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We perform an extensive exact diagonalization study of interaction driven insulators in spin- and valley-
polarized moiré flat bands of twisted bilayer graphene aligned with its hexagonal boron nitride substrate. In
addition to previously reported fractional Chern insulator phases, we provide compelling evidence for competing
charge-density-wave phases at multiple fractional fillings of a realistic single-band model. A thorough analysis
at different interlayer hopping parameters, motivated by experimental variability, and the role of kinetic energy
at various Coulomb interaction strengths highlight the competition between these phases. The interplay of
the single-particle and the interaction induced hole dispersion with the inherent Berry curvature of the Chern
bands is intuitively understood to be the driving mechanism for the ground-state selection. The resulting phase
diagram features remarkable agreement with experimental findings in a related moiré heterostructure and affirms
the relevance of our results beyond the scope of graphene based materials.

I. INTRODUCTION

Over the course of the past three years, twisted bilayer
graphene (TBLG) and related moiré heterostructures emerged
as promising platforms for the study of interaction effects in
realistic flat band systems. The ability to engineer bands of
minimal bandwidth via two stacked graphene sheets subject
to a relative magic twist-angle of about 1.1◦, in combination
with the excellent experimental tunability of the band filling
through electric gates has lead to a tremendous growth of
interest in the field of graphene-based moiré materials. Ex-
perimental observations of correlated insulators in proximity
to potentially unconventional superconductivity [1–4] raised
hopes that the study of this composite system may shine light
on the long-standing mystery of the mechanism behind high-
temperature superconductivity in cuprates. More recent ex-
periments point to the possibility that these correlated insu-
lators and superconductivity might have distinct microscopic
origins though [5–8]. The nature of the superconducting phase
and its pairing mechanism is generally subject to hot debates,
including exotic proposals involving topological solitons –
skyrmions – carrying charge 2e [9–15]. Further experimen-
tal signatures include ferromagnetism [16] and a quantized
anomalous Hall effect [17] in TBLG aligned with the hexag-
onal boron nitride (hBN) substrate (TBLG/hBN), which sug-
gests that a Chern insulator may be realized in TBLG related
materials. The incorporation of interactions naturally leads to
the question whether a fractional Chern insulator may form in
TBLG, which has been answered affirmatively using exact di-
agonalizations in Refs. [18, 19] and analytically in Ref. [20].
Studies of TBLG-inspired Hofstadter models on the honey-
comb lattice reiterate the importance of fractional quantum
Hall (FQH) states at fillings ν = 1/3 as well as ν = 2/5 [21].
Further exact diagonalization [22] and DMRG based [23, 24]
calculations support the formation of a Chern insulator as
well as the possibility for different types of spatial symme-
try breaking charge-density-waves (CDW) in pure TBLG. The
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FIG. 1. Schematic TBLG/hBN phase diagram of the identified order
tendencies over their observed band filling range ν for the studied
hopping parameters wAB = 90 meV and wAB = 110 meV in the
strongly interacting regime. The classification is based on the results
compiled in Sec. V. We find two fractional Chern insulators (FCI),
a series of Wigner crystals (WC) locked at specific fillings, as well
as a charge-density-wave (CDW) phase around 1/3 filling, with a
seemingly finite density range extent.

former predictions are corroborated by the experimental ob-
servation of interaction induced Chern insulators at multiple
integer fillings [25].

Very recently, novel sensing techniques were used to reveal
insulating behavior at fractional single-band fillings ν = 1/2,
2/3, 2/5, 1/3, 1/4, 1/7 of a related moiré heterostructure
based on transition metal dichalcogenides (TMD), such as
WS2/WSe2 [26, 27]. The order mediated by Coulomb inter-
actions is suggested to be of CDW-type, realizing generalized
Wigner crystals (WC) that are locked to certain commensurate
filling fractions of the moiré lattice and spontaneously break
translational symmetry. This is in accordance with the pos-
sibility to engineer flat bands and the resulting signatures of
collective phases reported in Ref. 28 for twisted bilayers of
WSe2 close to half-band filling.

The intrinsic competition of FQH states with WCs and
CDWs at fractional fillings has a long history and dates back
to early studies of interaction effects in the two-dimensional
electron gas subject to a magnetic field [29–35]. More re-
cently the lattice generalization of a topological Laughlin-
like state, the fractional Chern insulator (FCI), has attracted
considerable interest [36–41]. In graphene related systems,
a CDW as well as the FCI have been observed experimen-
tally [42, 43]. Both types of bulk insulating phases inherently
rely on the presence of strong electron-electron interactions,
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while the FCI additionally requires an effective magnetic field,
quantified by a finite Chern number of the fractionally filled
band. As the kinetic energy typically weakens such order ten-
dencies, realizations of (nearly) flat bands are typically ex-
pected to be a prerequisite to study the competition of these
two strongly correlated phases.

In our work, using large-scale exact diagonalizations, we
carefully explore to what extent a similar competition is at
work in a realistic spin- and valley-polarized single-band
model for TBLG/hBN. We demonstrate that indeed charge or-
dered states are strong contenders for the ground-state at sev-
eral fractional fillings, including cases where previous work
highlighted the presence of an FCI state [18, 19]. Further-
more, the nature of the CDWs is shown to go beyond the sim-
ple WC-type, realizing stable K-CDW order across a whole
range of fillings for suitable band parameters. We show that
the quantum geometry, manifest in the inhomogeneous dis-
tribution of the Berry curvature, but also the nontrivial mo-
mentum dependence of the single-particle dispersion have a
strong influence on the FCI/CDW competition beyond the
mere presence of a flat Chern band. This understanding al-
lowed us to uncover another FCI state at ν = 2/5, akin to
the results of Ref. 19. The acquired intuition in conjunction
with the extensive amount of numerical evidence is condensed
in the tentative phase diagram of Fig. 1. Drawing connec-
tions to the experiment, the agreement of our results in Fig. 1
at wAB = 110 meV for TBLG/hBN with those of the TMD
moiré system in Ref. 26 suggests a substantial degree of sim-
ilarity for the physics at play. The added twist of topolog-
ical nontriviality in TBLG/hBN, however, enables more ex-
otic correlated phases for different band parameters, ensur-
ing again the diversity of physics contained in graphene based
moiré structures.

This work is organized as follows: Section II introduces
the single-particle model as well as the single-band-projected
many-body Hamiltonian and gives an overview of crucial
quantities that characterize the model for a certain choice of
hopping parameters. We subsequently give a brief overview
of the applied numerical method as well as important ob-
servables that characterize the discussed correlated phases in
Sec. III. The main volume of numerical results is presented
throughout Sec. IV, including solid evidence for CDW/WCs
at multiple filling fractions as well as the identification of two
hierarchy FCI states at ν = 1/3 and ν = 2/5. In Sec. V, the
results are condensed into a tentative phase diagram as a func-
tion of the electron filling and important aspects of the phases’
nature and stability towards the removal or addition of addi-
tional electrons are revealed. This section also demonstrates
the commonalities and differences of the two distinguished
hopping parameter regions at a glance and allows us to draw
possible connections to the experiment in Ref. 26.

