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Triangular lattice quantum antiferromagnet has recently emerged to be a promising playground for
realizing Dirac spin liquids (DSLs) – a class of highly entangled quantum phases hosting emergent
gauge fields and gapless Dirac fermions. While previous theories and experiments focused mainly
on S = 1/2 spin systems, more recently signals of a DSL were detected in an S = 3/2 system
α-CrOOH(D) in Ref. [1]. In this work we develop a theory of DSLs on triangular lattice with
spin-S moments. We argue that in the most natural scenario, a spin-S system realizes a U(2S)
DSL, described at low energy by gapless Dirac fermions coupled with an emergent U(2S) gauge
field (also known as U(2S) QCD3). An appealing feature of this scenario is that at sufficiently large
S, the U(2S) QCD becomes intrinsically unstable toward spontaneous symmetry breaking and
confinement. The confined phase is simply the 120◦ coplanar magnetic order, which agrees with
semiclassical (large-S) results on simple Heisenberg-like models. Other scenarios are nevertheless
possible, especially at small S when quantum fluctuations are strong. For S = 3/2, we argue
that a U(1) DSL is also theoretically possible and phenomenologically compatible with existing
measurements. One way to distinguish the U(3) DSL from the U(1) DSL is to break time-reversal
symmetry, for example by adding a spin chirality term Si · (Sj × Sk) in numerical simulations:
the U(1) DSL becomes the standard Kalmeyer-Laughlin chiral spin liquid with semion/anti-semion
excitation; the U(3) DSL, in contrast, becomes a non-abelian chiral spin liquid described by the
SU(2)3 topological order, with Fibonacci-like anyons.

Triangular lattice antiferromagnet was historically the
first system suggested, by Anderson[2], to realize quan-
tum spin liquid states[3, 4]. Although the ground state
of the nearest-neighbor Heisenberg model forms a classi-
cal 120◦ coplanar magnetic order even for S = 1/2[5–
8], the order can be destroyed upon including some
relatively weak further-neighbor couplings. For exam-
ple, for S = 1/2 systems with a second-neighbor ex-
change J2, multiple numerical studies indicate the ex-
istence of a quantum spin liquid phase in the range
0.07 ≤ J2/J1 ≤ 0.15, sandwiched between the famil-
iar 120◦ coplanar magnetic order at J2/J1 < 0.07 and a
strip magnetic order at J2/J1 > 0.15[9–21] .

It has become increasingly clear recently that the
quantum spin liquid state realized this way, at least on
S = 1/2 triangular lattice, is likely a U(1) Dirac spin
liquid (U(1) DSL). This conclusion comes from a syn-
thesis of significant progresses in formal theories, nu-
merical simulations and experimental observations: the
stability of DSL as a gapless phase was established
through a series of theoretical arguments[22–25] and lat-
tice simulations[26–28]. It was also shown theoretically
that the spin-spin correlation function in the DSL has
nontrivial weight at the Brillouin zone corners (the K =
(2π/3,−2π/3) and K′ = −K points), which comes from
monopole fluctuations in the U(1) gauge field and can-
not be understood from spinon mean field theory[24, 25].
This spectral weight was observed in numerical simula-
tions of the J1−J2 Heisenberg model[20, 21], as well as in
neutron scattering experiments on powders of NaYbO2,
an S = 1/2 triangular system[29]. Although more re-

fined experimental confirmations are still needed, there
are good reasons to be optimistic on this front.

More recently[1] DSL-like behaviors were also ob-
served in an S = 3/2 triangular system α-CrOOH(D)
(delafossites green-grey powder): the system does not
order down to ∼ 2K which is much lower than the Curie
temperature θCW ∼ −211.6(5)K; the specific heat be-
haves roughly as C ∼ T 2.2 which is consistent with a
relativistic critical state with C ∼ T 2; furthermore the
spectral weight in neutron scattering (again on powders)
accumulates around the K,K′ points which is similar to
the S = 1/2 case. Assuming these signatures indeed
come from a spin liquid phase at low energy, the obvi-
ous question is: what kind of spin liquid is it? Is it the
same spin liquid as the S = 1/2 U(1) DSL in terms of
universal properties, or is it a distinct phase?

