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We develop a framework to evaluate the time-dependent resonant inelastic X-ray scattering (RIXS) signal
with the use of non-equilibrium dynamical mean field theory simulations. The approach is based on the solution
of a time-dependent impurity model which explicitly incorporates the probe pulse. It avoids the need to compute
four-point correlation functions, and can in principle be combined with different impurity solvers. This opens a
path to study time-resolved RIXS processes in multi-orbital systems. The approach is exemplified with a study
of the RIXS signal of a melting Mott antiferromagnet.

I. INTRODUCTION

Over the past years, time-resolved spectroscopies have
evolved into a powerful framework for probing the ultrafast
light-induced dynamics in complex solids.1,2 A potentially
very versatile variant is resonant inelastic X-ray scattering
(RIXS).3 In RIXS, an incoming photon with energy ωin and
momentum qin is scattered into an outgoing photon with en-
ergy ωout and momentum qout via an intermediate state which
involves a short-lived core hole. The energy loss ωin − ωout
measures the excitation spectrum in the solid. Because the
core level is strongly localized, the excitation is element-
specific, and the polarization of the photons can be used to
achieve orbital selectivity. The measurement is therefore ide-
ally suited to probe the charge, spin, and orbital degrees of
freedom in complex solids.4–8 Free-electron lasers can pro-
vide the necessary brilliant and ultrashort X-ray pulses to
acquire femtosecond time-resolution in pump-probe experi-
ments, where a short X-ray pulse acts on the sample around a
given probe time tp. This makes time-resolved RIXS a very
promising technique for revealing the ultrafast dynamics of
entangled degrees of freedom in solids.9–11

The interpretation of the RIXS signal relies on a micro-
scopic understanding of the intermediate state dynamics of the
solid in the presence of a core hole. The scattering amplitude
from an initial state |Ψ0〉 at time t0 into a final state |Ψf 〉 at
time t with a photon in the outgoing mode is given by all pro-
cesses which involve the absorption and emission of a photon
at consecutive times t1 and t2,

〈Ψf |U(t, t2)Pout(t2)U(t2, t1)P †in(t1)U(t1, t0)|Ψ0〉. (1)

Here P †ν (Pν) is the core-valence dipolar transition operator
for the ingoing (ν = in) and outgoing (ν = out) photon mode,
and U the time-evolution operator. The RIXS signal is re-
lated to the square of this amplitude, and is therefore linked
to a four-point correlation function in time.12 The evaluation
of the latter is challenging in an extended solid, in particu-
lar within the framework of many-body perturbation theory,
where it requires the infinite re-summation of diagrams into
so-called vertex corrections. RIXS spectra are therefore typ-
ically computed using exact diagonalization on small clus-
ters. While such cluster schemes are very successful in many
respects,3,13 they cannot easily incorporate the itinerant na-
ture of the conduction electrons in solids. This difficulty may

be overcome within the framework of dynamical mean field
theory (DMFT),14 as proposed by Hariki and co-workers.15,16

Within DMFT, local properties of an atom in the solid are ob-
tained from an impurity model, where the atom is coupled
to a self-consistently determined particle reservoir. It is there-
fore natural to evaluate the RIXS signal in this impurity model
(similar as done for X-ray absorption spectroscopy17), which
incorporates the feedback of the itinerant degrees of freedom
on the atom. This approach does not yet resolve the momen-
tum transfer to the photon, but it captures the important depen-
dence of the signal on the energy loss and light polarization
(orbital selectivity) even in the single-site DMFT framework.
Momentum resolution could be gained within cluster exten-
sions of DMFT.18

The description of time-resolved measurements on systems
out of equilibrium is even more involved. A real-time formu-
lation of the classic Kramers expression19 has been investi-
gated successfully for a Hubbard model using matrix-product
states in one-dimension,20 and using exact diagonalization
for clusters of a two-dimensional model.21 Here, we discuss
a generalization of the DMFT evaluation of RIXS to non-
equilibrium situations. Again, this approach has the advantage
that it incorporates the itinerant degrees of freedom. More im-
portantly, the impurity model in non-equilibrium DMFT self-
consistently incorporates changes of the local electronic struc-
ture of the probe site which result from the non-equilibrium
excitation of the whole solid.22 Finally, diagrammatic tech-
niques to solve the quantum impurity model out of equilib-
rium, such as a the strong coupling hybridization expansion,23

allow to treat multi-orbital impurity models, which would re-
quire an exponentially large Hilbert space in exact diagonal-
ization.

A straightforward diagrammatic evaluation of RIXS spec-
tra within non-equilibrium (cluster) DMFT would rely on the
explicit evaluation of four-point time correlation functions of
the impurity model, including vertex corrections which are in
essence processes in which the impurity emits an electron into
the reservoir before the core hole creation (annihilation) and
absorbs another one after that. The systematic re-summation
of such vertex corrections for out-of equilibrium Green’s func-
tions is beyond reach of the present numerical techniques. To
circumvent this problem, we here implement an explicit time-
dependent impurity model which reproduces the RIXS spec-
trum. We investigate two variants, one which relies on the
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evaluation of a two-point correlation function, and one which
explicitly includes all relevant states of the photon mode and
thus allows to directly measure the signal from the photon
occupation. A comparison of the two approaches allows to
judge the effect of vertex corrections in the two-point correla-
tion function, and therefore the reliability of the results. The
formalism is benchmarked on several problems, including the
dynamics in an antiferromagnetic Mott insulator out of equi-
librium. Further applications to multi-orbital models will be
presented elsewhere.24

The paper is structured as follows. In Sec. II we introduce
the DMFT impurity model from which the RIXS spectrum is
obtained, and in Sec. III we explain the formalism. Section IV
contains benchmarks and applications of the formalism for an
impurity model with a single bath orbital (Sec. IV B), a single
impurity Anderson model (Sec. IV C), and the DMFT solu-
tion for the dynamics in an antiferromagnetic Mott insulator
(Sec. IV D). Finally, Sec. V contains a conclusion and outlook.