II. MODEL

Our exact diagonalization study is based on the continuum
model description of TBLG [44, 45] at θ = 1.05◦ (the (31, 1)
commensurate superlattice in Ref. 46). We choose the nearest-

neighbor hopping amplitude t = 2.62 eV from graphene and
additionally include a phenomenological layer corrugation by
using distinct intra- and intersublattice hopping amplitudes
wAA and wAB [18, 47, 48]. Throughout this manuscript we
fix wAA/wAB = 0.7, and wAB is varied between the real-
istic values of 90 meV and 110 meV to account for model
variations and the presence of strain or pressure in samples
[18, 45, 47, 49, 50]. We assume alignment with the hBN sub-
strate, which, to lowest order, introduces a staggered potential
that breaks C2 sublattice symmetry and thus gaps the previ-
ously massless Dirac cones at the corners K± of the moiré
Brillouin zone (MBZ) [51]. The resulting flat valence (con-
duction) bands of the τ = ± valleys, presented in the top
row of Fig. 2, then acquire a Chern number C = ∓1 (±1).
For a realistic substrate induced potential of ∆hBN = 15 meV
[51], the valence and conduction bands are well separated,
such that they may be treated separately for appropriate band-
widths and interaction strengths. Except for an inversion of
the valley resolved bands along the Γ-M path and an in-
creased asymmetry of the gaps at K± for lower wAB , the
single-particle dispersions in Fig. 2 are qualitatively similar
for all considered values of wAB . A more profound distinc-
tion is present in the Berry curvature of the valence τ = −
band in the middle row of Fig. 2. The rather uniform dis-
tribution for wAB = 90 meV gradually develops a peak at Γ
upon increasing wAB to 110 meV. The analysis remains valid
upon switching valley or band, as the Berry curvature is al-
most identical up to a sign flip, or combined sign coordinate
inversion. Minor quantitative differences are the consequence
of the slight particle-hole asymmetry of the dispersion. At this
stage, it should be noted that the flatness of the Berry curva-
ture is controlled by the combined choice of band parameters
and twist angle, enabling a relatively uniform distribution also
for wAB = 110 meV at θ = 1.15◦ in Ref. 19.

We incorporate the Coulomb interaction via the two-
dimensional Fourier transform of a Yukawa potential
V (q) = (e2/4πεε0Ω)(2π/

√
|q|2 + 1/λ2). Here, e and ε0 are

the elementary charge and vacuum dielectric constant, respec-
tively, Ω denotes the total area of the system and λ the screen-
ing length. The relative dielectric permittivity ε effectively
scales the interaction strength, however it is replaced in our
treatment by a convex combination of the kinetic and inter-
acting parts of the full Hamiltonian and is thus set to a sensi-
ble value of ε = 2.675. If not mentioned otherwise, in accor-
dance with previous authors we choose λ = LM ≈ 13.4 nm
to match the moiré period [18, 52, 53]. Motivated by experi-
mental signatures [16, 54–56] and theoretical findings [19, 48]
we assume full flavor polarization, resulting in an interaction
HamiltonianHint that acts on spinless fermions of a single val-
ley. Because the two valley flavors of the model are related by
time-reversal symmetry, we choose to study electrons in the
τ = − valence band with Chern number C = 1 at an electron
filling ν. To incorporate this truncation of the band and fla-
vor interaction channels in the model, we have to project the
ordinary density-density interaction operator to the band ba-
sis. This step has been detailed in Refs. [18, 48, 57–59]. The
resulting single-band-projected interaction Hamiltonian then
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FIG. 2. Overview of the single-particle band structure εk (top), the Berry curvature F (k) (middle) and the interaction induced hole dispersion
Eh(k) (bottom) of the τ = − valence band for various wAB = 90–110 meV, organized into columns (a) to (e). More remote bands are
separated by energetic gaps from the flat band cluster and lie outside the chosen energy window. Common to all wAB is the minimum
(maximum) of the valence (conduction) band dispersion as well as the maximum of −Eh(k) at Γ. F (k) is redistributed from a relatively
uniform case in (a) to a sharp peak at Γ in (e).

reads

Hint =
1

2

∑
k1,k2,q

V (k1,k2,q)c†k1
c†k2

ck2−q
ck1+q , (1)

where c†k (ck) denotes the creation (annihilation) operator of
band electrons in an orbital with momentum k ∈ MBZ. The
matrix elements are defined as

V (k1,k2,q) =
∑
G

V (q + G)Λq+G
k1

Λ−q−Gk2
,

and Λ±q±Gk = 〈u(k)|u(k± q±G)〉
(2)

represents form factors that contain overlaps of the band
eigenvectors |u(k)〉 and the summation is over the moiré re-
ciprocal lattice vectors G of the continuum model discretiza-
tion. In the band diagonal basis, the kinetic term takes the
simple form Hkin =

∑
k εkc

†
kck. Although we start off by

assuming a completely flat band and thus neglect Hkin, in
later sections we account for a finite dispersion by a convex
combination of the kinetic and interaction Hamiltonians as
H = ηHkin+(1−η)Hint. This is physically equivalent to alter-
ing the permittivity ε, but leaves the energy scale of the prob-
lem approximately constant. This simplifies the interpretation

of spectra and provides additional numerical stability. An ef-
fective dielectric constant is thus given by ε∗ = εη/(1− η)
which matches ε at η = 0.5. In the case of pure interactions
(η = 0) we use units of energy (e2/8πεε0L

M), whereas for
the combined Hamiltonian we use meV.

Upon performing a particle-hole transformation, the inter-
action Hamiltonian induces a single-hole dispersion [18, 40]

Eh(k) =
1

2

∑
k′

Vk′kk′k + Vkk′kk′ − Vkk′k′k − Vk′kkk′ ,

Vk1k2k3k4 = Vk1k2k2−qk1+q ≡ V (k1,k2,q) ,
(3)

which turns out to be a useful characteristic for the intu-
itive understanding of one important aspect of the Coulomb
interaction structure in this system. This (sign flipped) in-
duced hole dispersion (IHD) is evaluated in the bottom row of
Fig. 2. As wAB varies, the features of −Eh(k) remain quali-
tatively similar with a pronounced maximum at Γ. The same
holds for the situation in the conduction band. The IHD of
wAB = 110 meV differs from the one with wAB = 90 meV
primarily by a larger bandwidth.

Figure 2 suggests that the vital differences in the model are
captured in the cases wAB = 90 meV and wAB = 110 meV,
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while intermediate values smoothly interpolate between these
scenarios. We thus restrict ourselves to the two representative
cases wAB = 90 meV and 110 meV in our exact diagonaliza-
tion study of the many-body Hamiltonian.

III. NUMERICAL METHOD AND SIGNATURES OF
CORRELATED PHASES

Similarly to Refs. [18, 19, 22], we use Lanczos based exact
diagonalization (ED) in momentum space to tackle the many-
body problem of interacting band-fermions. This enables us
to obtain numerically exact ground-state energies as well as
measurements of observables on finite size clusters with var-
ious geometric features at arbitrary filling fractions. In the
considered spin- and valley-polarized subsector of a single
band, the total Hilbert space dimension for a given number of
electrons Ne on Nk orbitals is the binomial coefficient

(
Nk

Ne

)
.

By utilizing the translational symmetry of the system, the to-
tal Hilbert space decomposes into subspaces of Nk center of
mass (COM) momenta kCOM =

∑Ne

i=1 ki. In order to keep
the code applicable to general geometries and Hamiltonians of
potentially reduced symmetry, no point group operations are
exploited in the algorithm. The average linear matrix dimen-
sion is then

(
Nk

Ne

)
/Nk, which culminates in about 252 million

states in the study of the cluster 36 at ν = 1/2.
The algorithm provides access to the ground-state wave

function(s) as well as the momentum orbital resolved low-
energy spectrum. This is a key advantage of the ED method,
as many phases have distinct signatures in the structure of the
low-energy spectrum, e.g., in the k-space location and degree
of quasi-degenerate ground-state energy levels. To be pre-
cise, it should be noted that exact degeneracy generally holds
only in the thermodynamic limit (TDL) and a finite splitting of
the ground-state manifold is to be expected on finite clusters.
With regard to the phases encountered in the current study,
at a filling of ν = p/q the FCI manifests in the spectrum
via a q-fold degeneracy of orbitals satisfying the generalized
Pauli principle developed in Ref. 39, which was extended to a
heuristics on more general clusters in Ref. 40. In addition, the
ground-state orbitals of an FCI are expected to exhibit spec-
tral flow, that is, under the insertion of magnetic flux quanta
like k → k + Φi

