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We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle
twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormaliza-
tion group calculations, we find that small strain values (ε ∼ 0.1− 0.2%) drive a zero-temperature
phase transition between the symmetry-broken “Kramers intervalley-coherent” insulator and a ne-
matic semi-metal. The critical strain lies within the range of experimentally observed strain values,
and we therefore predict that strain is at least partly responsible for the sample-dependent experi-
mental observations.

Experiments on different twisted bilayer graphene
(TBG) devices, all close to the first magic angle, have
produced a broad variety of different low-temperature
phase diagrams. For example, at the charge neutrality
point (CNP), both semi-metallic [1–6] and insulating [7–
11] states have been observed. The insulating devices
are thought to be divided into two groups. In the first
group [7, 8], one of the graphene sheets is almost per-
fectly aligned with the hexagonal Boron-Nitride (hBN)
substrate, which breaks the two-fold rotation symmetry
and therefore generates mass terms for the Dirac cones
[12–17] in the single-particle continuum model of TBG
[18–20]. In the second group of devices [9, 11], those with-
out substrate alignment, the Coulomb interaction is be-
lieved to be responsible for the insulating behavior. Both
analytical and numerical studies [21, 22] of pristine TBG
at the CNP indeed find an insulating ground state, due
to spontaneous “Kramers inter-valley coherent” (KIVC)
order [22]. The KIVC state is thus a promising candidate
for the CNP insulators in Ref. [9], as well as the |ν| = 2
insulators in general, but cannot explain the semimet-
als observed in Refs. [1, 3–6]. Moreover, self-consistent
Hartree-Fock (SCHF) predicts a KIVC gap of ∼ 20 meV
[22], while experiments measure a global transport gap
of only ∼ 1 meV [9].

An important question is thus: what weakens the insu-
lators in some experimental devices, and destroys them
in others? Twist-angle disorder is expected to be at
least partly responsible for this [23–26]. Another possible
culprit is the presence of strain in the graphene sheets.
Uniaxial heterostrain is characterized by a parameter ε,
which scanning tunneling spectroscopy experiments have
found to be in the range ε = 0.1 − 0.7% [27–29]. Al-
though these values seem small at face value, strain con-
tributes to the Hamiltonian as a perturbation of order
ε~vF /a, which is ∼ 20 meV for ε = 0.5% — precisely
the energy scale at issue. Further evidence for the im-
portance of strain comes from symmetry considerations.
In the absence of strain, models at even integer filling
show that although the ground state has KIVC order,

there is a close competitor whose energy is only slightly
higher: a nematic semi-metal [22, 28, 30–32]. As eluci-
dated in Ref. [30], the semi-metal has two Dirac points
close to, but not at, the mini-BZ Γ point, spontaneously
breaking the three-fold rotational symmetry C3z. The
shear part of uniaxial strain breaks the C3z symmetry,
and thus one expects on general grounds that strain will
lower the energy of the nematic semi-metal relative to
the rotationally invariant insulating states. However, de-
spite this expectation, Refs. [22, 30] found that if strain is
modeled using the phenomenological method of Ref. [33],
it cannot stabilize the semi-metal.

This work provides a careful treatment of the effects of
strain on the correlated insulators using a more realistic
model for strained TBG [34]. We find that physical strain
values can drive a zero-temperature phase transition from
the KIVC insulator to a semi-metal at even integer fill-
ings. Our results at charge neutrality are obtained using
SCHF, and our results at ν = −2 (ν is the number of elec-
trons per moiré unit cell relative to charge neutrality) us-
ing both density-matrix renormalization group (DMRG)
and SCHF. Our application of DMRG to TBG is a tech-
nical advance in its own right, as it is the first DMRG
study to keep both valley degrees of freedom, which is
essential for correctly identifying the even-integer insu-
lators. Similar to earlier works on single-valley models
[31, 32], we find that DMRG and SCHF agree remark-
ably well. In particular, DMRG confirms the presence of
KIVC order at ν = −2 in the absence of strain.

Continuum model with strain – To add uniaxial strain
to the Bistritzer-MacDonald (BM) continuum Hamilto-
nian [18–20], we follow Ref. [34]. Uniaxial strain is char-
acterized by the following symmetric matrix:

S =

(
εxx εxy
εxy εyy

)
= R(ϕ)T

(
ε
−νP ε

)
R(ϕ) , (1)

where νP ≈ 0.16 is the Poisson ratio of graphene. The
angle ϕ corresponds to the uniaxial strain direction, and
R(ϕ) is a 2 × 2 rotation matrix. Throughout this work

ar
X

iv
:2

01
2.

