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The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems
with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally,
the breakdown of ensemble equivalence (EE) has been associated with nonvanishing relative canon-
ical fluctuations of the constraints in the thermodynamic limit. Recently, it has been reformulated
in terms of a nonvanishing relative entropy density between microcanonical and canonical probabili-
ties. The earliest observations of EE violation required phase transitions or long-range interactions.
More recent research on binary networks found that an extensive number of local constraints can
also break EE, even in absence of phase transitions. Here we study for the first time ensemble
nonequivalence in weighted networks with local constraints. Unlike their binary counterparts, these
networks can undergo a form of Bose-Einstein condensation (BEC) producing a core-periphery struc-
ture where a finite fraction of the link weights concentrates in the core. This phenomenon creates
a unique setting where local constraints coexist with a phase transition. We find surviving relative
fluctuations only in the condensed phase, as in more traditional BEC settings. However, we also
find a non-vanishing relative entropy density for all temperatures, signalling a breakdown of EE due
to the presence of an extensive number of constraints, irrespective of BEC. Therefore, in presence
of extensively many local constraints, vanishing relative fluctuations no longer guarantee EE.

I. INTRODUCTION

Statistical ensembles were introduced by Gibbs [1]
to mathematically describe systems at thermodynamic
equilibrium, i.e. where certain conserved macroscopic
properties (such as the total energy) are constant, while
the microscopic state (i.e. the state of all the micro-
scopic constituents) is subject to fluctuations. For a
system with n units and discrete degrees of freedom, a
statistical ensemble is a probability distribution P (W)
over the collection Wn = {W} of all the possible (unob-
served) microscopic states of the system, given a set of
measurable macroscopic properties. Clearly, P (W) ≥ 0
for all W ∈ Wn and

∑
W∈Wn

P (W) = 1. This dis-
tribution conceptualizes the fact that, ideally, repeated
observations of the microscopic state would retrieve dif-
ferent (and independent) outcomes. It can be viewed as
the probability distribution that maximizes the Gibbs-
Shannon entropy functional

S[P ] ≡ −
∑

W∈Wn

P (W) lnP (W), (1)

under a set of (macroscopic) constraints, therefore being
maximally noncommittal with respect to missing (micro-
scopic) information [2].

Depending on the choice of the macroscopic properties
being constrained, different statistical ensembles can be
constructed. The microcanonical ensemble Pmic(W|E) is
used to describe systems with fixed total energy E (ener-
getic isolation), while the canonical ensemble Pcan(W|β)
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is used to describe systems with fixed (inverse) temper-
ature β (thermal equilibrium) [1]. For a physical sys-
tem, the inverse temperature β equals 1/kT where T
is the absolute temperature and k is Boltzmann’s con-
stant. In both ensembles, the microscopic state W is
random, but the randomness is governed differently by
the two distributions Pcan(W|β) and Pmic(W|E). In par-
ticular, while the microcanonical ensemble assigns each
realized configuration W a constant (deterministic) value
E(W) = E of the total energy (which can therefore be
regarded as a ‘hard’ constraint corresponding to energetic
isolation), the canonical ensemble assigns configurations
a fluctuating (random) energy with a certain expected
value 〈E〉β =

∑
W∈Wn

Pcan(W|β)E(W) and a positive

standard deviation σβ(E) > 0 (i.e. the energy plays the
role of a ‘soft’ constraint resulting from the contact with
a heat bath at fixed inverse temperature β).

A. Conjugate ensembles

The two ensembles can be made conjugate to each
other by choosing a specific value E∗ and simultane-
ously setting the total energy E(W) of each realized
configuration W in the microcanonical ensemble equal to
E(W) ≡ E∗ and the inverse temperature β in the canoni-
cal ensemble to the corresponding value β ≡ β∗ such that
the resulting average value 〈E〉β∗ of the fluctuating to-
tal energy under the canonical probability Pcan(W|β∗)
equals E∗, i.e.

〈E〉β∗ ≡ E∗. (2)

For systems with finite size, the two conjugate en-
sembles are unavoidably different, because in the micro-
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canonical ensemble the hardness of the constraint implies
extra dependencies among the state of the microscopic
constituents with respect to the canonical case. How-
ever, in the thermodynamic limit (i.e. when the number
of units in the system goes to infinite) and under certain
‘natural’ circumstances, the two associated probabilistic
descriptions are expected to become effectively equivalent
(i.e. the canonical fluctuations and the microcanonical
dependencies are both expected to play an asymptoti-
cally vanishing role) as a result of some form of the law
of large numbers. This idea, which dates back to Gibbs
himself [1] and has continued to attract a lot of interest
until presently [3–6], goes under the name of ensemble
equivalence (EE). When EE holds, one can treat the two
ensembles as asymptotically interchangeable, and hence
use any of them based on mathematical or computational
convenience. For instance, analytical calculations are
signficantly easier in the canonical ensemble, while nu-
merical randomizations of an initial configuration can be
carried out more naturally in the microcanonical ensem-
ble.

Most statistical physics textbooks still convey the mes-
sage that EE is expected to hold in general as a sort of
principle at the basis of ensemble theory. The possible
breakdown of EE, also known as ensemble nonequivalence
(EN), is still not discussed systematically in the liter-
ature. However, several observations of EN have been
documented over the past decades [3, 5, 7–17]. These
observations motivated various efforts aimed at elucidat-
ing both the possible physical mechanisms at the origin
of EN and, in parallel, its proper mathematical defini-
tion(s).

B. Physical mechanisms for ensemble
(non)equivalence

Traditionally, the ‘natural’ circumstances generally in-
voked to ensure EE mainly concern the presence of
(loosely speaking) ‘at most weak’ interactions between
the constituents of the system. This condition is au-
tomatically realized when the system consists of inde-
pendent units or units with short-range interactions and
sufficiently high temperature (to stay away from possi-
ble low-temperature phases with broken symmetries, for
which the canonical average value of the energy is no
longer the typical value). Indeed, violations of EE have
been documented in presence of long-range interactions
(e.g. in gravitational systems) or phase transitions (e.g.
in interacting spin systems) [3, 4, 7–15].

However, recent research on complex systems encoun-
tered beyond the usual realm of physics has found an
additional mechanism that can break EE, even in pres-
ence of weak (or no) interactions: namely, the presence of
an extensive number of local constraints [5, 6]. This situ-
ation is frequently found in networks with constraints on
the number of links (degree) of each node. More specifi-
cally, the binary configuration model [18] is a widely used

null model of graphs with a given degree sequence, i.e. a
given vector of node degrees. The model captures many
properties found in real-world networks, because the lo-
cal character of the degree constraint can accomodate the
strong structural heterogeneity typically observed across
nodes in real networks. Unlike the traditional thermo-
dynamic example where the total energy (and possibly
a small, finite number of additional macroscopic prop-
erties) is a global and unique constraint for the system,
networks with given node degrees are systems with as
many constraints as the number of fundamental units,
i.e. where constraints are extensive in number and lo-
cal in nature. This situation has been found to break
the equivalence of the corresponding canonical and mi-
crocanonical ensembles, even without long-range inter-
actions or phase transitions [5, 19, 20]. Notably, since
systems with local constraints are generic models for vir-
tually any heterogenous system, the new mechanism sig-
nificantly widens the range of real-world cases for which
EE may break down. This novel result deserves further
research.

C. Mathematical definitions of ensemble
(non)equivalence

Besides the aforementioned advances in the study of
the physical mechanisms at the origin of EN, significant
progress has been made in the mathematical character-
ization of EN as well. Traditionally, the informal crite-
rion [1] used to test whether two conjugate ensembles are
equivalent is checking whether the relative fluctuations of
the constraint in the canonical ensemble, e.g. the ratio
σβ∗(E)/E∗ of the canonical standard deviation to the av-
erage value of the energy, vanish in the thermodynamic
limit. If this happens, then the canonical fluctuations of
the total energy are negligible with respect to the total
energy itself and, intuitively, the energy in the canonical
ensemble can be though of as an effectively deterministic
quantity, very much like in the conjugated microcanon-
ical ensemble. Similarly, the extra dependencies among
the microscopic constituents in the microcanonical en-
semble are expected to play a smaller and smaller role,
thus coming closer to the canonical case.

More recent approaches have considered different rig-
orous definitions of EE, which can be beautifully sum-
marized [4] as the following three notions: thermody-
namic equivalence (convexity of the microcanonical en-
tropy density), macrostate equivalence (equality of the
expected values of macroscopic quantities under the two
ensembles), and measure equivalence (vanishing of the
relative entropy density between the microcanonical and
canonical probability distributions). Under mild condi-
tions, these notions have been shown to be equivalent [4].
In this paper, we use measure equivalence as it is more
transparently related to the ensemble probabilities.

As a useful result, research on the relationship between
statistical physics and combinatorics has revealed that



3

the relative entropy between the microcanonical and the
canonical probability distributions is, under certain con-
ditions, asymptotically proportional to the logarithm of
the determinant of the covariance matrix of the effec-
tive constraints in the canonical ensemble [6]. The ef-
fective constraints are those that are neither redundant,
i.e. trivially replicating other constraints, nor degener-
ate, i.e. deterministically restricting the canonical and
microcanonical configurations in exactly the same way.
For instance, formally imposing ‘two’ constraints where
one is the total energy E and the other one is twice the to-
tal energy 2E is clearly a redundant choice: the effective
number of constraints is just one in this case. As an-
other example, if in addition to the energy E we impose
its square value E2, then for those values of the Lagrange
multipliers such that 〈E2〉 = 〈E〉2 the variance of the en-
ergy will be zero also in the canonical ensemble: E will
become degenerate and deterministically equal to its im-
posed value in both ensembles, so not contributing any
difference between the two (by contrast, for parameter
values such that 〈E2〉 > 〈E〉2 there are no allowed config-
urations in the microcanonical ensemble because the hard
values of E2 and E become conflicting, thereby breaking
the equivalence with the canonical one). In general, if the
problem is not ill-posed from the beginning, the number
of effective constraints coincides with the number of en-
forced constraints. However, it may happen that some
constraints become ineffective for certain degenerate val-
ues of the parameters. In any case, for a given parameter
value the number of effective constraints coincides with
the rank of the covariance matrix of all imposed con-
straints [6].

Since nonequivalence in the measure sense corresponds
to the (super)extensivity of the relative entropy, study-
ing the asymptotic behaviour of the determinant of the
(effective) covariance matrix is enough in order to as-
sess ensemble nonequivalence. It is worth noticing that,
if there is a single constraint (say, the total energy E),
then the determinant of the covariance matrix coincides
with the corresponding variance σ2

β∗(E) and the relative

entropy grows asymptotically (under the necessary hy-
potheses) as lnσ2

β∗(E) = 2 lnσβ∗(E). On the other hand,
since E is a global constraint, it is generally extensive in
the number n of units of the system. Therefore the van-
ishing of the relative fluctuations, i.e. σβ∗(E) = o(E),
implies that the relative entropy is subextensive, i.e. the
relative entropy density vanishes in the thermodynamic
limit. This suggests that, in presence of a global con-
straint, the vanishing of the relative fluctuations implies
ensemble equivalence.1 How this picture changes in pres-
ence of an extensive number of local constraints has not

1 Note that the converse is not necessarily true. However, observ-
ing ensemble equivalence and non-vanishing relative fluctuations
simultaneously requires some rather uncommon circumstances:
for instance, if σβ∗ (E) grows like Eα with α ≥ 1 while the en-
tropy still grows like E, then the relative entropy is still subex-
tensive, while the relative fluctuations do not vanish.

been investigated yet. In particular, whether the vanish-
ing of relative fluctuations still implies ensemble equiva-
lence remains an open question.

D. The contribution of this paper

This paper connects to both lines of research described
above (physical mechanisms and mathematical defini-
tions for EN) and its aim is therefore twofold. On the
one hand, we aim at investigating for the first (to the
best of our knowledge) time the phenomenon of EN in a
model system that combines the presence of an extensive
number of local constraints with a phase transition. On
the other hand, we aim at understanding whether the in-
tuitive criterion of vanishing relative fluctuations of the
constraints still ensures EE in this more general setting.

Concretely, we consider the weighted configuration
model [18], namely a model of weighted (as opposed to
binary) networks with given strength sequence, i.e. with
given values of the strength (sum of the weights of in-
cident links) of each node. The weighted character of
the model allows for the emergence of a phase transi-
tion that is impossible to observe in the corresponding
binary configuration model, namely Bose-Einstein Con-
densation (BEC) [21, 22]. For the sake of clarity, it is
worth mentioning here that, although a form of BEC in
networks was identified for the first time in growing bi-
nary graphs [23], the notion we refer to here refers to
static networks and as such can only occur in weighted
networks [21]. Indeed, while the configuration model
for weighted networks obeys Bose-Einstein statistics, the
configuration model for binary networks obeys Fermi-
Dirac statistics [21, 22, 24]. BEC can arise in our model
by appropriately tuning the strength sequence. In partic-
ular, we are going to show that we can make the strength
sequence temperature-dependent and generate BEC by
picking a sufficiently low temperature, below a certain
critical value. The simplest such setting is one where
the network has a ‘core-periphery’ structure, with BEC
appearing in the core.

We find that, for all temperatures and irrespective of
whether BEC emerges, the canonical and microcanonical
ensembles are always nonequivalent as signalled by a non-
vanishing relative entropy density. On the other hand,
the relative fluctuations of all the constraints vanish when
BEC is absent, while some of them do not vanish when
BEC is present. This shows that the relative fluctuations
cannot distinguish between equivalence and nonequiva-
lence of the ensembles in this more general case where
multiple constraints are present. In fact, what they do is
detecting the presence of BEC. Therefore the traditional
criterion for EE based on the vanishing of the relative
fluctuations is no longer valid in presence of an extensive
number of constraints, even when applied simultaneously
to all constraints. These results enrich our understanding
of the phenomenology of EN and shed more light on its
relationship with both the extensivity of the constraints
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and the presence of phase transitions.
The remainder of this paper is organized as follows.

In Sec. II we rigorously define the canonical and mi-
crocanonical ensembles of weighted networks with given
strength sequence. In Sec. III we introduce two criteria
for the (non)equivalence of the ensembles, one based on
the relative entropy between the corresponding probabil-
ity distributions (measure equivalence) and one based on
the relative fluctuations of the constraints. In Sec. IV we
study in detail a model defined by the simplest family of
strength sequences, driven by a temperature parameter,
such that we can observe both a BEC and a non-BEC
phase. In Sec. V we offer our conclusions. Finally, the
Appendix contains useful calculations needed to estab-
lish the scaling of the relative entropy in all the regimes
considered.

II. CANONICAL AND MICROCANONICAL
ENSEMBLES OF WEIGHTED NETWORKS

In this section, we introduce the definition of weighted
networks and of canonical and microcanonical ensembles
of weighted networks with given strength sequence.

A. Weighted network ensembles

Weighted networks are widely used to describe systems
with a large number of components and heterogeneous
patterns of interaction [25]. We represent a possible con-
figuration of a weighted network with n nodes as an n×n
weighted adjacency matrix W. Each entry of the matrix
wij (1 ≤ i ≤ n, 1 ≤ j ≤ n) denotes the weight of the
link between node i and node j, which is taken from the
set N of natural numbers (including zero, which corre-
sponds to the absence of a link between i and j). In
this work, we only consider undirected networks without
self-loops, thus the weighted matrix W is a symmetric
matrix (wij = wji for all i, j) and its diagonal elements
are zero (wii = 0 for all i). The number of independent
entries of each such matrix is therefore

(
n
2

)
= n(n−1)/2.