2πgk,i they exchange their order without mix-
ing with excited states. The flow of orbitals into each other
may be hindered if all q ground-states coincide in their COM
momentum. Nevertheless, they should remain isolated from
higher lying states and the original spectrum has to be re-
stored at Φi/2π = q. On the other hand, the degeneracy of
the CDW depends on the specific pattern that is realized, i.e.
in what manner the spatial symmetry is broken. For a sim-
ple WC-like order (with a single orientation) at ν = 1/q, the
ground-state is q-fold degenerate, with orbitals separated by
the order vectors {q∗i }. The possible variants of more com-
plex patterns need to be counted individually, however the
spontaneous symmetry breaking aspect may generally be an-
alyzed using group theoretical tools in order to predict the lo-
cation of ground-state COM orbitals [60]. A particular pat-
tern manifests in the spatial correlations of the charge density,

which can be measured using the charge structure factor. In
the considered single-band-projected setting, we define it as

S(q) ≡ 1

Nk

[∑
k

|Λq
k|

2
n(k)+

∑
k1,k2

Λq
k1

Λ−qk2

〈
c†k1

c†k2
ck2−q

ck1+q

〉 , (4)

where n(k) ≡ 〈c†kck〉 is the orbital occupation. A detailed
derivation may be found in App. B.

IV. COMPETITION OF CORRELATED PHASES AT
CANONICAL FILLING FRACTIONS

We start our discussion of numerical results with the
single-band model at ν = 1/3 filling. We find strong evi-
dence for the manifestation of an FCI for the band param-
eter wAB = 90 meV, therefore corroborating the findings in
Ref. [18], and a translation symmetry breaking CDW with or-
der wave vector q∗ = K± at wAB = 110 meV, which is at
odds with Ref. [18]. We provide an explanation for the un-
derlying order mechanisms and investigate the stability of the
phases against the introduction of kinetic energy. After high-
lighting the differences and commonalities in the conduction
band and for the complementary filling ν = 2/3, we turn to
the investigation of other potentially interesting fractions. We
reveal a series of WCs at commensurate fillings ν < 1/3 as
well as the realization of a second FCI at ν = 2/5, confirming
similar calculations in Ref. 19. Finally, we present our nu-
merical results for half filling of the moiré flat band, which,
however, do not allow us to conclusively determine the nature
of the ground-state.

A. FCI versus CDW at ν = 1/3

To begin with, we consider the pure interaction Hamilto-
nian of Eq. (1) and compute the low-lying eigenvalues and
eigenvectors on various cluster geometries detailed in App. C.
Figure 3(a,b) displays the obtained ground-state energies per
orbital over the system size for both considered interlayer hop-
ping amplitudes. While Fig. 3(a) is fairly featureless up to a
gradual convergence of the ground-state energy with increas-
ing system size, Fig. 3(b) signals a pronounced sensitivity to
the presence of the K± points, with the ground-state energy
being lower when the K± points are present. This points to
a different phase than an FCI, whose ground-state energy is
expected to be rather insensitive to the global cluster shape
(within reasonable limits).

The obtained many-body spectra, such as Fig. 3(c), reveal
an approximate three-fold degenerate ground-state, where
the COM momentum orbitals in the ground-state manifold
are found to be distinct among the two considered inter-
layer hopping amplitudes on multiple clusters. While at
wAB = 90 meV they follow the ν = 1/3 FCI heuristics [39,
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FIG. 3. (a,b) Ground-state energy for various clusters and (c) many-body spectrum on the cluster 36 at ν = 1/3 filling for both band
parameters. At wAB = 110 meV a clear sensitivity to the presence of the K points is observable while the wAB = 90 meV ground-state in
(a) is indifferent to this geometric feature. Clusters with aspect ratios far from 1, like 21B and 27B, violate this pattern. For more geometric
details see Tab. I. Shaded areas in (c) mark the set of identified ground-states, whose locations in the MBZ are marked in the inset for the
respective hopping amplitude. The k-space locations of momenta associated to each orbital index are displayed in App. A. (d) Spectral flow
of ground-state orbitals on the cluster 21A at wAB = 90 meV under the insertion of magnetic flux Φ1. We incorporated a slight valence band
dispersion via η = 0.3 for better separation from excited states. The general effect of kinetic energy is discussed in Sec. IV B.

40], the ground-state momenta at wAB = 110 meV are sep-
arated by the moiré Dirac point momenta K± (on clusters
which feature these points in the MBZ). Upon inserting Φ1

flux quanta, in Fig. 3(d) we observe that the three ground-
states at wAB = 90 meV flow into each other without mixing
with higher excited states. At Φ1/2π = 3, the original spec-

FIG. 4. Structure factor distribution over the MBZ of the cluster
36 and extrapolation to the TDL for ν = 1/3 and both wAB . The
dominant peaks in (b) are strong evidence for K-CDW order and the
accompanied tripling of the unit cell, which survives in the TDL in
(d). The CDW signatures at wAB = 90 meV in (a) and (c) are less
pronounced and are expected to vanish in the TDL.

trum is restored, in accordance with Laughlin-like states at
filling ν = 1/3. It should be noted that we intentionally chose
a cluster with three distinct ground-state momenta in the FCI
phase to enable proper spectral flow, which also features the
K± points.

The spectral analysis and energetic considerations point to-
wards the possibility of different types of order depending
on the interlayer hopping amplitude wAB . Where the data
at wAB = 90 meV suggests the formation of a topological
fractional Chern insulator, in accordance with the results of
Ref. 18 and Ref. 19, wAB = 110 meV appears to favor order
whose signatures are consistent with charge-density-waves
with order momentum K±. The emergence of CDW order

FIG. 5. (a) Various commensurate enlargements of the original moiré
Wigner-Seitz cell (blue), corresponding to CDW/WCs that break the
real-space LM

1,2 moiré translational symmetry. The respective fill-
ings are ν = 1/3 (red), ν = 1/4 (green) and ν = 1/7 (magenta).
The pattern at ν = 1/7 splits into two classes, which are related by
an out-of-plane C2 operation. (b) Illustration of the characteristic
density-density correlation function χ0(r) as well as the three or-
thogonal realizations (red, green, blue) of a CDW at ν = 1/3 (cf.
App. B for details).
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is reflected most prominently in the charge structure factor
of Eq. (4) in Fig. 4(a,b): Little spatial modulation is present
for 90 meV, where for wAB = 110 meV the hallmark Bragg
peaks of a CDW manifest at momenta K±. The finite size
extrapolation of the peak height to the TDL in Fig. 4(c,d)
shows that long-range order is stable, while the signal off
the order momentum vanishes. Although the order parame-
ter in Fig. 4(c) also extrapolates to a nominally finite value for
wAB = 90 meV, it is significantly smaller than in Fig. 4(d)
and will most likely approach zero for larger clusters, in ac-
cordance with the expectations for an FCI state.

The K-CDW can be imagined in real-space as illustrated in
Fig. 5. It is the first in a series of Wigner crystal-like states that
are locked to the underlying moiré triangular lattice and spon-
taneously break translational symmetry, thus leading to an en-
largement of the moiré unit cell. At filling ν = 1/3, the unit
cell is tripled, such that each of the three degenerate ground-
states corresponds to one realization on the triangular moiré
lattice of Fig. 5(b).

B. Interplay of Berry curvature, induced hole dispersion and
kinetic energy

What differentiates the situation at wAB = 90 meV from
the one at wAB = 110 meV, such that either the formation of
the FCI or the CDW is favored? We can gain insight into the
driving mechanism by studying the orbital occupation n(k),
which informs us about the predominant locations of the elec-
trons in the MBZ. In the pure interaction case of Fig. 6(a) and
Fig. 6(b), it tells us that the Coulomb repulsion depletes the re-
gion near Γ and redistributes the electrons towards the border
of the MBZ, an effect previously discussed in Refs. [18, 40].
This can be intuitively understood in the hole picture, where

FIG. 6. Orbital occupation at ν = 1/3 for both wAB and two convex
combination factors η. While (a) and (c) indicate a smoothed redis-
tribution of n(k) with η, (b) and (d) are nearly identical. The used
cluster is 27A.