We can even consider a more general setting. As-
suming that a U(1) DSL is indeed realized, say in the
S = 1/2 J1 − J2 model in appropriate regimes, one
can ask how this spin liquid evolves as we increase S
(with the form of the Hamiltonian fixed). For sufficiently
large spin (beyond some critical value Sc) the system be-
comes semi-classical and the spin liquid should disappear
from the phase diagram. Indeed for very large S where
1/S-expansion becomes reliable, it is known that for
small J2/J1 the system forms the well known 120◦ copla-
nar anti-ferromagnet, and when J2/J1 exceeds a critical
value ∼ 1/8 the system goes through a first order tran-
sition and forms a stripe antiferromagnet[30, 31]. The
experiments on α-CrOOH(D) suggests that Sc > 3/2, so
the natural question is: what types of spin liquids should
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we expect for 1/2 < S < Sc?
In order to develop a theory of critical Dirac spin liq-

uids for general S, we start with a parton decomposition
of the spin operators (for a general review of the parton
approach see Ref. [32]):

Si,µ =
1

2

2S∑

a=1

∑

α,β=↑,↓
f†i,a,ασ

αβ
µ fi,a,β , (1)

where i is the lattice site index, µ = x, y, z denotes the
spin components, σµ is the Pauli matrix and fi,a,α is a
fermion annihilation operator that carries spin-1/2 (in-
dexed by α) and a color index a = 1, 2...2S. The aux-
iliary fermion f is also known as the spinon. This rep-
resentation of the spin operator introduces some redun-
dancies. The physical spin Hilbert space can be recov-
ered by imposing the constraints of single occupancy for
each color a (

∑
α f
†
α,afα,a = 1) and total symmetrization

over all different colors. These constraints can be con-
veniently formulated as a local Sp(2S) gauge invariance
on the spinons:




f1,↑
...

f2S,↑
f†1,↓

...

f†2S,↓




−→ U




f1,↑
...

f2S,↑
f†1,↓

...

f†2S,↓




, (2)

where the Sp(2S) matrix U can vary from site to site.
For S = 1/2, this recovers the more familiar Sp(1) =
SU(2) gauge symmetry.

We should now proceed with a spinon mean field
ansatz. Motivated by the anzatz for the U(1) DSL in
S = 1/2 systems, we use the following mean field Hamil-
tonian:

HS
MF = −t

2S∑

a=1

∑

<ij>

(−1)hij (f†i,a,αfj,a,α + h.c.) (3)

where the sign factor (−1)hij gives a π-flux on all up-
ward triangles and zero flux on all downward triangles.
For later convenience, we assume t > 0 without loss of
generality. This ansatz breaks the microscopic Sp(2S)
gauge symmetry down to U(2S):

fa,α → Uabfb,α, (4)

where U ∈ U(2S). The mean field ansatz also satisfies
the average constraint 〈∑α f

†
a,αfa,α〉 = 1 for each color

a. The hopping amplitude is designed so that at low en-
ergy the spinons form gapless Dirac cones at two points
in the reduced Brillouin zone (two valleys). Including the
degeneracy from the spin and color indices, there are in
total 4 × 2S two-component Dirac fermions at low en-
ergy, and they couple to a U(2S) = (U(1)×SU(2S))/Z2S

gauge field in the fundamental representation. The re-
sulting low energy theory is a U(2S) gauge theory with
Nf = 4 flavors of fundamental Dirac fermions. This
ansatz is very similar to that of the standard U(1) DSL
for S = 1/2 – the only difference is that we have 2S col-
ors instead of only 1 color for S = 1/2, and we shall call
this state a U(2S) DSL. The low energy theory, known as
U(2S) QCD3 with Nf = 4, is described by the following
Lagrangian:

L(S) =

4∑

i=1

ψ̄ii /DAψi + ..., (5)

where A is a U(2S) gauge field and ψi is a Dirac fermion
that transforms as a U(2S) fundamental and a two-
component spinor under the emergent Lorentz symme-
try. The ... represents additional terms allowed by phys-
ical symmetries such as four-fermion interactions and
monopole tunnelings. For S = 1/2 we recover the QED3

description of the standard U(1) DSL.
Now what is the fate of the theory Eq. (5) at low

energy? It is known that when Nf � 2S, the Dirac
fermions and gauge fields all remain gapless at low en-
ergy and the theory flows under renormalization group
(RG) to a conformal field theory (CFT). An emergent
SU(Nf ) = SU(4) symmetry is expected among the
Dirac fermions (2 spins and 2 valleys) in the CFT[33].
For Nf = 4, the conformality remains as long as 2S < Nc
for some Nc. The exact value of Nc is currently unknown
and requires future numerical simulation. Based on the
apparent stability of U(1) DSL we expect Nc > 1. If
Nc > 3, the U(3) DSL will be a stable gapless phase
that could be realized in materials like α-CrOOH(D).1