II. MODEL

A. Local Hamiltonian

To evaluate the RIXS amplitude, we start from a generic
Hamiltonian for one atomic unit in the solid,

Hloc = Hd +Hc +Hcd +Hph +Hdip. (2)

Here Hd describes the valence orbitals, with fermion oper-
ators dγ,σ for orbital γ and spin σ. The local interaction be-
tween the electrons in these valence orbitals is arbitrary within
our formalism and need not be specified at the moment. Anal-
ogously, Hc is the Hamiltonian of the core level(s). While all
expressions below can be extended straightforwardly to a gen-
eral multi orbital core manifold on a formal level, we restrict
the discussion to a single orbital with energy εc, and creation
(annihilation) operators c†σ (cσ),

Hc = εc
∑
σ

c†σcσ. (3)

In addition, we describe the core-valence interaction Hcd as a
density-density interaction

Hcd = Ucd
∑
σ,σ′,γ

(c†σcσ − 1)d†γ,σ′dγ,σ′ , (4)

which vanishes in the absence of a core hole. To the electronic
model we add the photon modes. The electromagnetic field is
restricted to two modes labelled by ν, i.e., the ingoing (ν = in)
and outgoing (ν = out) photon, which are characterized by
their energy ων , their polarization εν , and their wave vector
qν . Its free Hamiltonian is

Hph =
∑

ν=in,out

ωνb
†
νbν . (5)

The transverse electric field of each mode at the position R
of the atom is iεν(bνην − b†νη∗ν), with ην ∝ eiqνR, and the

light-matter interaction is due to a dipolar coupling

Hdip =
∑
ν

i(bνην − b†νη∗ν)
∑
γ,σ

(pνγP
†
γ,σ + h.c.). (6)

Here P †γ,σ = d†γ,σcσ creates a core hole by transferring the
electron to orbital γ, and pνγ = 〈dγ |εν · r|c〉 is the dipolar
transition matrix element for the mode with polarization εν .
This concludes the definition of the local Hamiltonian. In the
following we use the abbreviation

P †ν,σ =
∑
γ

pνγP
†
γ,σ. (7)

Moreover, for the evaluation of the RIXS spectrum the incom-
ing photon in Eq. (6) is replaced by a classical driving field

bin → s(t)e−iωint, (8)

where s(t) the the probe envelope that defines the time win-
dow in which the probe is acting on the solid. The operators
bin and b†in therefore do no longer appear explicitly, and we
will omit the index out for the outgoing photon operators in
the following.

B. Rotating wave approximation

Usually, there is a large energy scale separation between the
relevant energy transfer ωin − ωout to the valence band, which
is at most of the order of few eV, and the absolute energies
ωin, ωout, and |εc|, which can be of the order of 1000 eV. One
can therefore assume that ων = ω̃ν + E, εc = −E + ε̃c,
with ω̃ν , ε̃c � E. In this limit, only the terms bνP †ν,σ and
b†νPν,σ , which either create a core-hole under the absorption
of a photon, or annihilate a core-hole under photon emission,
should be of relevance. This is made mathematically rigorous
by the rotating wave approximation, which is recapitulated in
the following.

The Hamiltonian Hloc is first rewritten using a canonical
transformation which shifts the energy of the core band and
the photon. In general, after a time-dependent basis trans-
formation |ψ̃〉 = W(t)|ψ〉 the new wavefunction satisfies the
Schrödinger equation i∂t|ψ̃〉 = H̃|ψ̃〉 with H̃ = WHW† +
i(∂tW)W†. The choice W = exp

[
itE
(
b†b −

∑
σ c
†
σcσ
)]

transforms the operators in the dipolar coupling Eq. (6) like
b†P † → b†P †e−i2Et, bP → bPei2Et, bP † → bP †, b†P →
b†P , and shifts the core and photon energies to ε̃c and ω̃out.
The rotating wave approximation then amounts to takingE →
∞, so that all terms oscillating with e±i2Et vanish. The result-
ing Hamiltonian is

H̃loc = H̃d + H̃c + H̃cd + H̃ph + H̃in + H̃out, (9)

where the valence Hamiltonian (H̃d = Hd) and the core-
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valence interaction are unchanged (H̃cd = Hcd), and

H̃ph + H̃c = ω̃outb
†b+ ε̃c

∑
σ

c†σcσ (10)

H̃in =
∑
σ

[
iηins(t)e

−iω̃intP †in,σ + h.c.
]
, (11)

H̃out =
∑
σ

[
iηoutbP

†
out,σ + h.c.

]
. (12)

In the following, we work with the Hamiltonian in the rotating
wave approximation, and from now on omit the tilde for ω̃ν ;
ε̃c can be set to zero without loss of generality.

C. DMFT embedding

The atomic model (9) is now embedded in a lattice. Within
DMFT, the lattice is replaced by an impurity model,14 where
the local Hamiltonian (9) is coupled to a self-consistently de-
termined particle reservoir. Because we aim to study real-
time processes, we work within the Keldysh formalism with
a closed time contour C.22 The impurity model is represented
through its action

Simp = Sloc + Sdd + Scc, (13)

where the local action is simply defined by Hamiltonian (9),

Sloc = −i
∫
C
dtHloc(t) (14)

and the second term with the so-called hybridization function
∆γ,γ′(t, t′),

Sdd = −i
∫
C
dtdt′

∑
σ,γ,γ′

d†γ,σ(t)∆γ,γ′(t, t′)dγ′,σ(t′), (15)

describes the hybridization of the valence orbitals with the
self-consistent bath. Within DMFT, the impurity can ex-
change electrons with the bath during the RIXS process and
the intermediate state evolution, but because the core-valence
interaction is local, the electronic structure of the bath is not
affected by the RIXS process itself.15 In the time-dependent
formalism, the hybridization function ∆γ,γ′(t, t′) is there-
fore computed in a separate non-equilibrium DMFT simu-
lation, which includes the pump laser fields or other non-
equilibrium excitations that drive the system out of equilib-
rium without core hole excitation. The RIXS signal is then
subsequently evaluated from the impurity model (13) with
given ∆γ,γ′(t, t′).