09
88

5v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

7 
D

ec
 2

02
0



2

we take ϕ = 0, but we have verified that our conclusions
do not depend on the choice of ϕ. The strain magnitude
is determined by the dimensionless parameter ε, which
in the devices prepared for STM study has values in the
range ε = 0.1−0.7% [27–29, 35]. Under the combined ef-
fect of rotation and strain, the coordinates of the carbon
atoms in the two graphene layers ` = ± of TBG trans-
form as R`,i →

[
R(`θ/2)− `

2S
]
R`,i =: MT

` R`,i where θ
is the twist angle. The coordinate transformation matrix
MT
` is correct to first order in both θ and ε. Note that

we only consider heterostrain, as it affects the electronic
structure much more strongly than homostrain [36].

The continuum Hamiltonian in the presence of uniaxial
heterostrain for the τ = + valley is given by

Hτ+ =

(
D+ T (r)
T (r)† D−

)
, (2)

with D` the monolayer Dirac Hamiltonians, and T (r) the
inter-layer tunneling (Hτ− is then fully specified by time-
reversal). The Dirac Hamiltonians are given by

D` = −~vF [M`(−i∇ + A`)−K] · σ , (3)

where σ = (σx, σy) are Pauli matrices acting in sub-
lattice space, and K = (4π/3a, 0), with a the graphene
lattice constant, corresponds to location of the τ = +
valley. Strain shifts the locations of the Dirac points

via a ‘vector potential’ A` = − `
2
β
√
3

2a (εxx − εyy,−2εxy)
[37, 38], where β ∼ 3.14 characterizes the dependence of
the tight-binding hopping strength on the bond length.

The inter-layer tunneling term T (r) in Eq. (2) has the
same form as in the original BM model, albeit with dif-
fering intra and inter-sublattice interlayer tunneling am-
plitudes wAA = 83 meV and wAB = 110 meV [39–41]. To
account for non-zero strain ε, the moiré reciprocal lattice
vectors are deformed to gj =

[
M−1+ −M−1−

]
Gj , where

Gj are the reciprocal vectors of undeformed graphene.

As was shown in Ref. [34, 36], uniaxial heterostrain has
three important effects on the BM band spectrum: (i)
while strain preserves C2T symmetry, and hence the sta-
bility of the two mini Dirac points, the three-fold rotation
symmetry is broken and the two Dirac points move away
from the K±-points towards the Γ-point in the mBZ, (ii)
the two Dirac points are no longer degenerate, but are
separated in energy by a few meV (thus creating small
electron and hole pockets at the CNP), and (iii) the band-
width of the ‘narrow’ bands increases significantly – for
ε as small as 0.6%, the bandwidth of the narrow bands is
∼ 50 meV. Below, we investigate the effect of strain on
the interacting phase diagram of TBG.

Hartree-Fock at neutrality – We model interacting
TBG as the BM Hamiltonian plus Coulomb interactions:

H =
∑
k

f†kh(k)fk +
1

2A

∑
q

Vq : ρqρ−q : , (4)
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FIG. 1. Particle-hole gap in the SCHF band spectrum at the
CNP as a function of both twist angle θ and strain ε, for
εr = 6 (left) and εr = 12 (right). The results were obtained
on a 18 × 18 momentum grid, keeping six bands per spin
and valley. The gapped regions have KIVC order, the gapless
regions correspond to a symmetric SM.

where A is the area of the sample, and f†k,s,τ,m creates
an electron with momentum k and spin s in the BM
band m in valley τ . The charge density operators are
given by ρq =

∑
k f
†
kΛq(k)fk+q, where the form fac-

tor matrices [Λq(k)](τ,m),(τ ′,n) = δτ,τ ′〈uτ,m,k|uτ,n,k+q〉
are defined in terms of overlaps between the periodic
part of the Bloch states of the BM Hamiltonian. The
interaction is given by a gate screened Coulomb poten-
tial Vq =

∫
dr eiq·rV (r) = tanh(dsq)[2ε0εrq]

−1. We work
with a gate distance of ds = 25 nm, and we let the di-
electric constant εr vary between 6 and 12. In Eq. (4)
we also project into a subspace where most or all of the
remote BM valence (conduction) bands are completely
filled (empty), and m,n run over only those bands whose
filling is not fixed. The single-particle Hamiltonian h(k)
contains the BM band energies, a HF contribution from
the remote filled bands, and a subtraction term [21, 30].
For more details on the definition of h(k), see Ref. [32].

Without strain, Ref. [22] found that the ground state
of H at ν = −2, 0, 2 has a charge gap and spontaneously
breaks both the valley charge symmetry eiατz , and the
time-reversal symmetry T = τxK, where K denotes com-
plex conjugation. However, the product T ′ = eiπτz/2T
is preserved. Because T ′ = τyK is a (spinless) Kramers
time-reversal, the insulating ground state was dubbed the
Kramers inter-valley coherent (KIVC) state [22].