In U(1) DSL for S = 1/2 systems, monopole opera-
tors of the U(1) gauge field form an important class of
critical fluctuation[22–25, 34]. This is also true for gen-
eral U(2S) DSLs. To introduce the monopoles in U(2S)
QCD3, let us first write the U(2S) gauge field as

A = A+
1

2S
aI, (6)

where A is an SU(2S) gauge field while a is a U(1) gauge
field (I being the 2S × 2S identity matrix). The nor-
malization factor 1/2S above is chosen so that the min-
imum U(1) gauge charge carried by SU(2S)-invariant
operators is unity. We can now define monopoles for
the a gauge field as operators that insert nontrivial U(1)

1 To be more precise: the stability of U(2S) DSL requires not only
the conformality of the pristine U(2S) QCD3, but also the irrel-
evance of operators that are allowed by microscopic symmetries
(the ... terms in Eq. (5)). For the purpose of this paper we do
not carefully distinguish the two types of instabilities. However
this will be important in future numerical studies to decide the
critical value Sc.
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gauge flux
∫
da. The Dirac quantization rule states that

the monopole should be local with respect to operators
that are gauge-invariant under other gauge symmetries
(here being the SU(2S)). Therefore the minimum U(1)
monopole carries 2π flux of a. Equivalently, the con-
served flux current is

jµflux =
1

2π
εµνλ∂νaλ. (7)

One subtlety compared to U(1) DSL is that the
monopoles are not directly local with respect to the
Dirac fermions ψ, since they couple to a as charge 1/2S
fields. This means that if the U(2S) QCD remains gap-
less at low energy and the ψ fermions are deconfined,
the U(1) monopole must be accompanied by an SU(2S)
flux, so that it can be local with respect to ψ. Here it
is useful to consider a U(1)⊗2S subgroup of U(2S) and
denote the gauge field for each U(1) subgroup as A(a),
namely A = diag(A(a)). We can now label the flux con-
figuration by specifying the gauge flux of each A(a):

∫
dA(a) = 2πna, na ∈ Z. (8)

The topological flux of the a gauge field is

∫
da = 2π

∑

a

na, (9)

and the most relevant monopole (the one with the lowest
scaling dimension or energy) corresponds to

(n1, n2...n2S) = (1, 0, ...0), (10)

or other configurations obtained from it through SU(2S)
rotations. This has been quantitatively discussed using
a large Nf expansion in Ref. [34]. For Nf � 2S, the
scaling dimension of the fundamental monopole is

∆M = 0.265Nf−0.0383−0.516(2S−1)+O(1/Nf ) (11)

Although we only have Nf = 4, the qualitative as-
pects (such as symmetry quantum numbers) of the most
monopole operators are expected to remain the same as
long as the theory stays gapless.

The above minimum monopole, denoted as MA, ef-
fectively behaves as a U(1) monopole seen only by one
color of Dirac fermion ψa=1. Since ψa=1 has exactly the
same band structure as the Dirac fermions in the U(1)
DSL, many properties of MA will be identical to the
monopoles in the U(1) DSL. Each two-component Dirac
fermion with color index a = 1 contributes a zero mode
in the flux background χi (i = 1, ...4). Gauge invariance
requires filling half of the zero modes, so that a gauge-
invariant monopole operator looks like[35]:

χ†iχ
†
jMA, (12)

whereMA is a “bare” flux-insertion operator with all the
zero modes empty. There are in total C4

2 = 6 such oper-
ators that form a vector representation of the SO(6) =
SU(4)/Z2 flavor symmetry. Three of these six opera-
tors form a triplet under the microscopic spin SO(3)
and the remaining three are singlets. The spin triplet
monopole makes the most important contribution to the
spectral weight of spin-spin correlation function. These
monopoles could also carry nontrivial lattice momenta,
and the neutron spectral weight will accumulate at the
momentum of the spin triplet monopole. The monopole
momentum comes from a nontrivial Berry phase as the
gauge flux moves in a lattice of gauge charges, and the
pattern of the gauge charges is determined by the topol-
ogy of the underlying spinon band structure. It was
shown in Refs. [24, 25] that for the triangular mean field
ansatz Eq. (3), the spin triplet monopoles carry a lat-
tice momentum K = (2π/3,−2π/3). This K momen-
tum makes the monopole sharply distinct from spinon
scattering operators ψ†iψj , which can at most have a lat-
tice momenta at the M points ((π, 0), (0, π) and (π, π))
according to their band structure. This is why observa-
tions of spectral weight at K, M and symmetry related
momenta are considered important evidences for the ex-
istence of the DSL. The same analysis shows that the
three spin-singlet monopoles carry momenta K + M –
this will be important for measurements on singlet exci-
tations, such as X-ray scatterings.