FIG. 7. (a) The FCI reaches a stability maximum near η ' 0.5,
accompanied by a suppression of S(q = K±). The stable CDW is
degraded with η until its signatures vanish close to η ' 0.8 − 0.9.
The used cluster is 27A.

the IHD in the lowest panels of Fig. 2 encourages holes being
close to Γ. At a hole filling fraction of νh = 2/3, most of the
inner region of the MBZ is occupied by holes, while electrons
are closer to the boundary. The increased IHD bandwidth for
wAB = 110 meV leads to an amplified interaction driven re-
allocation of electrons to the outer orbitals when compared to
wAB = 90 meV.

The crucial difference between the two cases is however
that for wAB = 110 meV, most of the Berry curvature in
Fig. 2(e) is concentrated close to Γ, while the electrons ar-
range at the border of the MBZ. Thus they do not experi-
ence a significant effective magnetic field, which would other-
wise encourage the formation of a FQH-like state, and charge
order by a tripling of the unit cell is the energetically most
favourable option, with the appealing real-space interpretation
of minimizing the Coulomb interactions by maximizing the
distance between the electrons. The large gap in the spectrum
to the COM orbitals dictated by the FCI heuristics in Fig. 3(c)
as well as Fig. 7(b) affirm the robustness of the K-CDW. In
contrast to the authors of Ref. 18 who proposed an FCI for
wAB = 110 meV at a reduced screening length of λ = LM/6,
we observe, for the same parameter set, clear signatures of
CDW order in spectra such as Fig. 16 in App. A, as well as
the structure factor on various clusters. Although the pure
interaction orbital occupation is practically the same as for
wAB = 90 meV, the Berry curvature in the latter case is dis-
tributed more uniformly as shown in Fig. 2(a).

The rather small excitation energies to COM orbitals corre-
sponding to the CDW and the poor degeneracy of FCI ground-
states in Fig. 3(c) and Fig. 7(a) suggest a close competition be-
tween these phases on lattices that geometrically support the
K-CDW.
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We have established that for a completely flat band an FCI
is the most likely ground-state for wAB = 90 meV, while the
wAB = 110 meV configuration favors CDW order. The ef-
fect of a finite kinetic energy bandwidth is now to be dis-
cussed by including the continuum model valence band dis-
persion via Hkin. As described in Sec. II, this is done by
a convex combination of Hkin and Hint controlled by the
parameter η ∈ [0, 1]. The pure interaction case is obtained
for η = 0, while η = 1 leads to a non-interacting Hamilto-
nian containing only the kinetic energy. In Fig. 7 we ob-
serve the behavior of both the spectrum and the CDW or-
der parameter while varying η from 0 to 1. The inspec-
tion of Fig. 7(b) and Fig. 7(d) suggests that the long-range
CDW order is gradually penalized by the kinetic energy un-
til the spectral gap and the dominance of S(q = K+) vanish
around η = 0.8–0.9. This corresponds to an effective rela-
tive permittivity of ε∗ = 2.675× η/(1− η) ' 10–24, which
is above experimental estimates for bilayer graphene inter-
faces at ε∗ = 6± 2 (η ' 0.6–0.75) [61]. A picture that might
seem peculiar at first glance emerges from Fig. 7(a). Here
the single-particle dispersion does not appear to immediately
weaken the FCI, but the ratio of the excitation gap to the
ground-state splitting improves until η = 0.4–0.5. This is at
odds with the canonical view that a general interaction driven
phase profits from a band that is as flat as possible. The ori-
gin of this curious feature may be understood in terms of the
role of the single-particle dispersion in the previously devel-
oped mechanism for the manifestation of FCI or CDW states.
The crucial aspect of the valence band is the minimum at Γ
while the outer momenta remain higher in energy. In a non-
interacting setting, the lowest orbitals in the trough would be
successively filled to accommodate all Ne electrons and con-
sequently form a Fermi surface. Turning on the Coulomb re-
pulsion, the IHD shifts the electron density towards the border
of the MBZ and thus, in the valence band, acts opposite to the
preference of the single-particle dispersion. Such a scenario
generates a sweet spot, where electrons are almost uniformly
distributed across the MBZ. What is more, the electrons in the
FCI state can now take advantage of the effective magnetic
field, that is the Berry curvature of Fig. 2(a), across the whole
MBZ.

Increasing η past 0.5 degrades the FCI and leads to an al-
most degenerate situation of FCI and CDW momentum or-
bitals near η = 0.75, from which onward the orbital occupa-
tion distribution appears to be dictated by the band structure
alone. In principle, such a sweet spot may also be present
in Fig. 7(b), yet upon closer inspection of the situation at
η ' 0.8, no clear signature of an FCI was observed. The rea-
son might be that the optimal η is quite far below the value
at which Hkin perturbs the CDW enough for the FCI to com-
pete. Interestingly for the CDW, as indicated by Fig. 6(d) and
Fig. 7(d), n(k) and also S(q = K+) are practically unaf-
fected by an increase of η until the start of the breakdown of
CDW order at η = 0.75. This suggests a high degree of sta-
bility of the K-CDW wave function across a large interval of
kinetic energy strengths.

C. Conduction band physics and complementary filling

We now investigate the similarities and differences when
switching to the conduction band (ν = 1 + 1/3) and upon
adding twice the amount of electrons to a single (valence or
conduction) band (ν = 2/3). The effective reflection about
zero energy results in the observed energetic peak of the con-
duction band at Γ in Fig. 2, which falls off towards the MBZ
border. The Berry curvature in the conduction band of the
same valley is related by a sign and coordinate flip to the one
in the valence band (up to a slight particle-hole asymmetry).
Thus the ones displayed in Fig. 2 properly represent the mag-
nitude at the center and the border of the MBZ, which suffices
for our discussion. The IHD is almost identical up to a re-
flection about a Γ-K path and thus has the same qualitative
effect as in the valence band. In our numerical results, we
first compare the data for η = 0 in Fig. 8 to the same set of
points in Fig. 7. The results (FCI atwAB = 90 meV, CDW at
wAB = 110 meV) almost exactly coincide, which is the con-
sequence of the time-reversal and particle-hole relations for
bands from different valleys. More remarkable behavior that
distinguishes the two bands is revealed when tuning η > 0.
While for wAB = 110 meV we arrive at results that are rem-
iniscent of Fig. 7(b) and Fig. 7(d), depicting an even slightly
more stable K-CDW that is slowly disfavored by the kinetic
energy, Fig. 8(a) and Fig. 8(c) show no signs of a further sta-
bilization of the FCI. On the contrary, both, the spectra and
the order parameter S(q) signal that the CDW profits from
increasing η until about 0.7. Therefore, although the ground-

FIG. 8. (a) Increasing η in the conduction band at ν = 1 + 1/3
leads to a suppression of the FCI for wAB = 90 meV, stabilizing
the CDW according to (c) up until η ' 0.7. The data in (b) and (d) at
wAB = 110 meV qualitatively replicate the situation of Fig. 7(b,d),
albeit the CDW order is slightly more stable. The used cluster is
27A.
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FIG. 9. Evidence for an M-WC at ν = 1/4 (a)–(c) and a C6-WC at ν = 1/7 (d)–(f) for wAB = 110 meV. Although the signatures are less
pronounced than for ν = 1/3, they are clearly visible in (b) and (e). The finite-size data in (c) and (f) suggest the order will prevail in the TDL.
The displayed discretizations in (b) and (e) are 36 and 49 respectively. For more details on the used clusters, refer to Tab. I.

state for pure interactions appears to be an FCI, it is quickly
suppressed near η = 0.1, which corresponds to ε∗ ' 0.3, and
the CDW stabilizes throughout an interval η ∈ (0.1, 0.7]. In-
tuition is gained by realizing that the only crucial qualitative
modification to the valence band situation is an essentially
flipped single-particle dispersion, which favors electrons at
the MBZ boundary instead of the center. It thus reinforces
the effect of the IHD on the orbital occupation and no FCI
sweet spot can occur as the electrons are driven away from
the Berry curvature at Γ more vigorously.