In addition, in the action (13) a particle reservoir is coupled
to the core level,

Scc = −i
∫
C
dtdt′

∑
σ

c†σ(t)∆c(t, t
′)cσ(t′), (16)

which takes the form of a core hybridization function ∆c(t, t
′)

analogous to ∆γ,γ′(t, t′). This core environment should rep-
resent an entirely filled reservoir of electrons, so that it can

lead to the decay of a core-hole, but not its creation. Within
the Keldysh formalism, a filled bath is realized by a hybridiza-
tion function ∆c for which the unoccupied density of states
(greater component) vanishes.22Introducing this bath adds a
lifetime to the core hole, and therefore takes a role analogous
to the broadening Γ of the intermediate states introduced in
the exact-diagonalization formalism.19 In the simulations, we
use an analytic form corresponding to a Gaussian density of
states ∆c(ω) of bandwidth W , so that

∆ret
c (t− t′) = −iθ(t− t′)

∫
dω∆c(ω)e−iω(t−t′)

= −iθ(t− t′)2π−1/2WΓe−(t−t′)2W 2

. (17)

The bath is normalized such that an isolated core-hole would
be filled within a lifetime Γ−1. The bandwidth is made as
large as possible, so that details of the bath density of states
become unimportant (numerically, one has to resolve the time-
dependence of ∆c(t− t′) within the given time grid).

III. EVALUATION OF THE RIXS SIGNAL

A. Overview

In this section, we evaluate the RIXS signal for the time-
dependent impurity model defined by the action (13). Before
the pulse s(t) is applied, the system is in a product state of
some valence band state, filled core orbitals, and an empty
outgoing photon mode. The RIXS spectrum is then given by
the photon occupancy in the long-time limit,

IRIXS(ωout, ωin) = lim
t→∞
〈b†b〉t, (18)

computed to leading order in the dipolar matrix elements, i.e.,
to second order in pνγ for both ν = in, out. In the follow-
ing we first write down the standard perturbative expression
for IRIXS(ωout, ωin), which recapitulates the formulation of the
Kramer’s formula in real time.19 We then discuss how this
expression can be evaluated without explicitly computing a
four-point correlation function in time, by incorporating time-
dependent source fields explicitly in the model. We imple-
ment two possible formalisms, which will be denoted as the
O0 and O2 approach:

(1) The O2 approach, presented in Sec. III C, explicitly in-
cludes the ingoing RIXS pulse (11) in a time-dependent
simulation of the model, and will evaluate the RIXS sig-
nal in terms of a two-point polarizability of the driven
model.

(2) TheO0 approach, presented in Sec. III D, includes both
the ingoing RIXS pulse (11) and the relevant states re-
lated to the outgoing photon mode in a time-dependent
simulation of the model, and computes the expectation
value (18) directly, without evaluating any high-order
correlation function.

While both formalisms are equivalent on a formal level, they
become inequivalent when vertex corrections are missing in
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the evaluation of the two-point correlation function within the
O2 approach (see discussion in Sec. III E). The O0 approach,
while numerically more costly, can therefore be used to quan-
tify the importance of the missing vertex corrections in theO2

approach.

B. Fourth order perturbation theory

To implement the perturbation theory in the light-matter in-
teraction, we represent the dipolar matrix elements as pνγ →
gpνγ , where the factor g is a formal small parameter which fa-
cilitates the power counting and will be set to g = 1 in the final
result. We formulate the perturbation theory in a Hamiltonian
language, whereH represents a Hamiltonian including the im-
purity and the bath. As in standard time-dependent perturba-
tion theory, one separates H = H0(t) + gH ′(t), where H ′

contains all terms proportional to g (i.e., the driving Hamil-
tonian and the coupling to the outgoing photon), and expands
the time evolution operator as U(t, t0) = U0(t, t0)S(t, t0),
with the free time-evolution U0(t, t0), and

S(t, t0) = 1− i
∫ t

t0

dt1H
′(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2H
′(t1)H ′(t2) +O(g3). (19)

Here the time-dependence of the operators H ′ is understood
in the interaction picture, A(t) = U0(t, t0)†AU0(t, t0). The
RIXS signal (18) is obtained by expanding both evolution op-
erators in 〈b†b〉t = 〈U(t, t0)†b†bU(t, t0)〉 to second order,
keeping only the orderings of the operators Pν and P †ν out
of H ′ which lead to a non-vanishing action on an initial state
without core hole and photon. This gives

〈b†b〉t = g4
∑
σ′,σ

∫ t

t0

dt′1

∫ t′1

t0

dt′2

∫ t

t0

dt1

∫ t1

t0

dt2 s(t2)s∗(t′2)

×
〈
U0(t0, t

′
2)Pin,σ′eiωint

′
2U0(t′2, t

′
1)bP †out,σ′U0(t′1, t)b

†b

× U0(t, t1)b†Pout,σU0(t1, t2)P †in,σe
−iωint2U0(t2, t0)

〉
0
,

where 〈· · · 〉0 is the expectation value in the unperturbed ini-
tial state. For a local probe, where all operators act at the same
site, the spatial factors ην drop out (|ην |2 = 1) and have there-
fore been omitted in the expression. Using the free evolution
of the photon, b(t) = e−iωout(t−t0), and setting g = 1, we have

〈b†b〉t =
∑
σ′,σ

∫ t

t0

dt′1

∫ t′1

t0

dt′2

∫ t

t0

dt1

∫ t1

t0

dt2 s(t2)s∗(t′2)

× eiωout(t1−t′1)eiωin(t
′
2−t2)

〈
U0(t0, t

′
2)Pin,σ′U0(t′2, t

′
1)P †out,σ′

× U0(t′1, t)U0(t, t1)Pout,σU0(t1, t2)P †in,σU0(t2, t0)
〉

0
. (20)

The expectation value is now restricted to the electronic sub-
sector.

