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We investigate the bulk photovoltaic effect, which rectifies light into electric current, in a collec-
tive quantum state with correlation driven electronic ferroelectricity. We show via explicit real-time
dynamical calculations that the effect of the applied electric field on the electronic order parameter
leads to a strong enhancement of the bulk photovoltaic effect relative to the values obtained in a
conventional insulator. The enhancements include both resonant enhancements at sub-band-gap
frequencies, arising from excitation of optically active collective modes, and broadband enhance-
ments arising from nonresonant deformations of the electronic order. The deformable electronic
order parameter produces an injection current contribution to the bulk photovoltaic effect that is
entirely absent in a rigid-band approximation to a time-reversal symmetric material. Our findings
establish that correlation effects can lead to the bulk photovoltaic effect and demonstrate that the
collective behavior of ordered states can yield large nonlinear optical responses.

The photovoltaic effect is the optical process that con-
verts light into electrical current [1–3]. Photovoltaic ef-
fects can be obtained from devices with interfaces (e.g.,
p-n junctions), but potential applications to new types of
solar cells have driven recent interest in bulk photovoltaic
effects (BPVE) occurring in homogeneous noncentrosym-
metric materials, where artificially fabricated interfaces
are not required and a photovoltage is not limited by a
band gap energy [4–8].

The BPVE has been extensively analyzed in ferro-
electrics [9–15] and Weyl semimetals [16–19]. Theory dis-
tinguishes shift and injection current contributions to the
BPVE, generated by photoinduced changes in the elec-
tron position and velocity, respectively [3, 19]. The shift
current contribution in ferroelectrics and Weyl semimet-
als has been related to Berry connection and topological
effects [19–22]. The fundamental assumption underlying
this previous work is that the BPVE may be studied in
a model of independent electrons moving in a rigid band
structure. This assumption has important consequences.
For example, while an injection current contribution has
the potential to lead to large nonlinear conductivity [8],
the independent particle approximation predicts that the
injection current under linearly polarized light vanishes
in time-reversal-symmetric insulators [3, 19].

In this Letter, we show that electronic correlation ef-
fects can substantially enhance the BPVE, opening a new
pathway to the design of optoelectronic materials. The
crucial new point is that if the inversion symmetry break-
ing arises from a low energy electronic instability, then
in addition to resonant enhancements at electronic collec-
tive mode frequencies, an applied electric field can non-
resonantly deform the electronic band structure in ways
that activate an injection current contribution.

We investigate the effect theoretically in the context of
the excitonic insulator (EI) but we emphasize that our
generic results apply to any inversion-symmetry break-

ing collective electronic states. Recently proposed EI
candidate materials include TiSe2 [23–26], Ta2NiSe5 [27–
32], and WTe2 [33–35]. The EI state is characterized by
spontaneous band hybridization triggered by the inter-
band Coulomb interaction in narrow-gap semiconductors
and semimetals [36–41]. The excitonic order may break
inversion symmetry, leading to “electronic ferroelectric-
ity” [42–45], in which case the state is referred to as a
ferroelectric EI (FEI). In this Letter, we investigate the
BPVE in a FEI. We compute the optical response includ-
ing changes in the order parameter, identify the optically
active collective modes in the FEI, and demonstrate that
nonlinear excitation leads not only to resonant enhance-
ment of the shift current but also to a nonvanishing injec-
tion current with both resonant and broadband contri-
butions. The nonvanishing injection current contribution
means that in contrast to simple band insulators the FEI
can exhibit large nonlinear conductivity.

A minimal theoretical model of the FEI [Fig. 1(a)] is

Ĥ=− ta
∑
j

(
ĉ†j+1,aĉj,a+H.c.

)
− tb

∑
j

(
ĉ†j+1,bĉj,b+H.c.

)
− tab

∑
j

(
ĉ†j,aĉj,b+H.c.

)
+ tab

∑
j

(
ĉ†j,aĉj−1,b+H.c.

)
+D

∑
j

(n̂j,a−n̂j,b) + V
∑
j

n̂j,a (n̂j,b+n̂j−1,b) , (1)

where ĉj,α (ĉ†j,α) is the annihilation (creation) operator

of a fermion on the chain (orbital) α (= a, b) at site j,

and n̂j,α = ĉ†j,αĉj,α. tα is the hopping integral on the
chain α, and tab is the interchain hopping that has the
opposite signs along the +x and −x directions. This type
of hopping appears when two orbitals have opposite pari-
ties along the chain direction [see, e.g., Fig. 1(a)] [46, 47].
D is the energy level difference, and V is the interchain
Coulomb interaction that induces the excitonic instabil-
ity. For simplicity, we take a particle-hole symmetric
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Figure 1. (a) Top panel: Zigzag chain model Eq. (1), where
we plot an example of two orbitals that lead to hopping tab.
Bottom panel: schematic picture of the EI state. (b) Ground-
state phase diagram of Eq. (1) in the plane of interaction
V and interchain hopping tab computed in the Hartree-Fock
approximation for D/th = 1. The magnitude of the order
parameter φ+ is shown in false color.

band structure with ta = −tb = th but our results do not
depend in any important way on this assumption. We
focus on the half-filled case 〈n̂j,a〉+ 〈n̂j,b〉 = 1 and set th
(t−1
h ) as a unit of energy (time) [48].

Excitonic order in Eq. (1) is characterized by the ex-

pectation values φ(x/2) = 〈ĉ†j,aĉj,b〉 and φ(−x/2) =

〈ĉ†j,aĉj−1,b〉 which it is convenient to combine into the

even and odd parity hybridizations φ± = φ(x/2) ±
φ(−x/2). For later use, we also define ∆n = 〈n̂j,b〉 −
〈n̂j,a〉. At tab = 0, the number of particles on each chain
is separately conserved and the model has an associated
internal U(1) invariance which is spontaneously broken
in the EI state, leading to an one-parameter family of
degenerate EI states characterized by φ+ = |φ+|eiθ+ 6= 0
with φ− = 0. The collective mode associated with vari-
ation of the U(1) phase θ+ is gapless [49, 50]. When
tab 6= 0, the U(1) symmetry is reduced to Z2, φ− 6= 0
and is real at all temperatures, and the excitonic order
is characterized by the appearance of a nonvanishing φ+

with the phase θ+ = 0, π, which spontaneously breaks
the Z2 symmetry. Because the broken symmetry is dis-
crete, all collective modes are gapped. The association
of the EI transition with a discrete symmetry breaking is
generic in materials [47, 50–52]; in the EI case considered
here the Z2 breaking also makes the +x and −x direction
hybridization magnitude different, thereby breaking in-
version symmetry [see Fig. 1(a)]. Following the modern
theory of polarization [53–55], we find the polarization
P =

∫
dk
2πA−−(k) ∝ V φ+tab, where A−−(k) is the Berry

connection at momentum k in the occupied band [56],
confirming that when φ+ 6= 0 and tab 6= 0 the Z2-broken
phase of Eq. (1) is a correlation-driven ferroelectric.

We solve the model in the time-dependent mean-
field (tdMF) theory which captures both the symmetries
of the ground state and the needed properties of the
collective modes and nonlinear response [57–60]. The
ground state calculation is standard [56] and the result-
ing phase diagram is shown in Fig. 1(b). The dynamics

are most conveniently studied in a pseudospin represen-
tation ρν(k, t) ≡ 〈Ψ̂k(t)†σνΨ̂k(t)〉 /2 (σν : Pauli matrix)

with Ψ̂†k = [ĉ†k,a, ĉ
†
k,b]. We use the equation of motion

(EOM) in the length gauge [3, 56]:

∂

∂t
ρ(k, t) =2h(k, t)× ρ(k, t)− E(t)

∂

∂k
ρ(k, t)

− γ [ρ(k, t)− ρeq(k)] , (2)

where h(k, t) is the tdMF Hamiltonian in the pseudospin
representation

hx(k, t) = −V Re[φ+(t)] cos
k

2
− V Im[φ−(t)] sin

k

2
,

hy(k, t) = (2tab+V Re[φ−(t)]) sin
k

2
− V Im[φ+(t)] cos

k

2
,

hz(k, t) = −2th cos k +D + V∆n(t). (3)

Here, we introduce a phenomenological relaxation term
γ which may be thought of as the scattering of photoex-
cited carriers by phonons, disorders, and many-body ef-
fects [61–65]. At each point in time, the MF parameters
are instantaneously updated using the equations φ±(t) =
2
∫
dk
2π [ρx(k, t) + iρy(k, t)] Λ±(k) [where Λ+(k) = cos k2

and Λ−(k) = i sin k
2 ] and ∆n(t) = −2

∫
dk
2πρz(k, t). We

solve the equations numerically for a continuous-wave
field E(t) = E0 sinωpt and initial condition ρ(k, t=0) =
ρeq(k) [56].

Figure 2(a) shows the optical conductivity σxx(ω) de-
fined here as the Fourier coefficient J(ω = ωp) of the

(total) current J(t) = 2
∫
dk
2π [∂kh(k, t)] · ρ(k, t) at steady

state (t � γ−1). In the FEI, σxx(ω) exhibits two peaks
below the band gap, arising from the collective modes of
the ordered state. The collective modes are optically ac-
tive because for tab 6= 0 the ground state breaks inversion
symmetry. The reduction of the U(1) symmetry down to
Z2 by tab 6= 0 means that the two modes are each gapped
even at longest wavelength. They have mixed phase and
amplitude character, but the lower (upper) mode is of
dominantly phase (amplitude) mode character. As can
be seen from Fig. 2(b), when the system is excited at the
frequency of the lower peak, the imaginary part of φ+(t)
oscillates more strongly than the real part. On the other
hand, when the system is excited at the frequency of
the upper peak, the real part of φ+(t) strongly oscillates
[see Fig. 2(c)]. Note that the upper peak is separated
from the continuum because the band gap including the
interchain hopping tab is larger than the gap originated
from V φ+. Since these two modes are optically active,
their contributions to higher-order optical responses are
important.