Fig. 1 shows the HF phase diagram at the CNP as a
function of twist angle and strain magnitude, for both
εr = 6 and εr = 12. Two phases are clearly visible. The
region in Fig. 1 with non-zero charge gap has KIVC order.
The gapless region, on the other hand, corresponds to a
semi-metal (SM) without spontaneous symmetry break-
ing. The HF band structure of the SM has two Dirac
cones close to the Γ-point, and is therefore similar to the
band structure of the strained BM Hamiltonian (for more
details, see [42]). The transition from the KIVC state to
the SM in Fig. 1 occurs at strain values ε ∼ 0.4 − 0.6%
with εr = 6, and at ε ∼ 0.1− 0.2% with εr = 12. These
critical values lie exactly in the range of strain values
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FIG. 2. (a) KIVC order parameter |∆KIVC| :=
1
N

∑
k ||PIVC(k)|| at charge neutrality as a function of ε, ob-

tained with SCHF using θ = 1.05◦, εr = 10 and Nb = 6, 10 or
12 bands per spin and valley. The calculations were done on
a 24× 24 momentum grid. (b) DOS of the SCHF band spec-
trum on a 36 × 36 momentum grid using θ = 1.05◦, εr = 10
and Nb = 6. The edges of the KIVC gap are indicated with
red dots.

observed in STM devices [27–29, 35], from which we con-
clude that strain plays an important role in TBG. From
Fig. 1, we also see that the KIVC state is more robust at
larger θ. Because at ε = 0 the energy difference between
the KIVC state and the SM depends only weakly on θ
[22], we attribute this feature to the fact that the active
bands are less affected by strain at larger θ (in partic-
ular, the Dirac points remain further away from Γ, and
the change in bandwidth is smaller).

In Fig. 2(a) we plot the KIVC order parameter as
a function of ε. The order parameter is defined as
|∆KIVC| := 1

N

∑
k ||PIVC(k)||, where N is the number

of k values and PIVC2 is the intervalley (τ 6= τ ′) part
of the KIVC correlation matrix [P(k)](s,τ,m),(s′,τ ′,n) =

〈f†k,s′,τ ′,nfk,s,τ,m〉. We see that the transition occurs at
ε∗ ∼ 0.19% if we keep Nb = 6 BM bands per spin and val-
ley. By increasing Nb, ε∗ shifts to slightly smaller values,
and converges for Nb = 12. Fig. 2(a) shows a discon-
tinuity in |∆KIVC|, implying that the transition is first
order. However, we also find that close to the transition,
|∆KIVC| decreases by a factor of 20 (using Nb = 12) com-
pared to its value at ε = 0. We therefore cannot exclude
that the weakly first-order behavior is an artifact of HF.

Fig. 2(b) shows the density of states (DOS) obtained
in SCHF for different ε, interpolating between the KIVC
insulator and the SM. The dominant feature for both the
KIVC and SM DOS is a pair of broad peaks separated by
∼ 50 meV. In the KIVC phase, there is a finite window
around the Fermi energy where the DOS is zero, which
decreases with ε and vanishes at the transition. This
is a subtle feature, however, making it hard to sharply
distinguish the SM from the KIVC. A finer probe for the
properties of the SM is the (layer-resolved) local DOS
(LDOS) [42]. In Fig. 3(a)-(b) we plot the LDOS of the
SM at energies E/W = −0.11 and E/W = 0.15, where
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FIG. 3. Normalized LDOS for θ = 1.05◦ and ε = 0.22%.
(a)-(b) LDOS of the self-consistent SM (for εr = 10) at
E/W = −0.11 and E/W = 0.15, where W ∼ 65 meV is
the HF bandwidth. (c)-(d) LDOS of the BM ground state at
E/W0 = −0.11 and E/W0 = 0.15, where W0 ∼ 17 meV is the
BM bandwidth.

W is the HF bandwidth. The LDOS at the AA regions
shows strong C3z breaking. This strong C3z breaking
results from interactions, as it does not show up in the
LDOS of the BM ground state at the same energy ratios
E/W0 = −0.11 and E/W0 = 0.15, where W0 is the BM
bandwidth (see Fig. 3(c)-(d) and [42]). These properties
of the HF LDOS agree with STM experiments [27, 28,
43]. In particular, Ref. [43] observed strong C3z breaking
at the CNP, but not at ν = 4. We calculated the LDOS
at this filling, where the active bands are fully filled, and
indeed found almost no reconstruction of the BM LDOS
by interactions, and as a result no strong C3z breaking.