An ensemble of weighted networks on n nodes is the
discrete (infinite) set Wn = Nn(n−1)/2 of all available
configurations for the matrix W and a probability distri-
bution P (W) over Wn that is specified by a given vec-

tor ~C(W) of constraints, which can be enforced either
as a soft constraint (canonical ensemble) or as a hard
constraint (microcanonical ensemble) [18]. So the ma-
trix W is a possible outcome of a random variable. We
will consider the weighted configuration model, for which
the constraints are the strengths of all nodes, i.e. the

strength sequence ~C(W) = ~s(W), where the strength
si(W) of node i is a local sum of all the link weights that
connect i to its neighbours in the particular network W:

si(W) =

n∑
j=1

wij , i = 1, n. (3)

Clearly, the number of scalar constraints is n, which coin-
cides with the number of nodes, so this model is a perfect
example of a system subject to an extensive number of
local constraints. In fact, it is the weighted counterpart
of the binary configuration model, where EN driven by
local constraints was observed for the first time [5].

A crucial consequence of the presence of local con-
straints in weighted networks is illustrated in Fig.1,
where we show an example of different networks with
the same strength sequence. For a given choice of ~s∗,
in different realizations of the network each node i can
have different neighbours and different distributions of
weights on the links that connect it to those neighbours.
In particular, the strength s∗i can be more or less concen-
trated on specific neighbours (a property that is usually
quantified by the so-called disparity [26]). However, more
homogeneous choices of ~s∗ unavoidably result in less con-
centrated link weights, while more heterogeneous choices
of ~s∗ impose more concentrated link weights. This fact
will allow us to consider (in Sec. IV) different structural
regimes ranging between two extreme limits: a constant
(infinite-temperature) strength sequence implying that
on average each node is connected to its neighbours in an
equally strong way, and a ‘step-like’ (zero-temperature)
strength sequence implying an extreme concentration of
link weights among a small subset of the n nodes. In
between these two limits, a certain critical temperature
separates a ‘non-condensed’ (high-temperature) phase
from a ‘condensed’ (low-temperature) phase featuring the
properties of BEC.

B. Canonical weighted network ensemble

We first discuss how to implement the strength se-
quence constraint mathematically in the canonical en-
semble (soft constraint) [18]. Recall that in the tradi-
tional canonical ensemble the inverse temperature β∗ is
the only (scalar) parameter of the canonical probability
distribution Pcan(W|β∗), conjugate to a certain (scalar)
total energy E∗ in the corresponding microcanonical en-
semble. Explicitly, Pcan(W|β∗) is the Boltzmann dis-
tribution Pcan(W|β∗) = e−β

∗E(W)/Z(β∗) with inverse
temperature β∗ = 1/kT ∗. By contrast, in our setting

the canonical distribution Pcan(W|~β∗) has to depend on

an n-dimensional vector ~β∗ of parameters, conjugate to
the n-dimensional constraint ~s∗ which, in turn, defines
the microcanonical ensemble. This distribution is found
by maximizing the Gibbs-Shannon entropy functional de-
fined in Eq. (1) under the soft constraint

〈~s〉~β∗ =
∑

W∈Wn

Pcan(W|~β∗)~s(W) ≡ ~s∗ (4)

which generalizes the conjugacy condition in Eq. (2). The

solution to the maximization problem sees ~β∗ play the
role of a vector of Lagrange multipliers coupled to the
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FIG. 1. Example of four weighted networks W1,W2,W3,W4 having the same number n = 8 of nodes (labelled from a to
h) and the same strength sequence ~s(Wi) = ~s∗ = (11, 6, 5, 13, 8, 5, 2, 4) (i = 1, 4), but different structure (Wi 6= Wj for all
i 6= j). The dashed blocks highlight the links from node a to its neighbours: in different networks, node a can have different
neighbours and, importantly, different distributions of link weights (more or less concentrated on specific neighbours). More
homogeneous choices of ~s∗ would result in less concentrated link weights, while more heterogeneous choices of ~s∗ would result
in more concentrated link weights.

strength sequence ~s∗, and is given by [18]

Pcan(W|~β∗) =
e−H(W,~β∗)

Z(~β∗)
, (5)

where the (network) Hamiltonian H(W, ~β) = ~β · ~s(W)
is the linear combination of the node strengths, the par-

tition function Z(~β) =
∑

W∈Wn
e−H(W,~β) is a normal-

ization constant, and ~β∗ is the unique parameter value
realizing Eq. (4). Note that Eq. (5) has still the form of
the Boltzmann distribution, with the important caution
that the inverse temperature has been reabsorbed into the
Hamiltonian. Therefore, to keep the parallel with the
traditional physical situation, in our setting the Hamil-
tonian should be thought of as the inverse temperature

times the energy, and ~β∗ as the inverse temperature times
a vector of ‘fields’, each coupled to a different constraint.
Clearly, since the probability in Eq. (5) must be dimen-

sionless, the product ~β · ~s(W) must be dimensionless as
well. In Sec. IV, we will notice that the Hamiltonian can
be further reinterpreted as also incorporating a ‘chemical
potential’ governing the expected weight of the links in
the network [24].

Notably, Pcan(W|~β∗) depends on W only through

~s(W). In particular, it gives the same value Pcan(W∗|~β∗)
to any network W∗ such that ~s(W∗) = ~s∗. Explicitly,
given the definition of node strength in Eq. (3), the net-

work Hamiltonian can be written for a generic value of ~β
as

H(W, ~β) =

n∑
i=1

∑
i<j

(βi + βj)wij . (6)

The partition function can be easily shown [18] to be

Z(~β) =

n∏
i=1

∏
i<j

1

1− e−(βi+βj)
(7)

provided that βi+βj > 0 for all i, j (otherwise, the model
admits no solution). The canonical probability distribu-
tion therefore factorizes over pairs of nodes as

Pcan(W|~β) =

n∏
i=1

∏
i<j

qij(wij |~β), (8)

where

qij(w|~β) =
e−(βi+βj)w

[1− e−(βi+βj)]−1
(9)

is the probability that the weight of the link between
nodes i and j takes the particular value w. Therefore
different pairs of nodes are statistically independent in
the canonical ensemble (while they are not in the micro-
canonical one).

Note that qij(w|~β) is a geometric distribution [18, 27]
with expected value

〈wij〉~β =
∑
w∈N

w qij(w|~β)

=
∑
w∈N

w
e−(βi+βj)w

[1− e−(βi+βj)]−1

=
e−(βi+βj)

1− e−(βi+βj)
(10)

(representing the expected weight of the link connecting
nodes i and j) and variance

Var~β(wij) =
e−(βi+βj)

[1− e−(βi+βj)]2

= 〈wij〉~β(1 + 〈wij〉~β). (11)

As we will discuss in detail is Sec. IV, Eq. (10) has
the form of Bose-Einstein statistics, where 〈wij〉~β plays

the role of an expected occupation number for the state
labeled by nodes i and j. In an appropriate ‘low-
temperature’ regime, BEC can emerge into the model
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through the divergence of the occupation number 〈wij〉~β
for one (possibly degenerate) ‘ground state’ (correspond-
ing to βi+βj → 0+), while the occupation number for the
other states remains finite [18, 21, 22]. This discussion
requires a series of considerations that we leave for later.
For the moment, we notice that Eq. (10) allows us to de-

termine the special value ~β∗ corresponding to the given
strength sequence ~s∗. Summing over all nodes j 6= i, the
average value of the strength of node i is

〈si〉~β =
∑
j 6=i

〈wij〉~β =
∑
j 6=i

e−(βi+βj)

1− e−(βi+βj)
, (12)

whence we can reformulate Eq. (4) as∑
j 6=i

〈wij〉~β∗ =
∑
j 6=i

e−(β
∗
i +β

∗
j )

1− e−(β∗i +β∗j )
≡ s∗i i = 1, n (13)

which fixes the unique parameter value ~β∗. No-
tably, this value is also the one that maximizes the
(log-)likelihood [18, 28], i.e.

~β∗ = argmax~β lnPcan(W∗|~β), (14)

where, again, W∗ is any configuration such that
~s(W∗) = ~s∗. In general, it is not possible to write
~β∗ explicitly as a function of ~s∗. However, Eq. (13) or
equivalently Eq. (14) can be efficiently solved numeri-
cally [18, 27] using various algorithms that have been
coded for this purpose [29, 30]. In any case, a general
property (that we will use later) is that for any two nodes
i and j with the same expected strength (s∗i = s∗j ), the
corresponding parameters β∗i and β∗j obey the same equa-
tion in (13) and are therefore equal. In other words,
s∗i = s∗j implies β∗i = β∗j .

Once ~β∗ is calculated, we can plug it back into Eq. (8)
to finally obtain the probability distribution

Pcan(W|~β∗) =

n∏
i=1

∏
i<j

e−(β
∗
i +β

∗
j )wij

[1− e−(β∗i +β∗j )]−1
(15)

that characterizes the canonical ensemble entirely. For

practical purposes, ~β∗ can be inserted into Eq. (9) to ob-

tain the link weight probability qij(w|~β∗), from which
several expected network properties can be calculated
very directly. For instance, besides the expected link
weight 〈wij〉~β∗ , we can calculate the probability that

nodes i and j are connected by a link, irrepective of the
weight of the latter, as follows:

p∗ij ≡ 〈Θ(wij)〉~β∗

=

∞∑
w=1

w qij(w|~β∗)

= 1− qij(0|~β∗)
= e−(β

∗
i +β

∗
j )

=
〈wij〉~β∗

1 + 〈wij〉~β∗
, (16)

where Θ(x) denotes the Heaviside step function, defined
as Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0. Note that, if
i and j belong to the condensed state where the expected
link weight 〈wij〉~β∗ diverges (β∗i + β∗j → 0+), then they

become deterministically connected, i.e. p∗ij → 1−. By
contrast, non-condensed states have 〈wij〉~β∗ < ∞, β∗i +

β∗j > 0, and p∗ij < 1. The analogy with BEC will be
discussed in much more detail in Sec. IV.

Besides the structural properties, one of the key quan-
tities that we will need in order to determine EE (or the
lack thereof) is the resulting canonical entropy S∗can, ob-
tained by inserting Eq. (15) into Eq. (1):

S∗can ≡ S[Pcan(W|~β∗)]
= 〈H(W, ~β∗)〉+ lnZ(~β∗)

= ~β∗ · 〈~s(W)〉+ lnZ(~β∗)

= ~β∗ · ~s∗ + lnZ(~β∗)

= − lnPcan(W∗|~β∗). (17)

Note that the calculation of the canonical entropy S∗can
of the entire weighted network ensemble only requires
the knowledge of the probability of one generic network
W∗ with strength sequence ~s∗, which is in turn directly
calculated through Eq. (15).

C. Microcanonical weighted network ensemble

We now come to the microcanonical ensemble. Its gov-
erning probability distribution Pmic(W|~s∗) can be ob-
tained by maximizing the Gibbs-Shannon entropy func-
tional in Eq. (1) under the hard constraint

~s(W) = ~s∗ (18)

that applies to each network W realized (with positive
probability) in the set Wn. The solution is obviously the
uniform probability distribution

Pmic(W|~s∗) =

{
Ω−1~s∗ ~s(W) = ~s∗

0 ~s(W) 6= ~s∗
(19)

where Ω~s∗ is the number of networks for which the hard
constraint in Eq. (18) is realized. An implicit assumption
throughout this paper is that the particular strength se-
quence ~s∗ is graphic, i.e. it can be realized by at least one
network, so that Ω~s∗ > 0. In this case as well, the (mi-
crocanonical) entropy is obtained by inserting Eq. (19)
into Eq. (1):

S∗mic ≡ S[Pmic(W|~s∗)]
= ln Ω~s∗

= − lnPmic(W
∗|~s∗), (20)

which is also known as Boltzmann entropy. Note that
W∗ has the same meaning as in Eq. (17), therefore both
the canonical and microcanonical entropies are equal to
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minus the log of the corresponding probability, evaluated
in any state W∗ realizing the hard constraint in Eq. (18).

Note that, although the derivation of Pmic(W|~s∗) is

formally much more direct than that of Pcan(W|~β∗) in
the conjugate canonical ensemble, its explicit calculation
is more challenging, as it requires the combinatorial enu-
meration of all the Ω~s∗ weighted networks with strength
sequence ~s∗ (as a side remark, it is precisely the local
nature of ~s∗ that makes the calculation of Ω~s∗ daunting).
Here, we will employ a recently proposed saddle-point
asymptotic formula, for a generic discrete system under

a K-dimensional vector ~C∗ of effective (see Sec. I C) con-
straints, for the number Ω~C∗ of microcanonical configu-
rations [6]. The formula uses only conjugate canonical
quantities, namely the canonical entropy S∗can and the
K × K covariance matrix Σ∗ among the K constraints
in the canonical ensemble, and reads [6]

Ω~C∗ =
eS
∗
can√

det(2πΣ∗)

K∏
k=1

[1 +O(1/λ∗k)], (21)

where {λ∗k}Kk=1 are the eigenvalues of Σ∗. The symbol
O(x) indicates a quantity with a finite limit when di-
vided by x as n→∞, i.e. O(x) is asymptotically of the
same order as x. Note that, since covariance matrices
are positive semidefinite, λ∗k ≥ 0 for all k. Moreover,
since the constraints are assumed to be non-redundant,
then λ∗k > 0 for all k [6] (if some of the constraints were
redundant, there would be certain zero eigenvalues ren-
dering the above equation inapplicable; that is why the
formula should be applied to a maximal set of K non-
redundant constraints). Finally, if these eigenvalues grow
sufficiently fast as n→∞, then the product on the right
hand side becomes irrelevant, in which case the knowl-
edge of S∗can and det(2πΣ∗) is enough in order to char-
acterize the asymptotics of Ω~C∗ .

In our setting where ~C∗ = ~s∗ and K = n (node
strengths are all mutually independent as it is not possi-
ble to guess any individual node strength from the knowl-
edge of the other n− 1 ones), we calculate the entries of
Σ∗ as

Σ∗ij ≡ Cov~β∗(si, sj)

= 〈sisj〉~β∗ − 〈si〉~β∗〈sj〉~β∗

=
∂2 lnZ(~β)

∂βi∂βj

∣∣∣∣∣
~β=~β∗

(22)

where Z(~β) is given by Eq. (7). An explicit calculation
gives

Σ∗ii = Var~β∗(si)

=
∑
j 6=i

e−(β
∗
i +β

∗
j )

[1− e−(β∗i +β∗j )]2

=
∑
j 6=i

〈wij〉~β∗(1 + 〈wij〉~β∗) (23)

for the diagonal entries (i.e. the variances of the con-
straints) and

Σ∗ij = Cov~β∗(si, sj)

= Var~β∗(wij)

=
e−(β

∗
i +β

∗
j )

[1− e−(β∗i +β∗j )]2
= 〈wij〉~β∗(1 + 〈wij〉~β∗) (i 6= j) (24)

for the off-diagonal entries (i.e. the covariances between
distinct constraints).

We finally obtain

S∗mic = ln Ω~s∗ (25)

= S∗can − ln
√

det(2πΣ∗) +

n∑
k=1

ln[1 +O(1/λ∗k)]

where we have used
√

det(2πΣ∗) =
∏n
k=1

√
2πλ∗k. Note

that the eigenvalues {λ∗k}nk=1 are positive, the n node
strengths being linearly independent constraints [6]. In
principle, in order to compute (the leading term of)
Eq. (25) explicitly, we need to specify a value for ~s∗,
calculate the resulting matrix Σ∗, and the eigenvalues of
the latter. However, in Sec. III we show that the knowl-
edge of the diagonal elements of the covariance matrix
is enough for our purposes. This result is then used in
Sec. IV when we consider specific choices of ~s∗.

III. EQUIVALENCE AND NONEQUIVALENCE
OF WEIGHTED NETWORK ENSEMBLES

In this section we use the knowledge of the canoni-
cal and microcanonical probability distributions derived
in the previous section in order to establish two criteria
for the equivalence of ensembles of weighted networks,
namely the one based on the vanishing of the relative en-
tropy density between the two distributions [4] and the
traditional one based on the vanishing of the canonical
relative fluctuations of the constraints [1].