We now discuss the BPVE, which we define as the
dc limit of the intraband current Jintra produced by an
applied ac electric field. We derive Jintra from the time
derivative of intraband polarization Pintra [3]. Details are
given in the Supplemental Material [56]. We find

Jintra(t) =

∫
dk

2π
tr [J (k, t)ρ̃(k, t)] , (4)
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Figure 2. (a) Optical conductivity σxx(ω = ωp) of the FEI on
linear (main panel) and logarithmic (inset) scales. The black
dashed line indicates the band gap. (b), (c) Time evolution
of the real (orange) and imaginary (blue) components of the
order parameter φ+(t) at (b) ωp/th = 0.144 and (c) ωp/th =
0.559, which correspond to the phase and amplitude mode
frequencies, respectively, where ∆φ+(t) = φ+(t)−φ+(t=0) is
plotted. D/th = 1, tab/th = 0.2, V/th = 1.1, E0/th = 0.0001,
and γ/th = 0.01 are used.

where J is defined below and the density matrix ρ̃(k, t)
is obtained via EOM (2), which comprises ρ̃(k, t) =
ρ̃eq(k) + ρ̃(1)(k, t) + ρ̃(2)(k, t) + · · · [superscript indicates
order in powers of E(t)]. The BPVE is second order in
E and following prior work we distinguish shift and in-
jection current contributions which are most conveniently
written in the band basis (labeled here by n,m) of instan-
taneous eigenstates of h(k, t) in Eq. (3) [where ρ̃(k, t) is
defined in the band basis].

The shift current contribution arises from the
generalized derivative rnm;k(k) = ∂kAnm(k) −
i [Ann(k)−Amm(k)]Anm(k) (n 6= m), which gives the
shift vector related to polarization described by the Berry
connection [3, 21], where Anm(k) = iU †n(k)∂kUm(k) is
defined by the eigenvector Un(k) of the band εn(k). J
of the shift current is given by

J (I)
nm(k, t) = −E(t)rnm;k(k, t). (5)

Because J (I) ∝ E(t), the density matrix of first
order ρ̃(1)(k, t) contributes to shift current gener-

ation. Figures 3(a) and 3(b) show J
(I)
intra(t) =∫

dk
2π tr[J (I)(k, t)ρ̃(k, t)] computed for applied electric

field equal to the collective mode frequencies. We see

immediately that while J
(I)
intra(t) oscillates, there is a

nonzero average, which increases smoothly from zero and
saturates, implying a dc photocurrent in the long-time
limit. Since the BPVE is characterized by J(ω = 0) =
2σxxx(ω = 0;ωp)|E(ωp)|2, it is useful to present the re-
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Figure 3. (a), (b) Time evolution of the intraband current

J
(I)
intra(t) in the FEI at (a) ωp/th = 0.144 and (b) ωp/th =

0.559, which correspond to the collective mode frequencies in

Figs. 2(b) and 2(c), respectively. (c) Conductivity σ
(I)
xxx(ω =

0;ωp) of the shift current. The red solid and blue dashed lines

indicate σ
(I)
xxx(ω = 0;ωp) in the tdMF and IPA, respectively.

The parameter set is the same as Fig. 2.

sults in terms of the nonlinear conductivity σxxx(ω =

0;ωp) defined as 2
E2

0Tp

∫ tm+Tp
tm

J(t)dt, where Tp = 2π/ωp

and tm (� γ−1) is a time long enough for steady state to

be reached [56]. Figure 3(c) shows σ
(I)
xxx(ω = 0;ωp) cor-

responding to our results for J
(I)
intra(t). Corresponding to

Figs. 3(a) and 3(b), σ
(I)
xxx(0;ωp) in the tdMF shows two

sharp peaks in the sub-band-gap regime, indicating that
excitation of collective modes (especially the amplitude-
like mode) makes a large contribution to the shift cur-

rent. For comparison, we also plot in Fig. 3(c) σ
(I)
xxx(0;ωp)

obtained from the independent particle approximation
(IPA) that assumes that the MF parameter magnitude
and phase remain fixed during the excitation process. We
see that in the IPA the conductivity is nonzero only in the
above-band-gap regime and is smaller in magnitude than
the amplitude mode contribution, showing that the col-
lective dynamics of the electronically ordered state make
a large contribution to the nonlinear conductivity.

Next, we examine the injection current contribu-
tion [3], for which

J (II)
nm (k, t) = vn(k, t)δnm, (6)

where vn(k, t) = ∂kεn(k, t). Because J (II) does not con-
tain E(t), the density matrix of second order ρ̃(2)(k, t)
contributes to injection current generation. Figure 4(a)
shows the injection current contribution to the BPVE
for different values of the phenomenological relaxation γ.

When γ 6= 0, J
(II)
intra(t) increases linearly at short times
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Figure 4. (a) Time evolution of the intraband current J
(II)
intra(t)

in the FEI at ωp/th = 0.8. (b) Conductivity σ
(II)
xxx(ω = 0;ωp)

of the injection current with γ/th = 0.01. D/th = 1, tab/th =
0.2, V/th = 1.1, and E0/th = 0.0001 are used.

and saturates for times � γ−1, which is a characteristic
of the injection current [8, 66]. Our result for the FEI is
contrasted to the IPA result that for a free system with
time-reversal symmetry linearly polarized light does not
produce an injection current. In Fig. 4(b), we plot the

nonlinear conductivity σ
(II)
xxx(ω = 0;ωp) corresponding to

J
(II)
intra(t), which exhibits two sharp peaks at the sub-band-

gap collective mode frequencies and in addition the large
broadband contribution in the above-band-gap regime.
Since the injection current is of order γ−1 [8, 56], it can
correspond to a strong optical response when dissipative
effects are small. As shown in Fig. 5, the conductivity

σ
(I)
xxx(0;ωp) + σ

(II)
xxx(0;ωp) exhibits large values with in-

creasing γ−1 due to the injection current contribution.
Finally, we show how the injection current arises from

photoinduced deformations of the order parameter (see
the Supplemental Material [56] for details). In the veloc-
ity gauge [66, 67], the injection current may be written

JIC(0;ωp) =

∫
dk

2π

∫
dω′

2π
tr
[
V0(k)G0(k, ω′)δ∆(1)(k,−ωp)

×G0(k, ω′ + ωp)δ∆
(1)(k, ωp)G0(k, ω′)

]
+ [ωp ↔ −ωp], (7)

where G0(k, ω) is the bare fermion propagator and
V0(k) = tab cos(k/2)σ2 + 2th sin(k)σ3 is the k derivative
of the tight-binding Hamiltonian. δ∆(1)(k, ωp) is the per-
turbation at first order of A(ωp) ∝ E(ωp)/ωp (vector po-
tential). If the MF parameters were fixed to their equi-
librium values (i.e., IPA), δ∆(1)(k, ωp) = −V0(k)A(ωp)
and the injection current in Eq. (7) vanishes due to
V0(−k) = −V0(k)∗ [56]. However, in the FEI the in-
cident light modulates δ∆±(t) = V φ±(t) − V φeq

± and
δn(t) = ∆n(t) −∆neq [see e.g., Fig. 2] so that the total
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Figure 5. Conductivity σxxx(ω = 0;ωp) = σ
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xxx(ω = 0;ωp) +

σ
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xxx(ω = 0;ωp) with changing γ. The parameter set is the

same as Fig. 4.

perturbation δ∆(1)(k, ωp) = −V0(k)A(ωp)+δ∆
(1)
MF(k, ωp)

contains δ∆
(1)
MF(k, ωp) = δ∆(k, ωp) · σ given by

δ∆x(k, ωp) = −δ∆R
+(ωp) cos

k

2
− δ∆I

−(ωp) sin
k

2
,

δ∆y(k, ωp) = −δ∆I
+(ωp) cos

k

2
+ δ∆R

−(ωp) sin
k

2
,

δ∆z(k, ωp) = V δn(ωp), (8)

where the superscripts R and I indicate the real
and imaginary part of the order parameter, respec-
tively. The inversion-breaking nature of the FEI
phase means δ∆±(ωp) ∝ A(ωp) and δ∆(1)(−k,−ωp) 6=
−δ∆(1)(k, ωp)

∗, which makes a nonvanishing contribu-
tion to the integrands in Eq. (7). Hence, order parameter
deformations produce a nonvanishing injection current.

In summary, we have investigated the shift and in-
jection current contributions to the BPVE in a corre-
lated inversion-symmetry-breaking insulator: the FEI.
The physics of the correlated insulator produces char-
acteristic enhancements of the BPVE, related to the de-
formability of the order parameter under applied electric
fields. The shift current is modified and shows sharp
resonances at the collective mode frequencies. The injec-
tion current has both resonant contributions at the col-
lective mode frequencies and a broadband contribution
at above-band-gap drive frequencies which arises from
the deformability of the order parameter and is entirely
absent in a rigid band picture. It is very weak in the
phonon-driven ferroelectric case because the energy scale
mismatch between the phonon frequency and electronic
band gap weakens the influence of the phonon motion on
the electronic system [56].

In contrast to the previous studies that address
excitonic effects [65, 68–70], we focus on collective
order-parameter dynamics in a symmetry-broken state
and reveal its effects on the BPVE. While we used a
simple one-dimensional model of a FEI, our idea is
applicable to higher dimensions and richer models. The
essential ingredient is a deformable electronic order
parameter that produces a broken symmetry. Although
our two-chain model is similar to models proposed
for Ta2NiSe5 [47], in Ta2NiSe5 the ordered state is
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inversion symmetric and the BPVE vanishes. However,
under an applied bias voltage, Ta2NiSe5 has shown the
light-intensity-dependent photocurrent generation [71].
The mechanism of current generation under both dc and
optical electric fields is an interesting open question.
The FEI has recently been predicted in the monolayer
transition metal dichalcogenides [72], which is a po-
tential candidate that exhibits the BPVE. The search
for materials candidates should include the properties
(a) inversion-symmetry breaking [e.g., the ferroelectric
state] and (b) strong electronic character of the order.

This work was supported by Grants-in-Aid for
Scientific Research from JSPS, KAKENHI Grants

No. JP18K13509 (T.K.), No. JP19K23425, N
o. JP20K14412, No. JP20H05265 (Y.M.) and JST
CREST Grant No. JPMJCR1901 (Y.M.). A.J.M. and
Z.S. acknowledge support from the Energy Frontier
Research Center on Programmable Quantum Materials
funded by the U.S. Department of Energy (DOE), Office
of Science, Basic Energy Sciences (BES), under Award
No. DE-SC0019443. The numerical calculations were
performed in part using computational resources at
RIKEN. T.K. was supported by the JSPS Overseas
Research Fellowship. D.G. is supported by the Slovenian
Research Agency (ARRS) under Program J1-2455 and
P1-0044. The Flatiron Institute is a division of the
Simons Foundation.

[1] V. I. Belinicher and B. I. Sturman, Sov. Phys. Usp 23,
199 (1980).

[2] R. von Baltz and W. Kraut, Phys. Rev. B 23, 5590
(1981).

[3] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337
(2000).

[4] L. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, and
A. M. Rappe, npj Comput. Mater. 2, 16026 (2016).

[5] J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Ak-
bashev, A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J.
Hawley, D. Imbrenda, G. Xiao, A. L. Bennett-Jackson,
and C. L. Johnson, Nat. Photonics 10, 611 (2016).

