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A generalized slip-flow theory for a slightly
rarefied gas flow induced by discontinuous wall

temperature

Satoshi Taguchi and Tetsuro Tsuji

Abstract A system of fluid-dynamic-type equations and their boundary conditions

derived from a system of the Boltzmann equation is of great importance in kinetic

theory when we are concerned with the motion of a slightly rarefied gas. It offers

an efficient alternative to solving the Boltzmann equation directly and, more impor-

tantly, provides a clear picture of the flow structure in the near-continuum regime.

However, the applicability of the existing slip-flow theory is limited to the case where

both the boundary shape and the kinetic boundary condition are smooth functions of

the boundary coordinates, which precludes, for example, the case where the kinetic

boundary condition has a jump discontinuity. In this paper, we discuss the motion

of a slightly rarefied gas caused by a discontinuous wall temperature in a simple

two-surface problem and illustrate how the existing theory can be extended. The

discussion is based on our recent paper [Taguchi and Tsuji, J. Fluid Mech. 897, A16

(2020)] supported by some preliminary numerical results for the newly introduced

kinetic boundary layer (the Knudsen zone), from which a source-sink condition for

the flow velocity is derived.

1 Introduction

Let us consider a rarefied gas in contact with a smooth boundary (or boundaries). We

are concerned with the steady behavior of the gas. Suppose that the molecular mean

free path is small compared with the characteristic system size (the Knudsen number

is small). Then, it is often advantageous to solve the fluid-dynamic system derived
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from the Boltzmann system. This approach is known as the generalized slip-flow

theory and was developed notably by Sone and his coworkers [13, 14, 15, 16].

The generalized slip-flow theory is based on the asymptotic analysis of the Boltz-

mann system for small Knudsen numbers. Both the boundary shape and the boundary

condition need to be smooth. This smoothness condition is required for the Knudsen-

layer problem to be reduced to a half-space problem of a kinetic equation in space

one dimension, from which the slip/jump boundary conditions are obtained.

The smoothness condition can be, however, restrictive in some situations. For

example, S.T. considered in [17] a rarefied gas flow around a sharp edge with different

surface temperatures on each side. But due to the limitation, only a qualitative

argument was possible for the flow structure around the edge. Motivated by this, in

this article, we discuss the possibility to extend the generalized slip-flow theory to the

case where the boundary condition has a jump discontinuity in a simple two-surface

problem. That is, we consider a steady rarefied gas flow between two parallel plates

with a discontinuous wall temperature in the framework of the generalized slip-flow

theory. The discussion is based on our recent paper [18] with some new numerical

result, which supports the present theory.

Finally, we remark on the following. In our problem (to be stated next), the bound-

ary condition has a jump discontinuity (through the plate’s temperature distribution).

This induces discontinuities of the velocity distribution function on the boundary,

and they propagate into the gas region. This feature is important in a numerical

analysis and was taken into account in [2], where a similar temperature-driven flow

has been considered (see also [18]). It is also considered in our numerical results

shown in Sect. 5, although the numerical approach is different. The propagation of

boundary-induced discontinuity in kinetic equations is also a mathematical concern

and has been investigated in, e.g., [1, 9, 6, 7, 8].

2 Problem and formulation

2.1 Problem

Let ! be the reference length and let d0, )0, and ?0 be the reference density,

temperature, and pressure of the gas, respectively. We consider a monatomic rarefied

gas occupying the space between two parallel plates located at G1 = − c
2

and G1 =
c
2

,

where (!G1, !G2, !G3) is the Cartesian coordinates, as shown in Fig. 1. The upper

halves of the plates (G2 > 0) are kept at temperature)0 (1+gw), while the lower halves

(G2 < 0) at temperature )0 (1 − gw), where gw is a constant. Henceforth, we assume

gw > 0. Therefore, the surfaces’ temperature has a step-like distribution, which is

discontinuous at G2 = 0 with the jump 2)0gw. We also assume that the gas is subject

to no pressure gradient nor external force. We investigate the steady behavior of the

gas under the following assumptions: (i) the behavior of the gas is described by the

Boltzmann equation; (ii) the gas molecules make diffuse reflection on the plates; (iii)

gw is so small that the equation and boundary conditions can be linearized around
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the reference equilibrium state at rest with density d0 and temperature )0; (iv) the

Knudsen number defined by the molecular mean free path at the reference state

divided by ! is small.