A. Relative entropy density

As we have anticipated, EE can be stated mathemat-
ically using three different notions, namely thermody-
namic, macrostate and measure equivalence [4]. These
definitions turn out to be, under mild assumptions, es-
sentially equivalent [4]. Here, we use the definition in
the measure sense, which has been recently formulated
explicitly for binary network ensembles [5, 6, 19, 20] and
is based on the vanishing of a suitable relative entropy
density between the microcanonical and canonical prob-
ability distributions. Our calculations generalize those
results to the case of weighted networks, for which mea-
sure equivalence has not been studied yet.
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FIG. 2. Illustration of the nonequivalence of ensembles of weighted networks with given strength sequence ~s∗ in the measure
sense. Schematically, the x axis represents all weighted networks W ∈ Wn. Here, n = 8 and ~s∗ = (11, 6, 5, 13, 8, 5, 2, 4). The
Ω~s∗ networks matching the particular strength sequence ~s∗, i.e. those for which ~s(W) = ~s∗, are represented in the middle. The
y axis represents the canonical and microcanonical probabilities for each network. The microcanonical distribution Pmic(W|~s∗)
assigns zero probability to the networks for which ~s(W) 6= ~s∗, and uniform probability Pmic(W

∗|~s∗) = Ω−1
~s∗ to each network

W∗ for which ~s(W∗) = ~s∗. By contrast, the conjugate canonical distribution Pcan(W|~β∗) assigns positive probability to all the
networks in Wn and therefore has ‘tails’ that extend all over the x axis. Normalization implies that, while also the canonical

probability gives a constant value Pcan(W∗|~β∗) to each network W∗ with the strength sequence ~s∗, this value is (for n finite)

smaller (lower plateau) than the corresponding microcanonical one (upper plateau): Pcan(W∗|~β∗) < Pmic(W
∗|~s∗). Indeed,

the blue and red areas should be equal because of normalization. Intuitively, the two ensembles become equivalent in the
thermodynamic limit if, sufficiently fast as n → ∞, the canonical tails vanish (the blue areas disappear) and the canonical
plateau ‘catches up’ with the microcanonical one (the red area disappears). Measure equivalence formalizes this ‘sufficiently

fast’ rigorously, finding that EE corresponds to the condition limn→∞[lnPmic(W
∗|~s∗) − lnPcan(W∗|~β∗)]/n = 0. It turns out

that this is not the case for the model discussed here: canonical and microcanonical ensembles of weighted networks with given
strength sequence are not equivalent.

In general, the relative entropy (or Kullback-Leibler
divergence) between two distributions P and Q, both
having support over a discrete set Wn = {W} of con-
figurations in analogy with Eq. (1), is defined as

D[P ||Q] ≡
∑

W∈Wn

P (W) ln
P (W)

Q(W)
(26)

and quantifies ‘how far’ the distribution P is from the ref-
erence distribution Q [31]. When P and Q represent the
microcanonical and canonical distributions respectively,
it can be shown [5, 6] that D[P ||Q] reduces to the differ-
ence between the canonical and microcanonical entropy,
which can be both estimated on a single configuration
realizing the hard constraint (as we have indeed shown
in the previous section for our weighted network model).
Moreover, its calculation asymptotically requires only the
canonical covariance matrix Σ∗ between the constraints.

We are now going to see how these general results
apply to our specific case. A visual illustration of the
idea behind measure equivalence for our ensembles of
weighted networks with given strength sequence is pro-
vided in Fig. 2. Following Eq. (26), the relative entropy

between Pmic(W|~s∗) and Pcan(W|~β∗) is defined as

D∗ ≡ D[Pmic(W|~s∗)||Pcan(W|~β∗)]

=
∑

W∈Wn

Pmic(W|~s∗) ln
Pmic(W|~s∗)
Pcan(W|~β∗)

. (27)

By inserting Eq. (19) into Eq. (27) and using the fact

that Pcan(W|~β∗) has the same value for any network W∗

matching the hard constraint ~s(W∗) = ~s∗, we confirm
that D∗ can be estimated pointwise on W∗ as

D∗ = lnPmic(W
∗|~s∗)− lnPcan(W∗|~β∗). (28)

Moreover, using Eqs. (17) and (20), we also confirm that
it reduces to the entropy difference

D∗ = S∗can − S∗mic. (29)

Now, Eq. (25) immediately allows us to obtain

D∗ = ln
√

det(2πΣ∗) +

n∑
k=1

ln[1 +O(1/λ∗k)] (30)

which depends only on the eigenvalues of the canonical
covariance matrix Σ∗, whose diagonal and off-diagonal
entries are given in Eqs. (23) and (24) respectively.
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The definition of measure equivalence is the vanishing
of the relative entropy density, i.e. of the ratio D∗/n,
in the thermodynamic limit [4]. Explicitly, EE in the
measure sense corresponds to

d∗ ≡ lim
n→∞

D∗

n
= 0 (31)

or equivalently [6]

D∗ = o(n), (32)

where o(n) denotes a quantity that, if divided by n, van-
ishes as n → ∞. Equation (29) allows us to understand
the above definition of macrostate EE as follows. The mi-
crocanonical entropy S∗mic is the logarithm of the number
of accessible configurations under hard constraints, while
the canonical entropy S∗can is the logarithm of the corre-
sponding ‘effective’ number of configurations under soft
constraints. EE requires that, as n increases, the typ-
ical configurations of the system under the two ensem-
bles become the same, i.e. that the (effective) numbers
of configurations in the two ensembles become closer to
each other. This cannot happen if, as we keep adding one
more unit to the system, the difference between the two
entropies (i.e. the relative entropy D∗) keeps increasing
by an arbitrary amount. The criterion in Eq. (31) estab-
lishes that if the entropy difference per node, i.e. D∗/n,
does not vanish as n diverges, then the two ensembles
cannot be equivalent.

Equation (32) implies that, in order to assess whether
the system is under EE, we do not need the exact value
of D∗, but only its leading order with respect to n. Then
from Eq. (30) we see that, since the term 1 + O(1/λ∗k)

is at most of the same order as
√

2πλ∗k, the presence of
O(1/λ∗k) does not affect ensemble (non)equivalence:

D∗ = O

(
n∑
k=1

lnλ∗k

)
= O(ln det Σ∗). (33)

So, in order to check whether Eq. (32) holds, it is ulti-
mately enough to check whether

ln det Σ∗ = o(n). (34)

On the other hand, since our hypothesis of non-
redundant constraints implies λ∗k > 0 for all k (as dis-
cussed in Sec. II C), we see that the contribution of the
term

∑n
k=1 ln[1 + O(1/λ∗k)] to the relative entropy in

Eq. (30) is at most O(n). So if ln
√

det(2πΣ∗) grows
faster than O(n) then Eq. (30) reduces to the stronger
result

D∗ ≈ ln
√

det(2πΣ∗) ≈ 1

2
ln det Σ∗, (35)

i.e. the leading term of the relative entropy (not only its
leading order) can be calculated exactly from ln det Σ∗

(throughout this paper, the symbol “x ≈ y” indicates
that the leading term of x and y is asymptotically the

same, i.e. the two quantities differ by a quantity that
vanishes if divided by either x or y as n → ∞). De-
pending on the regimes considered later on in the paper,
different techniques for calculating (the leading order of)
the determinant of the covariance matrix Σ∗ can be used.
We will discuss these techniques when needed, and refer
to the Appendix for explicit calculations. We will show
that, except in a certain zero-temperature limit, the con-
ditions ensuring Eq. (35) are met and the leading order
of the relative entropy can be calculated exactly.

B. Relative fluctuations of the constraints

We now consider the relative fluctuations of the con-
straints, whose behaviour in the thermodynamic limit
is, historically, the traditional criterion used to check
whether statistical ensembles are equivalent [1]. In the
standard situation, where the canonical and microcanon-
ical ensembles are defined through a single scalar con-
straint on the total energy E, the relative fluctuations
are captured by a single scalar quantity r∗ ≡ σβ∗(E)/E∗

representing the ratio of the canonical standard devia-
tion of the energy to the mean energy itself. EE is then
associated with the vanishing of r∗ as n→∞. In statis-
tics, r∗ is called the coefficient of variation of the random
variable E with expected value E∗ and variance σ2

β∗(E)
In the case of networks with local constraints, there

are n coefficients of variation to consider. They have
been calculated for both the binary and the weighted
versions of the configuration model [27]. In extreme sum-
mary, those results show that, in the binary case (where
there is a constraint on the degree k∗i for each node

i = 1, n), an upper bound 1/
√
k∗i for the relative fluctua-

tion r∗i = σβ∗(ki)/k
∗
i can been established. By contrast,

in the weighted case (corresponding to the model consid-
ered here with a constraint on the strength s∗i for each
node i = 1, n), the value 1/

√
s∗i becomes a lower bound

for the relative fluctuation r∗i = σβ∗(si)/s
∗
i [27]. Those

results have two implications.
First, in the binary case the only regime for which

general conclusions can be drawn about the vanishing
of the relative fluctuations is the so-called dense regime
where the expected degree of all nodes diverges, hence
r∗i → 0. In the opposite sparse regime where the average
degree of all nodes is finite, we only have a finite upper
bound for the relative fluctuations, but their actual value
depends on the specific network. In general, however, the
decreasing behaviour of the upper bound for the relative
fluctuations in binary networks with increasing degrees
is opposite to that of the relative entropy density, which
increases as the expected degree increases [5, 19, 20].

Second, in the weighted case we have a somewhat op-
posite situation where we can only conclude that, in the
sparse regime where the expected strengths are finite
(apart from possible hubs), the relative fluctuations do
not vanish. By contrast, in the dense case where the
expected strengths diverge, the relative fluctuations can
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in principle pick any value. Confusingly, even if in the
weighted case the lower bound for the relative fluctu-
ations of the strengths goes to zero for nodes with di-
verging strength s∗i , previous results seem to indicate
that the realized value of r∗i in networks with hetero-
geneous strength sequence actually increases for higher
s∗i [27]. This behaviour suggests that weighted networks,
due to the many possible ways in which weight can ac-
cumulate on links, can behave very differently from bi-
nary networks. This observation requires further research
and strengthens our motivation for studying the relative
fluctuations in weighted networks in different scenarios
(ranging from homogeneous to heterogenous concentra-
tions of link weights), in conjunction with the relative
entropy and, in general, ensemble (non)equivalence.

Using Eq. (23), we can immediately calculate the stan-
dard deviation of each constraint si around its expected
value s∗i as

σ~β∗(si) =
√

Var~β∗(si)

=

√√√√∑
i6=j

e−(β
∗
i +β

∗
j )

[1− e−(β∗i +β∗j )]2

=

√∑
i 6=j

〈wij〉~β∗(1 + 〈wij〉~β∗)

=

√
s∗i +

∑
i6=j

〈wij〉2~β∗ . (36)

The relative fluctuation of the strength is therefore

r∗i =
σ~β∗(si)

s∗i
=

√√√√ 1

s∗i
+

∑
i 6=j〈wij〉2~β∗

(
∑
i 6=j〈wij〉~β∗)2

, (37)

Since 〈wij〉~β∗ ≥ 0 for all i, j, we have (
∑
i 6=j〈wij〉~β∗)

2 ≥∑
i 6=j(〈wij〉~β∗)

2, showing that 1/
√
s∗i is indeed a lower

bound for r∗i . When studying the asymptotic behaviour
of the relative fluctuations in the thermodynamic limit,
we will be interested in whether the limit

ρ∗i ≡ lim
n→∞

r∗i (38)

is zero (vanishing relative fluctuations) or positive (non-
vanishing relative fluctuations) for each node i = 1, n.

IV. BEC IN WEIGHTED NETWORKS

In physical systems composed of bosons, i.e. particles
obeying Bose-Einstein statistics, BEC is a phase tran-
sition whereby, below a certain critical temperature, a
finite fraction of the total number of particles condenses
in the ground state, i.e. the state with lowest energy
(or more generally in a finite number of states with low-
est energy). BEC was theoretically predicted by Satyen-
dra Nath Bose and Albert Einstein in 1924 [32], and

it has since then been observed in various physical sys-
tems. Models of BEC have been studied in different sta-
tistical ensembles in the standard case with only global
constraints (total energy and/or total number of parti-
cles) [33–38]. Although the detailed phenomenology ex-
hibited by these models depends on the choice of the
energy and the structure of the interactions, it is gener-
ally found that EE breaks down in the condensed (low-
temperature) phase, as signalled by nonvanishing relative
fluctuations of the constraints.

In this Section, we are going to show that a form of
BEC, even if quite different from that found in more tra-
ditional physical settings, can also appear in our ensem-
bles of weighted networks. The possible onset of BEC
in our system creates an ideal situation where an EE-
breaking phase transition can be studied in combina-
tion with an additional and unrelated mechanism for the
breakdown of EE, i.e. the presence of local constraints,
which is always active in both the condensed and the
non-condensed phases. To illustrate our results, we first
make some important clarifications in order to establish
a rigorous link from weighted network ensembles to Bose-
Einstein statistics and then study the different phases of
the model.

A. Bose-Einstein statistics in weighted networks

As we have already recalled, weighted networks with a
constraint on the strength sequence obey Bose-Einstein
statistics, as opposed to binary networks that obey
Fermi-Dirac statistics [21, 22, 24]. Indeed, inserting
Eq. (6) into Eq. (5) we get the probability of a config-
uration for a gas of free particles in the grandcanonical
ensemble2, where the pair i, j labels an energy state, the
weight wij is the number of particles in that state (occu-
pation number), and the sum βi + βj can be interpreted
as

βi + βj =
εij − µ(T )

kT
. (39)

In the latter expression, εij represents the energy of the
state, 1/kT is the inverse temperature, and µ(T ) is the
chemical potential (required to fix the same expected
overall number of particles for all values of T ) [24]. In-
deed, as we discussed in Sec. II B, in our setting the en-
ergy and temperature (and in this case, the chemical po-

tential as well) are all reabsorbed into ~β. Therefore we

2 In the grandcanonical ensemble, both the total energy and the
total number of particles are treated as soft constraints. With
respect to the canonical ensemble, the appearance of the number
of particles as an additional soft constraint requires the introduc-
tion of an extra Lagrange multiplier, the chemical potential. In-
terestingly, in the context of BEC a fourth (so-called ‘Maxwell’s
Demon’) ensemble has also been introduced where the total num-
ber of particles is soft while the total energy is hard [33].
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can interpret the link weight wij as the number of ‘ele-
mentary particles’ of weight, i.e. the number of quanta
of unit weight, populating the link between nodes i and
j [21, 22]. The total number of such particles in the sys-
tem is the total weight W of all links in the network:

W (W) =

n∑
i=1

∑
j<i

wij =
1

2

n∑
i=1

si(W). (40)

The ‘weighted’ property wij ∈ N, which leads to
Eqs. (7), (8) and (9), corresponds to the possibility that
the same state (pair of nodes) is occupied by indefi-
nitely many particles (subject to the average number dic-
tated by the chemical protential), which is a property of
bosons. By contrast, in binary networks one has to im-
pose wij ∈ (0, 1), which is a property of fermions [21].
An extensive treatment of the role of chemical potential
and temperature in binary networks can be found in [24].
Here, to properly interpret what the weighted model is
doing, we should give a series of clarifications.