We now ask what happens if S > Sc and the U(2S)
QCD3 becomes unstable. The leading instability of
U(2S) QCD is believed to be a spontaneous breaking
of the SU(Nf ) flavor symmetry down to SU(Nf/2) ×
SU(Nf/2)×U(1) (recall that Nf is even due to fermion
doubling from parity anomaly)[36, 37]. One can think of
this “spontaneous chiral symmetry breaking” as the for-
mation of a Dirac mass term of the form, up to SU(Nf )
flavor rotations,

mψ̄σzψ, (13)

which has value +m for Nf/2 flavors of Dirac fermions
and−m for the otherNf/2 flavors. Below this mass scale
only the U(2S) ∼ SU(2S) × U(1) gauge field remains.
The SU(2S) gauge field is expected to eventually become
gapped and confine the ψ fermions at lower energy, and
only SU(2S)-invariant objects such as ψa=1ψa=2...ψa=2S

remain as gapped excitations. The U(1) gauge field now
remains as a free photon field in the IR.2 It is well known
that a free U(1) gauge field in (2 + 1)d should be viewed
as a conventional symmetry breaking phase, a “super-
fluid” that breaks the U(1) flux conservation symme-
try, with the photons being the Goldstone bosons. The

2 In fact this sequence of events should be viewed as a picture to
aid our thinking. In general they will not be clearly separated
in energy scale, unless S happens to be barely above Sc.
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free U(1) gauge theory has a unique monopole operator,
which serves as the condensed order parameter of this
superfluid.

Now back to the U(2S) DSLs on triangular lattice,
with fixed Nf = 4. For S > Sc, we expect the spon-
taneous chiral symmetry breaking SU(4) → SU(2) ×
SU(2)×U(1) followed by the confinement of the SU(2S)
gauge field. Microscopically we do not have the full
SU(4) symmetry, so the ordering pattern will be de-
cided by microscopic details and cannot be determined
from the effective field theory. For reasons that will be-
come clear later, we consider a symmetry breaking pat-
tern represented by the mass Eq. (13), where σz refers
to a Pauli matrix in the spin index. This mass term
produces a quantum spin Hall insulator with a mutual
Chern-Simons term

1

2π
ASzda, (14)

where ASz is a probe U(1) gauge field that couples to
the conserved Sz. This term assigns a unit Sz spin to
each flux quanta of a, so that a monopole operator M
behaves like Sx + iSy. This monopole is a linear com-
bination of the original SO(6)-vector monopoles in the
QCD3 theory – the 6-fold degeneracy is now lifted due to
the chiral symmetry breaking. In particular, the M op-
erator inherits the lattice momentum of the spin-triplet
monopoles of the QCD3 theory. So M should carry lat-
tice momentum K. An operator Sx + iSy with lattice
momentum K is nothing but the order parameter of the
120◦ magnetic order, so the resulting state from sponta-
neous chiral symmetry breaking and confinement is sim-
ply the familiar 120◦ order. Notice that when S < Sc,
this instability towards 120◦ order does not happen spon-
taneously, but can nevertheless take place as we drive the
U(2S) DSL through a (likely continuous) phase tran-
sition, which is described by a QCD-Gross-Neveu field
theory.

The above analysis motivates us to conjecture that
a U(2S) DSL is realized in the spin-S J1 − J2 model
on triangular lattice, at some intermediate J2/J1. The
appealing feature of this conjectured scenario is that it
naturally reproduces the following nontrivial facts about
the J1 − J2 model:

1. At small J2/J1 the ground state forms a simple
120◦ coplanar order for any S.

2. At S = 1/2 the model appears to realize a U(1)
DSL phase at intermediate J2/J1.

3. At large S the model becomes semiclassical with
no spin liquid in the phase diagram.

Our conjecture can also be phrased as an intriguing
strong-weak duality between triangular lattice antiferro-
magnets and U(N) QCD3 with Nf = 4, as we illustrate
in Fig. 1.