In equilibrium, Eq. (20) reduces to the standard expression
for the RIXS signal in terms of the absolute square of an am-
plitude (see appendix),

IRIXS =
∑
i,f

wi|Ti,f |2 |s̃(ωout − ωin + Ef − Ei)|2, (21)

|Ti,f |2 =

∣∣∣∣∣∑
m,σ

〈Ψf |Pout,σ|Ψm〉〈Ψm|P †in,σ|Ψi〉
ωout + Ef − Em + iΓ

∣∣∣∣∣
2

, (22)

where |Ψl〉 and El are initial (l = i), final (l = f ), and in-
termediate (l = m) states with their respective energies, wi
is the initial state weight, and 1/Γ is the lifetime of the in-
termediate state. The function s̃(ω) is the Fourier transform
of the pulse envelope. For example, for a Gaussian envelope
s(t) = e−t

2/2τ2

with pulse duration τ , we have |s̃(ω)|2 =

πτ2e−(ωτ)2 . For a long pulse duration, this becomes sharp in
ω, and the normalization implies |s̃(ω)|2 → δ(ω)τ , so that
one can define the standard rate

ΓRIXS = lim
τ→∞

1

τ
IRIXS (23)

=
∑
i,f

wi|Ti,f |2 δ(ωout − ωin + Ef − Ei). (24)

It is important to note that for long pulses the delta function in
this equation indicates perfect energy conservation, which is
not broadened by the lifetime of the intermediate state. Only
the probe duration τ limits the energy resolution in the pulsed
result (21) via the time-frequency uncertainty and the corre-
sponding spectral width of the probe pulse. In equilibrium,
the only difference between Eq. (21) and our model is the im-
plementation of the core-hole lifetime, which is added ad hoc
in the Kramers formula, while the core-hole decay to a reser-
voir is included explicitly in Eq. (20) through the system-bath
Hamiltonian. We will demonstrate, however, that the choice
of the bath (17) is basically equivalent to a Lorentzian broad-
ening as in Eq. (22) (see Sec. IV A).

To proceed with the evaluation of the time-dependent result
(20), it will be convenient to represent the equation in terms of
a contour ordered expectation value on the Keldysh contour.
In general, the time-dependent expectation value of an opera-
tor A can be denoted as the contour-ordered expectation value
with the action S

〈A(t)〉S ≡
1

Z
tr
[
TCe
SA(t)

]
, (25)

where TC orders operators along the Keldysh contour that
evolves first forward in time along an upper branch and then
backward in time along a lower branch. Similarly, we in-
troduce higher order contour-ordered correlation functions
〈A(t)B(t′) · · · 〉S , and we will use the convention that t± de-
notes a real time argument on the upper (+) or lower (−)
branch. The expectation value in the integral in Eq. (20) is
therefore understood as a contour-ordered expectation value〈

Pin,σ′(t′2,−)P †out,σ′(t
′
1,−)Pout,σ(t1,+)P †in,σ(t2,+)

〉
S0

(26)
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Figure 1. Diagrammatic representation of Eq. (20). Arrows along
the contour C from time t to t′ denote the time evolution, further
symbols are explained in the bottom lines (operators Pν and P †ν , as
well as ingoing and outgoing lines for the phase factors e±iωνt and
probe envelope corresponding to photon annihilation and creation).
The RIXS signal is obtained by extending the contour from a time t0
before the RIXS pulse to t = ∞, and integrating over the internal
times by keeping their order on the contour.

with the unperturbed impurity action S0, i.e, Eq. (13) evalu-
ated at g = 0. The integral (20) is thereby represented by an
intuitive diagrammatic representation, analogous to double-
sided Feynman diagrams in nonlinear optics, see Fig. 1.

C. Second order perturbation theory (O2 approach)

Instead of doing the perturbation theory in both the cou-
pling to ingoing and outgoing modes, one could also leave the
driving field Hin [Eq. (11)] with an amplitude gin 6= 0 explic-
itly in the action, evaluate the RIXS signal IRIXS(gin) to sec-
ond order in the coupling to the outgoing mode, and extract
the leading second order contribution in gin from the numeri-
cal data. Using the perturbative expansion (19) to first order,
with only Hout [Eq. (12)] as perturbation, we have

〈b†b〉t =g2
out

∑
σ′,σ

∫ t

t0

dt′1 dt1

〈
Uin(t0, t

′
1)bP †out,σ′Uin(t′1, t)

× b†bUin(t, t1)b†Pout,σUin(t1, t0)
〉

0
, (27)

where the subscript “in” of the evolution operator indicates
that the time evolution Uin(t1, t0) includes the driving field
Hin. The equivalence of Eqs. (27) and (20) can be seen by ex-
panding Uin in Eq. (27) to first order in the perturbation Hin,
using the expansion (19). Again factoring out the photon op-
erators in Eq. (27), and setting gout = 1, we have

IRIXS(gin) =
∑
σ′,σ

∫
dt′1 dt1 e

iωout(t1−t′1)Pσ′,σ(t′1−, t1,+),

(28)

where we have introduced the contour-ordered expectation
value

Pσ′,σ(t′, t) =
〈
P †out,σ′(t

′)Pout,σ(t)
〉
Sin
, (29)

evaluated with the action Sin of the driven model. The RIXS
amplitude may thus be obtained by evaluating Pσ′,σ(t′−, t+)
in the driven model for small gin, and extracting the limit

IRIXS = lim
gin→0

g−2
in IRIXS(gin) (30)

numerically. It should be mentioned that the integration range
is effectively restricted: The action of the operators P gives
zero for times t, t′ before the probe pulse and after the decay
of the core-hole, i.e., for times much later that Γ−1 after the
probe. Hence the correlation function P [Eq. (29)] has to be
evaluated only in a small time window.

D. Direct evaluation (O0 approach)

To avoid the calculation of the second-order correlation
function (29), one can simply include both the driving term
and the outgoing photon state into an explicit time-dependent
simulation with an amplitude g 6= 0, evaluate the expectation
value N(g, t) = 〈b†(t)b(t)〉Simp from the full action (13), and
extract the limit

IRIXS = lim
t→∞

lim
g→0

g−4N(g, t) (31)

numerically. The order of the limits is important, as taking the
limit t→∞ first will lead to a photon occupation of order one
on times which diverge with 1/g. In practice, the t→∞ limit
again saturates within a short time determined by the core-
hole lifetime, so that no long-time simulations are needed.