First, we should make a clear distrinction beween the
n ‘units’ of our system (i.e. the nodes of the network)
and the W ‘particles’ of weight that, as a formal analogy,
can be interpreted as populating the links of the network.
The former are the real constituents of our physical sys-
tem, while the latter are a mathematical abstraction used
to represent the nature of the interactions (links) between
such constituents. If we imagine doubling the size of our
network, we should imagine doubling the number n of
nodes: indeed, we can imagine the network ‘growing in
size’ by adding one single node at a time, but we can-
not imagine adding one single pair of nodes at a time,
without actually adding n new pairs. One should also
not be tempted to regard node pairs as the fundamental
units by the fact that, mathematically, the n(n − 1)/2
variables {wij} involving different pairs of nodes are in-
dependent random variables: actually, this only occurs
in the canonical ensemble and would in any case not be
true for more general choices of the constraints. More-
over, even the n(n− 1)/2 independent node pairs in the
canonical ensemble cannot be assigned independent val-
ues of the parameters, since there are only n parameters
corresponding to the Lagrange multipliers attached to
each node. Explicit (and strong) consequences of this
fact will be illustrated precisely in the context of BEC.
Therefore the physical size of our system is n, and this is
why in Eq. (31) we defined the relative entropy density as
the relative entropy divided by n in the first place. How
the total weight W varies with the system size n depends
on a specific property, i.e. on how we make the entries
of ~s∗ (and the resulting value of W ∗ =

∑n
i=1 s

∗
i /2) scale

with n. For instance, we may choose to be in the sparse
regime where ~s∗ remains finite as n→∞, or in the dense
regime where ~s∗ diverges as n→∞. As we show below,
the latter is the relevant case for BEC to emerge.

Second, we stress that, irrespective of the above, we
always consider a hard number n of nodes, and this is
why we compare (only) the canonical (soft value of ~s)

and microcanonical (hard value of ~s) ensembles of net-
works, both for fixed n (which sets the dimension of ~s).
We do not consider the grandcanonical ensemble of net-
work configurations where n is soft. The grandcanonical
ensemble introduced in the aforementioned analogy with
systems of bosons is a different one; it may be denoted
as an ensemble of weight quanta in a network with fixed
n and originates from the fact that the Hamiltonian in
Eq. (6), and consequently the total link weight (not n)
in Eq. (40), is a fluctuating quantity in the canonical
ensemble of network configurations. The fluctuations in
the (rescaled) energy H (canonical ensemble of network
configurations) are seen as fluctuations in the particle
number W (grandcanonical ensemble of weight quanta)
in the Bose-Einstein analogy. Fluctuations in the par-
ticle number have been the subject of many studies in
the literature on BEC [33–38]. Note that, in both canon-
ical and microcanonical ensembles, the individual link
weights {wij} are fluctuating quantities, despite the fact
that the total link weight W ∗ is constant in the micro-
canonical ensemble. Therefore the numbers of ‘weight
particles’ of individual links fluctuate in both ensembles.

Third, while we necessarily discuss the
(non)equivalence of the canonical and microcanoni-
cal ensembles in the thermodynamic limit n → ∞,
the total weight W ∗ can (and, across the canonical
ensemble, will in any case) be arbitrarily large even
for finite n. Indeed, the phase transition that we
are about to discuss (namely, BEC) does not per se
require the limit n → ∞, while it definitely requires
the limit W ∗ → ∞. Abstractly, these two limits (and
the associated phenomena of EN and BEC respectively)
may appear as mathematically unrelated. However, in
practice they are physically related once the scaling of ~s∗

with n is specified. In particular, we are going to show
that, in order to observe BEC, we need be in a dense
regime where W ∗ = O(n2). This ensures that, when
taking the thermodynamic limit n → ∞ in order to
study ensemble (non)equivalence, we are automatically
implying W ∗ →∞ so that we can check for BEC at the
same time.

Last, we recall that ~β · ~s(W) has to be dimension-
less in order to ensure that the probability is a number.
Therefore, since wij is dimensionless, so are s∗i and β∗i .
In turn, this implies that both sides of Eq. (39) must
be dimensionless. On the other hand, when modelling a
real system, the ‘energy’ εij may represent any physical
‘cost’ associated to the link between nodes i and j (more
precisely, it represents the cost of reinforcing wij by a
unit of weight) and may therefore carry its own unit of
measure (e.g. it may depend on some distance between
nodes i and j). Necessarily, the chemical potential µ(T )
carries the same units as the energy. As for the ‘tem-
perature’ T , it may be chosen to be dimensionless as it
merely represents a control parameter (this is the choice
that we will make later); alternatively, it may carry the
same units of the energy if it is useful that temperature
and energy live on the same scale. Irrespective of this
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choice, in our setting the ‘Boltzmann constant’ k is sim-
ply a constant that takes care of all dimensional units of
measure and makes the ratio on the right hand side of
Eq. (39) dimensionless.

B. Core-periphery networks

With the above clarifications, we can finally go back to
our model. In the traditional physical situation, in the
canonical ensemble the energy εij of each state i, j is a
constant and the temperature T can be varied. Clearly,
εij is independent of T , while the chemical potential µ(T )
is chosen, as a function of temperature, in order to re-
alize the correct (T -independent) expected total number
〈W 〉∗ ≡W ∗ of particles for all values of T . In this ‘direct
problem’, every state will therefore have an expected oc-
cupation number governed by εij , T and µ(T ). In our
‘inverse’ setting, T ∗ and µ∗ are instead reabsorbed into
~β∗, which in turn is induced by the chosen value of the
strength sequence (rather than the other way around).

We should therefore regard ~s∗ = ~s∗(T ) and ~β∗ = ~β∗(T )
as T -dependent, while W ∗ remains T -independent. This
means that the chemical potential µ∗(T ) should be such
that

n∑
i=1

s∗i (T ) = 2W ∗ ∀T ≥ 0. (41)

BEC emerges when, below a certain critical tempera-
ture Tc, the occupation number of the state with mini-
mum energy εmin = mini,j{εij} (ground state), or of a
finite number of states with lowest energy, becomes so
large that it reaches a finite fraction of the total number
W ∗ of particles. Clearly, this requires the existence of
at least two different energy levels (the ground state and
at least one ‘excited’ state). Therefore the simplest way
to obtain BEC in our model is by considering a strength
sequence of the form

s∗i (T ) =

{
s∗+(T ) i = 1, n+
s∗−(T ) i = n+ + 1, n

s∗+(T ) ≥ s∗−(T ),

(42)
i.e. by partitioning the n nodes into two classes, which
we call core and periphery : the core has a finite number

n+ = O(1) (43)

of nodes, each having a ‘large’ strength s∗+(T ), while the
periphery has an extensive number

n− = n− n+ = O(n) (44)

of nodes, each having a ‘small’ strength s∗−(T ). What
we mean precisely by ‘small’ and ‘large’ will be clarified
below. For the moment, we notice that the BEC phase
(T < Tc) corresponds to picking a ‘condensed’ value of
~s∗(T < Tc) such that, in the thermodynamic limit, the
core takes up a finite fraction of the total weight W ∗

of all links in the network, despite having a finite size.
In particular, in the zero-temperature limit all the total
weight W ∗ is in the core. By contrast, the non-condensed
phase T >Tc is one where ~s∗(T >Tc) is such that no indi-
vidual link receives a finite fraction of W ∗. In particular,
the infinite-temperature limit should be such that the
energy difference between ground and excited states be-
comes ineffective, i.e. s∗+(T →∞) = s∗−(T →∞). The
different phases can be efficiently monitored by introduc-
ing a temperature-dependent order parameter Q∗(T ), as
we show below.

We stress that, since we are ultimately interested in
the relative fluctuations of the canonical constraints and
in the relative entropy that can be asymptotically cal-
culated purely from canonical quantities according to
Eq. (33), practically we only need to study the canonical
ensemble. The only check we need to make is that, when-
ever we speak of the system being in a certain ‘phase’,
this statement does not depend on the particular ensem-
ble. In other words, we need to show that the order
parameter has always the same value in the canonical
and microcanonical ensembles.

Before studying the individual phases, let us make
some general considerations, valid for all values of T . We

first find the value of ~β∗(T ) corresponding to the value of
~s∗(T ) in Eq. (42). As we mentioned, s∗i (T ) = s∗j (T ) im-

plies β∗i (T ) = β∗j (T ), therefore the entries of ~β∗(T ) take
only two values β∗+(T ) and β∗−(T ) such that

β∗i (T ) =

{
β∗+(T ) i = 1, n+
β∗−(T ) i = n+ + 1, n

β∗+(T ) ≤ β∗−(T ).

(45)
These values solve the n equations in (13), which here
reduce to the two independent equations

(n+ − 1)w∗+(T ) + n−w
∗
0(T ) ≡ s∗+(T ) (46)

(n− − 1)w∗−(T ) + n+w
∗
0(T ) ≡ s∗−(T ) (47)

where we have defined

w∗+(T ) =
e−2β

∗
+(T )

1− e−2β∗+(T )
(48)

as the expected link weight 〈wij〉~β∗(T ) between any two

nodes in the core (i, j = 1, n+),

w∗−(T ) =
e−2β

∗
−(T )

1− e−2β∗−(T )
(49)

as the expected link weight 〈wij〉~β∗(T ) between any two

nodes in the periphery (i, j = n+ + 1, n), and

w∗0(T ) =
e−β

∗
−(T )−β∗+(T )

1− e−β∗−(T )−β∗+(T )

=

√
w∗+(T )w∗−(T )√

1 + w∗+(T )
√

1 + w∗−(T )−
√
w∗+(T )w∗−(T )

=
1√

1 + 1/w∗+(T )
√

1 + 1/w∗−(T )− 1
(50)
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as the expected link weight 〈wij〉~β∗(T ) between any node

in the core and any node in the periphery (i = 1, n+ and
j = n+ + 1, n or j = 1, n+ and i = n+ + 1, n). Note that
β∗+(T ) ≤ β∗−(T ) implies w∗−(T ) ≤ w∗0(T ) ≤ w∗+(T ).

Now, solving Eqs. (46) and (47), we obtain the explicit
values of β∗+(T ) and β∗−(T ) appearing in Eq. (45):

β∗±(T ) =
1

2
ln

1 + w∗±(T )

w∗±(T )
=

1

2
ln

(
1 +

1

w∗±(T )

)
. (51)

Also note from Eq. (50) that

β∗+(T ) + β∗−(T ) = ln

(
1 +

1

w∗0(T )

)
. (52)

Also, using Eq. (16) we can define

p∗±(T ) ≡ e−2β
∗
±(T ) =

w∗±(T )

1 + w∗±(T )
(53)

as the probability that a link exists (irrespective of
its weight) between any two core-core (+) or any two
periphery-periphery (−) nodes, and

p∗0(T ) ≡ e−β
∗
+(T )−β∗−(T ) =

w∗0(T )

1 + w∗0(T )
(54)

as the probability that a link exists (irrespective of its
weight) between a core node and a periphery node.

From Eq. (39), we notice that the existence of the two

values above for the entries of ~β∗(T ) implies that there
are three energy levels, associated with the energies

ε∗+ = µ∗(T ) + 2kTβ∗+(T ), (55)

ε∗− = µ∗(T ) + 2kTβ∗−(T ), (56)

ε∗0 = µ∗(T ) + kT [β∗+(T ) + β∗−(T )] =
ε∗+ + ε∗−

2
, (57)

where ε∗+ ≤ ε∗0 ≤ ε∗− (we recall that all energy values
are finite and independent of both T and n). The ap-
pearance of three distinct energy levels out of just two
values of the fundamental Lagrange multipliers confirms
the interpretation that the true units of the system are
the nodes and not the node pairs: it would indeed be
impossible for our system to exhibit exactly two energy
states, or in general to engineer an arbitrary number of
energy states for the node pairs, since the only arbitrary
values are those that can be attached to nodes, not to
node pairs. Also note that all the three levels above are
degenerate: the n+(n+ − 1)/2 pairs of nodes in the core
have the same expected link weight w∗+(T ) and energy
ε∗+, the n−(n− − 1)/2 pairs of nodes in the periphery
have the same expected link weight w∗−(T ) and energy
ε∗−, and the n+n− pairs of nodes across core and periph-
ery have the same expected link weight w∗0(T ) and energy
ε∗0. Therefore the ground state has energy ε∗min = ε∗+ and
degeneracy n+(n+ − 1)/2. These degeneracies are dic-
tated by the numbers of nodes in the two sets and cannot
be assigned arbitrarily.

The occupation number of the ground state (with en-
ergy ε∗+) coincides with the expected weight of all links
between core nodes (total ‘core-core’ weight):

W ∗+(T ) =
n+(n+ − 1)

2
w∗+(T ). (58)

Similarly, the occupation number of the first excited state
(with energy ε0) coincides with the expected weight of
all links between nodes across core and periphery (total
‘core-periphery’ weight):

W ∗0 (T ) = n+n−w
∗
0(T ). (59)

Finally, the occupation number of the second excited
state (with energy ε−) coincides with the expected weight
of all links between periphery nodes (total ‘periphery-
periphery’ weight):

W ∗−(T ) =
n−(n− − 1)

2
w∗−(T ). (60)

By writing W ∗ as the sum of its core-core, core-periphery
and periphery-periphery components, we get

W ∗ = W ∗+(T ) +W ∗0 (T ) +W ∗−(T )

=
n+(n+ − 1)

2
w∗+(T ) + n+n−w

∗
0(T )

+
n−(n− − 1)

2
w∗−(T ). (61)

Using Eq. (41), the total weight can also be expressed as

W ∗ =
n+s

∗
+(T ) + n−s

∗
−(T )

2
(62)

which, through Eqs. (46) and (47), indeed reduces to
Eq. (61).

We stress again that the chemical potential µ∗(T ) ap-
pearing in Eqs. (55), (56) and (57) plays the role of a
global Lagrange multiplier ensuring that, for all values
of T , the total expected weight is W ∗. Note that the T -
independence of W ∗ allows us to conclude immediately
that its value should be of order

W ∗ = O(n2) (63)

because, in particular, in the non-condensed phase all
the n(n − 1)/2 individual link weights w∗±, w∗0 must be
finite by definition. As we have anticipated, this result
ensures that in the thermodynamic limit (n→∞) we au-
tomatically have W ∗ →∞, so that we can study ensem-
ble (non)equivalence and BEC simultaneously, thereby
‘physically’ connecting two otherwise mathematically un-
related limits. We also note that, irrespective of temper-
ature, the network is always in the dense regime. We can
therefore introduce the average expected link weight

w∗ ≡ 2W ∗

n(n− 1)
= O(1), (64)
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which is a T -independent, finite parameter of our
model, controlling the overall link weight in the network.
Clearly,

w∗−(T ) ≤ w∗ ≤ w∗+(T ) ∀T. (65)

It is good to remark again that, in our ‘inverse’ prob-
lem (construction of the conjugate canonical and micro-
canonical ensembles), the parameters of the model are
the values of the constraints, which here reduce to the
two (diverging when n→∞) numbers s∗±(T ). However,
to allow consistent comparisons for different tempera-
tures, not all strength sequences are allowed, but only
those that can be obtained from one another by varying
T . In particular the values s∗±(T ) have to be specified
for each value of T and be such that the total weight is
always W ∗. Indeed Eq. (62) shows that only two of the
three quantities s∗±(T ), W ∗ are independent. By con-
trast, the traditional ‘direct’ problem in physics sees the
three energies ε∗± and ε∗0 (which do not depend on T )
as the parameters of the model, plus either w∗ or the
chemical potential µ∗(T ). However, Eq. (57) shows that
ε∗0 = (ε∗+ + ε∗−)/2, indicating only two independent values
of the energy (say ε∗±), as a result of the fact that there
are only two types of nodes. Moreover, we may set the
minimum energy ε∗+ ≡ 0 without loss of generality, be-
cause any overall energy shift can be reabsorbed into the
chemical potential. We can therefore rename the only re-
maining independent value of the energy as ε∗− ≡ ε∗ > 0,
and similarly ε∗0 = ε∗/2 > 0. Using these replacements
into Eqs. (55) and (56), and combining the two equations,
we get

µ∗(T ) = −2kTβ∗+(T ) = ε∗ − 2kTβ∗−(T ) (66)

which is a convenient expression for solving the ‘direct’
problem. Rearranging, we obtain

ε∗ = 2kT
[
β∗−(T )− β∗+(T )

]
. (67)

and, using Eqs. (51) and (53),

e−ε
∗/kT = e2[β

∗
+(T )−β∗−(T )]

=
p∗−(T )

p∗+(T )

=
w∗−(T )[1 + w∗+(T )]

w∗+(T )[1 + w∗−(T )]
, (68)

which shows how the energy difference ε∗ between
periphery-periphery (+) and core-core (−) states is
related to the corresponding connection probabilities
p∗±(T ) and expected link weights w∗±(T ). Therefore the
most compact way of parametrizing the direct problem
is by specifying only the two finite, positive and T -
independent numbers ε∗ and w∗, and explore the result-
ing network properties by finding µ(T ) (as a function of
ε∗, w∗ and T ) and varying T as a control parameter. This
will indeed allow us to easily explore the different (high-
and low-temperature) phases consistently.