Finally, strain can be invoked to explain the degenera-
cies of the Landau fan near the CNP [33, 34] of the SM.
At low densities quantum oscillations are governed by
cyclotron orbits around the mini Dirac points, with two
Dirac points for each of the four iso-spins. When mir-
ror symmetry (C2x) ensures that the two Dirac points
are equivalent, the resulting Landau fan will have the
8-fold degeneracy νφ = ±4,±12,±20, · · · , which is ob-
served, for example, far from the magic angle. However,
mirror symmetry is broken by strain: for example, at
ε = 0.22% and εr = 10, we find that the two Dirac
points in the same valley are separated in energy by
∆D ∼ 10 meV. For generic B, this halves the degeneracy,
νφ = 0,±4,±8,±12, · · · , as observed in most magic-angle
experiments [2, 3]. When |ν| & 0.25, the cyclotron orbits
of the two Dirac points merge and form one connected or-
bit with a 2π-Berry phase. Because the resulting Landau
fan νφ = ±4,±8,±12, · · · has the same 4-fold degeneracy
as the ∆D-split Dirac points, the conclusion is the same.
However we note that some devices show a crossover from
a low-B 8-fold degeneracy to a high-B 4-fold degeneracy
(for example, at B ∼ 1T in Ref. [44]). It may be that
in devices where the strain configuration happens to pro-
duce a small ∆D, the mirror-breaking manifests in the
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FIG. 4. DMRG results at ν = −2 (spin-polarized) at θ =
1.05◦ and εr = 10. (a) Scaling collapse of the KIVC correlator
CK(x, ξK) at ε = 0. (b) Transition from KIVC to SM with
strain. KIVC correlation length ξK , average entropy S̄vN ,
the DMRG KIVC correlator ΣC = 10

∑
x CK(x) (scaled for

visibility), and the HF KIVC correlator |∆KIVC| as a function
of ε. (c) Scaling of ξK with bond dimension at ε = 0. DMRG
parameters: Ly = 6, Φy = 0, χ ≈ 2048 for (b), and the
Hamiltonian, Eq. (4), is represented to accuracy better than
0.1 meV. All quantities are defined in the text.

terms which are linear in B.

DMRG at ν = −2 – While SCHF is a mean field ap-
proach, we may further confirm the existence of a strain-
induced transition using unbiased DMRG calculations.
In Ref. [22], it was argued that in the absence of strain,
the ground state of the interacting Hamiltonian H at
fillings ν = ±2 is a spin polarized version of the KIVC
state at neutrality. This claim was further substanti-
ated by Refs. [45–47]. Following the methods devel-
oped in Refs. [31, 32, 48], here we use infinite DMRG
to study H compactified onto a infinitely long cylinder
of circumference Ly moire cells. SCHF finds that the
ground state is perfectly spin polarized for ε . 0.2%, so
we accelerate our DMRG calculations by assuming full
spin polarization of the narrow bands at ν = −2, while
keeping both valleys. [42]. Projecting into the narrow
bands, our computational basis for the four remaining
active bands consists of hybrid Wannier orbitals that are
localized in the x-direction, but have a well-defined mo-
mentum ky = 2πn/Ly.

The ground state of the unstrained model at ν = −2 is
expected to have KIVC order, and thus to spontaneously
break the U(1) valley symmetry. The Hohenberg-
Mermin-Wagner (HMW) theorem, however, forbids such
continuous symmetry breaking on the quasi-1D cylin-
der geometry used by DMRG [49, 50]. Instead, the
KIVC phase will manifest as algebraic long-range order
[51] CK(x) := 〈∆+

K(x)∆−K(0)〉 ∼ x−η(Ly), where ∆±K(x)
are operators at position x which have valley charge ±2
and satisfy T ′−1O±K(x)T ′ = O∓K(x) [42]. The expo-
nent η(Ly) depends on the circumference, and satisfies
η(∞) = 0. An additional complication for identifying
the KIVC phase using DMRG is that at any finite DMRG

bond dimension χ (i.e., numerical accuracy), the ground
state has exponentially decaying correlations. This com-
plication can be overcome by using “finite entanglement
scaling” [52–54] to characterize algebraic order via a scal-
ing collapse as χ → ∞. Denoting the finite-χ induced
correlation length as ξK [Fig. 4(c)], the KIVC correlator
can be written as a general function CK(x, ξK). In the
KIVC phase, we expect this function to satisfy the scaling
relation CK(x, ξK) = ξ−ηK CK(x/ξK , 1), which allows us
to perform a scaling collapse of the data obtained at dif-
ferent χ. In Fig. 4(a), we find an excellent data collapse
for χ ranging between 1024 and 3072, from which we
conclude that DMRG indeed finds a KIVC ground state.
Note that we find a very small exponent η(6) ∼ 0.06 [42],
so there is no regime of algebraic decay clearly visible in
Fig. 4(a).