[6] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and
J. E. Moore, Nat. Commun. 8, 14176 (2017).

[7] T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto,
J. E. Moore, and J. B. Neaton, Phys. Rev. Lett. 119,
067402 (2017).

[8] Y. Zhang, T. Holder, H. Ishizuka, F. de Juan, N. Na-
gaosa, C. Felser, and B. Yan, Nat. Commun. 10, 3783
(2019).

[9] W. Koch, R. Munser, W. Ruppel, and P. Würfel, Solid
State Commun. 17, 847 (1975).

[10] S. M. Young and A. M. Rappe, Phys. Rev. Lett. 109,
116601 (2012).

[11] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W.
Cheong, Science 324, 63 (2009).

[12] S. M. Young, F. Zheng, and A. M. Rappe, Phys. Rev.
Lett. 109, 236601 (2012).

[13] M. Nakamura, S. Horiuchi, F. Kagawa, N. Ogawa, T. Ku-
rumaji, Y. Tokura, and M. Kawasaki, Nat. Commun. 8,
281 (2017).

[14] N. Ogawa, M. Sotome, Y. Kaneko, M. Ogino, and
Y. Tokura, Phys. Rev. B 96, 241203(R) (2017).

[15] M. Sotome, M. Nakamura, J. Fujioka, M. Ogino,
Y. Kaneko, T. Morimoto, Y. Zhang, M. Kawasaki, N. Na-
gaosa, Y. Tokura, and N. Ogawa, Proc. Natl. Acad. Sci.
U.S.A. 116, 1929 (2019).

[16] Y. Zhang, H. Ishizuka, J. van den Brink, C. Felser,
B. Yan, and N. Nagaosa, Phys. Rev. B 97, 241118(R)
(2018).

[17] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu,
J.-H. Chen, J. Feng, and D. Sun, Nat. Mater. 18, 476
(2019).

[18] G. B. Osterhoudt, L. K. Diebel, M. J. Gray, X. Yang,

J. Stanco, X. Huang, B. Shen, N. Ni, P. J. W. Moll,
Y. Ran, and K. S. Burch, Nat. Mater. 18, 471 (2019).

[19] J. Ahn, G.-Y. Guo, and N. Nagaosa, Phys. Rev. X 10,
041041 (2020).

[20] T. Morimoto and N. Nagaosa, Sci. Adv. 2, e1501524
(2016).

[21] B. M. Fregoso, T. Morimoto, and J. E. Moore, Phys.
Rev. B 96, 075421 (2017).

[22] N. Nagaosa and T. Morimoto, Adv. Mater. 29, 1603345
(2017).

[23] H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. De-
spont, M. G. Garnier, H. Beck, P. Aebi, L. Patthey,
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[41] J. Kuneš, J. Phys.: Condens. Matter 27, 333201 (2015).
[42] E. Batyev and V. Borisyuk, JETP Lett 32, 395 (1980).
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Supplemental Material:
Bulk Photovoltaic Effect Driven by Collective

Excitations in a Correlated Insulator

A: Hartree-Fock Approximation

1. Hamiltonian

To study the excitonic insulator (EI) state, we employ
the Hartree-Fock (HF) approximation for the interaction

term ĤV . In the HF approximation, we have the Hamil-
tonian ĤHF

V = ĤH
V + ĤF

V +NεHF
V with

ĤH
V =V (n+ ∆n)

∑
j

n̂j,a + V (n−∆n)
∑
j

n̂j,b, (A1)

ĤF
V =− V

∑
j

(
φ
(

+
x

2

)
ĉ†j,bĉj,a + H.c.

)
− V

∑
j

(
φ
(
−x

2

)
ĉ†j−1,bĉj,a + H.c.

)
, (A2)

where we assumed n = na + nb and ∆n = nb − na with
nα = 〈n̂j,α〉 = 〈n̂j−1,α〉 (α=a, b) in the Hartree term ĤH

V

and φ(+x/2) = 〈ĉ†j,aĉj,b〉 and φ(−x/2) = 〈ĉ†j,aĉj−1,b〉 in

the Fock term ĤF
V .

Due to the interchain hopping tab, φ(+x/2) =
−φ(−x/2) without the excitonic order. This symmetry
is broken when the excitonic order parameter

φ+ = φ
(

+
x

2

)
+ φ

(
−x

2

)
, (A3)

is nonzero [S1]. Hence, we define

φ
(

+
x

2

)
=
φ+

2
+
φ−
2
,

φ
(
−x

2

)
=
φ+

2
− φ−

2
. (A4)

Using the Fourier transformation

ĉj,a =
1√
N

∑
k

eikRj ĉk,a,

ĉj,b =
1√
N

∑
k

eik(Rj+1/2)ĉk,b, (A5)

and Ψ̂†k = [ĉ†k,a, ĉ
†
k,b], we obtain the HF Hamiltonian

ĤHF =
∑
k Ψ̂†kHkΨ̂k + V n

∑
k Ψ̂†kΨ̂k +NεHF

V with

Hk =

[
−2th cos k +D + V∆n −V φ∗+ cos k2 − i(2tab + V φ∗−) sin k

2

−V φ+ cos k2 + i(2tab + V φ−) sin k
2 2th cos k −D − V∆n

]
,

where ta = −tb = th and the lattice constant is set to 1.
The energy term εHF

V is given by

εHF
V = −V

2

(
n2 −∆n2

)
+
V

2

(
|φ+|2 + |φ−|2

)
. (A6)

When the hybridization parameters are complex (e.g.,
φ+ = Re[φ+] + iIm[φ+]), the Hamiltonian Hk = h(k) ·σ
in the pseudospin representation is given by

hx(k) = −V Re[φ+] cos
k

2
− V Im[φ−] sin

k

2
, (A7)

hy(k) = (2tab + V Re[φ−]) sin
k

2
− V Im[φ+] cos

k

2
, (A8)

hz(k) = −2th cos k +D + V∆n. (A9)

2. Self-consistent equations

The Hamiltonian Hk = h(k) · σ has the eigenenergies

ε±(k) = ±|h(k)| = ±
√
hx(k)2 + hy(k)2 + hz(k)2.

(A10)

The eigenvectors of the upper (+) and lower (−) energy
bands are given by

U+(k) =
1√
2

[
uk

vke
iϕk

]
, (A11)

U−(k) =
1√
2

[
vk

−ukeiϕk

]
, (A12)

respectively, with

uk =

√
1 +

hz(k)

|h(k)|
, (A13)

vk =

√
1− hz(k)

|h(k)|
, (A14)

ϕk = tan−1

[
hy(k)

hx(k)

]
. (A15)

Using the eigenvectors, the total particle density n and
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the difference of occupancy ∆n are given by

n =
1

N

∑
k

∑
n=±

f(εn(k)), (A16)

∆n = − 1

N

∑
k

hz(k)

|h(k)|
f+−(k), (A17)

respectively. Here, f+−(k) = f(ε+(k))− f(ε−(k)) is the
difference of the Fermi distribution function f(ε), and
f+−(k) = −1 at zero temperature. The hybridization
parameters φ+ and φ− are given by

φ+ =
1

N

∑
k

hx(k) + ihy(k)

|h(k)|
f+−(k) cos

k

2
, (A18)

φ− =
i

N

∑
k

hx(k) + ihy(k)

|h(k)|
f+−(k) sin

k

2
, (A19)

respectively. These equations correspond to the gap
equations and we solve them self-consistently.

B: Equation of Motion

Here, we derive the equation of motion (EOM) for the
density

ρβα(k, t) = 〈ĉ†k,α(t)ĉk,β(t)〉 (B1)

in the orbital basis. In this section, we also use the den-

sity operator defined by ρ̂βα,k = ĉ†k,αĉk,β .

Employing the length gauge [S2], we consider the time-
dependent Hamiltonian under the electric field E(t) given
by

Ĥ(t) = Ĥ0 − E(t)P̂ . (B2)

Ĥ0 is the single-particle term

Ĥ0 =
∑
k

∑
α,β

hαβ(k)ĉ†k,αĉk,β . (B3)

In our tdMF theory, this term corresponds to the HF
Hamiltonian ĤHF. P̂ in Eq. (B2) is the polarization de-
fined as

P̂ =
∑
j,α

Rj,αĉ
†
j,αĉj,α (B4)

=
∑
k,k′

∑
α

[
i
∂

∂k
δ(k − k′)

]
ĉ†k,αĉk′,α, (B5)

where Rj,α = Rj + rα and Rj and rα are the positions
of the j-th unit cell and atomic orbital α, respectively.
Here, we set ~ = q = 1 for simplicity. Because we are
considering two different orbitals on the different sites in
the tight-binding picture, we assume dαβ =

∫
drwα(r −

rα)rwβ(r − rβ) = 0 (rα 6= rβ).

We derive the EOM from the Heisenberg EOM

i
∂

∂t
ρ̂βα,k(t) =

[
ρ̂βα,k(t), Ĥ(t)

]
. (B6)

Because[
ρ̂βα,k, Ĥ0

]
=
∑
γ

[hβγ(k)ρ̂γα,k − ρ̂βγ,khγα(k)] (B7)

and [
ρ̂βα,k, P̂

]
= i

∂

∂k
ρ̂βα,k, (B8)

the EOM for ρβα(k, t) = 〈ρ̂βα,k(t)〉 is given by

∂

∂t
ρβα(k, t) =− i

∑
γ

[hβγ(k)ργα(k, t)− ρβγ(k, t)hγα(k)]

− E(t)
∂

∂k
ρβα(k, t). (B9)

Using the pseudospin representation[
ρaa(k, t) ρab(k, t)
ρba(k, t) ρbb(k, t)

]
= ρ0(k, t)σ0 + ρ(k, t) · σ, (B10)

the EOM for ρ(k, t) is given by

∂

∂t
ρ(k, t) = 2h(k)× ρ(k, t)− E(t)

∂

∂k
ρ(k, t). (B11)

The MF parameters

φ+(t) =
2

N

∑
k

[ρx(k, t) + iρy(k, t)] cos
k

2
, (B12)

φ−(t) =
2i

N

∑
k

[ρx(k, t) + iρy(k, t)] sin
k

2
, (B13)

and

∆n(t) = − 2

N

∑
k

ρz(k, t) (B14)

are also updated in time. In the tdMF, h(k)→ h(k, t) =
hMF[φ±,∆n](k, t), and the EOM is given by

∂

∂t
ρ(k, t) = 2h(k, t)× ρ(k, t)− E(t)

∂

∂k
ρ(k, t). (B15)

In equilibrium, the particle density is given by

ρeq(k) = ρ(k, t = 0) =
h(k)

2|h(k)|
f+−(k). (B16)

In the time-dependent calculations, we employ the
ground state in equilibrium as the initial state and use
the Runge-Kutta fourth-order method for time evolution.
In our calculation, we use the time step δt = Tp/Nt with
Tp = 2π/ωp and Nt = 500. For k derivative, we use the
numerical differentiation ∂kρ(k, t) = [ρ(k+dk, t)−ρ(k−
dk, t)]/(2dk) (symmetric derivative), where dk = 2π/N
with N > 5000.