In our model, BEC occurs below a critical tempera-
ture Tc such that a finite fraction of the total weight W ∗

condenses in the core, which remains of finite size (i.e.
of a finite number n+ of nodes) even when the size of
the whole network diverges. This corresponds to requir-
ing that, as n → ∞, n+ remains finite as dictated by
Eq. (43), W ∗ diverges, and W ∗+(T ) takes up a finite frac-
tion of W ∗. Rigorously, we can define this fraction (for
finite n) as

Q∗n(T ) ≡
W ∗+(T )

W ∗
(69)

and use it to introduce the order parameter as

Q∗(T ) ≡ lim
n→∞

Q∗n(T ) = lim
n→∞

W ∗+(T )

W ∗
. (70)

We can then define the BEC phase as a phase emerging
below a certain critical temperature Tc such that

Q∗(T <Tc) > 0. (71)

By contrast, the non-BEC phase is such that

Q∗(T >Tc) = 0. (72)

A visual anticipation of the qualitative behaviour that
our system will exhibit is provided in Fig. 3.

In conjunction with BEC, we will investigate ensem-
ble (non)equivalence. Therefore, in each phase of the
model we will consider the relative entropy between the
microcanonical and canonical ensembles and the relative
fluctuations of the constraints. The criterion for measure
equivalence is based on the relative entropy in Eq. (33),
and useful techniques for the calculation of the determi-
nant of the covariance matrix Σ∗ in each phase are pro-
vided in the Appendix. Clearly, from Eqs. (23) and (45)
we see that the diagonal entries Σ∗ii of Σ∗ take two pos-
sible values:

Σ∗ii(T ) = σ2
~β∗(T )

(si) =

{
Σ∗+(T ) i = 1, n+
Σ∗−(T ) i = n+ + 1, n

(73)

where

Σ∗±(T ) =
(n± − 1)e−2β

∗
±(T )[

1− e−2β∗±(T )
]2 +

n∓e
−β∗+(T )−β∗−(T )[

1− e−β∗+(T )−β∗−(T )
]2

= (n± − 1)w∗±(T )
[
1 + w∗±(T )

]
+n∓w

∗
0(T ) [1 + w∗0(T )] . (74)

Recalling Eq. (7), we remark that the canonical en-
tropy S∗can(T ) can be easily calculated from Eq. (17) as
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Condensed phase Non-condensed phase

FIG. 3. Illustration of possible realizations of a network as a function of temperature, from higher (right) to lower (left) values
of T . As a schematic example, a network with n = 14 nodes, of which n+ are core nodes and n− = 10 are peripheral nodes,
is considered. The order parameter Q∗(T ) is zero for temperatures above the critical temperature Tc, while it is positive for
temperatures below Tc, increasing towards 1 at zero temperature. At infinite temperature (T →∞), there is no distinction
between core and periphery: all links have the same probability of existing and the same expected weight. At lower but
supercritical temperature (T > Tc), a quantitative (but not yet qualitative) distinction between core and periphery appears:
core-core links have higher probability and expected weight than core-periphery links, which in turn have higher probability and
expected weight than periphery-periphery links, however all these probabilities and expected link weights are of the same (finite)
order O(1). Below a certain critical temperature (T <Tc), the distinction between core and periphery becomes qualitative and
more dramatic (the core forms a ‘condensate’): the expected link weights are of order O(n2) for core-core links (with the
corresponding connection probabilities approaching one) and O(1) for core-periphery and periphery-periphery links. Finally, at
zero temperature (T→0) the condensate decouples from the rest: peripheral nodes are completely disconnected and all links
end up in the core, with an expected weight still of order O(n2).

the following sum of five terms:

S∗can(T ) = ~β∗(T ) · ~s∗(T ) + lnZ[~β∗(T )]

= n+β
∗
+(T )s∗+(T )

+n−β
∗
−(T )s∗−(T )

+
n+(n+ − 1)

2
ln

1

1− e−2β∗+(T )

+
n−(n− − 1)

2
ln

1

1− e−2β∗−(T )

+n+n− ln
1

1− e−β∗+(T )−β∗−(T )
, (75)

while the microcanonical entropy S∗mic(T ) is in general
hard to compute, as it requires an explicit enumeration.
However, its leading order can be obtained combining
Eqs. (25) and (75).

The relative fluctuations of the constraints take the

form

r∗i (T ) =

{
r∗+(T ) i = 1, n+
r∗−(T ) i = n+ + 1, n

(76)

where, from Eq. (37),

r∗±(T ) =

√
Σ∗±(T )

s∗±(T )
(77)

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]2 + n∓[w∗0(T )]2

[s∗±(T )]2

=

√
1

s∗±(T )
+

(n± − 1)[w∗±(T )]
2

+ n∓[w∗0(T )]
2

[(n± − 1)w∗±(T ) + n∓w∗0(T )]2
.

Therefore in the thermodynamic limit the relative fluc-
tuations of the constraints, as defined in Eq. (38), take
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only the two possible limiting values

ρ∗i (T ) =

{
ρ∗+(T ) i = 1, n+
ρ∗−(T ) i = n+ + 1, n

(78)

where

ρ∗±(T ) = lim
n→∞

r∗±(T ). (79)

Armed with the above general results, we can now study
each phase in detail.

C. Non-condensed phase

Let us start from the non-BEC phase (T > Tc). We
first consider the finite-temperature case (Tc < T <∞)
and then the infinite-temperature limit (T→∞). As all
the interesting phenomenology (in terms of both BEC
and EN) occurs in the thermodynamic limit n→∞, we
look for the asymptotic behaviour of all quantities in that
limit.

1. Finite (supercritical) temperature: Tc<T <∞

Since, by definition, when T > Tc there is no concen-
tration of ‘particles’ of weight on any of the links, all
the expected link weights must be separately finite, i.e.
w∗+(T > Tc), w

∗
−(T > Tc) and w∗0(T > Tc) are all O(1).

Consequently, from Eqs. (53) and (54) we see that all
the connection probabilities p∗+(T >Tc), p

∗
−(T >Tc) and

p∗0(T >Tc) are strictly smaller than one, i.e. missing links
can occur anywhere in the network. Using this fact into
Eqs. (46), (47), (58), (59) and (60), and using Eqs. (43)
and (44), we immediately get the strength of nodes in
the core, i.e.

s∗+(T >Tc) = (n+ − 1)w∗+(T >Tc) + n−w
∗
0(T >Tc)

≈ nw∗0(T >Tc)

= O(n), (80)

and in the periphery, i.e.

s∗−(T >Tc) = (n− − 1)w∗−(T >Tc) + n+w
∗
0(T >Tc)

≈ nw∗−(T >Tc)

= O(n). (81)

Similarly, for W ∗±(T >Tc), W
∗
0 (T >Tc) we get

W ∗+(T >Tc) = n+(n+ − 1)w∗+(T >Tc)/2 = O(1), (82)

W ∗−(T >Tc) ≈ n2w∗−(T >Tc)/2 = O(n2), (83)

W ∗0 (T >Tc) ≈ n+ nw∗0(T >Tc) = O(n), (84)

from which we see that in this phase the total weight W ∗

is essentially all in the periphery, i.e.

W ∗−(T >Tc) = W ∗ − o(n2) ≈W ∗, (85)

w∗−(T >Tc) = w∗ − o(1) ≈ w∗. (86)

We stress that the above result does not mean that the
core is empty or that there are no connections between
core and periphery. Rather, it indicates that the total
weight of all core-core and core-periphery connections is
asymptotically negligible with respect to the total weight
located inside the periphery, simply because the number
of periphery-periphery node pairs dominates the number
of core-periphery and core-core pairs. In particular, the
finite parameter w∗+(T >Tc) can take an arbitrarily large
value, without ‘moving’ the (finite and positive) value of
the average link weight w∗. All positive values of w∗+(T >
Tc) are therefore allowed. By contrast, w∗−(T > Tc) is
forced to take (to leading order) only the value w∗.

Using Eqs. (81), (83) and (84), we write the order pa-
rameter as

Q∗(T >Tc) ≡ lim
n→∞

W ∗+(T >Tc)

W ∗

= lim
n→∞

W ∗ −W ∗−(T >Tc)−W ∗0 (T >Tc)

W ∗

= 1− lim
n→∞

n2 w∗−(T >Tc)

2W ∗

= 1− lim
n→∞

n s∗−(T >Tc)

2W ∗
,

= 0, (87)

confirming the definition of non-condensed phase in
Eq. (72) and showing that, since both s∗−(T > Tc) and
W ∗ have by construction the same value in the canonical
and microcanonical ensemble, the order parameter must
be zero in both ensembles, for all values of T >Tc. There-
fore, whenever one ensemble is in the non-condensed
phase, the other ensemble is the non-condensed phase
as well. Importantly, this allows us to refer to the con-
jugate canonical and microcanonical ensembles ‘in the
non-condensed phase’ consistently.

To solve the ‘inverse’ problem, we use Eqs. (51)
and (52) and invert Eqs. (80) and (81) to get

β∗−(T >Tc) =
1

2
ln

(
1 +

1

w∗−(T >Tc)

)
≈ 1

2
ln

(
1 +

n

s∗−(T >Tc)

)
(88)

and

β∗+(T >Tc) + β∗−(T >Tc) = ln

(
1 +

1

w∗0(T >Tc)

)
≈ ln

(
1 +

n

s∗+(T >Tc)

)
. (89)

Then, subtracting Eq. (88) from Eq. (89), we get

β∗+(T >Tc) =
1

2
ln

(
1 +

1

w∗+(T >Tc)

)
≈ ln

1 + n
s∗+(T>Tc)√

1 + n
s∗−(T>Tc)

. (90)
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Equations (88) and (90) express β∗±(T >Tc) as a function
of the two (diverging) constraints s∗±(T >Tc), or equiva-
lently as a function of the finite parameters w∗±(T >Tc),
which have to be specified for all values of T .

To solve the ‘direct’ problem, we first note an im-
portant consequence of Eq. (86): in the large n limit,
w∗−(T >Tc) and β∗−(T >Tc) are independent of temper-
ature. Indeed, using Eq. (81) and (86) into Eq. (88), we
get asympotically

β∗−(T >Tc) ≈
1

2
ln

(
1 +

1

w∗

)
(91)

and, using Eq. (67),

β∗+(T >Tc) ≈
1

2
ln

(
1 +

1

w∗

)
− ε∗

2kT
. (92)

When inserted into Eq. (66), the above expressions allow
us to directly obtain the chemical potential as

µ(T >Tc) = ε∗ − 2kTβ∗−(T >Tc)

≈ ε∗ − kT ln

(
1 +

1

w∗

)
+ o(T ). (93)

As anticipated, the above result provides the solution to
the direct problem in terms of the two finite constants ε∗

and w∗, and allows us to explore the model by varying T
throughout the non-condensed phase T >Tc.

We now consider ensemble (non)equivalence. Inserting
Eqs. (80) and (81) into Eq. (74), we obtain the variance
of the strength of nodes in the core, i.e.

Σ∗+(T >Tc) ≈ nw∗0(T >Tc) [1 + w∗0(T >Tc)]

≈ s∗+(T >Tc)

[
1 +

s∗+(T >Tc)

n

]
= O(n), (94)

and in the periphery, i.e.

Σ∗−(T >Tc) ≈ nw∗−(T >Tc)
[
1 + w∗−(T >Tc)

]
≈ s∗−(T >Tc)

[
1 +

s∗−(T >Tc)

n

]
= O(n). (95)

As we show in Appendix A 1, it is possible to show that
the leading term of the determinant of the covariance
matrix Σ∗(T >Tc) in this non-condensed phase is

det[Σ∗(T >Tc)] =

n∏
i=1

Σ∗ii(T >Tc) +O(nn−2). (96)

Using Eqs. (74), (94) and (95) we obtain

n∏
i=1

Σ∗ii(T >Tc) = [Σ∗+(T >Tc)]
n+ [Σ∗−(T >Tc)]

n−

= O(nn). (97)

Inserting this result into Eq. (96), we find

det[Σ∗(T >Tc)] = O(nn) +O(nn−2) = O(nn), (98)

showing that the determinant is dominated by the diag-
onal entries of Σ∗(T > Tc). Taking the logarithm, we
obtain

ln det Σ∗(T >Tc) = O(n lnn) (99)

which, when compared with Eq. (34), shows that the
system is under ensemble nonequivalence. We note that
the O(n lnn) scaling of ln det Σ∗(T > Tc) ensures that
Eq. (35) holds, so the leading order of the relative entropy
can be calculated exactly as

D∗(T >Tc) ≈
1

2
ln det Σ∗(T >Tc) ≈

1

2
n lnn (100)

where we have used Eqs. (94) and (95) into Eq. (96).
The above result is in line with the scaling of the relative
entropy found in the case of binary networks with a con-
straint on the node degrees in the dense regime [5, 19, 20].
Another similarity between the two models is the order
of the canonical entropy:

S∗can(T >Tc) = O(n2), (101)

which can be easily seen from Eq. (75) using β∗±(T >
Tc) = O(1) and s∗±(T > Tc) = O(n), as found in
Eqs. (80), (81), (88) and (90). Then Eq. (25) also im-
plies

S∗mic(T >Tc) = O(n2). (102)

Note that, even if the relative entropy is subleading with
respect to the canonical and microcanonical entropies, it
is still superextensive in the number n of units of the
system, thereby breaking ensemble equivalence as in bi-
nary networks with fixed degrees. Therefore the result
in Eq. (99) is another observation, for the first time in
weighted networks, of the fact that ensemble equivalence
can be broken by the presence of an extensive number of
local constraints, even away from phase transitions.

Coming to the relative fluctuations of the constraints,
we see from Eqs. (77) and (79) that

r∗±(T >Tc) =

√
Σ∗±(T >Tc)

s∗±(T >Tc)

≈

√
n+ s∗±(T >Tc)

n s∗±(T >Tc)

= O

(
1√
n

)
(103)

and

ρ∗±(T >Tc) = 0. (104)

We therefore observe that in the non-condensed phase the
decay of the relative fluctuations of each constraint is of
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the same order O(1/
√
n) as generally observed for the

global constraint (total energy) in a system with short-
range interactions away from phase transitions. How-
ever, while in the traditional situation the vanishing of
the relative fluctuations implies that the relative entropy
is subextensive and that the relative entropy density
vanishes in the thermodynamic limit (as discussed in
Sec. I C), here the relative entropy density does not van-
ish and the ensembles are not equivalent. Therefore we
find that, in systems with an extensive number of local
constraints, the vanishing of even all the relative fluctu-
ations does not ensure ensemble equivalence.

2. Infinite temperature: T→∞

The extreme regime of the non-condensed phase is the
infinite-temperature case, which can be explored by tak-
ing the limit T→∞ in the solution to the ‘direct’ problem
provided by Eq. (93). In such a limit, Eq. (39) implies
that β∗+(T > Tc) and β∗−(T > Tc) converge to the same
value β∗∞ given by

β∗+(T→∞) = β∗−(T→∞) = β∗∞ ≡
1

2
ln

(
1 +

1

w∗

)
.