Fig. 4 (b) shows the effect of adding strain. Both
the correlation length ξK and summed correlator ΣC :=∑
x CK(x) measure the amount of KIVC correlations in

the ground state. They are both order one for small
strain, and decrease monotonically with ε. For ε &
0.07%, however, ξK and ΣC plateau at a small value, in-
dicating that the algebraic KIVC order is destroyed. For
strain values larger than ∼ 0.07%, we find no evidence
for symmetry breaking in the DMRG ground state. In
particular, we have verified that DMRG does not double
the unit cell, which excludes the stripe phase discussed
previously for single-valley models [31, 32]. The absence
of symmetry breaking in DMRG is consistent with HF,
where we find a symmetric SM at large ε [42]. Fig 4(b)
plots the SCHF order parameter |∆KIVC|, which shows
a transition from the KIVC state to the SM at a strain
value ε ∼ 0.1%, close to where the algebraic KIVC order
disappears in DMRG. To confirm that the large strain
phase found with DMRG is the same SM obtained in
SCHF, we compute the averaged single particle entropy
S̄vN := − 1

N

∑
k tr (P(k) lnP(k)). This quantity is zero

iff the DMRG ground state is a Slater determinant. Fig
4(b) shows that S̄vN is negligibly small at ε & 0.07% (at
smaller ε, HMW implies the KIVC state cannot be a sym-
metry breaking Slater determinant in DMRG, so S̄vN is
order unity). It thus follows that (i) SCHF and DMRG
agree closely for all strain, and are essentially identical at
large ε and, (ii) the transition in DMRG is indeed from
the KIVC state to the SM.

Discussion – The results presented in this work show
that strain is likely responsible for the semi-metallic be-
havior and strong C3z breaking observed at the CNP of
most TBG devices (for related discussions of the CNP
physics, see Refs. [55, 56]). C3z breaking has also been
observed in TBG near ν = −2 [4], and was discussed in
various theoretical contexts in Refs. [57–60]. From our
DMRG and SCHF results, we found that TBG couples
strongly to strain both at ν = 0 and ν = −2. Two im-
portant questions that follow from this are (i) whether
the strong coupling to strain persists to ν = −2− δ with
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δ ∼ 0.1 − 0.9 (where nematicity was observed in experi-
ment [4]), and (ii) whether strain is important for super-
conductivity. Our findings also invigorate the question
about the origin of the insulating behavior consistently
observed at ν = −2, as we find that within the model
studied here, strain drives the KIVC - SM transition at
roughly the same ε for both ν = 0 and ν = −2. One pos-
sibility is that band structure effects we have neglected,
such as lattice relaxation [39, 41] or non-local inter-layer
tunneling [41, 61] stabilize the insulators at ν = ±2 at
larger strain values.
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SUPPLEMENTARY MATERIAL FOR ‘STRAIN-INDUCED QUANTUM PHASE TRANSITIONS
IN MAGIC ANGLE GRAPHENE’

Properties of the strained BM model and the self-consistent semi-metal at neutrality

In this appendix, we discuss additional properties of both the non-interacting BM model in the presence of non-zero
strain, and the self-consistent semi-metal obtained in HF at the CNP for sufficiently large ε.

Fig. 5 shows the single-valley BM band spectrum along a cut through the 2D mBZ, using θ = 1.05◦, and both
ε = 0 and ε = 0.3%. At finite strain, the bandwidth of the two active bands is much larger than the bandwidth at
ε = 0. Importantly, for ε = 0.3% there is still a sizable gap between the active bands and the remote bands. This
is especially important for our DMRG simulations, which work with an interacting Hamiltonian projected into the
active bands only.
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FIG. 5. Band spectrum of the single-valley BM model with twist angle θ = 1.05◦ along a cut through the mini-BZ. (a) Original
BM model with ε = 0. (b) Strained BM model with ε = 0.3%.

In Fig. 6(a)-(b), we plot the difference and the average of the two active band energies of the single-valley BM
Hamiltonian in the entire mBZ, using a non-zero strain ε = 0.22%. Note that we have performed a coordinate
transformation in momentum space such that the mBZ is a regular hexagon. From the difference in energies, one can
clearly identify the position of the two Dirac cones, which as mentioned in the main text are in the vicinity of the
Γ-point.

In Fig. 6(c)-(d), we plot the energy difference and average of the two active bands in the mean-field band spectrum
of the self-consistent SM in the τ = + valley at charge neutrality. The self-consistent SM was obtained using a
strain value ε = 0.22%, at which the KIVC order is destroyed and the SM is the lowest-energy state. Similarly to
the non-interacting BM Hamiltonian, the Dirac cones of the self-consistent SM are located near Γ. Away from these
Dirac points, however, the two active bands in the τ = + valley are now separated by an energy difference of roughly
50 meV (using εr = 10), which is larger by a factor of 5 compared to the energy separation in the non-interacting
BM model at the same value of ε.

To quantify how different the BM ground state is from the self-consistent SM at charge neutrality, we plot the
Frobenius norm of P(k) − PBM(k) in Fig. 7. As in the main text, [P(k)](s′,τ ′,m),(s,τ,n) = 〈f†k,s,τ,nfk,s′,τ ′,m〉 is the
correlation matrix of the self-consistent Slater determinant with the lowest energy, which is the SM for the strain value
ε = 0.22% used in Fig. 7. [PBM(k)](s′,τ ′,m),(s,τ,n) = δs,s′δτ,τ ′δm,nΘ(εk,τ,n), with Θ(x) the Heaviside step function,
is the correlation matrix of ground state of the non-interacting BM Hamiltonian at charge neutrality. From Fig. 7,
we see that ||P(k) − PBM(k)|| is equal to ∼ 0.1 almost everywhere in the mBZ, except close to the Γ point, where
it becomes of order one. This shows that the self-consistent SM has significant overlap with the BM ground state in
most of the mBZ already at small strain values.