The direct evaluation (31) is particularly suitable if the
model is solved within an expansion in the system-bath cou-
pling, i.e, the hybridization expansion. The latter can be for-
mulated for any local Hilbert space and local Hamiltonian.
The numerical effort increases exponentially with the local
Hilbert space, and simulations including explicitly a bosonic
Hilbert space can be demanding.25 However, in the present
case one can restrict the local Hilbert space from the outset to
only those states which contribute in leading order to the RIXS
signal. If {|α〉, α = 1, ..., d} is a basis for the valance band
manifold, {|0〉, | ↑〉, | ↓〉, | ↑↓〉} the basis for the core orbitals,
and {|nph〉, n = 0, 1, 2, ...} the basis for the photon, the RIXS
signal can be computed after projecting the impurity model to
the subspace

{|α, ↑↓, 0ph〉, |α, σ, 0ph〉, |α, ↑↓, 1ph〉, α = 1, ..., d;σ =↓, ↑}.

The relevant interaction operators P †b and Pb† act within this
manifold. Higher order excited states such as |α, ↑↓, 2ph〉 do
not appear as initial, final, or intermediate states in the time
evolution for the perturbative expression (20), and can there-
fore be omitted in the time evolution of the model from the
outset.

In the O2 approach, the simulation of the driven model can
be restricted to the electronic subsector, spanned by the states

{|α, ↑↓, 0ph〉, |α, σ, 0ph〉, α = 1, ..., d;σ =↓, ↑}.
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Hence the dimensionality of the relevant Hilbert space is
smaller in the O2 method, but the difference in the numeri-
cal effort is moderate. The main additional numerical cost of
the direct O0 approach as compared to the O2 approach lies
in the number of independent simulations that are required.
In the O2 approach one has to perform a separate simulation
for each probe frequency ωin (since the probe is included ex-
plicitly). The results for each ωout can then be obtained by
a straightforward convolution (28). In the O0 approach, in
contrast, a separate time-dependent solution of the impurity
model is required for each ingoing and outgoing frequency.

E. Vertex corrections

A rather versatile approach to solving the impurity model
(13) is the systematic expansion in the hybridization func-
tion. Out of equilibrium, this can be done perturbatively
order by order,23 or using hybridization-expansion Quantum
Monte Carlo simulations.26–29 Both within the perturbative
framework, and within Quantum Monte Carlo schemes that
are based on re-summations of diagrams,28,29 the evaluation
of high-order correlation functions is challenging because of
vertex corrections: The hybridization expansion expands the
time evolution operator in terms of hybridization events as il-
lustrated diagrammatically in Fig. 2. A dashed arrow from
time t to t′ corresponds to the emission of an electron from the
system into the bath at time t and the absorption of an electron
at a later time t′, i.e, the hybridization function ∆. In order to
obtain the full evolution one must sum over all such events
on the time contour, where the bare time evolution along the
contour corresponds to the isolated impurity (Hloc). For all
hybridization expansion schemes based on a re-summation of
such diagrams, the most straightforward step is to sum all di-
agrams in the time-evolution operator, and in the expression
for the expectation value 〈A(t)〉 of some operator A at the
end of the contour (see Fig. 2a). However, for a two-point
correlation function of two operators A and B one needs to
include also terms which connect the time-evolution opera-
tor before and after B via a hybridization line, i.e., events in
which an electron is emitted into the reservoir before the ac-
tion of B and absorbed after that (see third term in Fig. 2b).
The systematic re-summation of such vertex corrections for
out-of-equilibrium Green’s functions is typically challenging.

In the present work, we will exemplarily solve some mod-
els within the leading-order hybridization expansion, which
sums up diagrams with non-crossing hybridization lines.23 In
the O0 approach one would evaluate the expectation value of
the operator b†b at the end of the contour, including all non-
crossing hybridization lines (Fig. 2c). Here, the bare evolution
includes the light-matter coupling and is illustrated by thick
lines. Extracting the leading time-dependent perturbation in
the dipolar operator from this result corresponds to replacing
the bare evolution by the evolution at zero dipolar coupling,
and inserting operators P and P † at the corresponding times
(Fig. 2d). As the diagrams illustrate, this automatically gener-
ates a class of ladder-type vertex corrections, such as the sec-
ond diagram in (Fig. 2d), which are not included in the NCA

Figure 2. Illustration of hybridization events (description in the
main text).

evaluation of the correlation function 〈P †(t)P (t′)〉 that en-
ters the O2 approach. In this sense, the O0 approach is more
accurate. The fact that the direct evaluation of the expecta-
tion value 〈b†b〉 within the O0 framework implicitly contains
a large class of diagrams that is not easily reproduced in a di-
agrammatic representation of the response function is com-
mon to general time-dependent diagrammatic theories, and
will also hold for higher order variants of the hybridization
expansion, as well as for typical weak-coupling expansions
or Quantum Monte Carlo schemes that are based on a re-
summation of diagrams.

IV. RESULTS

In this section, we evaluate and compare the formalisms in-
troduced in the previous section for several problems of in-
creasing complexity: An impurity model without any bath
(atomic limit), an impurity model with a single bath orbital,
a single-impurity Anderson model, and a non-equilibrium
DMFT simulation for the dynamics of a Mott antiferromag-
net. In all cases, the time-dependent impurity model will be
solved within the non-crossing approximation, see the discus-
sion in Sec. III E. We use a Gaussian probe pulse

s(t) = 0.1e−(t−tp)2/τ2

(32)

in Eq. (8), with a probe duration τ , centered around a probe
time tp.
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A. Single-impurity model in the atomic limit

The simplest test model contains just a single spinful va-
lence orbital and no hybridization term (15). The valence
Hamiltonian Hdd in Eq. (9) is then given by

Hdd = ε
(
c†↑c↑ + c†↓c↓

)
+ Uc†↑c↑c

†
↓c↓, (33)

with an on-site energy ε and a local Hubbard interaction U .
Because there is no d-level hybridization function ∆, there are
no vertex corrections in the evaluation of the correlation func-
tion P [Eq. (29)] within the NCA framework, and the O2 and
O0 approaches are therefore equivalent by construction. The
only approximation which enters the numerical solution of
this model within the present framework is the treatment of the
core bath within the NCA approximation. We therefore com-
pare the solution of this model with the exact-diagonalization
result (21) with a level broadening Γ, in order to confirm that
the core bath setup as defined in Eqs. (16) and (17) provides
an accurate description of an exponential core hole decay with
time constant 1/Γ.