Gas

H
o
t

C
o
ld

Fig. 1 Schematic of the problem. A rarefied gas between two parallel plates located at G1 =

±c/2 with a step-like temperature distribution is considered. The temperature of the plates is

discontinuous at G2 = 0.

2.2 Formulation

Let us denote by (2')0)1/2 (Z1, Z2, Z3) the molecular velocity (' is the specific gas

constant) and by d0(2')0)−3/2(1 + q(x, ' ))� the velocity distribution function,

where � = c−3/2 exp(−|' |2). The time-independent Boltzmann equation reads

Z8m8q =
1

Y
ℒ(q), (1)

where m8 = m/mG8, ℒ is the linearized collision operator [16], and Y is a parameter

defined by

Y =

√
c

2
Kn =

√
c

2

ℓ0

!
(Kn: Knudsen number).

Here, ℓ0 is the mean free path of the gas molecules in the equilibrium state at rest

with temperature )0 and density d0. Note that Y is the Knudsen number multiplied

by
√
c/2. The operator ℒ is given by
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ℒ(�) =
∫

(' ∗ ,e) ∈R3×S2

�∗ (� ′
∗ + � ′ − �∗ − �) � dΩ(e)d'∗, (2a)

� = � (' ), �∗ = � (' ∗), � ′
= � (' ′), � ′

∗ = � (' ′
∗), (2b)

' ′ = ' + [('∗ − ' ) · e]e, ' ′∗ = ' ∗ − [('∗ − ' ) · e]e, (2c)

� = �

(
|e · ('∗ − ' ) |

|' ∗ − ' | , |' ∗ − ' |
)
, �∗ =

1

c3/2 4
−|' ∗ |2 , (2d)

where dΩ(e) is the solid angle element in the direction of e, � is a non-negative

function whose functional form is determined by the designated intermolecular force.

For example, � =
1

4
√

2c
|e · ('∗ − ' ) | for a hard-sphere gas. The diffuse reflection

boundary conditions on the plates are summarized as

q = 2
√
c

∫

Z1<0

|Z1 |q�d' ± (|' |2 − 2)gw, Z1 > 0
(
G1 = −c

2
, G2 ≷ 0

)
, (3a)

q = 2
√
c

∫

Z1>0

|Z1 |q�d' ± (|' |2 − 2)gw, Z1 < 0
(
G1 =

c

2
, G2 ≷ 0

)
, (3b)

where d' = dZ1dZ2dZ3.

The macroscopic quantities of interest, namely, the density, the flow velocity, the

temperature, and the pressure of the gas denoted by d0 (1+l), (2')0)1/2D8,)0 (1+g),
and ?0(1 + %), respectively, are defined in terms of q as

l = 〈q〉, D8 = 〈Z8q〉, g =
2

3

〈(
|' |2 − 3

2

)
q

〉
, % =

2

3
〈|' |2q〉 = l + g, (4)

where 〈·〉 designates

〈�〉 =
∫

R3

� (' )�d' . (5)

In the present two-dimensional problem, we may assume that q is independent of

G3. Nevertheless, the G3-dependency has not been precluded in the above formulation

for later convenience.

The study on the behavior of a slightly rarefied gas (i.e., the gas with small

Knudsen numbers) has a long history (see, e.g., references in [15]). In the case of

a smooth boundary, Sone and his coworkers have extensively studied the question

both for the steady [13, 14, 15, 16] and unsteady [16, 19] settings. It is based on the

asymptotic analysis of the Boltzmann system for small Knudsen numbers, and the

theory is nowadays known as the generalized slip-flow theory. However, the approach

above precludes the discontinuous boundary data. One of the paper’s purposes is to

show that we can extend Sone’s asymptotic theory to include the latter situation.
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3 Case of a smooth temperature distribution

Before we discuss the discontinuous surface temperature case, it is useful to review

the case of a smooth temperature distribution. Let the temperature of the two plates

be given by )0 (1 + gw), where gw is a smooth function of (G2, G3). Then, assuming

the diffuse reflection condition, the boundary conditions (3a) and (3b) are replaced

by

q = 2
√
c

∫

Z1≶0

|Z1 |q�d' + (|' |2 − 2)gw, Z1 ≷ 0

(
G1 = ∓c

2
, −∞ < G2 < ∞, −∞ < G3 < ∞

)
. (6)

We consider the asymptotic behavior of the solution q of the linear system (1) and

(6) for small Y following Sone’s method [15, 16]. It should be noted that for the

linearization, |m8gw | ≪ 1 should be assumed.