The discrepancy between the BM ground state and the self-consistent SM in a small region near the Γ point is
responsible for the differences in the LDOS discussed in the main text. Here, we further elaborate on this point. We
define the energy and layer-resolved LDOS as
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FIG. 6. BM and HF band energies in the τ = + valley using θ = 1.05◦ and ε = 0.22%. A coordinate transformation is
performed in momentum space such that even with non-zero strain, the mBZ is a regular hexagon, indicated by the dashed
lines. (a)-(b) Energy difference ∆E and average energy Ē of the two active bands of the BM Hamiltonian. (c)-(d) Energy
difference ∆E and average energy Ē of the two active HF bands of the self-consistent SM. A dielectric constant εr = 10, a
24× 24 momentum grid and Nb = 6 bands per spin and valley were used.
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FIG. 7. Norm of the difference between the correlation matrix P(k) of the self-consistent SM and the correlation matrix
PBM(k) of the ground state of the non-interacting BM Hamiltonian at charge neutrality, using twist angle θ = 1.05◦ and strain
ε = 0.22%. A coordinate transformation is performed in momentum space such that the mBZ is a regular hexagon, indicated
by the dashed lines. The self-consistent SM is obtained using εr = 10 and Nb = 6 bands per spin and valley.

ρ`(E, r) =
1

AmBZ

∑
s,τ,n

∫
d2k δ(E − εk,s,τ,n)

∑
σ=A,B

|ψ`,σk,s,τ,n(r)|2 , (5)

where ` = ± denotes the graphene layers, AmBZ is the area of the mBZ, εk,s,τ,n are the single-particle energies of

the mean-field band spectrum, and ψ`,σk,s,τ,n(r) are the corresponding single-particle wavefunctions. In practice, we
calculate ρ`(E, r) by replacing the momentum integral by a discrete sum, and the delta-function by a Gaussian with
a standard deviation of ∼ 0.5 meV for the self-consistent SM, and ∼ 0.2 meV for the BM ground state.

In Fig. 8, we plot ρ+(r, E) for E/W = −0.35,−0.11, 0.15 and 0.35, where W ∼ 65 meV is the HF bandwidth (an
overall energy constant is fixed by imposing that

∑
k,n εk,n = 0). In Fig. 8(a)-(b), we see a very clear C3z-breaking

in the LDOS at energies E/W = −0.11 and E/W = 0.15, which respectively correspond to E ∼ −7 meV and E ∼ 10
meV and thus lie outside the broad peaks in the DOS ρ(E) =

∫
d2r

∑
` ρ`(E, r) (see Fig. 2 in the main text). At

larger energies E/W = ±0.35, which correspond to values E ∼ ±20 meV inside the broad peaks in the DOS, the
C3z breaking is also present, but is much less pronounced. At E/W = −0.11 and E/W = 0.15, the local charge
distributions at the AA regions are clearly elongated in one direction. Contrary to what one might expect, these
strongly C3z-breaking charge distributions are not simply a consequence of strain, but instead rely on the Coulomb
interaction. In particular, we find that for any value of E inside the active bands, ρ+(E, r) obtained from the non-
interacting BM ground state does not show the same clear asymmetric charge distributions at the AA regions as does
the self-consistent SM (for an example of the BM LDOS at two representative energies, see Fig. 2 in the main text).



10

y

E/W= − 0.11 E/W= 0.15

x

y

E/W= − 0.35

x

E/W= 0.35

(a) (b)

(c) (d)

FIG. 8. (a)-(d) Local density of states ρ+(E, r) on the top layer (in arbitrary units) of the self-consistent SM obtained in HF.
An overall energy constant is fixed by requiring that the HF single-particle energies εk,n satisfy

∑
k

∑
n εk,n = 0. The results

were obtained on a 24× 24 momentum grid using θ = 1.05◦, ε = 0.22%, εr = 10, and six bands per spin and valley.

This implies that interactions are necessary to reconstruct the BM LDOS in order to obtain strong C3z breaking.

Hartree-Fock at ν = −2

In Fig. 9 we show the SCHF results at filling ν = −2. In particular, we plot the KIVC order parameter |∆KIVC| as
a function of ε. We have performed four SCHF calculations, each with a different set-up. The first SCHF calculation
was done using both spin flavors on a 24× 24 momentum grid, keeping Nb = 6 bands per spin and valley. The second
calculation was done on a rectangular 96 × 6 momentum gird, also with two spin flavors and six bands. The third
SCHF calculation was again done on the same rectangular grid with two spin flavors, but now keeping only Nb = 2
bands per spin and valley. In the fourth and final SCHF calculation we reduced the number of spin components in
the active bands from two to one (again working on the same rectangular grid and using Nb = 2). Importantly, even
though we keep only one spin flavor for the active bands, the remote bands retain two spin flavors. This shows up in
our Hamiltonian via the HF contribution of the remote bands to the free fermion part h(k) of H [Eq. (4)].