9

C: Current

1. Current in the orbital basis

The current operator is defined as

Ĵ(t) =
dP̂ (t)

dt
=

1

i

[
P̂ (t), Ĥ(t)

]
. (C1)

In the length gauge, [P̂ , Ĥ0 − E(t)P̂ ] = [P̂ , Ĥ0]. Using
the Hamiltonian (B3), we have[

P̂ , Ĥ0

]
= i
∑
k

∑
α,β

∂hαβ(k)

∂k
ρ̂βα,k. (C2)

Hence, the current per unit [J(t) = 〈Ĵ(t)〉 /N ] is given
by

J(t) =

∫
dk

2π

∑
α,β

∂hαβ(k, t)

∂k
ρβα(k, t). (C3)

Using the pseudospin representation in the two-orbital
system, the current is written as

J(t) = 2

∫
dk

2π

∂h(k, t)

∂k
· ρ(k, t), (C4)

where haa(k, t)+hbb(k, t) = 0 (particle-hole symmetry) is
assumed. Note that, in our tdMF calculation, we obtain
the same value of J(t) even if the MF parameters are not
included in ∂kh(k, t).

2. Intraband current

The current operator derived in the previous subsec-
tion includes both inter and intraband contributions.
The dc current needed in the bulk photovoltaic effect
(BPVE) arises from the intraband contribution to the
current [S2]. To derive this contribution and make con-
tact with previous work [S2], we transform the polariza-
tion and current operators from the orbital basis ĉkα to

the band basis d̂k,n that diagonalizes ĤHF:∑
α,β

hαβ(k)ĉ†k,αĉk,β =
∑
n

εn(k)d̂†k,nd̂k,n. (C5)

The unitary transformation that gives the relation be-
tween the operators of the orbital α and band n is

ĉk,α =
∑
n

Uαn(k)d̂k,n. (C6)

For later use, we define the density operator in the band
basis

ˆ̃ρmn,k = d̂†k,nd̂k,m, (C7)

where we put˜on ρ to indicate the band basis. We also

use its expectation value ρ̃mn(k, t) = 〈d̂†k,n(t)d̂k,m(t)〉.

Using Eq. (C6) in the k-representation of Eq. (B5), we
obtain [S2]

P̂ =
∑
k

∑
n,m

Anm(k)d̂†k,nd̂k,m

+
∑
k,k′

∑
n

[
i
∂

∂k
δ(k − k′)

]
d̂†k,nd̂k′,n, (C8)

where Anm(k) is the connection defined as

Anm(k) = i
∑
α

U∗αn(k)
∂

∂k
Uαm(k). (C9)

In this Supplemental Material, following the notation in
Ref. [S2], we define

rnm(k) =

{
Anm(k) (n 6= m)

0 (n = m)
, (C10)

and divide the polarization into the inter and intraband
contributions,

P̂ = P̂inter + P̂intra (C11)

with

P̂inter =
∑
k

∑
n 6=m

rnm(k)d̂†k,nd̂k,m, (C12)

P̂intra =
∑
k

∑
n

Ann(k)d̂†k,nd̂k,n

+
∑
k,k′

∑
n

[
i
∂

∂k
δ(k − k′)

]
d̂†k,nd̂k′,n. (C13)

Because the shift and injection currents are obtained
from the intraband current [S2], we consider

Ĵintra(t) =
dP̂intra(t)

dt
=

1

i

[
P̂intra(t), Ĥ(t)

]
(C14)

in the length gauge, where Ĥ(t) = Ĥ0 − E(t)(P̂intra +

P̂inter), and we have

Ĵintra(t) =
[
P̂intra, Ĥ0

]
− E(t)

[
P̂intra, P̂inter

]
. (C15)

Using the Hamiltonian Ĥ0 =
∑
k,n εn(k)d̂†k,nd̂k,n, we

have [
P̂intra, Ĥ0

]
= i
∑
k

∑
n

vn(k)ˆ̃ρnn,k, (C16)

where vn(k) = ∂kεn(k). The commutation relation be-
tween the intra and interband polarizations is given by[

P̂intra, P̂inter

]
= i
∑
k

∑
n 6=m

rnm;k(k)ˆ̃ρmn,k (C17)
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with the generalized derivative

rnm;k(k) =
∂

∂k
rnm(k)− i [Ann(k)−Amm(k)] rnm(k).

(C18)

Hence, the intraband current is given by [S2]

Ĵintra(t) =
∑
k

∑
n

vn(k)ˆ̃ρnn,k(t)

− E(t)
∑
k

∑
n 6=m

rnm;k(k)ˆ̃ρmn,k(t). (C19)

Within the second-order perturbation theory, the first
and second terms in Eq. (C19) are the injection and shift
currents, respectively [S2]. In the tdMF theory, the band
parameters are also time-dependent, and we thus define
the shift and injection currents (per unit) as

J
(I)
intra(t) = −E(t)

∫
dk

2π

∑
n6=m

rnm;k(k, t)ρ̃mn(k, t), (C20)

J
(II)
intra(t) =

∫
dk

2π

∑
n

vn(k, t)ρ̃nn(k, t), (C21)

respectively. Corresponding to them, in the main text,

we defined J (I)
nm(k, t) = −E(t)rnm;k(k, t) (n 6= m) and

J (II)
nm (k, t) = vn(k, t)δnm. Because other contributions

are not dominant in dc photocurrent generation, we only

focus on J
(I)
intra(t) and J

(II)
intra(t). Comparing with the total

current J(t) in Eq. (C4), J(ω = 0) in the ferroelectric

EI reproduces the main features of J
(II)
intra(ω = 0) since

the injection current contribution is dominant [see e.g.,

Fig. 5], and the sum of J
(I)
intra(ω = 0) and J

(II)
intra(ω = 0)

shows reasonable agreement with J(ω=0).

3. Connection in the two-band model

Here, we present the connection Anm(k) in the two-
orbital model. Using the eigenvectorU±(k) in Eqs. (A11)
and (A12), the intraband connection A±±(k) is given by

A±±(k) = iU †±(k)
∂

∂k
U±(k). (C22)

Combining Eqs. (A13)-(A15), we have

A±±(k) = −
hx(k)h′y(k)− hy(k)h′x(k)

2h(k) [h(k)± hz(k)]
, (C23)

where we defined h(k) = |h(k)| and h′µ(k) = ∂khµ(k). In
the same way, the interband connection is given by

A+−(k) = r+−(k) = iU †+(k)
∂

∂k
U−(k). (C24)

Using Eqs. (A13)-(A15), we obtain

A+−(k) =
hx(k)h′y(k)− hy(k)h′x(k)

2h(k)
√
h(k)2 − hz(k)2

− ih(k)h′z(k)− hz(k)h′(k)

2h(k)
√
h(k)2 − hz(k)2

. (C25)

Using the pseudospin representation[
A++(k) A+−(k)
A−+(k) A−−(k)

]
= A0(k)σ0 + A(k) · σ, (C26)

A(k) = (A1(k),A2(k),A3(k)) is given by

A1(k) =
hx(k)h′y(k)− hy(k)h′x(k)

2h(k)
√
h(k)2 − hz(k)2

, (C27)

A2(k) =
h(k)h′z(k)− hz(k)h′(k)

2h(k)
√
h(k)2 − hz(k)2

, (C28)

A3(k) =
hz(k)

2h(k)

hx(k)h′y(k)− hy(k)h′x(k)

h(k)2 − hz(k)2
. (C29)

4. Polarization

In the ground state, the lower band is filled at all k,

i.e., 〈d̂†k,−d̂k,−〉 = 1 and 〈P̂inter〉 = 0. Hence, combining

Eqs. (C13) and (C23), the polarization P = 〈P̂intra〉 /N
is given by

P =

∫
dk

2π
A−−(k) = −

∫
dk

2π

hx(k)h′y(k)− hy(k)h′x(k)

2h(k) [h(k)− hz(k)]
,

(C30)

where the second term in Eq. (C13) is zero due to

〈d̂†k,−d̂k′,−〉 = δk,k′ [S2]. Since the hybridization param-

eters are real (Im[φ±] = 0) in the ground state, using
Eqs. (A7)-(A9), we obtain

P =

∫
dk

2π

V φ+(2tab + V φ−)

4h(k) [h(k)− hz(k)]
. (C31)

Because h(k) = |h(k)| and hz(k) = −2th cos k+D+V∆n
are even for k, P 6= 0 when V φ+ 6= 0 and 2tab+V φ− 6= 0.
Hence, the excitonic order parameter φ+ and interchain
hopping tab (φ−) are necessary for the spontaneous po-
larization.

In the ground state of the model with tab > 0, the
phase of the order parameter φ+ = |φ+|eiθ+ is fixed at
θ+ = 0 or π because of the Z2 symmetry breaking. Then,
the polarization is given by P > 0 at θ+ = 0 or P < 0 at
θ+ = π, indicating that the direction of the polarization
is determined by the phase θ+. If the phase is switched
from θ+ = 0 to π, associated with the change of the
polarization direction, the direction of the second-order
direct current is also inverted.

5. Intraband current in the two-band model

Employing the pseudospin representation ρ̃(k, t) =
(ρ̃1(k, t), ρ̃2(k, t), ρ̃3(k, t)) in the band basis, the intra-

band current J
(I)
intra(t) in Eq. (C20) is given by
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J
(I)
intra(t) =−2E(t)

∫
dk

2π

[
∂A1(k, t)

∂k
ρ̃1(k, t)+

∂A2(k, t)

∂k
ρ̃2(k, t)

]
− 4E(t)

∫
dk

2π
A3(k, t) [A1(k, t)ρ̃2(k, t)−A2(k, t)ρ̃1(k, t)] .