Finally, we elaborate on the ν = 2/3 (1 + 2/3) filling of
the valence (conduction) band in the developed framework of
the interplay between kinetic energy, Berry curvature and in-
duced hole dispersion. In order to keep this manuscript con-
densed, we do not display separate results for these configu-
rations. We find that the situation is qualitatively very similar
to the filling of ν = 1/3, albeit the FCI in the valence band
at wAB = 90 meV features a larger excitation gap at η = 0,
it is again stabilized by the kinetic energy compared to the
CDW. The conduction band results suggest the onset of a tran-
sition from the FCI towards the CDW order upon increasing
the strength of the kinetic energy. However no clear separa-
tion as in Fig. 8(a) is present in the limited data for this con-
figuration. Up to a reduction of the robustness, we find clear
evidence for CDW order in both bands at wAB = 110 meV.
An increase of η again gradually closes the excitation gap un-
til it vanishes near η = 0.7. Nearly all of the observed features
in the ν = 2/3 data are explainable akin to the situation at 1/3
(1 + 1/3) filling. Where for low η, electrons were almost ex-
clusively located at the border of the MBZ, by the fermionic
exclusion principle now twice as much weight has to be ac-
commodated. This leads to an initially more stable FCI and a
weakened CDW because more of the overall Berry curvature

is experienced by the collective electron wave function. Con-
sequently, the CDW order is destroyed faster but the general
dependence on η is smoothed because a lower fraction of the
total weight of the wave function can be redistributed into a
specific region of the MBZ.

D. Evidence for charge order at lower filling

Motivated by our findings of robust CDW order at ν = 1/3,
we analyze the possibility of states with even larger interac-
tion induced unit cells. Fig. 5 visualizes the next larger four-
and sevenfold extensions of the moiré unit cell, correspond-
ing to band fillings of ν = 1/4 and ν = 1/7 respectively. The
pattern at ν = 1/4 translates exactly along the doubled moiré
lattice vectors, which would imply a charge order vector of
q∗ = Mi, where the index i denotes the possibility of three
inequivalent M points in the MBZ. We thus dub this order
the M-WC. The WC at ν = 1/7 extends even further, such
that seven individual moiré sites are contained within the WC
unit cell of Fig. 5. A peculiarity here are the two possible, in-
equivalent realizations of this spatial modulation on the trian-
gular lattice, which are related by an out of planeC2 operation
along a moiré lattice vector. Because the real-space transla-
tion vector of the order is even larger in magnitude than for
ν = 1/3 or ν = 1/4, the corresponding order momenta have
to be located inside the MBZ. We would expect the charge
order parameter S(q) to develop substantial peaks at six mo-
menta q∗ for each realization of the WC pattern. On clusters
with C6 symmetry, only one pattern may be realized while a
D6 symmetric cluster supports superpositions of both WC ori-
entations, which makes a total of 12 potential order momenta
and a 14-fold ground-state degeneracy instead of the expected
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FIG. 10. Many-body spectrum at ν = 2/5 for (a) wAB = 90 meV and (b) wAB = 110 meV. (c,d) The charge structure factor for both band
parameters at ν = 2/5 as well as (e) spectral flow of the wAB = 90 meV ground-states, consistent with an FCI. In (e) η = 0.5 is used for
clearer separation of the ground-state manifold. Symbols have been omitted for clarity. The used cluster is 25.

sevenfold. The order momenta and ground-state orbitals then
fall into two classes, where within each the nonzero orbital
and order momenta are related by a C6 operation. This type
of WC is henceforth referred to as the C6-WC. Because we
arrive at qualitatively the same results for both considered val-
ues of wAB , we discuss only the more pronounced situation
at wAB = 110 meV. In App. A, the many-body spectra for
both hopping amplitudes and fillings are displayed in Fig. 17,
Fig. 18(a) and Fig. 18(b).

We now take a look at the data presented in Fig. 9. Starting
with the filling ν = 1/4, a slight energetic advantage appears
to be present in Fig. 9(a) for clusters that realize all three in-
equivalent M points rather than only one. In addition to the
geometric ground-state energy signature, the momentum sep-
aration of its degenerate ground-state total momenta is exactly
given by the momenta Mi. In any case, a more reliable hall-
mark of the M-WC is found in Fig. 9(b), where clear, distinc-
tive Bragg peaks in the charge structure factor are present for
all three order momenta Mi. The finite-size extrapolation in
Fig. 9(c) assures the prevalence of the M-WC in the TDL.

Considering the smaller filling of ν = 1/7, we focus on the
geometric property of C6 rotational symmetry. Figure 9(d)
highlights the lowered energy of larger clusters that are at least
C6 symmetric. On such lattices, the momentum-space spec-
trum shown in App. B in Fig. 18(a) or Fig. 18(b) displays a 14-
or sevenfold ground-state degeneracy of orbitals separated by
the six WC momenta of each C6-WC class. The structure fac-
tor in Fig. 9(e) again exhibits the pronounced pattern of a C6-
WC, albeit the peak values of the two WC orientations on the
cluster 49 are slightly different in magnitude. This reflects the
lack of a microscopic C2 symmetry due to the hBN substrate,
consistent with the minor energetic splitting of the ground-
states depicted in the inset of Fig. 18(a). Finally, we average
the order parameters at all q∗ realizations to account for the
splitting into two groups of peaks on the D6 symmetric grid
and perform a finite-size extrapolation. Although the small
number of data points demands the final value of the regres-
sion to be taken with a grain of salt, the remnant normalized

C6-WC structure factor in the TDL is of the same order as for
the M-WC and the K-CDW.

E. Second hierarchy FCI at ν = 2/5

With regard to valence band fillings above ν = 1/3, a po-
tentially interesting filling fraction to study in more detail
is ν = 2/5 as it is not only a candidate for the realization
of a hierarchy FCI state [40, 62] but was also found to ex-
hibit insulating behavior in related TMD moiré heterostruc-
tures [26]. A first look at the low-energy spectra, presented
in Fig. 10(a,b), reveals manifest differences between the two
considered hopping parameter values. While the five ground-
states at wAB = 90 meV agree with the ν = 2/5 FCI heuris-
tics, the distribution of eigenvalues atwAB = 110 meV is less
obvious in its interpretation. The density correlation measure-
ments of Fig. 10(c,d) suggest that the charge order tendency
is once more increasingly pronounced at wAB = 110 meV as
opposed to wAB = 90 meV, although the sharpness of the
peaks in S(q) is significantly reduced compared to the re-
sults at ν = 1/3. Making use of the understanding acquired
in Sec. IV B, we can further probe the nature of the ground-
state via the introduction of the valence band dispersion. In
accordance with preceding findings, we observe that the po-
tential FCI ground-state manifold is stabilized by Hkin via an
increase of the excitation gap to ground-state splitting ratio
until η ' 0.5, whereas the spectrum at wAB = 110 meV col-
lapses monotonically (not shown). We use the optimal convex
combination for the FCI to perform the insertion of magnetic
flux quanta in Fig. 10(e) and find that the ground-states ex-
hibit the required spectral flow until Φ1/2π = 5. On the other
hand, if we flip the single-particle dispersion and thus mimic
the situation in the conduction band, atwAB = 110 meV a se-
ries of 15 states separates from energetically higher states until
η ' 0.7. This profit of Berry curvature avoidance is consistent
with a tendency for charge order and what is more, the de-
veloping 15-fold degeneracy matches the expected degree for
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FIG. 11. (a) Many-body spectrum at ν = 1/2 of the cluster 36 with ground-state orbitals marked in the inset MBZ. The quasi-sixfold
degenerate ground-state manifold of (a) at wAB = 90 meV is stabilized by the single-particle dispersion in (b), as indicated by the increased
gap to ground-state splitting ratio ∆E5,6/∆E0,5. The ground-states at η = 0 are marked in violet, red and blue while the next higher set of
states is green, yellow and orange. (c–f) The measurement of S(q) again signals an increased charge order tendency at wAB = 110 meV,
although no universal order momentum could be identified and the peaks are less pronounced than for ν ≤ 1/3.