= | ↑ ↓ ⟩ − | ↓ ↑ ⟩

a

<latexit sha1_base64="5NaQJuja3P2H4opJ4ospcrTkNLI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJu2XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6tepls1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHxfWM7Q==</latexit>

b

<latexit sha1_base64="LXNic5eemCQDWuE/dnwXO3jTQUQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPx3mM7g==</latexit>

c

<latexit sha1_base64="FJ2Ox4tQNG4fYITFxmsgq3FfibQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6tepls1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyP2M7w==</latexit>

Large S

<latexit sha1_base64="LBZWm3jxGDawy2zopC1SCYN2FaE=">AAAB9XicbVDLTgJBEJzFF+IL9ehlIjHxRHYNRo9ELx48YJRHAiuZHXphwuwjM70q2fAfXjxojFf/xZt/4wB7ULCSTipV3enu8mIpNNr2t5VbWl5ZXcuvFzY2t7Z3irt7DR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PSGlxO/+QBKiyi8w1EMbsD6ofAFZ2ik+w7CE6bXTPWBjm+7xZJdtqegi8TJSIlkqHWLX51exJMAQuSSad127BjdlCkUXMK40Ek0xIwPWR/ahoYsAO2m06vH9MgoPepHylSIdKr+nkhZoPUo8ExnwHCg572J+J/XTtA/d1MRxglCyGeL/ERSjOgkAtoTCjjKkSGMK2FupXzAFONogiqYEJz5lxdJ46TsVMqnN5VS9SKLI08OyCE5Jg45I1VyRWqkTjhR5Jm8kjfr0Xqx3q2PWWvOymb2yR9Ynz+BPpKF</latexit>

Small S

<latexit sha1_base64="Qe+i7VbIPoA9XUN7u4Cyt5eCWcA=">AAAB9XicbVBNTwIxEO3iF+IX6tFLIzHxRHYNRo9ELx4xyEcCK+mWLjS03U07q5IN/8OLB43x6n/x5r+xwB4UfMkkL+/NZGZeEAtuwHW/ndzK6tr6Rn6zsLW9s7tX3D9omijRlDVoJCLdDohhgivWAA6CtWPNiAwEawWj66nfemDa8EjdwThmviQDxUNOCVjpvgvsCdK6JELgSb1XLLlldwa8TLyMlFCGWq/41e1HNJFMARXEmI7nxuCnRAOngk0K3cSwmNARGbCOpYpIZvx0dvUEn1ilj8NI21KAZ+rviZRIY8YysJ2SwNAselPxP6+TQHjpp1zFCTBF54vCRGCI8DQC3OeaURBjSwjV3N6K6ZBoQsEGVbAheIsvL5PmWdmrlM9vK6XqVRZHHh2hY3SKPHSBqugG1VADUaTRM3pFb86j8+K8Ox/z1pyTzRyiP3A+fwCWw5KT</latexit>

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

Magnetic order

<latexit sha1_base64="kRM5zdrkUklkJwk38HnVbGI/m8M=">AAAB/nicbVDLSsNAFJ34rPUVFVdugkVwVRKp6LLoxo1QwT6gDWUyuWmHTh7M3IglFPwVNy4Ucet3uPNvnLRZaOuBC4dz7p2593iJ4Apt+9tYWl5ZXVsvbZQ3t7Z3ds29/ZaKU8mgyWIRy45HFQgeQRM5CugkEmjoCWh7o+vcbz+AVDyO7nGcgBvSQcQDzihqqW8e9hAeMbvVKiBnVix9kJO+WbGr9hTWInEKUiEFGn3zq+fHLA0hQiaoUl3HTtDNqNRvCpiUe6mChLIRHUBX04iGoNxsuv7EOtGKbwWx1BWhNVV/T2Q0VGocerozpDhU814u/ud1Uwwu3YxHSYoQsdlHQSosjK08C8vnEhiKsSaUSZ7fz4ZUUoY6sbIOwZk/eZG0zqpOrXp+V6vUr4o4SuSIHJNT4pALUic3pEGahJGMPJNX8mY8GS/Gu/Exa10yipkD8gfG5w/CMpYC</latexit>

Confined
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FIG. 1. We conjecture that the two theories in this figure
are dual to each other in the IR. Left: Spin S triangular lat-
tice antiferromagnet with nearest and next-nearest Heisen-
berg couplings J1, J2, roughly in the regime J2/J1 ∼ 0.1.
Right: U(2S) QCD3 with Nf = 4. This is a strong-weak du-
ality in the following sense: at large S the triangular lattice
antiferromagnet is weakly fluctuating and forms a classical
order, while the U(2S) QCD is strongly fluctuating and con-
fines at low energy; at small S (say S = 1/2) the quantum
fluctuations of the lattice spins lead to a spin liquid phase
with resonating (fluctuating) singlet configurations, while the
QCD becomes stable at low energy and stays gapless and de-
confined.