By the symmetry of the problem, one can assume that the solution is even

with respect to G1 = 0. Therefore, in the sequel, we consider the problem only in

the left-half domain �− = {(G1, G2, G3) | − c
2
< G1 < 0, −∞ < G2 < ∞, −∞ <

G3 < ∞}. The solution in the right-half domain is obtained from that of �− by

q(G1, G2, G3, Z1, Z2, Z3) = q(−G1, G2, G3,−Z1, Z2, Z3).
According to [15], the solution is expressed in the form

q = qH + qK, (7)

where qH is called the Hilbert solution and describes the overall behavior of the

gas, while qK is a correction to qH required in the vicinity of the boundary (the

Knudsen-layer correction). More precisely, qH is a solution to Eq. (1) subject to

the condition m8qH = $ (qH) (i.e., moderately varying solution). On the other hand,

qK is appreciable only in a thin layer (the Knudsen layer) adjacent to the boundary

G1 = − c
2

, whose thickness is of the order of Y. The Knudsen-layer correction qK is

subject to the conditions

m1qK = $ (qK/Y), (X8 9 − =8= 9 )m 9qK = $ (qK), (8)

where X8 9 is Kronecker’s delta and n = (1, 0, 0). The qH and qK are expanded in Y

as

qH = qH0 + YqH1 + Y2qH2 + · · · , (9a)

qK = YqK1 + Y2qK2 + · · · . (9b)

Accordingly, the macroscopic quantities ℎ (ℎ = l, D8, g, %) are also expressed as
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ℎ = ℎH + ℎK, (10a)

ℎH = ℎH0 + YℎH1 + Y2ℎH2 + · · · , (10b)

ℎK = YℎK1 + Y2ℎK2 + · · · , (10c)

where

lH< = 〈qH<〉, D8H< = 〈Z8qH<〉, gH< =
2

3

〈(
|' |2 − 3

2

)
qH<

〉
, (11a)

%H< = lH< + gH<, (11b)

(< = 0, 1, . . .), and

lK< = 〈qK<〉, D8K< = 〈Z8qK<〉, gK< =
2

3

〈(
|' |2 − 3

2

)
qK<

〉
, (12a)

%K< = lK< + gK<, (12b)

(< = 1, 2, · · · ).
Then, it is shown in [15] that qH0, qH1, and qK1 are expressed in the form

qH0 = qeH0, (13a)

qH1 = qeH1 − Z8�(|' |)m8gH0 −
1

2
Z8Z 9�(|' |) (m 9D8H0 + m8D 9H0), (13b)

qK1 = i
(0)
1

([, Z1, |' |) (m1gH0)0
+ Z 8

[
i
(1)
1

([, Z1, |' |) = 9 (m 9D8H0 + m8D 9H0)0

+i (1)
2

([, Z1, |' |) (m8gH0)0
]
, [ =

G1 + c
2

Y
. (13c)

Here,

1. qeH< is a linear combination of (1, Z8 , |' |) forming the (linearized) local

Maxwellian

qeH< = %H< + 2Z8D8H< +
(
|' |2 − 5

2

)
gH<, < = 0, 1.

2. The functions �(|' |) and �(|' |) are the solutions to the integral equations

ℒ(Z8�) = −Z8
(
|' |2 − 5

2

)
, with 〈|' |2�〉 = 0,

ℒ(Z8 9�) = −2Z8 9 ,

where Z8 9 = Z8Z 9 − |' |2
3
X8 9 .

3. [ is a stretched coordinate of G1 near the boundary G1 = − c
2

, adequate to describe

the Knudsen-layer corrections.

4. ' is a projection of ' onto a plane orthogonal to n = (1, 0, 0), i.e.,
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Z 8 = Z 9 (X8 9 − =8= 9 ).

5. The symbol (·)0 indicates the value on G1 = − c
2

.