With the Hamiltonian Eq. (33), the following processes
|Ψi〉 → |Ψm〉 → |Ψf 〉 appear in the sum (22) for the exact
diagonalization result:

|σ〉 → |↑↓〉 → |σ〉, Ei = ε, Em = 2ε+ U − 2Ucd, (34)
|0〉 → |σ〉 → |0〉, Ei = 0, Em = ε− Ucd. (35)

(Only the valence orbital configuration is shown, not the core-
hole in the intermediate state.) For the single-site model, the
initial and final states are always the same (Ei = Ef ). The
thermal occupations of the initial state are given by

w0 = z−1, wσ = z−1e−βε, (36)

with z = 1 + 2e−βε + e−β(U+2ε), and the matrix elements
〈Ψf |Pout,σ|Ψm〉〈Ψm|P †in,σ|Ψi〉 for the transition are unity.
Hence, Eq. (21) gives

IRIXS =
π

Γ

[
2wσLΓ

(
ωout − (ε+ U − 2Ucd)

)
+ 4w0LΓ

(
ωout − (ε− Ucd)

)]∣∣s(ωout − ωin)
∣∣2, (37)

where LΓ(x) = Γ/π
x2+Γ2 is a normalized Lorentzian peak. In

passing we remark that the weight of the term with initial state
|0〉 is 4w0, while it is just 2wσ in total for the contribution of
both initially singly occupied states. This is due to an inter-
ference of the two paths with the same initial state but differ-
ent intermediate states in (35), while the two contributions in
(34) differ only in the initial state and are just added up. One
therefore cannot simply calculate the RIXS signal from a spin-
polarized level, but in general both spin contributions must be
included in the numerical solution of the time-dependent im-
purity model.

Figure 3 exemplarily shows the function P↑↑(t, t′)
[Eq. (29)] for the single impurity model in the atomic limit
at inverse temperature β = 5, for U = 2, ε = −U/2,
Ucd = 0, Γ = 1, and ωin as indicated. The core-hole de-
cay time 1/Γ is comparable to other atomic time scales, as is
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Figure 3. a) and b) The two-point correlation function P↑↑(t, t′)
for the single-orbital model (33) at inverse temperature β = 5, for
U = 2, ε = −U/2, Ucd = 0, core-bath coupling Γ = 1 and ωin as
indicated. The RIXS pulse is given by Eq. (32) with duration τ = 2
and probe time tp = 4. c) The spectrum IRIXS(ωin, ωout) for the
same parameters. d) A cut of IRIXS(ωin, ωout) along the elastic line
ωin = ωout, compared to the exact diagonalization result (21) with a
level broadening Γ, for two different values of Γ.

typical for realistic systems. Figure 3a correspond to a fre-
quency ωin = 1 which is resonant to the doublon creation
energy ωin = U + 2ε − ε = U + ε = U/2, while the fre-
quency ωin = −2 (Fig. 3b) is off-resonant. In both cases
the explicit incorporation of the bath (16) leads to a decay
of the correlation function P(t, t′) after the pulse, i.e., for
(t′ − tp), (t − tp) � 1/Γ. This decay of the two-point cor-
relation function due to the core lifetime is more or less inde-
pendent of the valence Hamiltonian and therefore holds also
for the more involved examples below. It allows to cut off the
time-dependent simulations at times t− tp � 1/Γ.

Figure 3c shows the RIXS spectrum obtained from the in-
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tegral (28). Because there is only an elastic process in the
single-orbital model, the spectrum IRIXS(ωin, ωout) consists of
a singe line at ωin = ωout, broadened by the energy uncertainty
of the incoming pulse. This is consistent with the analytic re-
sult Eq. (37). A comparison of the spectra as a function of ωin
along the elastic line ωin = ωout with Eq. (37) demonstrates a
good quantitative agreement for different core-hole lifetimes.
(The larger lifetime Γ = 1/2 resolves the difference between
the two possible intermediate states, while the shorter lifetime
yields only one broad peak.) This confirms that the explicit
treatment of the core-hole bath in our formalism is consistent
with the level broadening in the conventional exact diagonal-
ization formula (21).

B. Impurity model with one bath site

Next we apply the formalism to an impurity model with a
single bath orbital. The valence Hamiltonian is given by

Hdd = Hd,at + J
∑
σ

(c†σaσ + h.c.) + εbath

∑
σ

a†σaσ, (38)

where the atomic Hamiltonian Hd,at is the same as Eq. (33),
aσ (a†σ) is the annihilation (creation) operator of an electron
with spin σ in the bath orbital, and J the tunnelling matrix
element. This corresponds to a hybridization function

∆(t, t′) = J2g(t, t′), (39)

in the action (15), where g(t, t′) is the propagator of the iso-
lated bath site at energy εbath. We consider the particle-hole
symmetric set-up U = 2, ε = −U/2, εbath = 0. For an
impurity solver based on the expansion in the hybridiziation
∆(t, t′), the two-site model (38) is not necessarily faster con-
vergent than a model with a continuous bath, while the result
for the RIXS signal can still be compared to the analytic rela-
tion (21). Though still rather simple in terms of physics, the
model (38) therefore provides a nontrivial test case to illus-
trate the two formalisms for evaluating the RIXS signal.

Figure 4 compares the exact RIXS spectrum [Eq. (21) ap-
plied to model (38)] with the results (28) and (31) obtained
from the O2 and O0 approaches, respectively. The pulse pa-
rameters are the same as in Fig. 3, with pulse duration τ = 2
and damping Γ = 1. We analyze the spectrum as a function of
ωout, where ωin = 1 is fixed to be resonant to the intermediate
doublon state. (Because of the large damping Γ, the results
are qualitatively similar for different ωin.) For hopping J = 0,
there is only the elastic line at ωout = ωin, broadened by the
frequency uncertainty of the Gaussian probe (Fig. 4a). With
increasing tunnelling J , a second peak (the loss peak) appears
around ωout = ωin−∆U , corresponding to processes in which
the system is left with a doublon (doubly occupied site) and
a hole after the RIXS process. The corresponding excitation
energy is ∆U = U , with corrections of order J2/U for small
J .