(105)
Then, through Eqs. (48), (49), (50), (53) and (54), we
get

w∗+(T→∞) = w∗−(T→∞) = w∗0(T→∞) = w∗, (106)

p∗+(T→∞) = p∗−(T→∞) = p∗0(T→∞) = p∗, (107)

i.e. all node pairs have the same expected link weight w∗

and connection probability p∗ given by

p∗ =
w∗

1 + w∗
. (108)

This is the characteristic situation in the infinite-
temperature limit of Bose-Einstein statistics, where each
particle is equally likely distributed across all energy lev-
els. Here, this situation translates in the graph becoming
completely homogeneous: the distinction between core
and periphery disappears as the finite difference between
energy levels becomes entirely dominated by the diverg-
ing temperature. The expected strength of every node
has the same value s∗ ≡ (n− 1)w∗:

s∗+(T→∞) = s∗−(T→∞) = s∗ = (n− 1)w∗, (109)

i.e. the strength sequence becomes a constant vector.
Clearly, the above result does not change the value of

the order parameter in Eq. (87):

Q∗(T→∞) = 0. (110)

Similarly, the final results in eqs. (99) and (104) about
the simultaneous breakdown of ensemble equivalence and
the vanishing of all relative fluctuations carry over to the
infinite-temperature limit, so in principle we do not have

to further discuss this case. However, the fact that the
strength sequence becomes a constant vector allows us to
calculate many of the properties of the model exactly, so
this example is a very transparent and instructive one.
It is therefore worth considering it in some more detail,
also because some of the following results will be useful
in the (much less trivial) zero-temperature limit as well.

In particular, Eqs. (105) and (109) imply that Eqs. (23)
and (24) can be rewritten as

Σ∗ii(T→∞) =
(n− 1)e−2β

∗
∞

(1− e−2β∗∞)2
= w∗(1+w∗)(n−1) (111)

for all i = 1, n and

Σ∗ij(T→∞) =
e−2β

∗
∞

(1− e−2β∗∞)2
= w∗(1 + w∗) (112)

for all i 6= j respectively. In Appendix A 2 we show that
the above expressions can be used to calculate the deter-
minant of Σ∗(T→∞) exactly as

det Σ∗(T→∞) = 2(n− 1)(n− 2)n−1 [w∗(1 + w∗)]
n
,

(113)
from which we confirm, without having made the approx-
imation in eq. (96), that

ln det Σ∗(T→∞) = O(n lnn) (114)

and that

D∗(T→∞) ≈ 1

2
ln det Σ∗(T→∞) ≈ 1

2
n lnn. (115)

Clearly, Eqs. (101) and (102) hold in this limit as well:

S∗can(T→∞) = O(n2), S∗mic(T→∞) = O(n2). (116)

Finally, from eqs. (109) and (111) we see that eq. (77)
leads in this case to a unique value for the coefficient of
variation of all the strengths:

r∗i (T→∞) =

√
Σ∗ii(T→∞)

s∗i (T→∞)
=

√
1 + w∗

(n− 1)w∗
∀i,

(117)
so that

ρ∗i (T→∞) = 0 ∀i, (118)

in accordance with eq. (104).

D. Condensed phase

We now consider the BEC phase (T < Tc). We
first derive general results and then discuss the finite-
temperature case and the zero-temperature limit sepa-
rately.

By the definition in Eq. (71), the condensed phase must
be such that a positive fraction Q∗(T < Tc) > 0 of the
total weight lies in the core, i.e. (to leading order)

W ∗+(T <Tc) ≈ Q∗n(T <Tc)W
∗ ≈ Q∗(T <Tc)W ∗ (119)



19

which necessarily means

w∗+(T <Tc) = O(n2), W ∗+(T <Tc) = O(n2) (120)

and p∗+(T < Tc) ≈ 1, i.e. the core does not have miss-
ing links (the presence of core-core links is no longer a
random event, while the weight of such links is still a
random variable). As expected, BEC corresponds to the
divergence of w∗+(T <Tc), and we now see that the speed
of this divergence is of order n2 in our model. For con-
venience, we may define

ψ∗+(T <Tc) = lim
n→∞

w∗+(T <Tc)

n2
(121)

which is finite and positive, so that

w∗+(T <Tc) ≈ ψ∗+(T <Tc)n
2. (122)

Combining Eqs. (50) and (120) we see that

w∗0(T <Tc) ≈
1√

1 + 1/w∗−(T <Tc)− 1
, (123)

which inserted into Eq. (61) shows that, to leading order,

w∗ ≈ n+(n+ − 1)ψ∗+(T <Tc) + w∗−(T <Tc), (124)

an expression that relates the finite parameters of the
model with each other in the condensed phase. Therefore
we see from Eq. (119) that

w∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]w
∗ (125)

and

W ∗−(T <Tc) ≈ [1−Q∗n(T <Tc)]W
∗. (126)

Inserting Eq. (125) into Eq. (123) yields

w∗0(T <Tc) ≈
1√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
(127)

and

W ∗0 (T <Tc) ≈
n+n−√

1 + 1
[1−Q∗n(T<Tc)]w∗

− 1
. (128)

The above expressions show that neither w∗−(T < Tc)
nor w∗0(T < Tc) diverge, indicating that BEC occurs
only in the ground state and that p∗−(T < Tc) < 1 and
p∗0(T < Tc) < 1, i.e. there can be missing links in the
periphery and between core and periphery. Moreover,
we see that W ∗0 (T < Tc) is subleading with respect to
both W ∗+(T <Tc) and W ∗−(T <Tc): although individual
core-periphery links have an expected weight w∗0(T <Tc)
larger than the expected weight w∗−(T < Tc) of individ-
ual periphery-periphery links, the number n+n− of core-
periphery links is of smaller order with respect to the
number n−(n− − 1)/2 of periphery-periphery links, and
as a result the total weight of all core-periphery links is
of smaller order as well.

To obtain s∗±(T <Tc) to leading order, we use Eqs. (46)
and (47):

s∗+(T <Tc) = (n+ − 1)w∗+(T <Tc) + n−w
∗
0(T <Tc)

≈ (n+ − 1)ψ∗+(T <Tc)n
2, (129)

s∗−(T <Tc) = (n− − 1)w∗−(T <Tc) + n+w
∗
0(T <Tc)

≈ nw∗[1−Q∗n(T <Tc)]. (130)

Now, combining the above expressions, we see that the
order parameter defined in Eq. (70) can be written as

Q∗(T <Tc) = lim
n→∞

W ∗+(T <Tc)

W ∗+(T <Tc) +W ∗−(T <Tc)

= lim
n→∞

1

1 +
n−(n−−1)w∗−(T<Tc)

n+(n+−1)w∗+(T<Tc)

= lim
n→∞

1

1 +
n−s∗−(T<Tc)

n+s∗+(T<Tc)

=
1

1 +
w∗−(T<Tc)

n+(n+−1)ψ∗+(T<Tc)

=
n+(n+ − 1)ψ∗+(T <Tc)

w∗
> 0. (131)

Besides quantifying the order parameter, the above calcu-
lation shows that, since the value of Q∗(T <Tc) only de-
pends on the values of s∗+(T <Tc) and s∗−(T <Tc) (which
by construction are the same in the canonical and micro-
canonical ensembles), whenever one ensemble is in the
BEC phase, the other ensemble is the BEC phase as well,
for all temperatures T < Tc. As for the non-condensed,
this allows us to refer to the conjugate canonical and
microcanonical ensembles being ‘in the same phase’ con-
sistently. Inverting Eq. (131), we can also express the
parameter ψ∗+(T < Tc) in terms of the order parameter
as follows:

ψ∗+(T <Tc) =
w∗Q∗(T <Tc)

n+(n+ − 1)
. (132)

The ‘inverse’ problem is solved by inverting Eqs. (129)
and (130) and using them into Eq. (51) to get

β∗+(T <Tc) ≈
1

2
ln

(
1 +

1

n2ψ∗+(T <Tc)

)
≈ 1

2n2ψ∗+(T <Tc)

≈ n+ − 1

2s∗+(T <Tc)

≈ n+(n+ − 1)

2n2w∗Q∗n(T <Tc)
, (133)

β∗−(T <Tc) =
1

2
ln

(
1 +

1

w∗−(T <Tc)

)
≈ 1

2
ln

(
1 +

n

s∗−(T <Tc)

)
≈ 1

2
ln

(
1 +

1

w∗ [1−Q∗n(T <Tc)]

)
.(134)
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The above equations solve the inverse problem by ex-
pressing β∗±(T < Tc) as a function of the constraints
s∗±(T < Tc), which can in turn be expressed either in
terms of the finite parameters ψ∗+(T < Tc) and w∗−(T <
Tc) or in terms of Q∗n(T < Tc) and the temperature-
independent parameter w∗.

Again, the ‘direct’ problem requires finding the chem-
ical potential µ∗(T ) as a function of ε∗, w∗ and T . From
Eq. (66) we get

µ∗(T <Tc) = −2kTβ∗+(T <Tc)

≈ − kT

n2ψ∗+(T <Tc)

≈ −kT n+(n+ − 1)

n2w∗Q∗n(T <Tc)
. (135)

We now consider the variance of the constraints. In-
serting Eqs. (120), (125) and (127) into Eqs. (74), we
immediately see that

Σ∗+(T <Tc) ≈ (n+ − 1)[ψ∗+(T <Tc)]
2
n4, (136)

Σ∗−(T <Tc) ≈ w∗−(T <Tc)[1 + w∗−(T <Tc)]n. (137)

1. Finite (subcritical) temperature: 0<T <Tc

In this regime we have

0 < Q∗(0<T <Tc) < 1, (138)

which, as clear from Eqs. (125) and (127), implies

w∗−(0<T <Tc) ≈ [1−Q∗(0< T <Tc)]w
∗, (139)

w∗0(0<T <Tc) ≈
1√

1 + 1
[1−Q∗(0<T<Tc)]w∗

− 1
, (140)

where both quantities are O(1). Using these results, it
is possible to show (see Appendix A 3) that the leading
term of the determinant of the covariance matrix between
the constraints is

det[Σ∗(0<T <Tc)] = O(nn+3n+), (141)

implying

ln det[Σ∗(0<T <Tc)] = O(n lnn), (142)

which is the same scaling found in Eq. (99) for the non-
condensed phase. The criterion for measure equivalence
in Eq. (34) is again violated, showing that ensemble
equivalence does not hold in the condensed case as well.
The leading term of the relative entropy can still be cal-
culated exactly from Eq. (35) and is the same as the one
found in Eq. (100) for the non-condensed phase:

D∗(0<T <Tc) ≈
1

2
ln det Σ∗(0<T <Tc) ≈

1

2
n lnn.

(143)

Similarly, the canonical entropy is still of order O(n2), as
can be seen by inserting Eqs. (129), (130), (133) and (134)
into Eq. (75). We therefore retrieve

S∗can(0<T <Tc) = O(n2), (144)

S∗mic(0<T <Tc) = O(n2). (145)

Coming to the relative fluctuations, from
Eqs. (77), (79), (136) and (137) we obtain

ρ∗+(0<T <Tc) =
1√

n+ − 1
, (146)

ρ∗−(0<T <Tc) = 0. (147)

The above result can be interpreted as follows. The
term

∑
i6=j(〈wij〉~β∗)

2/(
∑
i 6=j〈wij〉~β∗)

2 in Eq. (37) is an

inverse participation ratio, taking values in the range
[(n − 1)−1, 1] and quantifying the inverse of the effec-
tive number of link weights contributing to the strength
of node i [27]. Here, for a node in the core, there is
a finite number n+ − 1 of dominant link weights, each
equal to w∗+ = O(n2), while the remaining n− weights
are of smaller order. Taking the thermodynamic limit,
these n+ − 1 dominant weights lead to the value for ρ∗+
in Eq. (146). By contrast, for a node in the periphery, all
the expected link weights are of the same order, so the
inverse participation ratio, and consequently the value of
ρ∗− in Eq. (147), vanishes. It should be noted that, even
if the expected strength of the core nodes is much bigger
than that of the periphery nodes, the relative fluctua-
tions of the core nodes do not vanish, while those of the
peripheral nodes do.

The fact that BEC occurs necessarily among the core
nodes confirms that the units of the system are the nodes,
and not the node pairs: the ‘ground state pairs’ are nec-
essarily all and only the pairs of ‘ground state nodes’.
Indeed, one cannot decide arbitrarily which node pairs
form the degenerate ground state where condensation oc-
curs. This would have been possible only if node pairs
were the fundamental units, by assigning the same de-
generate ground state energy value to any set of node
pairs (including pairs not necessarily involving the same
set of nodes). For instance, it would have been possible
to include the pairs (i, j) and (i, k), without necessarily
including the pair (j, k), in the degenerate ground state
(which is instead unavoidable in our system).

2. Zero temperature: T→0

We finally consider the zero-temperature limit as the
extreme case of the condensed phase. Importantly, we
have to be careful how we approach the two limits T→0
and n → ∞. Indeed, we are going to show that tak-
ing the limit T→0 while n is kept fixed leads to results
that cannot be subsequently carried over to the thermo-
dynamic limit by taking the limit n → ∞. Since we are
interested precisely in the thermodynamic limit, we have
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to take a different route. To show the difference, we con-
sider the zero-temperature limit first in the case of finite
n and then in the case of growing n.

If n is finite, the zero-temperature limit simply repre-
sents the situation where the only populated state is the
degenerate ground state corresponding to the links in the
core, i.e.

Q∗n(T→0) = 1 (148)

by construction. All other links are not present. As
usual, if the ground state is not degenerate, then the mi-
crocanonical entropy is zero, while if the ground state is
degenerate, then the microcanonical entropy approaches
a value called residual entropy which, for a system of
fixed size, is a constant that depends only on the degen-
eracy (these statements usually go under the names of
Third Law of Thermodynamics or, somehow improperly,
Nernst Theorem) [39]. In our setting the ground state
is non-degenerate only if n+ = 2, in which case the link
between the two core nodes is the one with minimum
energy. In the general case n+ > 2, the ground state
is degenerate and both the microcanonical and canonical
entropies are strictly positive. In any case, for finite n the
zero-temperature limit is characterized by the fact that,
in both the canonical and microcanonical ensembles, all
nodes in the periphery are deterministically isolated, i.e.
necessarily isolated in all realizations of the network. The
periphery becomes completely disconnected, both inter-
nally and from the core. Note that this is one of the de-
generate situations (mentioned in Sec. I C) where, even
if the constraints are in principle all mutually indepen-
dent, for certain degenerate parameter value(s) some of
them become ‘hard’ in both ensembles, thereby not con-
tributing any difference between the two ensembles. Note
that if we simply take the ideal limit n → ∞ starting
from this zero-temperature state, we would be consid-
ering the degenerate situation where an infinite number
of isolated ‘peripheral’ nodes are added to the fully con-
nected core. These nodes are unavoidably disconnected
in both ensembles, so their contribution to the system
is purely formal. The only variability (hence the only
possible source of nonequivalence) comes from the core,
which keeps having a finite number n+ of nodes: as an
extreme signature of BEC, the condensate behaves as an
effectively lower-dimensional object.

In order to access the thermodynamic limit, we there-
fore have to consider from the beginning the case where n
can grow indefinitely. We are going to show that the main
difference arises from the fact that the temperature can
only correspond to graphical strength sequences, which
on the other hand depend on n. Therefore one should
expect a certain n-dependent temperature Tn. At that
point, a temperature value Tn > 0 that is small but finite
when n is finite (allowing for certain populated excited
states besides the ground state) may actually approach
zero as n diverges, i.e. limn→∞ Tn = 0. The correspond-
ing excited states will effectively become part of the ac-
cessible configurations in the zero-temperature limit and

contribute an extra residual entropy.