6. The functions i
(0)
1

= i
(0)
1

([, Z1, |' |) and i
(1)
9

= i
(1)
9
([, Z1, |' |), 9 = 1, 2, solve

the following half-space problems (Knudsen-layer problems):

Z1m[i
(0)
1

= ℒ(i (0)
1

), (14a)

i
(0)
1

= −(|' |2 − 2)2 (0)
1

+ Z1�(|' |)

+ 4

∫ ∞

0

∫ 0

−∞
|Z1 | |' |i (0)

1
e−|' |

2

dZ1d|' |, Z1 > 0, [ = 0, (14b)

i
(0)
1

→ 0, as [ → ∞; (14c)

Z1m[i
(1)
9

= ℒ(i (1)
9
), 9 ∈ {1, 2}, (15a)

i
(1)
9

= −21
(1)
9

+ � 9 , Z1 > 0, [ = 0, (15b)

i
(1)
9

→ 0, as [ → ∞, (15c)

with

�1 = Z1�(|' |), �2 = �(|' |), (16a)

2
(0)
1
, 1

(1)
9

( 9 = 1, 2) : constants. (16b)

Note that |' | =
√
Z2

1
+ |' |2. It is known that there exists a solution to the problem

if and only if the constant 2
(0)
1

or 1
(0)
9

takes a special value and that the solution

is unique [3, 5, 15]. It has also been proved that the solution decays exponentially

fast as [ → ∞.

Suppose that the functions �, �, i
(0)
1

, and i
(1)
8

, 8 = 1, 2, are known. Then, the func-

tional dependency of qH< and qK< on the molecular velocity ' is prescribed through

these auxiliary functions and qeH<. On the other hand, the spatial dependency enters

through those of D8H<(x), gH<(x), and %H<(x) (and their spatial derivatives when

< ≥ 1). The dependency of D8H<, gH<, and %H<, and lH< on x are obtained via the

fluid-dynamic-type problems stated next.

Stokes problem. The expansion coefficients of the macroscopic quantities ℎH<

(ℎ = l, D8 , g, %) are described by the following equations and boundary conditions

on G1 = − c
2

. The equations are

m8%H0 = 0, (17)
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m8D8H< = 0, (continuity equation) (18a)

W1ΔD8H< − m8%H<+1 = 0, (equation of motion) (18b)

ΔgH< = 0, (energy equation) (18c)

lH< = %H< − gH<, (equation of state) (18d)

(< = 0, 1, . . .). The boundary conditions on G1 = − c
2

are

Order Y0: D1H0 = D2H0 = D3H0 = 0, gH0 = gw, (19a)

Order Y1: D1H1 = 0, gH1 = 2
(0)
1
m1gH0, (19b)

D 9H1C 9 = 1
(1)
1
C 9=: (m 9D:H0 + m:D 9H0) + 1 (1)2

C 9m 9gH0. (19c)

Here, Δ = m2
1
+ m2

2
+ m2

3
is the Laplacian, the viscosity W1 > 0 is defined by

W1 =
2

15
〈|' |4�〉, (20)

C8 is any unit vector orthogonal to n = (1, 0, 0), and 1
(1)
8

(8 = 1, 2) and 2
(0)
1

,

known as the slip/jump coefficients, are the same constants arising in the Knudsen-

layer problem introduced above. The numerical value of W1 and those of the

slip/jump coefficients for a hard-sphere gas are obtained as W1 = 1.270042427

and (1 (1)
1
, 1

(1)
2
, 2

(0)
1

) = (−:0,− 1, 31) = (1.2540, 0.6465, 2.4001), where :0,  1,

and 31 are the notations used in [15, 16].

It should be noted that, since we are seeking a solution that is symmetric with

respect to G1 = 0, the above system should be supplemented by an appropriate

reflection condition at G1 = 0. A similar comment applies throughout the paper and

will not be repeated in the sequel.

Solution procedure. For a given gw, the process to obtain the solution q to the order

Y is as follows:

1. From Eq. (17), %H0 = ?0 (constant).

2. Solve Eqs. (18a)–(18c) for < = 0 under the condition (19a) to obtain DH0, %H1,

and gH0. Note that %H1 is determined up to an additive constant (say, ?1). Compute

lH0 from Eq. (18d) with < = 0. The leading-order solution qH0 is derived from

Eq. (13a).

3. Solve Eqs. (18a)–(18c) for < = 1 under the conditions (19b) and (19c) to obtain

DH1, %H2, and gH1. Note that %H2 is determined up to an additive constant (say,

?2). Compute lH1 from Eq. (18d) with < = 1. The first order solution qH1 + qK1

is obtained from Eqs. (13b) and (13c).