Both the O2 and O0 approach are basically exact by con-
struction for J = 0. For J > 0, the two approaches differ
because vertex corrections are missing in the NCA solution of
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Figure 4. a)-f) IRIXS(ωin, ωout) for the impurity model (38) with
one bath orbital for various tunnelling matrix elements J (inverse
temperature β = 5, U = 2, ε = −U/2, Ucd = 0, bath coupling
Γ = 1, and ωin = 1, and a RIXS probe pulse (32) with duration
τ = 2). The black line is from exact diagonalization [Eq. (21)],
while circles and triangles correspond to the results (28) and (31)
obtained from the O2 and O0 approaches, respectively (see legend
in panel b). g) Comparison of the signal IRIXS(ωin, ωout) on the elastic
line (ωin = ωout = 1) as a function of J2 for the three approaches.

the two-point correlation function P(t, t′), see Sec. III E. For
larger J , the O2 approach apparently describes the loss peak
better than the O0 approach, while the O0 approach is bet-
ter at the elastic peak. Within the O2 approach, the loss peak
becomes eventually stronger than the elastic peak (Figs. 4e
and f), which is reversed by the vertex corrections introduced
in the O0 method. A quantitative comparison of the signal
IRIXS(ωout, ωin) for the elastic peak ωout = ωin shows that the
O0 approach is correct to leading order in J2, while the O2

deviates (Fig. 4g). This is expected because vertex corrections
to P(t, t′) can arise already from a single hybridization event
(see the third diagram in Fig. 2b), so that neglecting them can
imply an error at the leading order J2.

While both methods are not particularly accurate for large
J , due to the NCA approximation, the results illustrate how
the comparison of the two approaches can be used to estimate
the importance of vertex corrections in the evaluation of the
P correlation function, and hence for the RIXS signal. In
general, one could use the numerically more costly direct O0
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Figure 5. a) IRIXS(ωin, ωout) for a single impurity Anderson model
with hybridization function (40) and different hybridization strengths
J as indicated (inverse temperature β = 5, U = 2, ε = −U/2,
Ucf = 0, bath coupling Γ = 1, and ωin = 1, and a RIXS probe pulse
(32) with duration τ = 2). Circles and dashed lines correspond to the
RIXS signal evaluated with the O0 approach [Eq. (31)], solid lines
to the O2 approach [Eq. (28)].

approach to validate the quality of theO2 approach for certain
parameters, or take the deviation between the two methods as
a heuristic measure for the overall error. The same argument
can be used for different impurity solvers, such as higher or-
der variants of the strong-coupling expansion, weak-coupling
based solvers, or potentially real-time quantum Monte Carlo.

C. Anderson Impurity model

To further illustrate the approach we consider a model
where an analytic result (21) is not available. We focus on the
single impurity Anderson model, i.e., model (13) in which the
local Hamiltonian Hdd is given by a single orbital [Eq. (33)],
and the hybridization function ∆ in (15) is chosen to have a
semi-elliptic density of states

− 1

π
Im∆ret(ω + i0) =

2J2

πW

√
1− (ω/W )2 (40)

with half bandwidthW = 2 and overall hybridization strength
J2. Figure 5 shows the RIXS signal, evaluated with the same
pulse parameters as in Fig. 4. Again one can see the emer-
gence of a loss feature at ωout < ωin, which is now broadened
not only due to the energy uncertainty of the pulse, but be-
cause there is an excitation continuum in the impurity model.
The comparison of the two approaches gives confidence that
this loss feature is qualitatively and even quantitatively cap-
tured up to relatively large hybridization strength.

D. Dynamics in the antiferromagnetic Mott insulator

Finally, we present an application of the formalism to a
non-equilibrium problem. We study the single-band Hubbard

model

H = U
∑
j

nj↑nj↓ − J
∑
σ〈ij〉

c†iσcjσ (41)

at half filling on a bipartite lattice. Here cjσ is the fermion
operator for an electron with spin σ on site j of the lattice,
U is the on-site interaction, and J the hopping between near-
est neighbors. We focus on the Mott insulating phase, with
U � J . On a bipartite lattice, the system is antiferromagnet-
ically ordered at low temperature. Here we study the system
out of equilibrium, in a situation in which the antiferromag-
netic order evolves on ultra-fast timescales. The RIXS signal
is sensitive to the local environment of a site on the lattice,
and can therefore potentially be used to monitor the evolu-
tion of the antiferromagnetic order. The reason is that in a
Néel-ordered state at a site next to one with spin σ is pre-
dominantly occupied with the opposite spin flavor. This en-
hances the possibility of charge fluctuations between neigh-
boring sites, and thus the probability that a charge excitation (a
doubly-occupied and an empty site) is generated by the RIXS
process. We thus expect that the magnitude of the loss peak
around ωout ≈ ωin − U increases with the antiferromagnetic
order.

To confirm this, we compute the RIXS signal for a partic-
ular situation, in which the evolution of the antiferromagnetic
order itself has already been studied in detail in Ref. 30. The
Hubbard model is solved using DMFT on a Bethe lattice with
bandwidth W = 4. Time is measured in units of the inverse
hopping, which is W/4 for the Bethe lattice. The system
is initially prepared in the low-temperature anitferromagnetic
phase at interaction U0 = 3. The interaction is then suddenly
increased to U = 8, which destabilizes the antiferromagnetic
order. Choosing the interaction quench as an excitation mech-
anism is rather arbitrary. We are mainly interested in the ques-
tion how the time-resolved RIXS measurement reveals the dy-
namics of the order parameter, and therefore consider this set-
ting which has already been studied in detail in the literature.
In Fig. 6b, the solid black line shows the ultrafast decay of the
Néel order parameter m after the quench, where m is defined
as

m = |nA,↑ − nB,↑| = |nA,↑ − nA,↓|, (42)

