers Bk+1 := Bk − �Ak ∈ Im−k(. . .) for k = 0, 1, . . ., where B0 := B and Ak ∈
Im−k

(
M × M,C±′; Hom(E,E)

)
. Then B − Bk+1 = �(A0 + . . . + Ak). Let us now set

A :∼ A0 + . . . + Ak + . . . in the sense of asymptotic summation (Definition A.2). It then
follows that �A−B ∈ I−∞(. . .). �

The next result is a variant of Hörmander’s square root construction [49, Prop. 2.2.2] for
vector bundles.

Proposition F.2. Let
(
E → M, (·|·)

)
be a smooth complex vector bundle over a manifold

M , endowed with a sesquilinear form (·|·). Suppose that P ∈ ΨDOm(M ;E) is a properly
supported pseudodifferential operator of order m ∈ R+, formally selfadjoint with respect to
(·|·), and elliptic in a conic neighbourhood U of (x0, ξ

0) /∈ ES(P ) in Ṫ ∗M . If the principal
symbol of P is given by

p = q∗q

for some q ∈ C∞(U ,End(E)) then one can find a properly supported and formally selfadjoint

(with respect to (·|·)) Q ∈ ΨDOm/2(U ;E) such that

(x0, ξ
0) /∈ ES(P −Q∗Q), (x0, ξ

0) /∈ ES(Q),

where U is the projection of U on M .

Proof. The hypothesis on p implies that q is homogeneous of degree m/2 which in turns
entails that q ∈ Sm/2(U ,End(E)); cf. Definition A.2. We define a properly supported Q0 ∈

ΨDOm/2(U ;E) whose principal symbol is q. Without lose of generality Q0 can be taken
selfadjoint, otherwise one can just replace Q0 by (Q0 +Q∗

0)/2 without changing the principal
symbol. Then P −Q∗

0Q0 ∈ ΨDOm−1(U ;E).
Now we are left with estimations for lower order terms and will show that it is always

possible to obtain properly supported and formally selfadjoint Qk ∈ ΨDOm/2−k(U ;E) for all
k ∈ N, such that

Rk := P − (Q0 + . . . +Qk)
∗(Q0 + . . .+Qk) ∈ ΨDOm−1−k(U ;E).

We proceed inductively. Clearly, k = 1 has been checked. Observe that, if Qks have been
chosen accordingly then

P − |Q0 + . . . +Qk|
2 = Rk − (Q∗

kQ0 +Q∗
0Qk)−Q

∗
kQk + . . . ∈ ΨDOm−1−k(U ;E).

Since Rk is formally selfadjoint, the principal symbol of Rk − R∗
k is 2 i Im(σRk

) modulo

Sm−2−k(U ,End(E)). Then the desired operators Bk are achieved if we set

σRk
= σ∗Qk

q + q∗σQk

on U , that is, in the region where q(x, ξ̂) is invertible in End(E)x for each x ∈ U and ξ̂ :=
ξ/‖ξ‖ ∈ Srk(E)−1. Finally the result entails by constructing the total symbol of Q in the sense
of asympototic summation (Definition A.2); in other words: Q :∼

∑∞
k=0Qk. �
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