In the above procedure, %H<, lH<, and qH< are determined up to a (common)

additive constant ?< at each <, although D8H< and gH< are determined without such

ambiguities. A physical argument can single out a solution. For example, we can

specify the gas pressure at a certain point in the domain or specify the average gas

density in the whole domain. Another possibility to remove the ambiguity might be

through a symmetry argument (depending on gw), as in the next section.
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4 Case of a discontinuous wall temperature

Now we return to the original problem. Again, we assume that the solution is

symmetric with respect to G1 = 0 and restrict the domain in �−. Moreover, we seek

the solution that is antisymmetric with respect to G2 = 0, i.e.,

q(G1,−G2, G3, Z1,−Z2, Z3) = −q(G1, G2, G3, Z1, Z2, Z3). (21)

Henceforth, we assume that the solution is G3-independent, i.e., m3 = 0, and even in

Z3 (hence, D3 = 0).

First, leaving aside the fact that the boundary condition is discontinuous at

(G1, G2) = (− c
2
, 0), we look for a solution to the system (1)–(3) in the form

q = qHK = qH + qK. (22)

Here, qH is the Hilbert solution, qK the Knudsen-layer correction, and qHK their

sum. Hereafter, we call qHK the Hilbert-Knudsen (HK) solution. Note that qH and

qK are subject to the conditions

m8qH = $ (qH), 8 = 1, 2, m1qK = $ (qK/Y), m2qK = $ (qK). (23)

As in the previous section, qH and qK, and thus qHK, are expanded in Y as

qH = qH0 + YqH1 + · · · , (24a)

qK = YqK1 + · · · , (24b)

qHK = qHK0 + YqHK1 + · · · , (24c)

with

qHK0 = qH0, qHK1 = qH1 + qK1. (25)

To obtain qHK0 and qHK1, We apply the solution algorithm given in the previous

section.

Step 1. The leading-order pressure is %H0 = ?0 (constant). We chose %H0 = ?0 = 0

in view of the antisymmetry of the solution.

Step 2. The Stokes problem to determine D8H0 and gH0 reads

m8D8H0 = 0, W1ΔD8H0 − m8%H1 = 0, ΔgH0 = 0, lH0 = −gH0, in �−, (26a)

D8H0 = 0, gH0 = ±gw, on G1 = −c
2
, G2 ≷ 0. (26b)

The solution is given by

D8H0 = 0, %H1 = 0, (27a)

gH0 = −lH0 =
gw

c
Arg

(
1 + sin I

1 − sin I

)
, I = G1 + i G2, (27b)
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where i is the imaginary unit, and the additive constant in %H1 is chosen to be zero

because of the solution’s antisymmetry. Hence, we obtain the leading-order HK

solution as

qHK0 = qH0 =

(
|' |2 − 5

2

)
gH0 =

(
|' |2 − 5

2

)
gw

c
Arg

(
1 + sin I

1 − sin I

)
. (28)

Step 3. The Stokes problem for the first order in Y is reduced to

m8D8H1 = 0, W1ΔD8H1 − m8%H2 = 0, ΔgH1 = 0, lH1 = −gH1, in �−, (29a)

D8H1 = 0, gH1 = −
2gw2

(0)
1

c

1

sinh G2

, on G1 = −c
2
, G2 ≠ 0. (29b)

The solution is given by

D8H1 = 0, %H2 = 0, (30a)

gH1 = −lH1 = −
8gw2

(0)
1

c2

G2 cos G1 cosh G2 + G1 sin G1 sinh G2

cos(2G1) + cosh(2G2)
, (30b)

where the additive constant in %H2 is chosen to be zero because of the solution’s

antisymmetry. Hence, we obtain the first-order HK solution qHK1 as

qH1 =

(
|' |2 − 5

2

)
gH1 − Z8�(|' |)m8gH0

= −
8gw2

(0)
1

c2

(
|' |2 − 5

2

)
G2 cos G1 cosh G2 + G1 sin G1 sinh G2

cos(2G1) + cosh(2G2)

− 4gw

c
�(|' |) Z1 sin G1 sinh G2 + Z2 cos G1 cosh G2

cos(2G1) + cosh(2G2)
, (31a)

qK1 = −2gw

c

1

sinh G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

)
, (31b)

qHK1 = qH1 + qK1. (31c)

Drawbacks. We have obtained the first two terms of the HK solution qHK = qHK0 +
YqHK1 disregarding the fact that the boundary data is discontinuous at (G1, G2) =

(− c
2
, 0). This solution has the following drawbacks.