the charge pattern proposed in Ref. 26 to explain the ν = 2/5
insulating state. Nevertheless, the precise real-space pattern
could not be confirmed within the scope of this work, not least
due to the lack of a numerically accessible larger symmetric
cluster that supports the suggested pattern. Simulations on
less symmetric discretizations with Nk = 30, 35, 40 could
not be found to clarify the situation atwAB = 110 meV, while
they did affirm the prevalence of the FCI at wAB = 90 meV.
We also analyzed the situation at ν = 1/5 towards the pos-
sibility of FQH-like order, however, despite some promising
signatures in the location and degeneracy of ground-state or-
bitals, the evidence did not sustain across multiple cluster
sizes.

F. Numerical results for half filling

Finally, we present results at half filling ν = 1/2. This is
of particular interest in the FQH context since the investi-
gation of a spin-polarized half filled Landau levels has pro-
duced a number of exciting theoretical proposals, such as the
composite fermion Fermi sea [63], or the Moore-Read FQH
state which hosts non-abelian Ising anyons [64], or variants
of charge ordered phases [32]. Let us note, that here our nu-
merical results turn out to be more ambiguous than the pre-
viously discussed fillings and the conclusive identification of
the ground-state nature needs to be left to future work.

The most intriguing signatures in our data are the imminent
double-degeneracies of three momentum orbitals on clusters
36 and 28A at wAB = 90 meV in Fig. 11(a) as well as Fig. 15
in App. A, which are reminiscent of the sixfold degenerate
ν = 1/2 Pfaffian state [65]. Similar to the FCI, such a FQH-
like state intimately relies on the Chern character of the band
in order to facilitate the formation of what is understood to be
pairs of composite fermions [66]. We attempted an analysis
of the Pfaffian orbital heuristics demanding two particles in

four consecutive orbitals [39, 67–71], but we obtained incon-
clusive results. While the ground-state COM orbitals on the
cluster 28A at wAB = 90 meV are consistent with the pat-
terns "1010" and "0101" being realized in both momentum-
loop directions, the same does not apply on 36. The observed
cross-cluster variability of spectral features may be related to
the differences in their topological extent, which was found to
have a profound impact on the ground-state splitting of FCIs
in Ref. 40 and might be the reason why certain orbital patterns
are a priori suppressed. Also, the pure two-body nature of the
interaction may be insufficient to stabilize a Pfaffian phase in
this model.

Concerning the possibility a Fermi-liquid-like state driven

FIG. 12. Ground-state orbital occupation of the clusters 36 and 28A
at ν = 1/2. Similar to Fig. 6, wAB = 90 meV leads to a more uni-
form occupation across the whole MBZ.
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by the IHD, an analysis of the generated Fermi surface yields a
threefold degeneracy for both clusters 28A and 36, with COM
orbitals at the M points, except for 36 at wAB = 90 meV,
where they are located slightly off the border of the MBZ.
However, apart from the (partial) lack of agreement with the
ground-state COM orbitals calculated by ED, the relatively
miniscule energetic advantage of these configurations in the
purely IHD-driven picture in conjunction with the absence
of a clear Fermi surface in the orbital occupation n(k) over
−Eh(k) at this filling, discussed in Ref. 18, suggests more in-
volved interaction effects beyond mere energetic preferences
of the induced single-hole dispersion. The structure factor in
Fig. 11(c–f) as well as the orbital occupations presented in
Fig. 12 reveal comparable features to the ν = 1/3 case. The
distribution of n(k) is shifted towards the border of the MBZ,
where the situation at 90 meV is once more smoother than
at 110 meV. Similarly, signatures in S(q) signal an increased
charge order tendency for 110 meV while such indications are
suppressed at 90 meV. Both of these observables were mea-
sured for the energetically lower and the higher lying state at
the ground-state COM momenta. The results coincide quali-
tatively and quantitatively up to order O(10−2). Although we
find peaks in the structure factors at or in proximity to the M
and K points for multiple clusters, the high degree of variabil-
ity for this filling prohibits a stable finite-size extrapolation.

Similar to Sec. IV E, we once more make use of the ac-
quired understanding that a finite valence band dispersion
supports effects from the inhomogeneous Berry curvature
in order to investigate the nature of the sixfold degener-
acy at wAB = 90 meV and contrast it with the behavior at
wAB = 110 meV. According to the top panel of Fig. 11(b),
the effect of Hkin at 90 meV is not as apparent as for ν = 1/3.
Although the ground-state splitting (∆E0,5) decreases until
η = 0.3–0.5, the gap to the first excited state (∆E5,6) also de-
creases. By comparing the two quantities, the bottom panel
of Fig. 11(b) demonstrates a substantial improvement of the
excitation gap on the energy scale of the ground-state man-
ifold. This observation is corroborated by Fig. 13, where
the quality of the ground-state manifold is once more en-

FIG. 13. Introduction of a finite single-particle dispersion on the
cluster 28A at ν = 1/2. The lowest two states at each of the M
points are marked in violet, red and blue, while the energetically
minimal one at Γ is orange.

hanced at wAB = 90 meV up to η = 0.5, while the order at
wAB = 110 meV is disfavored by the kinetic terms of the
Hamiltonian. What is more, Fig. 13(b) at η = 0.7 sug-
gests the realization of a situation akin to wAB = 90 meV for
wAB = 110 meV, where the three M orbitals become almost
doubly-degenerate.

The fact that a similar stabilization procedure to the 1/3-
and 2/5-FCI applies for this configuration, hints at the quan-
tum Hall-like nature of the phase at wAB = 90 meV. In ad-
dition, the appearance of such signatures at wAB = 110 meV
with an increased valence band dispersion is compatible with
the pronounced peak of the Berry curvature at Γ for this hop-
ping parameter. At the same time, the stabilization with η
provides further evidence against a Fermi-liquid driven by the
IHD, since the valence Hkin acts opposite to the preferences
of −Eh(k).

At a filling fraction of 1/2, another well known contender
for the ground-state phase in a Landau level setting is the com-
posite fermion liquid [63, 72]. Since this is a metallic state,
its Fermi surface may be responsible for the variable degen-
eracy of the ground-states on different clusters and, addition-
ally, it may also profit from an increased importance of the
Chern character of the band by altering η. Nevertheless, the
impact of broken time-reversal and particle-hole symmetries
in this model remain to be understood prior to a discussion
on a more rigorous level. To sum up, although the designa-
tion of definitive ground-state orders for half filling would be
too speculative based on the available data, our results contain
crucial indications of the phases’ nature.