The above non-abelian scenario, although natural, is
not the only possible scenario, especially at small S (like
S = 1 or 3/2). It is possible that the omitted ... terms
in Eq. (5) are strong enough to drive the system to a
different phase, for example by spontaneously breaking
(Higgsing) the U(2S) gauge symmetry to a subgroup and
gapping out some of the Dirac fermions. Such “descen-
dent” states can be described in the parton approach by
adding additional terms in the mean field Hamiltonian
Eq. (3). In general a U(2S) DSL can have many dif-
ferent possible descendent phases. In the Appendix we
discuss a number of such phases for S = 3/2. Motivated
by experiments on α-CrOOH(D) for S = 3/2, we can
further demand the descendent phase to be (1) gapless
with critical spin fluctuations at K momentum and (2) in
proximity to the 120◦ order through a continuous phase
transition. It turns out that there is a unique descendent
phase which satisfy these demands: a U(1) DSL with the
same universal properties as realized in S = 1/2 systems.
The corresponding parton mean field Hamiltonian is the
original Eq. (3) plus the following perturbation:

δH = ∆
∑

〈〈ij〉〉
(−1)sij (εαβf

†
i,a=2,αf

†
j,a=3,β + h.c.). (15)

The above term is a second-neighbor p-wave pairing
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between the a = 2, 3 colors, where the factor (−1)sij

inverts sign when i, j are inverted, and the direction
is chosen so that the flux on each triangle formed by
one second neighbor and two nearest neighbors is uni-
formly 1, namely (−1)hij+hjk+sik = 1 when i, j, k runs
counterclockwise on the triangle. This second-neighbor
term gaps out the Dirac cones from the two colors
a = 2, 3 without breaking the physical symmetries,
and breaks the gauge symmetry from U(3) down to
U(1) × U(1). The first U(1) gauge symmetry acts as
fa=1 → eiθfa=1, while the second U(1) gauge symmetry

acts as (fa=2, f
†
a=3) → eiθ

′
(fa=2, f

†
a=3). The gauge field

from the second U(1) gauge symmetry couples only to
a = 2, 3 fermions which are now gapped, so at low en-
ergy it should confine due to monopole proliferation. In
the Appendix we show that the proliferated monopole
here does not break any physical symmetry. This leaves
behind a single U(1) gauge field coupled with the Dirac
fermions from fa=1, which is nothing but a U(1) DSL.
The band structure for fa=1 is identical to the spinons
in the standard U(1) DSL for S = 1/2 systems, so
we expect the same universal properties. In particu-
lar, the most important spin fluctuations come from the
monopoles at K momentum, and the most important
singlet fluctuations come from monopoles at K + M.

The above procedure using terms like Eq. (15) can
also be applied to other S > 1/2. For any half-integer S
the simplest descendent state is the U(1) DSL, while for
integer S the simplest descendent is a symmetric, gapped
state with short-range entanglement. This scenario is
similar to the Heisenberg spin chains in one dimension.

The two plausible DSLs for S = 3/2, one with U(3)
gauge symmetry and the other with U(1), are both com-
patible with existing measurements. They will differ
in more refined details including various critical expo-
nents, but it is quite nontrivial to either compute or
measure such quantities. A natural question is whether
we can distinguish the two scenarios using some read-
ily accessible tool. We now show that a promising way
to distinguish the different scenarios is to break time-
reversal symmetry and measure the resulting topological
order, which is achievable in numerical calculations, for
example using the density-matrix-renormalization-group
(DMRG) approach.

Specifically, we can introduce a spin chirality term
Si · (Sj × Sk) which breaks time-reversal and reflection
but preserve all other physical symmetries. For both the
U(3) and U(1) DSLs, this spin chirality term will induce
an SU(4)-symmetric, gauge-invariant mass gap for the
Dirac fermions ψ̄ψ. The gapped Dirac fermions form
nontrivial Chern bands and generate a Chern-Simons
(CS) term for the U(3) or U(1) gauge field. The re-
sulting state is therefore a gapped topological order. For
U(1) DSL this is the well known Kalmeyer-Laughlin chi-
ral spin liquid with semion/anti-semion excitations[38].
For U(3) DSL the gapped Dirac fermions generate a CS

term for the U(3) gauge field A:

± 2

4π
Tr

(
AdA− 2i

3
A3

)
, (16)

which is also known as U(3)±2 CS theory. By level-rank
duality, this theory with fermionic charge is dual to the
SU(2)∓3 CS theory with bosonic charge. This topologi-
cal order is non-abelian, with Fibonacci-like anyons. The
two topological orders can be readily distinguished nu-
merically, for example by examining the entanglement
spectrum.