To study this scenario, we start from the consideration
that if the two limits T→0 and n→∞ were taken simul-
taneously for quantities that depend on both Q∗n and n,
e.g. terms such as n(1 −Q∗n), we would encounter inde-
terminate expressions. We therefore need to understand
how, as T goes to zero, Q∗n goes to one as a function of
n, for n large. We recall that our starting point is always
the value ~s∗(T ) of the constraints. The temperature T is
a parameter that allows us to vary ~s∗(T ), while keeping it
graphic, i.e. realizable in at least one configuration of the
network. For large n, we therefore have to identify the
possible states of the network, hence the values of ~s∗(T ),
closest to zero temperature, i.e. when T '0 (we will use
the symbol ‘'’ to denote this near-zero-temperature be-
haviour of any quantity, thereby keeping the notation dis-
tinct from the symbol ‘≈’ that will still denote the leading
order of any quantity for large n). This is easily done by
realizing that, if we start from some ~s∗(T > 0) and de-
crease the temperature towards zero, the lowest excited
state accessible to the network (before all links condense
in the core) is one where only the smallest possible num-
ber ∆W ∗ of the W ∗ particles of weight remain out of the
core, while keeping the strength sequence ~s∗(T '0) in the
form given by Eq. (42). This state is necessarily such that
s∗−(T ' 0) = 1 (which is the minimum non-zero value of
the strength, recalling that the strength is a non-negative
integer by construction) and can be realized in multiple
ways: either by connecting the n− peripheral nodes in
pairs, thus creating n−/2 periphery-periphery links of
unit weight and energy ε∗ (in which case ∆W ∗ = n−/2),
or by connecting each peripheral node to a core node,
thus creating n− core-periphery links of unit weight and
energy ε∗/2 (in which case ∆W ∗ = n−), or finally by
combining both types of situations. Recalling the discus-
sion in Sec. IV B, in all cases the ∆W ∗ links outside of
the core have collectively the same energy ε∗n−/2 while
the links in the core have zero energy; indeed, all such
configurations are equiprobable. If we also consider the
next excited states with s∗−(T '0) = 2, 3, . . . , in general
we will have ∆W ∗(T '0) = n−`/2 where ` is a small (in
a sense that will be clear in a moment) integer.

The above considerations imply that the possible val-
ues of Q∗n close to zero temperature are of the form

Q∗n(T '0) =
W ∗ −∆W ∗(T '0)

W ∗

= 1− n−`/2

W ∗

≈ 1− `

nw∗
. (149)

Basically, the above expression makes it explicit that,
since the strength is a discrete quantity, technically the
temperature can only take discrete values in order to keep
the strength sequence graphic, so the role of T is taken
up by ` (which is an integer) and a low temperature cor-
responds to a ‘small’, i.e. finite or at most o(n), value of
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`. Indeed, in the thermodynamic limit we recover

Q∗(T '0) = lim
n→∞

Q∗n(T '0) = 1, (150)

confirming that ` = o(n) leads to the correct zero-
temperature limit. At the same time, Eq. (149) shows
that, to recover any finite-temperature value Q∗(T >
0) < 1, we would need ` to grow linearly in n in the
thermodynamic limit (note that ` cannot grow faster
than n, because ∆W ∗ cannot grow faster than n2, which
is the order of W ∗). The ` = o(n) regime considered
here is therefore genuinely different from the positive-
temperature cases discussed so far.

Having characterized the zero-temperature limit in this
way, we can calculate

lim
n→∞

n[1−Q∗n(T '0)] =
`

w∗
, (151)

from which we can obtain various asymptotic expressions.
Indeed, from Eqs. (125) and (126) we obtain

w∗−(T '0) ≈ [1−Q∗n(T '0)]w∗ ≈ `

n
(152)

and

W ∗−(T '0) ≈ `n

2
. (153)

Similarly, expanding Eqs. (127) and (128) for Q∗n close
to 1, we get

w∗0(T '0) ≈
√

[1−Q∗n(T '0)]w∗ ≈
√
`

n
(154)

and

W ∗0 (T '0) ≈ n+
√
`n. (155)

Since both W ∗−(T ' 0) and W ∗0 (T ' 0) are subleading
with respect to W ∗+(T ' 0), we have W ∗+(T ' 0) ≈ W ∗

which can be rewritten as w∗+(T ' 0)n+(n+ − 1)/2 ≈
w∗n(n− 1)/2. This implies

w∗+(T '0) ≈ w∗n2

n+(n+ − 1)
(156)

and, from Eq. (121),

ψ∗+(T '0) =
w∗

n+(n+ − 1)
, (157)

consistently with Eq. (132).
We now note that, inserting Eqs. (152) and (156) into

Eq. (68), we obtain the anticipated dependence of Tn (for
Tn ' 0) on n:

e−ε
∗/kTn =

w∗−(Tn'0)[1 + w∗+(Tn'0)]

w∗+(Tn'0)[1 + w∗−(Tn'0)]
≈ `

n
. (158)

Inverting, we find how the temperature approaches zero
as n grows:

Tn ≈
ε∗

k ln(n/`)
≈ ε∗

k lnn
. (159)

The above result, which is independent of `, connects the
thermodynamic limit n→∞ with the zero-temperature
limit T → 0 in our setting and confirms that it would be
inappropriate to first identify the ground state are the
core links by taking the limit T → 0 and subsequently
let n grow. On the contrary, the zero-temperature state
turns out to be the entire set of configurations obtained
displacing a certain number of units of weight out of the
core and such that ` = o(n). Inserting Eqs. (152), (154)
and (156) into Eqs. (53) and (54) we can characterize
these configurations through the connection probabilities

p∗+(T '0) ≈ 1− n+(n+ − 1)

w∗n2
, (160)

p∗−(T '0) ≈ `

n
, (161)

p∗0(T '0) ≈
√
`

n
, (162)

which in the thermodynamic limit behave as expected for
the ground state, i.e. p∗+(T→0) = 1, p∗−(T→0) = 0 and
p∗0(T→0) = 0.

Using Eqs. (152) and (154), we can calculate the
strengths from Eqs. (129) and (130) as

s∗+(T '0) ≈ (n+ − 1)ψ∗+(T '0)n2 ≈ w∗

n+
n2 (163)

s∗−(T '0) ≈ nw∗−(T '0) + n+w
∗
0(T '0) ≈ `. (164)

The ‘inverse’ problem is solved by Eqs. (133) and (134),
which now become

β∗+(T '0) ≈ n+(n+ − 1)

2n2w∗
, (165)

β∗−(T '0) ≈ 1

2
ln
n

`
≈ 1

2
lnn. (166)

By contrast, the solution to the ‘direct’ problem is
given through the chemical potential, obtained inserting
Eqs. (159) and (165) into Eq. (135):

µ∗(T '0) = −2kTβ∗+(T '0)

≈ −ε
∗n+(n+ − 1)

w∗n2 lnn
. (167)

The variances of the constraints can be calculated in-
serting Eqs. (152) and (157) into Eqs. (136) and (137).
This yields

Σ∗+(T '0) ≈ (w∗)2

n2+(n+ − 1)
n4, (168)

Σ∗−(T '0) ≈ `. (169)

Using the above relationships, it is possible to show (see
Appendix A 4) that the leading order of the determinant
of the covariance matrix is

det[Σ∗(T '0)] = O(n4n+`n−n+). (170)
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This leads to

ln det[Σ∗(T '0)] = O(n ln `), (171)

which is of smaller order compared to the scaling
O(n lnn) found in Eqs. (99), (114) and (142) for all pos-
itive temperatures, but still signalling the breakdown of
ensemble equivalence. Equation (171) implies that the
requirements ensuring the validity of Eq. (35) are not
met, therefore in this case the leading term of the rela-
tive entropy cannot be calculated exactly. However, the
leading order is still given by Eq. (33)

D∗(T '0) = O
(

ln det Σ∗(T '0)
)

= O(n ln `). (172)

The canonical entropy S∗can(T ' 0) can be calculated
by using Eqs. (165) and (166) to rewrite the sum of the
five terms appearing into Eq. (75) as the following sum:

S∗can(T '0) =
n+(n+ − 1)

2
+
`

2
n lnn+ n+(n+ − 1) lnn

+
`

2
n+ n+

√
n` = O(`n lnn), (173)

which, unless ` = O(n/ lnn) or bigger, is different from
the scaling O(n2) obtained for finite temperatures in
Eqs. (101) and (144). This slower increase of the canoni-
cal entropy with n confirms that in the zero-temperature
limit the system behaves as a Bose-Einstein condensate,
a phenomenon that determines a strong reduction in the
dimensionality of the space of allowed configurations.
Note that since the relative entropy is of order given by
Eq. (171), which is smaller than the order of S∗can(T '0),
the leading term of the microcanonical entropy must be

S∗mic(T '0) ≈ `

2
n lnn = O(`n lnn). (174)

Combining Eqs. (163)-(169), we finally obtain the rel-
ative canonical fluctuations

ρ∗+(T '0) =

√
n+

n+ − 1
, (175)

ρ∗−(T '0) =
1√
`
, (176)

which differ from the results in Eqs. (146) and (147) ob-
tained in the (subcritical) finite-temperature case. In
particular, now both ρ∗−(T ' 0) and ρ∗−(T ' 0) (if ` is
finite) are non-zero. Note that, while Eq. (147) can be
formally retrieved from Eq. (176) by letting ` grow lin-
early in n, Eq. (146) cannot be retrieved from Eq. (175),
because the assumption ` = o(n) has already been ex-
ploited in the derivation.

E. Critical temperature: T =Tc

Having characterized the model in all regimes, we can
now discuss more easily what happens right at the critical
temperature T =Tc. Clearly, a very interesting question

is whether the phase transition is of first or second order.
A first-order phase transition is obtained when the order
parameter Q∗(T ) jumps discontinuously from zero to a
strictly positive value as T is lowered through Tc. In such
a case, the left and right limits of Q∗(T ) at T = Tc are
different:

Q∗(T→T−c ) > Q∗(T→T+
c ) = 0. (177)

By contrast, the phase transition is of second order if
the order parameter increases continuously from zero to
positive values as T is lowered through Tc:

Q∗(T→T−c ) = Q∗(T→T+
c ) = 0. (178)

In principle, in our setting we can engineer the or-
der of the phase transition as we like: as clear from
Eq. (131), the value of the order parameter for values
slight below the critical temperature is governed by the
value of ψ∗+(T . Tc) defined in Eq. (121). So, if we
choose ψ∗+(T→T−c ) > 0 the transition will be first-order,
while if we choose ψ∗+(T → T−c ) = 0 the transition will
be second-order. While both choices are possible, the
case ψ∗+(T → T−c ) > 0 is somewhat unnatural, since it
would ‘forbid’ all those strength sequences ~s∗(T < Tc)
that, while being both graphic and perfectly consistent
with the definition of ‘condensed’ given in Sec. IV D 1, are
such that asymptotically w∗+(T < Tc) < n2ψ∗+(T → T−c )
or equivalently, by virtue of Eq. (124), such that w∗−(T <
Tc) < w∗−n+(n+−1)ψ∗+(T→T−c ). Note that the latter
inequality implies that w∗−(T ) would experience a finite
jump from w∗ − n+(n+ − 1)ψ∗+(T → T−c ) < w∗ to w∗

as T is raised from a value just below Tc to a value just
above Tc: as discussed in Sec. IV C 1, w∗ is (to leading
order) the only allowed value for w∗−(T ) above the critical
temperature.

Therefore we find more appropriate to choose ψ∗+(T )
such that ψ∗+(T → T−c ) = 0. In this way, all values of
w∗−(T <Tc) in the range [0, w∗] are allowed and there is
no discontinuity for w∗−(T ) at Tc: Eq. (124) implies that
its left limit is w∗−(T→T−c ) ≈ w∗, which coincides with
its right limit w∗−(T → T+

c ) ≈ w∗ implied by Eq. (86).
With this choice, we can locate the critical tempera-
ture Tc by equating the right and left limits of Eq. (68):
since limT→T−c e−ε

∗/kT = limT→T+
c
e−ε

∗/kT = e−ε
∗/kTc ,

the right and left limits of

w∗−(T )[1 + w∗+(T )]

w∗+(T )[1 + w∗−(T )]
(179)

must coincide. This implies

1 + w∗+(T→T+
c )

w∗+(T→T+
c )

=
1 + w∗+(T→T−c )

w∗+(T→T−c )
= 1 (180)

since in the thermodynamic limit w∗+(T → T−c ) = ∞.
The above expression in turn implies w∗+(T → T+

c ) =
∞. Note that this is consistent with the fact that, as
discussed in Sec. IV C 1, w∗+(T >Tc) is finite but can be
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arbitrarily large, while not altering (to leading order) the
average weight w∗. So, w∗+(T >Tc) can grow indefinitely
as T decreases towards Tc, and take an infinite limit as
T → T−c , consistently with the fact that, for even lower
temperatures, w∗+(T ) diverges with speed n2 as dictated
by Eq. (120). Inserting Eq. (180) into Eq. (68), we get

e−ε
∗/kTc =

w∗

1 + w∗
(181)

as n→∞. We therefore obtain

Tc =
ε∗

k ln
(
1 + 1

w∗

) , (182)

finally showing how the critical temperature depends on
the expected link weight w∗, on the energy difference
ε∗ between periphery-periphery and core-core links, and
on the constant k converting the units of the ‘cost of
links’ (energy) to those of the temperature. These results
explain much of the information anticipated previously in
Fig. 3 and summarized therein.

Adopting the view that the order parameter is con-
tinuous through the critical value Tc, we notice that the
‘direct’ solutions in Eqs. (93) and (135), as well as the
behaviour at the critical point T =Tc, can be combined
into the general ‘phenomenological’ expression

µ∗(T ) ≈ ε∗ − kT ln

(
1 +

1

w∗ [1−Q∗n(T )]

)
+ o(T )

(183)
which is valid for all values of the temperature. Indeed,
when T ≥ Tc the order parameter is zero and the above
expression reduces to Eq. (93), while when T < Tc the
order parameter takes the positive value in Eq. (131) and
the above expression reduces to Eq. (135). The extreme
limits T →∞ and T → 0 can be retrieved from Eq. (183)
as well.

V. CONCLUSIONS

We have investigated the breakdown of equivalence
between canonical and microcanonical ensembles of
weighted networks with local constraints on the strength
of each node (weighted configuration model [18]). While
ensemble nonequivalence in the corresponding binary
configuration model (i.e. binary networks with given
node degrees) had already been studied in detail [5, 19,
20, 40, 41], a similar analysis for weighted networks had
not been carried out so far. As a unique and novel in-
gredient in the case considered here, weighted networks
can undergo BEC, a phase transition that is impossible
to observe in the unweighted case. BEC emerges when
a finite fraction of the total weight of all links condenses
in a finite number of links. We constructed the sim-
plest model exhibiting such behaviour: a network with
a finite core, an infinite periphery, and a temperature-
dependent strength sequence. This setting allows us to

combine for the first time, in a single model, two com-
pletely different mechanisms that can potentially destroy
the equivalence of ensembles: a phase transition (a con-
dition exhibited in the earliest observations of ensemble
nonequivalence [3, 7–17]) and an extensive number of lo-
cal constraints (an ingredient found in more recent inves-
tigations on network ensembles [5, 6, 19, 20]).

We have considered two criteria for ensemble equiv-
alence: the traditional and intuitive one based on the
vanishing of the relative canonical fluctuations of the con-
straints in the thermodynamic limit [1] and the more re-
cent and rigorous one based on the vanishing of the rela-
tive entropy density between microcanonical and canon-
ical probability distributions (measure equivalence) [4].
While in the standard situation (i.e. under only one or a
finite number of global constraints) the vanishing of the
relative fluctuations implies measure equivalence, the re-
lationship between the two criteria had not been inves-
tigated in presence of an extensive number of local con-
straints yet. Technically, while the relative fluctuations
can be calculated exactly (as they are purely canonical
quantities), the relative entropy requires in principle un-
feasible microcanonical calculations but it can still be
calculated asymptotically via a recently proposed saddle-
point technique showing that its leading term is the log-
arithm of the determinant of the matrix of canonical co-
variances between the constraints.