V. DRAFTING OF A TENTATIVE PHASE DIAGRAM

The abundance of data presented throughout Sec. IV calls
for a more condensed graphical representation of the conclu-
sive findings. Furthermore, the robustness of the different
charge order patterns against a density deviation from their
nominal filling has not been explored yet. In order to ad-
dress both of these issues, we plot the structure factor ratio
R = S(q∗)/[S̄(q∗ + δq)Nk] normalized to the system size
for multiple clusters at fillings ranging 2 ≤ Ne ≤ Nk/2 and
overlay it with the unambiguously identified correlated phases
in Fig. 14. Here S̄(q∗ + δq) denotes the average contribution
of momenta closest to q∗, which are not related to q∗ by a C6

symmetry operation. In order to counteract band-projection
artifacts and for added robustness in degenerate situations, we
average all C6 related contributions prior to the computation
ofR. AsRmeasures the sharpness of the peak in the structure
factor, it is related to the correlation length of the charge den-
sity in real-space. Large R suggest pronounced long-range
order, whereas small values of R argue against the presence
of a distinct real-space order pattern. We choose to restrict to
the pure interaction case of η = 0 in order to avoid any bias
on the charge order signatures stemming from the effects dis-
cussed in Sec. IV B and to keep the results applicable to the
conduction band. Comparing Fig. 14(a) with Fig. 14(b), we
can immediately tell that the two parameter values appear to
result in similar physics at low fillings ν . 1/4, while they
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FIG. 14. Structure factor sharpness R and identified regions of cor-
related phases over the scanned filling range ν for both interlayer
hopping amplitudes. The appearance of significant signals only at
the commensurate fillings ν = 1/12, 1/9, 1/7, 1/4 suggests WC-
type order (green) for both wAB , whereas the extended region near
ν = 1/3 supports the formation of a more robust K-CDW (blue) at
wAB = 110 meV. Evidence for the FCI (red) at wAB = 90 meV
was found for ν = 1/3 as well as ν = 2/5. Data points below
R = 0.25 are marked in grey. Different symbols represent data
from specific clusters. More details on the used clusters is found in
Tab. I.

differ substantially for a larger number of electrons per or-
bital ν & 1/3. The series of WC-like charge order contin-
ues to even smaller fillings of ν = 1/9 and ν = 1/12, with
appropriate spectral features but also substantial peaks in R.
Similar to the ones at ν = 1/4, 1/7, the abrupt reduction of
their respective charge density correlation signature indicates
that these charge orders manifest only at their corresponding
commensurate filling fraction - highlighting their crystalline
character. On the other hand, the K-CDW near ν ' 1/3 at
wAB = 110 meV appears to be robust against the introduction
or removal of a few additional electrons, making it the pre-
ferred order tendency across a whole range of fillings, featur-
ing true CDW character. Despite the composition of data from
multiple clusters with different prime factorizations, the lack
of pronounced charge order peaks slightly off the commensu-
rate fillings ν = 1/4, 1/7, 1/9, 1/12 may also be rooted in
the relatively coarse resolution of Fig. 14 or the chosen metric
R and a more CDW-like character may emerge in larger clus-
ters. In addition to the symmetry breaking WC phases at low
electron densities, the wAB = 90 meV system also features
topological FCI states at fillings ν = 1/3 as well as ν = 2/5.
The absence of such states at ν . 1/4, e.g. at ν = 1/7, 1/9,
affirms the intuition gathered throughout Sec. IV B, where
the Coulomb interaction structure is found to generally pre-

fer the arrangement of electrons at the border of the MBZ. At
small fillings the electrons hence almost completely avoid the
Berry curvature, rendering the situation qualitatively identical
to wAB = 110 meV. Concerning the (partially) inconclusive
filling fractions of ν = 2/5 and ν = 1/2, Fig. 14 attenuates
the role of charge order in comparison to other, more pro-
nounced situations.

A comparison of Fig. 14(b) with very recent experimen-
tal results for the TMD based moiré system in Ref. 26 sug-
gests remarkable similarities with the TBLG/hBN structure
discussed here. At wAB = 110 meV, where the Chern char-
acter of the TBLG/hBN flat band is found to be subordinate,
the experimental findings and proposed real-space order pat-
terns at ν = 1/7, 1/4 and ν = 1/3 coincide with our theoret-
ical predictions.

VI. CONCLUSION

We performed an extensive exact diagonalization study of
the single-band-projected TBLG/hBN many-body model at
fractional fillings in the momentum-space basis. For a band
filling of ν = 1/3, we showed that the screened Coulomb in-
teraction between electrons enables the formation of both a
topological FCI but also a geometry sensitive CDW state. For
wAB = 90 meV and upon neglecting the single-particle dis-
persion, we agree with Ref. 18 and Ref. 19 on the FCI na-
ture of the ground-state in the valence and conduction bands.
However, as the interlayer hopping amplitude is increased to
110 meV, we obtained solid evidence for a CDW with Dirac
point order momentum that spontaneously breaks moiré trans-
lational symmetry and triples the unit cell. Signatures in the
spectra and the structure factor point to the competition of
these correlated insulating phases at wAB = 90 meV, while
wAB = 110 meV clearly favors the K-CDW, even for a frac-
tion of the original screening length. This competition is fur-
ther highlighted upon including the realistic kinetic energy
contribution. While the opposing energetic preferences of
the single-particle and the interaction induced hole disper-
sion in the valence band at wAB = 90 meV lead to an FCI
sweet spot where the electron density is smoothed across the
MBZ, the flipped dispersion of the conduction band instead
reinforces the tendency to occupy orbitals at the boundary
and thus suppresses the FCI state in favor of the CDW. At
wAB = 110 meV, the kinetic energy gradually penalizes the
CDW state energetically until Hkin becomes the dominant en-
ergy scale for the ground-state. The behavior at the comple-
mentary ν = 2/3 filling can be well explained by the situation
at filling 1/3 with twice the amount of electrons to accom-
modate in the MBZ. Further investigations of possible charge
order at the next smaller commensurate fillings ν = 1/4, 1/7,
corresponding to a four- or sevenfold extension of the unit
cell, lead to the conclusion that such a symmetry breaking
correlated insulator may quite generically form in this model.
Apart from the evidence for the formation of WCs, we corrob-
orate the analogy to Landau levels beyond the ν = 1/3 state
by demonstrating convincing signatures of a ν = 2/5-FCI at
wAB = 90 meV. The situation at half filling turned out to
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be much more involved and could not be resolved unambigu-
ously on the available cluster sizes. Nevertheless, we found
qualitative similarities in the observables compared to other
filling fractions, which together might contribute to a more
comprehensive understanding in the future. The wealth of
conclusive results is finally condensed and put into perspec-
tive in a tentative phase diagram for the filling dependence of
order tendencies in TBLG/hBN, which, among other things
reveals the K-CDW character near ν = 1/3, while charge
order throughout the commensurate density series ν = 1/4,
1/7, 1/9, 1/12 is of WC-type, i.e. locked to the lattice at the
corresponding commensurate densities.

We furthermore developed intuition on what microscopic
mechanism drives the (de-) stabilization of the two phases:
The interplay of the induced hole dispersion and kinetic en-
ergy, which essentially determine the electron density distri-
bution, with the effective magnetic field due to the Berry cur-
vature appears to be the fundamental reason the system favors
one correlated phase over the other for very similar band pa-
rameters.