(C32)

Since ε±(k, t) = ±h(k, t), the current J
(II)
intra(t) in

Eq. (C21) is simply given by

J
(II)
intra(t) = 2

∫
dk

2π

∂h(k, t)

∂k
ρ̃3(k, t). (C33)

6. Transformation of densities

The densities ρ̃mn(k) = 〈d̂†k,nd̂k,m〉 in the band basis

and ρβα(k) = 〈ĉ†k,αĉk,β〉 in the orbital basis are related

with ρ̃mn(k) =
∑
α,β Uαn(k)U∗βm(k)ρβα(k). Using the

eigenvectors in Eqs. (A11) and (A12), the densities in the
band basis ρ̃(k, t) = (ρ̃1(k, t), ρ̃2(k, t), ρ̃3(k, t)) are given
by

ρ̃1(k, t) =− hx(k, t)ρx(k, t) + hy(k, t)ρy(k, t)√
hx(k, t)2 + hy(k, t)2

hz(k, t)

h(k, t)

+

√
1− hz(k, t)2

h(k, t)2
ρz(k, t), (C34)

ρ̃2(k, t) =− hx(k, t)ρy(k, t)− hy(k, t)ρx(k, t)√
hx(k, t)2 + hy(k, t)2

, (C35)

ρ̃3(k, t) =
h(k, t) · ρ(k, t)

h(k, t)
, (C36)

where ρ(k, t) = (ρx(k, t), ρy(k, t), ρz(k, t)) is the density
in the orbital basis.

7. Nonlinear dc conductivity

When the electric field with the frequency ωp is ap-
plied, the second-order photocurrent at ω = 0 is charac-
terized by

J(ω = 0) = σxxx(ω = 0;ωp,−ωp)E(ωp)E(−ωp)
+ σxxx(ω = 0;−ωp, ωp)E(−ωp)E(ωp). (C37)

In this paper, we employ the electric field E(t) =
E0 sinωpt = E(ωp)e

−iωpt + E(−ωp)eiωpt. Hence,
E(ωp)

∗ = E(−ωp) = E0/(2i) and

J(ω = 0) =
1

2
σxxx(ω = 0;ωp)E

2
0 . (C38)

Here, we defined 2σxxx(ω=0;ωp)≡σxxx(ω=0;ωp,−ωp)+
σxxx(ω=0;−ωp, ωp).

In the real-time simulations, the intraband current (I)

after relaxation (t � γ−1) behaves J
(I)
intra(t) ∼ σ

(I)
xxx(ω =

0;ωp)E(t)2. Hence, the nonlinear conductivity for the
shift current is defined as

σ(I)
xxx(ω = 0;ωp) =

2

E2
0Tp

∫ tm+Tp

tm

J
(I)
intra(t)dt, (C39)

where tm � γ−1 and Tp = 2π/ωp. In our actual calcu-
lation, we use tm = 10/γ and Tp → NpTp with Np > 10
to take the average. In the same way, we estimate

σ
(II)
xxx(0;ωp) for the injection current J

(II)
intra(t).

Here, we supplementarily show the γ (relaxation term)
dependence of the nonlinear dc conductivity in the ferro-
electric EI (FEI) state. Figure S.1(a) and S.1(b) show

σ
(I)
xxx(ω = 0;ωp) (shift current) and σ

(II)
xxx(ω = 0;ωp)

(injection current) at ωp > Eg (band gap), respec-

tively. In contrast to the shift current σ
(I)
xxx, which con-

verges at finite γ−1, the injection current σ
(II)
xxx is linearly

proportional to γ−1. This is because the time profile
of the injection current generation is characterized by

dJ
(II)
intra(t)/dt and the value saturates to J

(II)
intra(t) ∝ γ−1

[see e.g., Fig. 4(a) in the main text] due to dissipative
processes [S2–S4], which is qualitatively different from
the shift current generation. In this paper, the relaxation
rate γ in the EOM is introduced phenomenologically. It
has the physical meaning of the scattering rate of the pho-
toexcited carriers, and may have disorder, phonon, and
many-body contributions. The calculation of these rates
from microscopic theory is an important open question.
Recently, in the noninteracting system, the correction of
the formula of the injection current has been proposed
in the clean limit (γ → 0) by considering a fermionic
bath in the Floquet Green’s function approach [S5]. The
proposed correction term is negligible when γ � E0 [S5]
and does not change our main results because we assume
E0/γ ∼ 0.01 [except for the data at γ = 0 in Fig. 4(a)].
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Figure S.1. γ-dependence of the nonlinear conductivities of

the (a) shift current σ
(I)
xxx(ω = 0;ωp) and (b) injection current

σ
(II)
xxx(ω = 0;ωp) at ωp/th = 0.8. D/th = 1, tab/th = 0.2,
V/th = 1.1, and E0/th = 0.0001 are used.
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D: Velocity gauge

In our main calculations, we employed the length
gauge, in which the external field is introduced as

ĤE(t) =−
∑
i,j

∑
α,β

tiα,jβ ĉ
†
i,αĉj,β + ĤV

− E(t)
∑
j,α

Rj,αĉ
†
j,αĉj,α. (D1)

On the other hand, in the velocity gauge, the external
field A(t) (vector potential) is introduced via the Peierls
substitution. The covariant Hamiltonian [S6] is

ĤA(t) = −
∑
i,j

∑
α,β

tiα,jβe
iA(t)(Ri,α−Rj,β)ĉ†i,αĉj,β + ĤV

=
∑
k

∑
α,β

h
(0)
αβ (k −A(t)) ĉ†k,αĉk,β + ĤV , (D2)

where −
∑
i,j tiα,jβ ĉ

†
i,αĉj,β =

∑
k h

(0)
αβ(k)ĉ†k,αĉk,β . Be-

cause the interaction term is composed of V n̂i,αn̂j,β , ĤV
is invariant under the transformation. In this velocity
gauge, the current operator is given by

ĴA(t) = −δĤA(t)

δA
=
∑
k

∑
α,β

v
(0)
αβ (k −A(t)) ĉ†k,αĉk,β ,

(D3)

with v
(0)
αβ (k) = ∂kh

(0)
αβ(k) [S7, S8].

Employing the HF approximation

ĤV → ĤHF
V =

∑
k

∑
α,β

h
(HF)
αβ (k)ĉ†k,αĉk,β , (D4)

we have the tdMF Hamiltonian under the external field,

ĤHF
A (t) =

∑
k

∑
α,β

[
h

(0)
αβ (k −A(t)) + h

(HF)
αβ (k, t)

]
ĉ†k,αĉk,β .

(D5)

In the pseudospin representation, the EOM in the tdMF
for the particle density ρA(k, t) is given by

∂

∂t
ρA(k, t) = 2

[
h(0) (k−A(t)) + h(HF)(k, t)

]
× ρA(k, t),

(D6)

where

h(0)
x (k) = 0,

h(0)
y (k) = 2tab sin

k

2
,

h(0)
z (k) = −2th cos k +D, (D7)

and

h(HF)
x (k, t) = −V Re[φ+(t)] cos

k

2
− V Im[φ−(t)] sin

k

2
,

h(HF)
y (k, t) = −V Im[φ+(t)] cos

k

2
+ V Re[φ−(t)] sin

k

2
,

h(HF)
z (k, t) = V∆n(t). (D8)
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Figure S.2. Time evolution of the total current J(t) at
γ = 0 in the length gauge (solid line) and velocity gauge
(dashed line), where D/th = 1, tab/th = 0.2, V/th = 1.1,
E0/th = 0.0001, and ωp/th = 0.144 are used.

The current (per unit) is given by

JA(t) = 2

∫
dk

2π
v(0) (k −A(t)) · ρA(k, t) (D9)

with v(0)(k) = ∂kh
(0)(k). If we assume ĉ†j,aĉj,bĉ

†
j,bĉj,a =

(ĉ†j,aĉj,be
−iA(t)/2)(ĉ†j,bĉj,ae

iA(t)/2) and define φ(x/2) ≡
〈ĉ†j,aĉj,b〉 e−iA(t)/2 in the Fock term, k in the HF part

is replaced as h(HF)(k, t)→h(HF)(k −A(t), t) [v(0)(k)→
∂kh(k, t)], but the phase factor e±iA(t)/2 introduced in
the order parameter does not change our final results.

The calculated JA(t) in the FEI state is shown in
Fig. S.2, where we assume no relaxation (γ = 0). Since
E(t) = −∂tA(t), we used A(t) = E0/ωp(cosωpt− 1) cor-
responding to E(t) = E0 sinωpt. In Fig. S.2, we also plot
the current J(t) calculated in the length gauge, which is
consistent with JA(t) in the velocity gauge. Therefore,
we can obtain the consistent results between the length
and velocity gauges.

As pointed out in Ref. [S9], when the relaxation term
γ[ρ(k, t) − ρeq(k)] is introduced in the EOM, the per-
fect translation into the velocity gauge is not simple,
where the transformation of the equilibrium distribution
ρeq(k) makes difficulty. Note that we can obtain quali-
tatively consistent results in our model even though the
translation of the relaxation term is not perfect. In the
analytical (diagrammatic) formulation of the response
function, a different phenomenology has also been em-
ployed [S4, S9–S11], where each frequency is replaced as
ω → ω + iγ, which may also give the qualitatively con-
sistent results.

In the view of the real-time simulation, the amplitude
of the vector potential A(t) ∝ E0/ωp (velocity gauge)
diverges at ωp → 0, which leads to numerical difficulties
at the low-frequency regime. In terms of numerical es-
timation of conductivity using real-time simulations, the
length gauge may be better than the velocity gauge, and
we thus employed the length gauge in our numerical cal-
culations.
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E: Origin of current injection

1. Action and injection current

Here, employing the velocity gauge for the systematic
perturbative expansion, we discuss the origin of the in-

jection current.

In the velocity gauge, the action for the EI state in the
zigzag chain model may be given by

S =

∫
dk

2π

∫
dτ
{
ψ̄(k, τ)

[
∂τσ0 +H0(k −A(τ)) +HHF

V (k, τ)
]
ψ(k, τ) +

1

2V
|∆+(τ)|2 +

1

2V
|∆−(τ)|2 +

V

2
∆n(τ)2

}
,

(E1)

where ψ(k, τ) = [ck,a(τ), ck,b(τ)]T and τ is the imaginary

time. H0(k) = h(0)(k) ·σ and HHF
V (k, t) = h(HF)(k, t) ·σ,

where h(0)(k) and h(HF)(k, t) are given in Eqs. (D7) and
(D8), respectively. Here, we express the order parameter
as ∆±(t) = V φ±(t).