To summarize, we have discussed two possible gap-
less Dirac spin liquids – with gauge symmetries U(3)
and U(1), respectively – that are compatible with recent
experiments on the spin-3/2 triangular lattice system α-
CrOOH(D). The U(3) DSL appears to be theoretically
more natural but the U(1) DSL is also possible. The
two states can be distinguished, at least numerically,
by examining the resulting topological order upon time-
reversal breaking. Our discussion also calls for careful
numerical studies of the U(N) QCD3 theory, for exam-
ple using lattice gauge theory simulations to determine
the critical value Nc.
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Alternative DSLs on S = 3/2 triangular lattice

We start with the parton decomposition used in the
main text for the S = 3/2 operators:

Si,µ =
1

2

3∑

a=1

∑

α,β=↑,↓
f†i,a,ασ

αβ
µ fi,a,β , (17)

which comes with a microscopic Sp(3) gauge symmetry.
Below we describe a sequence of mean field ansatz, all
with gapless Dirac fermions at low energy, starting from
the simplest U(3) Dirac ansatz used in the main text:

1. U(3): consider nearest-neighbour hopping Hamil-
tonian with a staggered π-flux

H1 = −t
∑

ij

(−1)hijf†i,a,αfj,a,α, (18)

where the sign factor (−1)hij gives a π-flux on all
upward triangles and zero flux on all downward
triangles. This ansatz leads to the U(3) Dirac spin
liquid discussed in the main text.

2. U(2) × Z2: starting from the U(3) theory, we can
introduce a pairing term for a single color (say a =
3) in the mean field theory to break the U(3) gauge
symmetry down to U(2)× Z2:

H3 =
∑

i

∆fi,a=3,↑fi,a=3,↓ + h.c., (19)

which also gaps out the fa=3 Dirac fermions. This
leaves behind a U(2) gauge theory with Nf = 4
at low energy, together with a gapped sector with
Z2 topological order. As discussed in Refs [39, 40]
there are several different versions of Z2 topological
orders depending on the exact form of pairing (in
modern language they are topological orders en-
riched by spin and lattice symmetries in different
ways). However as the gapped sector do not affect
universal behaviours of physical correlation func-
tions, we will not distinguish different (symmetry-
enriched) topological orders here.

3. U(1)×Z2×Z2: starting from the U(2)×Z2 state,
we can further pair and gap out the a = 2 fermions.
This leaves behind a QED3 with two gapped Z2

topological ordered sectors.

4. U(1)A: we now start from the U(3) ansatz, and
add the following term on lattice:

H4 =t′
∑

〈〈ij〉〉
(−1)sij (f†i,a=2,αfj,a=3,α + h.c.)

+h
∑

i

(f†i,a=1,αfi,a=2,α + h.c.). (20)

The first term is a second-neighbor p-wave hy-
bridyzation between the a = 2, 3 colors, where
the factor (−1)sij inverts sign when i, j are in-
verted, and the direction is chosen so that the flux
on each triangle formed by one second neighbor
and two nearest neighbors is uniformly 1, namely
(−1)hij+hjk+sik = 1 when i, j, k runs counterclock-
wise on the triangle. This second-neighbor term
gaps out the Dirac cones formed by the two col-
ors a = 2, 3, and breaks the gauge symmetry from
U(3) down to U(1) × U(1) × U(1), but breaks no
physical symmetry. The second on-site hybridiza-
tion term further breaks the gauge symmetry down
to a single U(1). The low energy theory is therefore
a single QED3 with Nf = 4 gapless Dirac fermions
formed by fa=1,α. We will see later that this state
is in fact different from the standard U(1) DSL in
S = 1/2 systems in a crucial way: the spin-triplet
monopole in this U(1)A theory carries a trivial lat-
tice momentum (Γ) instead of K for the standard
U(1) DSL.

5. U(1)B : we can also start from the U(2) × U(1)
ansatz, and add the following alternative terms:

H5 =∆p

∑

〈〈ij〉〉
(−1)sij (εαβf

†
i,a=2,αf

†
j,a=3,β + h.c.)

+h
∑

i

(f†i,a=1,αfi,a=2,α + h.c.). (21)

This is almost the same with the term for the
U(1)A state, except that f3,α participates in a

particle-hole conjugated way (f3,α → εαβf
†
3,β).