and nj,σ denotes the occupation of electrons with spin σ on
the sublattice j = A,B of the bipartite lattice. Figure 6a
shows the RIXS signal for a probe pulse (32) with duration
τ = 1 and probe time tp = 7. For the chosen relatively
short core-hole lifetime and probe duration, the spectrum does
not depend strongly on the probe frequency ωin, so we tune
ωin = U/2 = 4 to the broad intermediate-state resonance, and
analyze the signal as a function of ωout. As for the impurity
models in Figs. 4 and Fig. 5, one observes a dominant elastic
peak with ωout = ωin, and a loss peak around ωout = ωin − U .
The comparison of the O2 and O0 approaches shows that
the role of vertex corrections to the signal is not too large in
this regime, which may be expected for a system in the Mott
phase. Quantitatively, the relevant loss peak is enhanced by
about 20% in the more accurate O0 approach.
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Figure 6. a) IRIXS(ωin, ωout) for the Hubbard model at U = 8 in the
antiferromagnetic Mott phase, as described in the main text (inverse
temperature β = 10, U = 8). The RIXS signal is obtained for bath
coupling Γ = 1, ωin = 4, and a Gaussian probe pulse with duration
τ = 1 and tp = 7. Circles and squares show results from the O2

approach [Eq. (28)] and the O0 approach [Eq. (31)], respectively.
b) Order parameter m as a function of time (solid black line, right
vertical axis) after an interaction quench, and amplitude of the loss
peak Iloss(tp) = IRIXS(ωin, ωout) at ωout = ωin −U in theO2 andO0

approach.

Figure 6b then analyzes the evolution of the loss peak
Iloss(tp) = IRIXS(ωin, ωout) at ωin = 4, ωout = ωin − U with
probe time. The signal decreases, following the decrease of
the antiferromagnetic order parameter. If one normalizes the
signal Iloss(tp) with the value at a given late time tp = 12, the
prediction from the O2 and the O0 approach basically fall on
top of each other. This demonstrates how the decay of the an-
tiferromagnetic order in the Mott phase can be extracted from
the time-resolved RIXS signal.

V. CONCLUSION

We have implemented a framework to evaluate the RIXS
signal from the quantum impurity model of non-equilibrium
DMFT. The calculation is based on the solution of a time-
dependent impurity model, and therefore avoids the need
to compute a four-point correlation function in time, which
would be hard to access even in exact diagonalizations of

small clusters. We have formulated one approach that is
based on the evaluation of a two-point response function in
the driven model, and a direct evaluation of the RIXS sig-
nal in terms of the outgoing photon occupation. The latter is
numerically more costly, but formally includes vertex correc-
tions that may be missing in the evaluation of the response
function (depending on the method used to solve the impurity
model).

This study opens a path to theoretically analyze the
RIXS signal for time-resolved experiments on correlated sys-
tems. The DMFT framework self-consistently incorporates
the time-dependent change of the local environment of a given
site in the lattice which results from the non-equilibrium evo-
lution. We have demonstrated this by probing the ultrafast
dynamics of antiferromagnetic order in a Mott insulator. Fu-
ture directions include in particular the application of the for-
malism to nonequilibrium studies of multi-orbital systems,
which are hard to treat in direct cluster approaches. While
the benchmark studies in the present paper are based on the
NCA impurity solver, the general formalism can be directly
applied in combination with different impurity solvers, such
as higher-order variants of the hybridization expansion, or
weak-coupling perturbation theory, in order to study systems
outside the Mott regime. Another technically interesting ques-
tion is whether the non-equilibrium DMFT bath can be repre-
sented with finitely many orbitals, as done in equilibrium31 or
in Ref. 32 for certain initial conditions. With this one could
make use of the exact diagonalization formulation,19 while
still capturing the self-consistent non-equilibrium evolution
of the probe site environment provided by non-equilibrium
DMFT.
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Appendix A: Kramers formula

In this appendix, we recapitulate the derivation of the exact
diagonalization formula (21) from the time-dependent result
(20). Using an expansion in eigenstates of the unperturbed
electronic Hamiltonian, we first resolve the initial and final
state in the electronic expectation value 〈· · · 〉0. Performing
an average over initial states |Ψi〉with weightwi and inserting
an identity

∑
f |Ψf 〉〈Ψf | at the final time t, the expression for

〈b†b〉t factorizes as

〈b†b〉t = g4
∑
i,f

wi|Mi,f |2, (A1)

Mi,f =
∑
σ

∫ t

t0

dt1

∫ t1

t0

dt2 s(t2)e−iωint2+iωoutt1

× eiEf t1e−iEit2〈Ψf |Pout,σU0(t1, t2)P †in,σ|Ψi〉, (A2)
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whereEi andEf are the initial and final state energies, respec-
tively. We can now insert another identity

∑
m |Ψm〉〈Ψm| be-

tween the operators P and P †,

Mi,f =
∑
m,σ

∫ t

t0

dt1

∫ t1

t0

dt2 s(t2)e−iωint2+iωoutt1eiEf t1−iEit2

× 〈Ψf |Pout,σ|Ψm〉e−i(Em−iΓ)(t1−t2)〈Ψm|P †in,σ|Ψi〉. (A3)

Here an ad-hoc approximation has been made, i.e., a lifetime
1/Γ has been added to the intermediate core state. Formally,
the lifetime is due to the coupling to the (core) bath, which
is taken into account explicitly in the real-time simulations.
We now evaluate the time integrals in Eq. (A3), taking t and

t0 to ±∞, respectively. Rewriting the integral domain as∫∞
t0
dt2
∫∞
t2
dt1, and substituting t1 − t2 → t̄ (t1 → t2 + t̄),

the time integrals give∫ ∞
−∞

dt2 s(t2)

∫ ∞
0

dt̄ eit2(ωout−ωin+Ef−Ei)

× eit̄(ωout+Ef−Em+iΓ) =
is(ωout − ωin + Ef − Ei)
ωout + Ef − Em + iΓ

,

(A4)

where s(ω) is the Fourier transform of the pulse envelope.
Inserting this expression into (A3) gives Eq. (21) of the main
text.
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