For the perturbative analysis, we divide the Hamil-
tonian into the equilibrium and perturbative terms as
H0(k − A(t)) + HHF

V (k, t) = Heq(k) + δ∆(k, t). In
equilibrium, the hybridization parameters are real, i.e.,
Im[∆eq

± ] = 0, and the Hamiltonian Heq(k) = h(k) · σ is
composed of

hx(k) = −∆eq
+ cos

k

2
,

hy(k) = (2tab + ∆eq
− ) sin

k

2
,

hz(k) = −2th cos k +D + V∆neq. (E2)

δ∆(k, t) is the difference from equilibrium given by
δ∆(k, t) = δ∆A(k, t)+δ∆MF(k, t), where the first term is
δ∆A(k, t) = H0(k−A(t))−H0(k) and the second term is
due to the time-dependent MF parameters, δ∆MF(k, t) =
HHF
V (k, t)−HHF

V,eq(k).
Using the Fourier transformation, we have the action

S =

∫
dk

2π

∑
m,n

ψ̄(k, ωm)
[
(−iωnσ0 +Heq(k))δm,n

+δ∆(k,Ωm−n)
]
ψ(k, ωn) +

(
∆2 terms

)
,

(E3)

where ωn (Ωn) is the fermionic (bosonic) Matsubara fre-
quency and ∆ indicates the MF parameters ∆± and ∆n.

The diagonal term (m = n) corresponds to the bare
fermion propagator,

G−1
0 (k, ωn) = iωnσ0 −Heq(k). (E4)

Integrating the fermion field [S12, S13], we obtain the
action

S[A,∆] = −Tr ln
[
Ĝ−1

0 − δ∆̂
]

+
(
∆2 terms

)
, (E5)

where Tr[· · · ] includes the k and ωn integrals. For per-
turbative analyses, we expand the action with respect to
δ∆̂,

S[A,∆] = Tr ln Ĝ0+
∑
M=1

1

M
Tr

[(
Ĝ0δ∆̂

)M]
+
(
∆2 terms

)
.

(E6)

The injection current is described by the loop trian-
gle diagram [see Fig. S.4] [S10]. Since the derivative
of the action with respect to A gives the current, the

action S
(3)
IC = Tr[Ĝ0δ∆̂

(1)Ĝ0δ∆̂
(1)Ĝ0δ∆̂

(1)]/3 gives the

injection current, where δ∆̂(1) ∝ A is the perturbation

at first order. The external field term δ∆
(1)
A (k, t) =

−∂kH0(k)A(t) = −V0(k)A(t) is characterized by

V0(k) = v(0)(k) · σ = tab cos(k/2)σ2 + 2th sin(k)σ3.
(E7)

When the MF parameters are optically active in the lin-

ear response regime, we have to incorporate δ∆
(1)
MF(k,Ω).

Writing the sum for k and ωn explicitly [S12], the action

S
(3)
IC and the injection current J

(2)
IC (0) may be given by

S
(3)
IC =

1

3β

∑
l,m,n

∫
dk

2π
tr
[
G0(k, ωn+Ωl+m)δ∆(1)(k,Ωl)G0(k, ωn+Ωm)δ∆(1)(k,Ωm)G0(k, ωn)δ∆(1)(k,−Ωl+m)

]
, (E8)

J
(2)
IC (0) =−

δS
(3)
IC

δA(Ω0)
=

1

β

∑
m,n

∫
dk

2π
tr
[
V0(k)G0(k, ωn+Ω0)δ∆(1)(k,−Ωm)G0(k, ωn+Ωm)δ∆(1)(k,Ωm)G0(k, ωn)

]
, (E9)
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respectively. Since we are considering the gapped system,
the MF parameters are not optically active at Ω = 0 [i.e.,

δ∆
(1)
MF(k,Ω = 0) = 0], and we used δ

δA(Ω0)δ∆
(1)(k,Ωm) =

−V0(k)δm,0 in Eq. (E9).
In our two-orbital model, the bare propagator

G0(k, ωn) is given by

G0(k, ωn) =
∑
s=±

Ws(k)

iωn − εs(k)
, (E10)

with

W±(k) =
1

2

[
σ0 ±

h(k)

|h(k)|
· σ
]
. (E11)

Using this propagator, we can integrate ωn and obtain

J
(2)
IC (0) = −

∑
m

∑
s1,s2,s3=±

∫
dk

2π
tr
[
V0(k)Ws1(k)δ∆(1)(k,−Ωm)Ws2(k)δ∆(1)(k,Ωm)Ws3(k)

]
× 1

iΩ0 − εs1(k) + εs3(k)

[
f(εs2(k))− f(εs3(k))

iΩm − εs2(k) + εs3(k)
+

f(εs2(k))− f(εs1(k))

iΩ−m − εs1(k) + εs2(k)

]
. (E12)

The integrand shows divergence at εs1(k) = εs3(k) due to
iΩ0 → 0. Because εs̄(k) = −εs(k) (s̄ = −s) in our two-

orbital model, the leading contribution of the injection
current is given by

J
(2)
IC (0)∼− 1

iΩ0

∑
m

∑
s=±

∫
dk

2π
tr
[
V0(k)Ws(k)δ∆(1)(k,−Ωm)Ws̄(k)δ∆(1)(k,Ωm)Ws(k)

] [1−2f(εs(k))

iΩm+2εs(k)
+

1−2f(εs(k))

iΩ−m−2εs(k)

]
.

(E13)

When the relaxation term γ is introduced, iΩ0 → 0 + iγ

and J
(2)
IC (0) is proportional to γ−1. Hence the injection

current remains finite due to γ.

For injection current, the trace

tr
[
V0(k)Ws(k)δ∆(1)(k,−Ω)Ws̄(k)δ∆(1)(k,Ω)Ws(k)

]
(E14)

is important in the k integral in Eq. (E13). If this trace is
odd for k, the integrands at k and −k cancel each other

and thus J
(2)
IC (0) = 0. For the nonvanishing injection

current, this trace must not be an odd-k function.

If the MF parameters were not optically deformable
at first order of A(Ω), the injection current vanishes.

When δ∆
(1)
MF(k,Ω) = 0, the trace (E14) is given by

tr[V0(k)Ws(k)V0(k)Ws̄(k)V0(k)Ws(k)]A(Ω)A(−Ω). Be-
cause

Ws(−k) = Ws(k)∗ = Ws(k)T (E15)

V0(−k) = −V0(k)∗ = −V0(k)T (E16)

under time-reversal, we have

tr [V0(−k)Ws(−k)V0(−k)Ws̄(−k)V0(−k)Ws(−k)]

= −tr
[
V0(k)TWs(k)TV0(k)TWs̄(k)TV0(k)TWs(k)T

]
= −tr [V0(k)Ws(k)V0(k)Ws̄(k)V0(k)Ws(k)] , (E17)

where the symbol T denotes the transposed matrix. Be-
cause of this relation, the integrands in Eq. (E13) at
k and −k cancel each other. Therefore, the injection
current within the independent particle approximation
(IPA) vanishes due to the time-reversal symmetry.

For nonvanishing injection current, δ∆
(1)
MF(k,Ω) 6=

0 is necessary. When δ∆±(t) = ∆±(t) − ∆eq
± and

δn(t) = ∆n(t)−∆neq are nonzero, the total perturbation
δ∆(1)(k,Ω) = F (k,Ω) · σ is given by

Fx(k,Ω) = −δ∆R
+(Ω) cos

k

2
− δ∆I

−(Ω) sin
k

2
,

Fy(k,Ω) = −
[
tabA(Ω)+δ∆I

+(Ω)
]
cos

k

2
+ δ∆R

−(Ω) sin
k

2
,

Fz(k,Ω) = −2thA(Ω) sin k + V δn(Ω), (E18)

where the superscripts R and I indicate the real and imag-
inary part of the order parameter, respectively. When
the MF parameters are nonzero, the trace (E14) can
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make even-k contributions. For example, the following
Eq. (E19) has an even-k contribution due to the excitonic
order parameter δ∆R

+(Ω). In this case, the integrands in

Eq. (E13) at k and −k do not cancel each other. Thus,
the injection current can be nonvanishing when the MF
parameters are proportional to A(Ω).

tr

[
V0(k)Ws(k)

([
tabA(−Ω) + δ∆I

+(−Ω)
]

cos
k

2
σ2

)
Ws̄(k)

(
δ∆R

+(Ω) cos
k

2
σ1

)
Ws(k)

]
=

1

4
s
(
2tab + ∆eq

−
)2

∆eq
+ tab

(
sin

k

2

)2(
cos

k

2

)4

δ∆R
+(Ω)

[
tabA(−Ω) + δ∆I

+(−Ω)
]

+ · · · . (E19)

In noninteracting systems, time-reversal-symmetry
breaking is required for a nonzero injection current un-
der a linearly polarized light [S3, S14]. However, in our
model, the ground-state Hamiltonian (E2) possesses the
time-reversal symmetry Heq(−k) = Heq(k)∗. Hence,
in correlated electron systems, the broken time-reversal
symmetry is not required at the equilibrium level. In-
stead, as indicated in Eq. (E18), the dynamical order

parameter δ∆
(1)
MF(k,Ω) activated in the linear response

regime plays the same role with time-reversal-symmetry
breaking. Therefore, in correlated electron systems, we
can induce an injection current using an optically driven
collective motion out of equilibrium.

2. Order parameter in the first-order perturbation

For the nonvanishing injection current, we need
δ∆MF(k,Ω) ∝ A(Ω). In the main text, we have numer-
ically shown the order parameter in the FEI is optically
active [see Fig. 2(b) and 2(c)]. In this section, we ana-
lytically show the relation δ∆MF(k,Ω) ∝ A(Ω).

The equation for the order parameter is given by
∆R

+ = −(V/N)Tr
[
L̂∆R

+
Ĝ
]
, where Ĝ−1 = Ĝ−1

0 − δ∆̂

and L∆R
+

(k) = − cos k2σ1. Because we want to get

δ∆+(t) ∝ A(t), here we expand the propagator as Ĝ =

Ĝ0 + Ĝ0δ∆̂
(1)Ĝ0 + · · · . Considering the vector poten-

tial A(t) = A(Ω)e−iΩt + c.c. [A(Ω) = E(Ω)/(iΩ)], we
assume δ∆R

+(t) = δ∆R
+(Ω)e−iΩt + c.c.. Using the first-

order perturbative expansion, the order parameter away
from equilibrium is given by

δ∆R
+(Ωm) = −V

β

∑
n

∫
dk

2π
tr
[
L∆R

+
(k)G0(k, ωn + Ωm)δ∆(1)(k,Ωm)G0(k, ωn)

]
. (E20)

In the same way, we can obtain the equations for
δ∆I

+(Ωm), δ∆R
−(Ωm), δ∆I

−(Ωm), and δn(Ωm). Since

δ∆(1)(k,Ωm) includes the MF parameters, Eq. (E20) cor-
responds to the self-consistent equation, which composes

the simultaneous equations with δ∆I
+(Ωm), δ∆R

−(Ωm),

δ∆I
−(Ωm), and δn(Ωm). Introducing the bare suscepti-

bility,

χ
(0)
MN (Ωm) = − 1

β

∑
n

∫
dk

2π
tr
[
LM (k)G0(k, ωn + Ωm)LN (k)G0(k, ωn)

]
(E21)

with

LV0(k) =− V0(k) = −v(0)(k) · σ (E22)

and

LM (k) =−
[
δM,∆R

+
cos

k

2
+ δM,∆I

−
sin

k

2

]
σ1

−
[
δM,∆I

+
cos

k

2
− δM,∆R

−
sin

k

2

]
σ2 + δM,δnσ3,

(E23)
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δΔMF += χΔV0 χΔΔV A δΔMF

Figure S.3. The diagrammatic representation of Eq. (E28). The solid, wavy and dashed lines indicate the bare propagator,
external field, and interaction, respectively.