This term also breaks the gauge symmetry down
to a single U(1), and gaps out the Dirac cones
formed by the two colors a = 2, 3. The low energy
theory is therefore again a QED3 with Nf = 4.
We will see later that this state is identical to the
standard U(1) DSL state for S = 1/2 in terms of
universal properties. In particular, the spin-triplet
monopoles do carry K momentum in the U(1)B
theory.

As discussed in the main text, all these DSLs have
spin-triplet monopoles which contribute to neutron scat-
tering weight. We now analyze the lattice momentum
of these triplet monopoles in each theory. Following
the discussions in the main text, we conclude that the

http://arxiv.org/abs/1505.05351
http://dx.doi.org/10.1103/PhysRevB.93.165113
http://dx.doi.org/10.1103/PhysRevB.93.165113
http://arxiv.org/abs/1505.06495
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states all have momentum K, which agrees with the ex-
periment. The U(1)A and U(1)B phases require more
analysis. This can be done by first considering an in-
termediate state with U(1)(1) × U(1)(2) × U(1)(3) gauge
field, where the gauge field A(a) of each U(1)(a) only
couples to fa. This is simply three copies of QED3,
each with triplet monopoles at momentum K. Now
U(1)A and U(1)B phases are obtained by Higgsing the
U(1)⊗3 gauge symmetry down to a single U(1), with
gauge field A. The difference is that for U(1)A we
have A = A(1) = A(2) = A(3) while for U(1)B we
have A = A(1) = A(2) = −A(3). For the monopole
operators this means that the monopole operator in
U(1)A phase transforms under various symmetries as
M1M2M3, where Ma is the monopole of A(a); while
in U(1)B phase it transforms as M1M2M†3. Therefore
the monopole lattice momentum is K + K + K = 0 for
U(1)A, and K + K−K = K for U(1)B .

We therefore conclude that U(3), U(2) × Z2, U(1) ×
Z2 × Z2 and U(1)B phases all contain spin triplet
monopoles at K that can contribute to neutron scat-
tering spectral weight, consistent with experimental
observation[1]. We can further demand that the DSL
should have a direct, continuous transition to the 120◦

magnetic order. This rules out U(2)×Z2 and U(1)×Z2×
Z2 states, since a Gross-Neveu type of transition will not
affect the gapped Z2 topological orders and the resulting
states will not be classical (short-range-entangled) mag-
netic orders. This leaves the U(3) and U(1)B phases to
be the main contenders.

In fact to produce the same low energy theory as the
U(1)B state, we do not even need to have the on-site hy-
bridization term (the h-term in Eq. (21)). This will lead
to a U(1)× U(1) gauge symmetry, but the second U(1)
is a pure gauge theory without gapless matter, and will

confine due to monopole proliferation. From our previ-
ous monopole analysis, the monopole of the second U(1)
carries lattice momentum K − K = 0, so the confine-
ment will not break any physical symmetry. This leaves
behind a single U(1) gauge theory with Nf = 4 gap-
less Dirac fermions. This is the candidate U(1) DSL for
S = 3/2 discussed in the main text.

Finally we comment on some other mean field ansatz
that naively also give DSL-like behaviors. One can start
from the U(3) ansatz and make the hopping amplitute
t slightly different for each flavor: t1 6= t2 6= t3. This
breaks the gauge symmetry down to U(1)×U(1)×U(1)
so the low energy theory becomes three copies of the
QED3, each with Nf = 4 Dirac fermions. This the-
ory, however, is unstable: they physical symmetries
allow a monopole-monopole coupling of form M†1M2.
The scaling dimension of each monopole is estimated in
Monte Carlo simulation[28] to be ∼ 1.1 (which is only
slightly larger than the large-Nf estimation[34] ∼ 1).
This monopole-monopole coupling is therefore relevant
and leads to instability. Since the monopole scaling di-
mension is expected to decrease as the color number
increases, the same instability will happen if we make
t1 = t2 6= t3, which results in a U(2) × U(1) QCD the-
ory with monopole-monopole coupling. It is interest-
ing to ask what is the effect of this relevant monopole-
monopole coupling. One answer is that it may drive the
system through a spontaneous chiral symmetry breaking
followed by confinement. A more interesting possibility
is that it may drive the system back to the U(3) QCD
theory. One motivation for considering this scenario is
that a strong monopole-monopole coupling will essen-
tially identify different monopoles and results in a theory
with only one type of monopole, but this is exactly what
happens in the U(3) QCD theory.
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