From Fig. 9 we see that going from the square to the rectangular momentum grid stabilizes the KIVC state over
larger strain values. On reducing the number of bands Nb from six to two, however, the strain interval over which we
find KIVC order becomes significantly smaller. For all SCHF calculations where we keep both spin flavors, we find
that the spin polarization Ps := 1

N

∑
k tr (P(k)sz), with sz the Pauli-z matrix acting on spin indices, is independent

of ε and retains its value Ps = 2. This is because the filled active bands are completely spin polarized by the exchange
interaction. As a result, we see that the SCHF calculation on the rectangular grid with only one spin component for
the active bands produces results that are indistinguishable from the results obtained for the complete model with
both spin flavors. This justifies doing DMRG on the model with spin polarized active bands. We also see that the
transition from the KIVC to the SM on the rectangular grid with Nb = 2 happens near ε ∼ 0.1%, which is very close
to the value where DMRG puts the phase transition (see main text).

Details of the DMRG Calcuations

Our DMRG calculations follow the method described in [32]. In brief, we start with a Bistrizer-MacDonald-like
continuum model for TBG. We perform 1D hyrid Wannier localization which gives states that are localized in x and
periodic along y. These states form the computational basis and have corresponding creation operators c†x,ky,σ,τ where

x ∈ N indexes the x position, ky = 2πn/Ly runs over Ly momentum cuts through the mBZ, σ = ±1 labels sublattice,
and τ = ± labels the K and K ′ valleys. Each unit cell has 4Ly tensors, and respects U(1) charge and valley symmetry.
We then add Coulomb interactions as proscribed in Eq. (4), with a cutoff of 6 moiré unit cells. The matrix product
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FIG. 10. The MPO singular values [62] for the Hamiltonian as a function of Ly. The dashed line represents our truncation
level.

operator (MPO) for this Hamiltonian has bond dimension D ≈ 40, 000 at Ly = 6 — large, but unsurprising since this
is a 2D model with a large unit cell, and long-range interactions. We use the MPO compression procedure of [62] to
reduce this to D ≈ 1100 while retaining a precision of 0.01 meV, as shown in Fig. 10. Our DMRG is performed using
the TeNPy library [48], written by one of us.

KIVC order parameter and correlation lengths with DMRG

This section details the KIVC order parameter used for DMRG. As mentioned in the main text, the KIVC phase
breaks both valley charge conservation symmetry eiατ

z

as well as spinless time-reversal symmetry T = τxK (K is
complex conjugation), but preserves the product T ′ = eiπτ

z/2T = τyT . In 2D, the KIVC phase can be detected by the

order parameters
∫
d2k O±K(k), where O±K(k) = σyτ±(k). Here we have introduced the notation σiτ j(k) := c†kσ

iτ jck,
and τ± = τx ± iτy. The Pauli matrices σi act on the orbital indices of the two hybrid Wannier states in the same
valley. The creation operators c†k,σ,τ are in turn defined as c†kx,ky,σ,τ :=

∑
x∈N e

−ix(kx+ky/2)c†x,ky,σ,τ (in units where

kx ∈ [0, 2π) ).

It is important to distinguish the KIVC phase from the time-reversal intervalley coherent (TIVC) phase, whose
order parameters are O±T (k) = σxτ±(k). The following table shows how these operators behave under conjugation by
symmetries: O → U−1OU .
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FIG. 11. (a) The correlation length in the KIVC sector ξK , as well as the summed KIVC and TIVC correlators ΣK =
∑
x CK(x)

and ΣT =
∑
x CT (x) plotted as a function of strain ε. Note that ξK diverges with χ in the KIVC phase, as shown in Fig 4(c).

One can see that ΣK tracks ξK closely, but ΣT does not, and that ΣT � ΣK . (b) The correlator CK(x) at a range of strain
values. The transition is clearly visible. Parameters: ν = −2, Ly = 6,Φy = 0, χ = 2048.

Symmetry O±T (k) O±K

T O∓T (−k) −O∓K(−k)

T ′ −O∓T (−k) O∓K(−k)

eiατz e±i2αO±T (k) e±i2αO±K(k)

From this table it follows that OxK(k) := [O+
K(k) +O−K(k)]/2, averaged over the whole BZ, vanishes for T -symmetric

phases but is generically non-zero for T ′-symmetric states — and therefore distinguishes between the KIVC and TIVC
states.