Eq. (E20) becomes

δ∆R
+(Ω) = V χ

(0)

∆R
+V0

(Ω)A(Ω) + V
∑
M

χ
(0)

∆R
+M

(Ω)δM(Ω),

(E24)

where M = ∆R
+,∆

I
+,∆

R
−,∆

I
−, V∆n. In the same way, we

can derive the equations for δ∆I
+(Ω), δ∆R

−(Ω), δ∆I
−(Ω),

and δn(Ω). To describe the simultaneous equations com-
pactly, we introduce the vector

δ∆
(1)
MF(Ω)=

[
δ∆R

+(Ω) δ∆I
+(Ω) δ∆R

−(Ω) δ∆I
−(Ω) V δn(Ω)

]T
,

(E25)

and

χ
(0)
MV0(Ω) =

[
χ

(0)
∆V0(Ω)

]
M
, (E26)

χ
(0)
MN (Ω) =

[
χ

(0)
∆∆(Ω)

]
MN

, (E27)

for M,N = ∆R
+,∆

I
+,∆

R
−,∆

I
−, V∆n, where χ

(0)
∆V0(Ω) is a

vector and χ
(0)
∆∆(Ω) is a 5×5 matrix. Using the above

vectors and matrix, the simultaneous equations are sum-
marized as

δ∆
(1)
MF(Ω) = V χ

(0)
∆V0(Ω)A(Ω) + V χ

(0)
∆∆(Ω)δ∆

(1)
MF(Ω).

(E28)

This is the self-consistent equation for all MF param-
eters. Diagrammatically, Eq. (E28) is expressed as
Fig. S.3 [S15]. This self-consistent equation gives

δ∆
(1)
MF(Ω) =

V χ
(0)
∆V0(Ω)

I − V χ(0)
∆∆(Ω)

A(Ω). (E29)

Since the denominator includes χ
(0)
∆∆(Ω), δ∆

(1)
MF(Ω) re-

flects the structure of the dynamical correlation function
of the excitonic order parameter.

To be δ∆
(1)
MF(Ω) 6= 0, the bare susceptibility χ

(0)
∆V0(Ω)

must be nonzero. Using Eq. (E10), we obtain

χ
(0)
MV0(Ωm) =

∑
s1,s2=±

∫
dk

2π
tr [LM (k)Ws1(k)LV0(k)Ws2(k)]

f(εs1(k))− f(εs2(k))

iΩm − εs1(k) + εs2(k)
. (E30)

Here, the important contribution in the k integral is tr [LM (k)Ws(k)LV0(k)Ws̄(k)], which is proportional to

tr [σµWs(k)LV0(k)Ws̄(k)] =
[
h̃(k) · v(0)(k)

]
h̃µ(k)− v(0)

µ (k)− is
[
h̃(k)× v(0)(k)

]
µ
, (E31)

where we defined h̃(k) = h(k)/|h(k)|. In our two-orbital

model [v
(0)
x (k) = 0], h̃(k) · v(0)(k) = h̃

(o)
y (k)v

(e)
y (k) +

h̃
(e)
z (k)v

(o)
z (k) is odd for k. Here, the superscripts (e)

and (o) indicate the even and odd functions for k, re-
spectively. In the FEI (∆eq

+ 6= 0 and tab 6= 0), we have

tr [σ1Ws(k)LV0(k)Ws̄(k)] =
[
h̃(k) · v(0)(k)

](o)

h̃(e)
x (k)− is

[
h̃(o)
y (k)v(o)

z (k)− h̃(e)
z (k)v(e)

y (k)
]
, (E32)

tr [σ2Ws(k)LV0(k)Ws̄(k)] =
[
h̃(k) · v(0)(k)

](o)

h̃(o)
y (k)− v(e)

y (k) + ish̃(e)
x (k)v(o)

z (k), (E33)

tr [σ3Ws(k)LV0(k)Ws̄(k)] =
[
h̃(k) · v(0)(k)

](o)

h̃(e)
z (k)− v(o)

z (k)− ish̃(e)
x (k)v(e)

y (k). (E34)
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δΔMF

δΔMFδΔMF

δΔMF(a) (b) (c)

Figure S.4. The diagrammatic representation of the injection current with the optically active MF parameters. (a) corresponds
to the diagram in the IPA. (b) and (c) are diagrams with one collective mode and two collective modes, respectively.

Because they include both even-k and odd-k contribu-
tions, the integrands with tr [LM (k)Ws1(k)LV0(k)Ws2(k)]
in Eq. (E30) at k and −k do not cancel each other.

Hence, in the FEI state, χ
(0)
∆V0(Ω) can be nonzero, and

thus the MF parameters in δ∆
(1)
MF(Ω) is proportional to

A(Ω). This is consistent with the results in our numerical
time-dependent calculations.

Notice that the Fourier coefficient of the order param-
eter, e.g., δ∆R

+(Ω), is complex in general. Defining

δ∆R
+(Ω) = |δ∆R

+(Ω)|e−iϕ
R
+ , (E35)

the real part of the time-dependent order parameter
δ∆R

+(t) = δ∆R
+(Ω)e−iΩt + δ∆R

+(Ω)∗eiΩt [∆R
+(−Ω) =

∆R
+(Ω)∗] is given by

δ∆R
+(t) = 2|δ∆R

+(Ω)| cos
(
Ωt+ ϕR

+

)
, (E36)

where ϕR
+ brings the phase shift on the time-dependent

order parameter.
Including the optically deformable MF parameters, the

perturbation at first order is given by δ∆(1)(k,Ω) =

δ∆
(1)
A (k,Ω) + δ∆

(1)
MF(k,Ω), and the injection current in

Eq. (E9) is composed of the contributions described
diagrammatically in Fig. S.4. The loop triangle dia-
gram in Fig. S.4(a) corresponds to the injection current
within the IPA, which vanishes in our model [due to
Eq. (E17)]. When one photon input is modified by the
order parameter as shown in Fig. S.4(b), this contribu-
tion can lead to the nonvanishing injection current [see

e.g., Eq. (E19)]. Because δ∆
(1)
MF(Ω) in Eq. (E29) reflects

the structure of the corrected susceptibility χ∆V0(Ω) =

[I − V χ(0)
∆∆(Ω)]−1χ

(0)
∆V0(Ω), the conductivity σxxx of the

injection current exhibits two peaks at the sub-band-
gap collective mode frequencies. The injection current
in Fig. S.4(c) driven by two modified photon inputs can
also be nonzero [see e.g., Eq. (E19)]. When two inputs are
the same order parameter, for example, the contribution
proportional to δ∆R

+(Ω)δ∆R
+(−Ω) vanishes due to the k-

symmetry of the integrand in Eq. (E13). Hence, when
two order parameters contribute, the injection current
is proportional to two different order parameters, e.g.,

δ∆R
+(Ω)δ∆I

+(−Ω) + c.c. = 2|δ∆R
+(Ω)||δ∆I

+(Ω)| cos(ϕR
+ −

ϕI
+). However, due to the phase difference [e.g., ϕR

+−ϕI
+],

the injection current driven by two order parameters may
tend to be suppressed.

3. Absence of injection current in the
non-ferroelectric EI (tab = 0)

When tab = 0, the EI state is not ferroelectric (P = 0).
In this case, Eqs. (E32)-(E34) are given by

tr [σ1Ws(k)LV0(k)Ws̄(k)] = h̃(e)
x (k)h̃(e)

z (k)v(o)
z (k),

tr [σ2Ws(k)LV0(k)Ws̄(k)] = ish̃(e)
x (k)v(o)

z (k),

tr [σ3Ws(k)LV0(k)Ws̄(k)] = h̃(e)
z (k)

2
v(o)
z (k)− v(o)

z (k),

and all of them are odd for k. Therefore, inte-

grands with tr[L
(e)
M (k)Ws1(k)LV0(k)Ws2(k)] vanishes, and

δ∆+(Ω) and δn(Ω) that are even for k cannot be acti-
vated by A(Ω). On the other hand, δ∆−(Ω) that are odd
for k can be activated by A(Ω). In this case, because

δ∆(1)(k,Ω) =− δ∆I
−(Ω) sin

k

2
σ1 + δ∆R

−(Ω) sin
k

2
σ2

− 2thA(Ω) sin kσ3, (E37)

we find

δ∆(1)(−k,Ω) = −δ∆(1)(k,Ω).

When tab = 0, because Ws(−k) = Ws(k) and V0(−k) =
−V0(k), we have

tr
[
V0(−k)Ws(−k)δ∆(1)(−k,Ω)Ws̄(−k)δ∆(1)(−k,Ω′)Ws(−k)

]
= −tr

[
V0(k)Ws(k)δ∆(1)(k,Ω)Ws̄(k)δ∆(1)(k,Ω′)Ws(k)

]
.

(E38)

Therefore, the injection current J
(2)
IC (0) in Eq. (E13) van-

ishes in the non-ferroelectric EI state at tab = 0.
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4. Vertex correction of shift current

Here, we supplementally discuss the vertex correc-
tion of the shift current contribution. The shift current
contribution may be derived from the action S

(3)
ShC =

Tr[Ĝ0δ∆̂
(1)Ĝ0δ∆̂

(2)] [S10], where δ∆̂(2) ∝ A2 is the
perturbation at second order. The bare electric field

term is δ∆
(2)
A (k, t) = [∂2

kH0(k)]A(t)2/2 = T0(k)A(t)2/2.