We found that, for all positive temperatures, the rela-
tive entropy is O(n lnn) while the canonical and micro-
canonical entropies are O(n2). These behaviours mimick
the corresponding ones found for the binary configura-
tion model in the dense regime [5, 19, 20]. This result
shows that, for all T > 0 (including T →∞), the rela-
tive entropy is subleading with respect to the canonical
and microcanonical entropies, but is still superextensive
in the number of nodes n, which in all network mod-
els represents the number of units (physical size) of the
system. In the zero-temperature limit, we found slower
scalings for the canonical, microcanonical and relative
entropies. This is due to the fact that, in both canoni-
cal and microcanonical ensembles, the peripheral nodes
are asymptotically disconnected from all other nodes in
each possible realization of the network. In this zero-
temperature limit, the condensate effectively behaves as
a lower-dimensional system, as commonly observed in the
physics of BEC. Its entropy is the residual entropy re-
sulting from the degeneracy of the ground state. The
scaling of the relative entropy still indicates ensemble
nonequivalence. We note that in the binary configura-
tion model (which obeys Fermi-Dirac rather than Bose-
Einstein statistics) the zero-temperature phase is one
where the canonical and microcanonical ensembles are
instead identical, because in both ensembles the pairs of
nodes below a certain ‘Fermi energy’ (whose value coin-
cides with the chemical potential) are surely connected,
while those above it are surely disconnected [24]. There-
fore we can conclude that, irrespective of BEC, at all
temperatures ensemble equivalence is broken by the pres-
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ence of an extensive number of local constraints, as in
the binary configuration model (for which, however, BEC
cannot occur). So the condensation phase transition (oc-
curing at some critical temperature Tc > 0) appears to
have no effect on ensemble equivalence.

On the other hand, the calculation of the canonical
relative fluctuations of the constraints shows that they
are sensitive to the phase transition, while they cannot
be used to characterize ensemble (non)equivalence as tra-
ditionally expected. Indeed, we found that in the non-
condensed phase (T >Tc) the relative fluctuations of the
strength of all the n nodes vanish in the thermodynamic
limit. By contrast, in the condensed phase (T <Tc) the
relative fluctuations of the strength of the n+ nodes in
the core do not vanish, while those for the n− nodes in the
periphery still do (except in the zero-temperature limit,
for which not even the relative fluctuations for the pe-
ripheral nodes vanish). Therefore, as the temperature is
lowered below the critical temperature, there is a sudden
change in the relative fluctuations but no change in the
scaling of the relative entropy. Conversely, as the temper-
ature is further lowered to zero, there is a sudden change
in the scaling of the relative entropy, while the relative
fluctuations for the core nodes remain non-zero, albeit
with a different value. These results show that, at least
in the dense case studied here, the relative entropy and
the relative fluctuations capture different aspects of the
phenomenology of the proposed model, the former being
sensitive to the presence of local constraints and the lat-
ter being sensitive to the phase transition. In any case, in
presence of an extensive number of local constraints the
vanishing of (even all) the canonical relative fluctuations
does not guarantee measure equivalence and is therefore
no longer a valid criterion for ensemble equivalence as
intuitively expected.

We stress that, while the network model presented here
is deliberately simple from the structural point of view
(a core-periphery network with local, but homogeneous,
constraints), it could certainly serve as a reference for
more complicated models (e.g. a core-periphery network
with local and heterogeneous constraints). Indeed, en-
semble nonequivalence will still be manifest in such a
generalized model for all positive temperatures, because
research on binary networks with given degrees has shown
that nonequivalence is due to the locality of the con-
straints, and not to their specific value [5, 6, 19, 20].
Additionally, since a more heterogeneous choice of the
constraints can only increase the number of states with
different energy in the network, we expect that BEC will
still emerge below some critical temperature. In general,
we expect a qualitatively similar behaviour to the one
found here, with only quantitative differences.

The concept of ensemble equivalence is central for
the foundations of statistical physics, irrespective of the
particular system being considered. The findings docu-
mented here shed new light on the breakdown of EE, on
the (possibly misleading) criteria used to detect it, and
on the (so far undocumented) interplay between differ-

ent mechanisms producing it. We hope they can inspire
future research on these subjects.
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Appendix A: Determinant of the covariance matrix

Σ∗(T ) is the n×n canonical covariance matrix between
the strengths of all nodes, with entries

Σ∗ij(T ) =

{
Var~β∗(T )(si) i = j

Var~β∗(T )(wij) i 6= j

=

{
Σ∗ii(T ) i = j
〈wij〉~β∗(T )

[
1 + 〈wij〉~β∗(T )

]
i 6= j . (A1)

Combining Eqs. (23) and (24) with the results discussed
in Sec. IV B for our core-periphery model, it is easy to
see that, for all values of temperature, Σ∗(T ) is a com-
bination of four blocks

Σ∗(T ) =

[
A(T ) B(T )
C(T ) D(T )

]
, (A2)

where A(T ) is the n+×n+ submatrix of covariances be-
tween the strengths of nodes in the core, with entries

Aij(T ) =

{
Σ∗+(T ) i = j
w∗+(T )[1 + w∗+(T )] i 6= j

, (A3)

B(T ) is the n+ × n− submatrix of covariances between
the strengths of nodes across core and periphery, with
entries

Bij(T ) = w∗0(T )[1 + w∗0(T )] ∀i, j, (A4)

C(T ) is a n−×n+ matrix equal to the transpose of B(T ),
and D(T ) is the n− × n− submatrix of covariances be-
tween the strengths of nodes in the periphery, with en-
tries

Dij(T ) =

{
Σ∗−(T ) i = j
w∗−(T )[1 + w∗−(T )] i 6= j

. (A5)

Depending on the range of temperature values of interest,
different techniques become useful in order to calculate
the determinant of Σ∗(T ). We therefore consider each
regime separately below.
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1. Non-condensed phase

In the regime of finite supercritical temperature (T >
Tc) discussed in Sec. IV C 1, it is possible to show that
the asymptotic behaviour of det Σ∗(T > Tc) can be de-
composed as the product of the diagonal elements of
Σ∗(T > Tc), plus a correction. Our rationale for this
decomposition comes from the fact that, as noted in
Sec. IV C 1, w∗+(T >Tc), w

∗
−(T >Tc) and w∗0(T >Tc) are

all O(1), i.e. the expected link weights are all of the same,
finite order. Consequently, the block structure depicted
in Eq. (A2) does not identify any particular difference
in the order of magnitude of the entries of Σ∗(T > Tc).
Rather, an important property of Σ∗(T > Tc) in this
regime is that its diagonal entries are, on average, n times
bigger than its off-diagonal ones. Indeed, the off-diagonal
entries are O(1), while the diagonal ones are O(n). Then
the asymptotic behaviour of det Σ∗(T >Tc) must be es-
sentially dictated by the product of the diagonal entries
of Σ∗(T >Tc).

To make this intuition more rigorous, we recall that if
a k × k matrix L can be decomposed as

L = M + εN, (A6)

where M is a diagonal matrix with entries of finite order
and εN is a perturbation, then Jacobi’s formula applies
as follows:

det L = det(M + εN) (A7)

= det M + ε(det M)tr(M−1N) +O(ε2).

Moreover, if the diagonal elements of N are equal to 0,
then the product M−1N is a k×k zero matrix and there-
fore

tr(M−1N) = 0. (A8)

Equation (A8) then becomes

det L = det M +O(ε2) (A9)

=

k∏
i=1

Lii +O(ε2).

Turning to the matrix Σ∗(T > Tc), we note that the
above hypotheses apply by setting

k ≡ n, ε ≡ 1

n
, L ≡ Σ∗(T >Tc)

n
(A10)

and defining the entries of M and N as

Mij = δijΣ
∗
ij(T >Tc)/n, (A11)

Nij = (1− δij)Σ∗ij(T >Tc), (A12)

where δij is the Kronecker delta symbol. Equation (A9)
then becomes

det

(
Σ∗(T >Tc)

n

)
=

1

nn

n∏
i=1

Σ∗ii(T >Tc) +O(n−2)

and, finally,

det Σ∗(T >Tc) = nn det

(
Σ∗(T >Tc)

n

)
(A13)

=

n∏
i=1

Σ∗ii(T >Tc) +O(nn−2),

proving Eq. (96) used in the main text.

2. Infinite-temperature limit

In the infinite-temperature limit discussed in
Sec. (IV C 2), the determinant can be calculated
exactly as follows. From Eqs. (111) and (112) we see
that, if we introduce a k × k matrix Zk defined as

Zk =


k − 1 1 · · · 1 1

1 k − 1 1 · · · 1
...

. . .
...

1 · · · 1 k − 1 1
1 1 · · · 1 k − 1

 , (A14)

then we can rewrite the covariance matrix as

Σ∗(T→∞) = w∗(1 + w∗)Zn. (A15)

Clearly, the calculation of det Σ∗(T→∞) reduces to the
calculation of det Zn:

det Σ∗(T→∞) = [w∗(1 + w∗)]
n

det Zn. (A16)

To compute det Zk for arbitrary k, we note that

Zk = (k− 2)Ik + uTk uk = (k− 2)

(
Ik +

uTk uk
k − 2

)
, (A17)

where Ik is the k × k identity matrix and

uk = (1, · · · , 1) (A18)

is the k-dimensional row vector with all unit entries.
Then, using Sylvester’s identity det(Ik+XY) = det(Il+
YX) (where X is a k × l matrix, Y is an l × k matrix,
and Ik and Il are k × k and l × l identity matrices re-
spectively) with l = 1, X = uTk , Y = uk and Il = 1, we
get

det Zk = (k − 2)k det

(
Ik +

uTk√
k − 2

uk√
k − 2

)
= (k − 2)k det

(
1 +

uk√
k − 2

uTk√
k − 2

)
= (k − 2)k

(
1 +

k

k − 2

)
= 2(k − 1)(k − 2)k−1. (A19)

Combining Eqs. (A16) and (A19), and setting k = n, we
obtain exactly Eq. (113) used in the main text.
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3. Condensed phase

In the regime of subcritical temperature (T < Tc)
discussed in Sec. IV D, the block structure indicated in
Eq. (A2) becomes particularly relevant, as it captures the
important differences in the order of magnitude of both
diagonal and off-diagonal entries of Σ∗(T < Tc) calcu-
lated using Eqs. (122), (125), (127), (136) and (137). We
first express each block conveniently and then proceed to
the calculation of the determinant. Inserting Eqs. (122)
and (136) into Eq. (A3), we obtain

A(T <Tc) ≈ [ψ∗+(T <Tc)]
2
n4 Zn+ , (A20)

where Zk is still the matrix defined in Eq. (A14). Next,
we note from Eq. (A4) that

B(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]u
T
n+

un− , (A21)

where uk is still given by Eq. (A18). Similarly,

C(T <Tc) = w∗0(T <Tc)[1 +w∗0(T <Tc)]u
T
n−un+

. (A22)

Finally, inserting Eq. (137) into Eq. (A5), we obtain

D(T <Tc) ≈ w∗−(T <Tc)[1 + w∗−(T <Tc)] Zn− .(A23)

Now, since A(T < Tc) is invertible, it is useful to ex-
ploit the block structure of Σ∗(T <Tc) by expressing its
determinant as

det Σ∗(T <Tc) = det A(T <Tc) det A(T <Tc), (A24)

where

A(T <Tc) ≡ D(T <Tc) (A25)

−C(T <Tc)A
−1(T <Tc)B(T <Tc)

is the so-called Shur complement of A(T <Tc). To cal-
culate det A(T <Tc), we use Eq. (A20) and immediately
obtain

det A(T <Tc) ≈ [ψ∗+(T <Tc)]
2n+n4n+ det Zn+

= O(n4n+) (A26)

where, using Eq. (A19),

det Zn+
= 2(n+ − 1)(n+ − 2)n+−1. (A27)

To calculate det A(T < Tc), we first use Eq. (A20) and
obtain

A−1(T <Tc) ≈ [ψ∗+(T <Tc)]
−2
n−4 Z−1n+

, (A28)

where, using Eq. (A14), Z−1k is easily calculated by direct
inversion of Zk as

Z−1k = ck


2k − 3 −1 · · · −1 −1
−1 2k − 3 −1 · · · −1
...

. . .
...

−1 · · · −1 2k − 3 −1
−1 −1 · · · −1 2k − 3


=

Ik
k − 2

− ckuTk uk

=
1

k − 2

[
Ik −

uTk uk
2(k − 1)

]
(A29)

with

ck =
1

2(k − 1)(k − 2)
. (A30)

Inserting Eqs. (A21),(A22), (A23) and (A28) into
Eq. (A25), and noticing that

uTn−un+Z−1n+
uTn+

un− = cn+n+(n+ − 2)uTn−un−

=
n+

2(n+ − 1)
uTn−un− , (A31)

we can obtain the Shur complement of A(T <Tc) as

A(T <Tc) ≈ w∗−(T <Tc)[1 + w∗−(T <Tc)] Zn− (A32)

−n+[w∗0(T <Tc)]
2[1 + w∗0(T <Tc)]

2

2(n+ − 1)[ψ∗+(T <Tc)]
2
n4

uTn−un−

from which we can calculate det A(T < Tc). We have
to distinguish the cases 0 < T < Tc and T ' 0, as they
are characterized by different scalings of w∗−(T <Tc) and
w∗0(T < Tc). In the rest of this section we consider the
case of finite temperature, while the zero-temperature
limit is considered in the next section.

When 0<T <Tc, we recall from Eqs.(139) and (140)
that both w∗−(0<T <Tc) and w∗0(0<T <Tc) are O(1).
From Eq. (A32) we therefore see that all the off-diagonal
entries of A(0 < T < Tc) are O(1), while all the diago-
nal ones are O(n−). This implies that we can use the
decomposition in Eq. (A6) where

k ≡ n−, ε ≡ 1

n−
, L ≡ A(0<T <Tc)

n−
. (A33)

Equation (A9) then implies

det A(0<T <Tc) =

n−∏
i=1

Aii(0<T <Tc) +O
(
n
n−−2
−

)
= O(nn−). (A34)

Combining Eqs. (A26) and (A34) into Eq. (A24), we fi-
nally obtain the full determinant of Σ∗(0<T <Tc). We
are interested only in its scaling with n, which is

det Σ∗(0<T <Tc) = O(n4n++n−) = O(nn+3n+),
(A35)

proving Eq. (141) used in the main text.

4. Zero-temperature limit

In the zero-temperature limit, all calculations of
the previous section remain valid until and including
Eq. (A32). The scaling of the entries of A(T ' 0) will
however be different. Indeed, we recall from Eqs.(152)

and (154) that w∗−(T '0) ≈ `/n and w∗0(T '0) ≈
√
`/n.

Inserted into Eq. (A32), these expressions imply that all
the diagonal entries of A(T '0) are asymptotically equal
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to `, while all the off-diagonal ones are O(`/n). We can
therefore use the decomposition in Eq. (A6) where

k ≡ n−, ε ≡ 1

n
, L ≡ A(T '0). (A36)

Equation (A9) then implies

det A(T '0) =

n−∏
i=1

Aii(T '0) +O
(
n−2

)
= `n− +O(n−2). (A37)

Combined with Eq. (A26) into Eq. (A24), the above re-
sult leads to the full determinant of Σ∗(T < Tc), whose
scaling with n is

det Σ∗(T '0) = O(n4n+`n), (A38)

proving Eq. (170) used in the main text.
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[9] J. Barré, D. Mukamel, and S. Ruffo, Physical Review

Letters 87, 030601 (2001).
[10] R. S. Ellis, H. Touchette, and B. Turkington, Physica

A: Statistical Mechanics and its Applications 335, 518
(2004).

[11] D. Lynden-Bell, Physica A: Statistical Mechanics and its
Applications 263, 293 (1999).

[12] P.-H. Chavanis, Astronomy & Astrophysics 401, 15
(2003).

[13] M. d’Agostino, F. Gulminelli, P. Chomaz, M. Bruno,
F. Cannata, R. Bougault, F. Gramegna, I. Iori,
N. Le Neindre, G. Margagliotti, et al., Physics Letters
B 473, 219 (2000).
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