DMRG, as noted in the main text, uses a quasi-1D geometry which cannot support the spontaneously broken U(1)
valley symmetry that accompanies the KIVC phase. However, two-point functions of any order parameter with the
correct symmetry quantum numbers will exhibit long-range order with a diverging correlation length. To that end,
we consider

CK(x) = 〈Ψ|

 ∑
ky=±ky0

O+
K(x, ky)

 ∑
k′y=±ky0

O−K(0, k′y)

 |Ψ〉 . (6)

where

O±K(x, ky) = [σyτ±](x, ky) = ic†x,ky,σ=1,τ=±1cx,ky,σ=−1,τ=∓1 − ic
†
x,ky,σ=−1,τ=±1cx,ky,σ=1,τ=∓1. (7)

We have restricted the sum over ky to a single pair of modes, symmetric across Γ to preserve T ′. At large x,
CK(x) ∼ e−x/ξK , where e−1/ξK is the largest eigenvalue of the MPS transfer matrix in the relevant charge sector
∆QK . Explicitly, ∆QK = (∆qelectric = 0,∆qvalley = 2,∆ky = 0). One way long-range order manifests is a divergence
ξK(χ) ∝ χ, which we show in Fig.4. We caution that the divergence ξK(χ) alone is not enough to uniquely identify
the KIVC phase; the TIVC order parameter CT (x) defined analogously to Eq. (6) with O±T = [σxτ±](x, ky), is
also governed by the ∆QK sector of the transfer matrix, so a divergence in ξK(χ) could also be a sign of a TIVC
phase. If this phase were TIVC, however, then CT (x) would exhibit long-range order, leading to a large value of
ΣT =

∑
x CT (x), and moreover that value would be governed by the correlation length ξK . Fig. 11 shows this does

not occur. Indeed, the TIVC correlator is suppressed by several orders of magnitude relative to the KIVC correlator.
We may thus conclude the small strain phase in DMRG is indeed KIVC.

Let us give a few details on how the scaling collapse in Fig. 4 (a) was performed. We expect the KIVC correlator

to obey the scaling relation CK(x, ξK) = ξ
−η(Ly)
K CK(x/ξK , 1) for some η(Ly)

Ly→∞−−−−→ 0. Our task is to determine
η via a fitting procedure to perform the scaling collapse. At a finite bond dimension, all correlators must decay
exponentially at sufficiently large x as e−x/ξK (perhaps after a regime of algebraic decay). We therefore perform fits
CK(x� 1, ξK) = C0(ξK)e−x/ξK . By comparison with the scaling relation, one can see the prefactor to the exponential
should scale as C0(ξK) ≈ ξ−η. Fig. 12 shows C0(ξK) does indeed decay as a power law for sufficiently large ξK , and
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K .

fitting shows η(Ly = 6) ≈ 0.057. A few comments are in order. First, the behavior of η is non-monotonic with Ly.
We attribute this to finite size effects; one requires a cylinder radius of at least Ly = 5 for KIVC order to be clearly
detectable. Second, the magnitude η is quite small. Typically, long-range order is visible at finite bond dimension as
a range of intermediate x where CK(x) ∼ x−η. However, as η is so small here, this intermediate range is extremely
short, so the algebraic decay is not visible in the scaling collapse. Nevertheless, the fact that the data does obey the
scaling collapse indicates it must have long-range order.

The Semimetal phase in DMRG

We now briefly describe how the semimetal phase found with SCHF can be detected within DMRG. Within DMRG,
a phase with zero charge gap has an electronic correlation length which diverges with bond dimension. In this case,
we expect a semimetal with two Dirac nodes, so the correlation length will diverge only for particular momenta. As
our DMRG uses Ly = 6 evenly spaced cuts through the moiré Brillouin zone at ky = 2πn/Ly, we will generically
“miss” the Dirac nodes, and the correlation length will appear to be finite. However, we can insert (valley-dependent)
flux Φy, which shifts the cuts to ky[n] = 2π(n+ τΦy)/Ly where τ = ±1 is the valley label. Varying 0 ≤ Φy ≤ 1 will
sweep the momentum cuts across the BZ, leading to a divergence in the electronic correlation length when the cut
is near to the Dirac node. As SCHF suggests that the Dirac nodes should be quite close to ky = 0, we select the

correlator Ce(x) = 〈c†x,−ky [n=0],σ=+1,τ=+1c
†
0,ky [n=0],σ=+1,τ=+1〉 ∼ e

−x/ξe . Figure 13 shows that the correlation lengths

do indeed begin to diverge with χ precisely where the gap in SCHF is minimal. Together with the fact that SvN ≈ 0
for large ε — which signals that DMRG finds Slater determinant states — we may conclude that DMRG detects the
same nematic semimetal phase as Hartree-Fock. Indeed, DMRG and SCHF even agree closely on the location of the
phase transition from KIVC to semimetal which is around ε = 0.1 %.
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FIG. 13. Electronic correlation length ξe, defined in the text, as the momentum cuts are swept through the mBZ. The black
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