Here, we assume δ∆
(1)
± (t) � δ∆

(2)
± (t) and focus sim-

ply on the contribution derived from δ∆
(2)
A (k, t). When

δ∆(2) = δ∆
(2)
A , as in Eq. (E9), the derivative of the action

with respect to A may give a shift current contribution
at Ωm (> 0),

J
(2)
ShC(0; Ωm)=− 1

β

∑
n

∫
dk

2π
tr
[
T0(k)A(−Ωm)G0(k, ωn+Ωm)

× δ∆(1)(k,Ωm)G0(k, ωn)
]

+ [Ωm ↔ −Ωm]. (E39)

Since δ∆(1)(k,Ω) = δ∆
(1)
A (k,Ω) + δ∆

(1)
MF(k,Ω), combin-

ing Eqs. (E21) and (E29), the current J
(2)
ShC(0; Ω) =

χT0V0(Ω)A(Ω)A(−Ω)+[Ω↔ −Ω] is characterized by the
response function

χT0V0(Ω) = χ
(0)
T0V0(Ω) + χ

(0)
T0∆(Ω)·

V χ
(0)
∆V0(Ω)

I−V χ(0)
∆∆(Ω)

, (E40)

where χ
(0)
T0V0(Ω) [χT0V0(Ω)] is a scalar. The first term

χ
(0)
T0V0(Ω) corresponds to the response function in the

IPA, which can be nonzero at Ω > Eg (above-band-
gap). The second term in Eq. (E40) is the correction term
caused by the excitonic interaction V , which is equiva-
lent to the solution of the Bethe-Salpeter equation with
the vertex correction.

This correction term leads to two consequences in the
response function. First, since the correction term in-

cludes the susceptibility χ
(0)
∆∆(Ω) in the denominator, the

pole in [I − V χ(0)
∆∆(Ω)]−1 gives rise to the resonant en-

hancement of the response, where the pole positions cor-
respond to the collective mode frequencies. In Fig. 3(c)
in the main text, we actually find the resonant peaks

in σ
(I)
xxx in the tdMF while it is absent in the result

in the IPA. Second, the correction term modifies the
shape of the above-band-gap response function from the
IPA. In Fig. 3(c), the many-body correction leads to

the sign change of σ
(I)
xxx at Ω > Eg. The diagonalized

I − V χ(0)
∆∆(Ω) at Ω < Eg monotonically decreases with

increasing Ω and crosses zero from positive to negative
at the collective mode frequency (Ωc). The negative con-
tribution in the correction term in Eq. (E40) at Ω > Eg

(> Ωc) reduces the spectral weight from χ
(0)
T0V0(Ω) in the

IPA. Hence, because of the corrections derived from the
order parameter dynamics, the shift current contribution

σ
(I)
xxx in the tdMF is modified from the result in the IPA.

F: Electron-phonon system

Here, we discuss the shift and injection currents in an
electron-phonon coupled system that breaks the inversion
symmetry [see Fig. S.5(a)].

When the lattice displacement uα is much smaller than
the lattice constant (i.e., uα � Rj+1,α−Rj,α), the tight-
binding Hamiltonian is approximately given by

Ĥel = −
∑
i,j

∑
α,β

[
tiα,jβ + t′iα,jβ(uα − uβ)

]
ĉ†i,αĉj,β , (F1)

where t′iα,jβ is the first derivative of the transfer integral

with respect to R = Ri,α − Rj,β , and t′iα,jβ = −t′jβ,iα.
Corresponding to the zigzag chain model in the main
text, we define −tja,ja = tjb,jb = D, tj+1α,jα = tα with
ta = −tb = th, and tja,jb = −tja,j−1b = tab. Here, as-
suming the phonon mode shown in Fig. S.5(a), we define
ua = −ub = u/2 = X/(2

√
Mω0) and t′ja,jb = −t′jb,ja =

g
√
Mω0, where M and ω0 are the effective mass and fre-

quency of the phonon mode at q = 0. Because we are con-
sidering the interchain hopping tja,jb = −tja,j−1b = tab,
its derivative is given by t′ja,jb = t′ja,j−1b = g

√
Mω0.

Hence, we consider

Ĥel =−
∑
j,α

tα

(
ĉ†j+1,αĉj,α+H.c.

)
+D

∑
j

(n̂j,a−n̂j,b)

− (tab + gX)
∑
j

(
ĉ†j,aĉj,b+H.c.

)
+ (tab − gX)

∑
j

(
ĉ†j,aĉj−1,b+H.c.

)
. (F2)

Since this Hamiltonian has the same form as the Rice-
Mele model [S16, S17], shift current can be generated.
The phonon system is described by

Hph = N

(
p2

2M
+

1

2
Mω2

0u
2

)
=

1

2
Nω0

(
P 2 +X2

)
,

(F3)

where p =
√
Mω0P (u = X/

√
Mω0) is the momentum

(displacement) of the phonon mode at q = 0. Employing
the length gauge, the external field E(t) is introduced as

ĤE(t) = −E(t)
∑
j,α

(Rj,α + uα) n̂j,α. (F4)

Because we are considering a weak electric field and a
small lattice displacement (uα � 1), here we neglect the
contribution from E(t)uα for simplicity. We have numer-
ically confirmed that the contribution from E(t)uα does
not change the results qualitatively.

Incorporating the phonon dynamics, i.e., X → X(t),

we consider the time-dependent Hamiltonian Ĥ(t) =

Ĥel(t) + Hph(t) + ĤE(t). Here, the EOM for the elec-
tron system is given by

∂

∂t
ρ(k, t) = 2h(k, t)× ρ(k, t)− E(t)

∂

∂k
ρ(k, t)

− γ [ρ(k, t)− ρeq(k)] (F5)
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with

hx(k, t) = −2gX(t) cos
k

2
,

hy(k, t) = 2tab sin
k

2
,

hz(k, t) = −2th cos k +D, (F6)

and the EOM for the phonon is given by

∂2X(t)

∂t2
= −ω2

0X(t) + gω0φel(t) (F7)

with φel(t) = 1
N

∑
j [〈ĉ
†
j,aĉj,b〉 (t) + 〈ĉ†j,aĉj−1,b〉 (t) + c.c.].

Here, we solve the EOM (F5) and (F7) simultaneously
and calculate the nonlinear conductivity σxxx(ω = 0, ωp)

from the time-dependent intraband currents J
(I)
intra(t) and

J
(II)
intra(t) [see Eqs. (C20) and (C21)]. Figure S.5(b) shows
σxxx(ω = 0, ωp), where we assume the phonon frequency
ω0 is much smaller than the band gap Eg, corresponding
to realistic systems. Note that, because expensive (long-
time) simulations are necessary for reliable accuracy in
the low frequency region, we plot the data above ωp/th =
0.05, which is larger than the phonon frequency ω0/th =

0.01 we use here. In Fig. S.5(b), σ
(I)
xxx(ω = 0, ωp) exhibits

the nonzero shift current contribution as we expected.
Although the injection current contribution (II) is also
nonzero, its value is much smaller than the shift current
contribution.

The nonzero injection current may be caused by the
phonon motion introduced via X(t) in Eq. (F6). The

tab - gX

(a)

-tab - gX
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Figure S.5. (a) Schematic picture of the lattice displacement
in the electron-phonon coupled system. (b) Nonlinear con-

ductivities σ
(I)
xxx(ω = 0;ωp) (shift) and σ

(II)
xxx(ω = 0;ωp) (in-

jection) estimated by the time-dependent calculation, where
D/th = 1.8, tab/th = 0.2, ω0/th = 0.01, λ/th = 0.2
(λ = g2/ω0), E0/th = 0.0001, and γ/th = 0.01 are used.

Inset is the enlarged view of σ
(II)
xxx(0;ωp).

EOM (F7) implies

δX(Ω) = − gω0

Ω2 − ω2
0

δφel(Ω), (F8)

where δX(Ω) and δφel(Ω) are the Fourier coefficients of
δX(t) = X(t) − Xeq and δφel(t) = φel(t) − φeq

el , respec-
tively. When δX(Ω) ∝ δφel(Ω) ∝ E(Ω) in the ferro-
electric state (Xeq 6= 0), the phonon motion X(t) in
Eq. (F6) plays a similar role with the real part of the
excitonic order parameter. However, in the realistic con-
dition Eg � ω0,

δX(Ω ∼ Eg) ∼ −
gω0

E2
g

δφel(Eg)� 1 (F9)

at Ω ∼ Eg, indicating that δX(Ω) is very small in the
above-band-gap regime. Hence, the impact of the phonon
motion on the electronic system is limited in the above-
band-gap regime due to the energy scale mismatch be-
tween the phonon mode and electronic band gap. There-
fore, the injection current contribution caused by δX(Ω)
should be very weak. Because the contribution from the

dynamical phonon is small, σ
(I)
xxx(ω = 0, ωp) (shift cur-

rent) shows good agreement with the conductivity ob-
tained by the independent particle approximation.
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Figure S.6. (a) V and t′ab dependence of the order parameter
φ+ in the ground (FEI) state, where D/th =1 and tab/th =0.1.

(b) σ
(I)
xxx(ω = 0;ωp) (shift) and (c) σ

(II)
xxx(ω = 0;ωp) (injection)

at t′ab/tab = 0.8 and V/th = 1.1. The black dashed line
indicates the band gap. E0/th = 0.0001 and γ/th = 0.01 are
used.
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G: Next-nearest-neighbor interchain hopping t′ab

Here, we discuss the effect of the next-nearest-neighbor
(NNN) interchain hopping

Ĥ′ab =− t′ab
∑
j

(
ĉ†j+1,aĉj,b + H.c.

)
+ t′ab

∑
j

(
ĉ†j,aĉj−2,b + H.c.

)
(G1)

on the BPVE in the FEI. In the pseudospin represen-
tation, this NNN hopping is introduced by hy(k, t) →
hy(k, t) + 2t′ab sin(3k/2) in Eq. (3) in the main text.

Figure S.6(a) shows the order parameter φ+ (in equi-
librium) with the NNN hopping t′ab. Even when t′ab is
nonzero, the EI state is stabilized and the phase of the

order parameter φ+ = |φ+|eiθ+ is fixed at θ+ = 0 or
π. Similar to the result in Fig. 1(b) in the main text,
the region of the FEI phase is suppressed with increas-
ing the interchain hopping t′ab. Figures S.6(b) and S.6(c)

show the nonlinear response functions σ
(I)
xxx(ω = 0;ωp)

(shift current) and σ
(II)
xxx(ω = 0;ωp) (injection current),

respectively, in the FEI phase with t′ab 6= 0. For com-
parison with the results at tab = 0.2th (t′ab = 0) in the
main text, we set tab + t′ab = 0.18th with t′ab/tab = 0.8
(tab = 0.1th), which gives roughly the same band gap
energy. As shown in Fig. S.6, even if t′ab is compara-
ble to tab, σxxx(ω = 0;ωp) retains the main features and
the magnitudes of the shift and injection current is not
strongly suppressed comparing with the results at t′ab = 0
in the main text. Therefore, the effect of the NNN hop-
ing, which is anticipated in real materials, is minor on
the BPVE in the FEI.
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