Our results thus promote the translational symmetry break-
ing charge-density-wave to a probable order tendency for the
real moiré system. Our findings highlight the system’s sen-
sitivity to microscopic model parameters even in the ideal-
ized situation of our treatment. This is in accordance with
the issue of strong sample-to-sample dependence in experi-
ments, where twist angle homogeneity, strain or pressure can
directly affect the degree of interlayer orbital overlap. The re-
cent evidence for K- and (stripe) M-CDWs in Ref. 22 for un-
aligned TBLG, at an electron filling roughly corresponding to
ν = 1/4 in our flavor-polarized model, affirms the relevance
of our results that charge order represent a general order ten-
dency across multiple filling fractions to the physics of pure
TBLG. The implications of our work are further extended by
the agreement with recent experimental findings for a TMD
based heterostructure in Ref. 26, suggesting a remarkable re-
semblance of these moiré systems for certain parameter re-
gions.
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Appendix A: Additional many-body spectra

This section provides an overview of exemplary many-body
spectra encountered in the ED study but not included in the
main text. The identified ground-state manifolds are shaded

in the color of the respective symbols. The displayed re-
sults include further quasi double-degeneracies at half filling
in Fig. 15 on the cluster 28A as well as the evidence for stable
K-CDW order at ν = 1/3 with the shorter screening length
of λ = LM/6 in Fig. 16. The degeneracy and orbital sepa-
ration in Fig. 17 clearly indicate an M-WC for both consid-
ered values of wAB . Figure 18(a) highlights the possibility
for two classes of a C6-WC on clusters with D6 symmetry
like 49, leading to an approximate 14-fold ground-state de-
generacy with a minor energetic splitting due to the substrate
induced breaking of C2. On the other hand, C6 symmetric
clusters similar to 28A in Fig. 18(b) can realize only a single
variant of the translation symmetry breaking WC. The mo-
menta of a given cluster are addressed by integers k1, k2, such
that k = k1gk,1 + k2gk,2. The number of steps along gk,2

until the origin is reencountered is denoted by N2 and is re-
lated to the topological length of Ref. 40. For the displayed
clusters 25, 36, 49, 28A we obtain N2 = 5, 6, 7, 14.

FIG. 15. Spectrum and location of ground-state orbitals for the clus-
ter 28A at ν = 1/2 filling.

FIG. 16. Spectrum and location of ground-state orbitals for the clus-
ter 36 at ν = 1/3 filling with λ = LM/6.
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FIG. 17. Spectrum and location of ground-state orbitals for the clus-
ter 36 at ν = 1/4 filling.

q

FIG. 18. Spectrum and location of ground-state orbitals for the clus-
ter (a) 49 and (b) 28A at ν = 1/7 filling. The inset in (a) highlights
the substrate induced splitting of the ground-state manifold into two
C6 related sets of orbitals.

Appendix B: Derivation of the band-projected structure factor

The structure factor is generally defined as the Fourier
transform of the static density-density correlation function

χ0(ri, rj) = 〈ρ(ri)ρ(rj)〉

=
1

Nk

∑
q̃

eiq̃(rj−ri)S(q̃) , (B1)

with S(q̃) = 1
Nk
〈ρ(q̃)ρ(−q̃)〉 for general fermionic

momentum-space density operators ρ(q̃) =
∑

k̃ f
†
k̃
f
k̃+q̃

.

In our notation, the momenta k̃ and q̃ are located inside
the Brillouin zone of ordinary graphene and thus have
to be folded back onto k,q ∈ MBZ via k̃ = k + G and
q̃ = q + G. Since we are interested in the dominant corre-
lations on the moiré scale, we restrict to the measurement of
S(q). This means we consider only momentum transfers q
in the original MBZ and effectively drop the sum over G,
which would otherwise be introduced by the transformation
to the band basis [see Eq. (2)]. In the continuum model, the
graphene second quantized operators are indexed by valley
τ , sublattice X and momentum k̃, which in the moiré band
basis transforms to τ , band n and k as

fτ,X,k+G =
∑
n

uτ,n;G,X(k)cτ,n,k . (B2)

The eigenvector-components uτ,n;G,X(k) are obtained from
solving the single-particle eigenproblem and introduce addi-
tional form factors into the expression for the structure factor.
Here it should be noted that the truncation to G = 0 may give
rise to slight quantitative discrepancies in the measurement,
mostly for large q at the border of the MBZ, depending on
what contributions at the boundary of the MBZ are taken into
account. Nevertheless, these are only minor effects and what
is more, the inclusion of G 6= 0 contributions was found to
reproduce the qualitative aspects of the results. As we con-
sider only spinless fermions of a single band and valley and
thus neglect band indices in Eq. (B3) from line 2 onward, the
transformation reads

S(q) =
1

Nk

〈 ∑
X1,k̃1

f†
X1,k̃1

f
X1,k̃1+q

∑
X2,k̃2

f†
X2,k̃2

f
X2,k̃2−q

〉

=
1

Nk

∑
k1,k2

Λq
k1

Λ−qk2

〈
c†k1

ck1+qc
†
k2
ck2−q

〉
=

1

Nk

∑
k1,k2

Λq
k1

Λ−qk2

[
δk1+q,k2

〈
c†k1

ck2−q

〉
−

〈
c†k1

c†k2
ck1+qck2−q

〉]
=

1

Nk

[∑
k

|Λq
k|

2
n(k)+

∑
k1,k2

Λq
k1

Λ−qk2

〈
c†k1

c†k2
ck2−qck1+q

〉 ,
(B3)

with Λq
k again denoting the form factors introduced in Eq. (2).

Appendix C: Used cluster geometries

Table I gives an overview of all the clusters used for per-
forming ED. Each one has a distinct ID, which it is referred
to by in the main text. The geometric properties of aspect ra-
tio, number of realizations of high symmetry momenta and
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TABLE I. Overview of the cluster geometries used in this work. De-
pending on their realizations of high symmetry momenta K±, M
and point symmetry group they may support different types of charge
order.

ID Nk
Torus

[[a, b], [c, d]]
Aspect
ratio

Number of Point
groupK± M

12A 12 [[2, 2], [2,−4]] 1.00 1 3 D6

12B 12 [[3, 0], [0, 4]] 1.33 0 1 C2

15A 15 [[1, 3], [4,−3]] 1.00 0 0 D2

15B 15 [[3, 0], [0, 5]] 1.67 0 0 C2

16 16 [[4, 0], [0, 4]] 1.00 0 3 D6

18 18 [[3, 0], [0, 6]] 2.00 1 1 D2

20A 20 [[2, 2], [4,−6]] 1.53 0 3 D2

20B 20 [[2,−4], [3, 4]] 1.76 0 1 D2

21A 21 [[1, 4], [5,−1]] 1.00 1 0 C6

21B 21 [[3, 0], [0, 7]] 2.33 0 0 C2

24A 24 [[1, 4], [5,−4]] 1.00 1 1 D2

24B 24 [[2, 2], [6,−6]] 1.73 1 3 D2

24C 24 [[4, 0], [0, 6]] 1.50 0 3 C2

25 25 [[5, 0], [0, 5]] 1.00 0 0 D6

27A 27 [[3, 3], [3,−6]] 1.00 1 0 D6

27B 27 [[3, 0], [0, 9]] 3.00 1 0 D2

28A 28 [[2, 4], [6,−2]] 1.00 0 3 C6

28B 28 [[4, 0], [0, 7]] 1.75 0 0 C2

30A 30 [[3, 3], [5,−5]] 1.04 0 1 D2

30B 30 [[5, 0], [0, 6]] 1.20 0 1 C2

32 32 [[2, 4], [6,−4]] 1.00 0 3 D2

35A 35 [[1, 5], [5,−10]] 1.56 0 0 D2

35B 35 [[5, 0], [0, 7]] 1.40 0 0 C2

36 36 [[6, 0], [0, 6]] 1.00 1 3 D6

39 39 [[2,−7], [5, 2]] 1.00 1 0 C6

40A 40 [[3,−7], [4, 4]] 1.14 0 1 D2

40B 40 [[2, 4], [8,−4]] 1.31 0 3 C2

42A 42 [[3,−6], [4, 6]] 1.68 0 1 D2

42B 42 [[6, 0], [0, 7]] 1.17 0 0 C2

49 49 [[7, 0], [0, 7]] 1.00 0 0 D6

56 56 [[7, 0], [0, 8]] 1.14 0 1 C2

the point group are the basis for choosing a viable cluster
in the first place but also guide the interpretation of numer-
ical results. The torus spans the real-space simulation cell
like T1 = aLM

1 + bLM
2 and T2 = cLM

1 + dLM
2 , where LM

i are
the moiré lattice vectors. The momentum-space discretization
gk,i may then be derived as usual by finding the respective
reciprocal vectors.
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