1. The solution does not produce any non-zero flow velocity, which is not mean-

ingful. Note that a non-uniform surface temperature of a body usually causes

a rarefied gas flow such as the thermal creep. This remains true even if the

temperature distribution is piecewise uniform with a jump discontinuity [2].

2. Near the point (G1, G2) = (− c
2
, 0), the qHK0 and qHK1 have the following asymp-

totic properties:
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qHK0 = gw

(
|' |2 − 5

2

) (
2

c
\ + A2

6c
sin(2\) +$ (A4)

)
, (32a)

qHK1 = − 2gw

c

[
2
(0)
1

sin \

A

(
|' |2 − 5

2

)
+ Z\
A
�(|' |) + 1

G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

)]

+ $ (A), (32b)

as A ց 0, where

A =

√(
G1 +

c

2

)2

+ G2
2
, \ = Arctan

(
G2

G1 + c
2

)
,

and Z\ = −Z1 sin \ + Z2 cos \. Thus, |qHK1 | grows indefinitely with the rate A−1 as

A ց 0. In other words, the Y-expansion of qHK is meaningful only in the region

A ≫ Y in �−.

4.1 Knudsen zone

Motivated by the above observation, we now look for a solution in the form

q =




qHK = qH + qK in �− ∩ {(G1, G2) | A ≫ Y, A =

√(
G1 + c

2

)2 + G2
2
},

qZ in �− ∩ {(G1, G2) | A ≪ 1, A =

√(
G1 + c

2

)2 + G2
2
},

(33)

allowing qHK and qZ to overlap in the region Y ≪ A ≪ 1. Here, qZ replaces qHK in

the region close to the point of discontinuity (G1, G2) = (− c
2
, 0) (i.e., the Knudsen

zone). In the Knudsen zone, the length scale of variation of qZ is assumed to be of

the order of Y, i.e., m8qZ = $ (qZ/Y) (8 = 1, 2).

To analyze qZ, we introduce new spatial variables by

G8 = −c
2
X81 + YH8 , 8 = 1, 2, (34)

and assume that qZ = qZ(H1, H2, ' ). Expanding qZ in the form

qZ = qZ0 + YqZ1 + · · · , (35)

the zeroth-order term qZ0 satisfies the following equation and boundary conditions:
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Z1

mqZ0

mH1

+ Z2

mqZ0

mH2

= ℒ(qZ0), (H1 > 0, −∞ < H2 < ∞), (36a)

qZ0 = 2
√
c

∫

Z1<0

|Z1 |qZ0� ± (|' |2 − 2)gw, Z1 > 0, (H1 = 0, H2 ≷ 0), (36b)

qZ0 → 2gwΓ
(1)
I

|y | ZA sin(2\) + 2gw

c

(
|' |2 − 5

2

) (

\ −
2
(0)
1

|y | sin \

)

− 2gw

c

(
Z\

|y | �(|' |) +
1

H2

i
(0)
1

(H1, Z1, |' |)
)
, as |y | → ∞, (36c)

\ = Arctan

(
H2

H1

)
, ZA = Z1 cos \ + Z2 sin \, Z\ = −Z1 sin \ + Z2 cos \, (36d)

where Γ
(1)
I is a constant that represents the far-field asymptotic property of qZ0, and

should be determined together with the solution. This problem can be viewed as

a two-dimensional analog of the thermal creep flow [12, 10, 11], and represents a

“reaction” of a rarefied gas to a forced temperature variation in the gas. We give

further details on the derivation of (36c) in Appendix.

4.2 A source-sink condition for the flow velocity

Let us assume that qZ0 is known including Γ
(1)
I . We consider a point in �− such that

Y ≪ A =

√
(G1 + c

2
)2 + G2

2
≪ 1, and consider the asymptotic behavior of qZ in the

limit Y ց 0, keeping A (= Y |y |) fixed. With the aid of (36c), this is obtained as

qZ = Y
2gwΓ

(1)
I

A
ZA sin(2\) + 2gw

c

(
|' |2 − 5

2

) (

\ − Y
2
(0)
1

A
sin \

)

− Y2gw

c

(
Z\

A
�(|' |) + 1

G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

))

=
2gw

c

(
|' |2 − 5

2

)
\ + Y

[
2gwΓ

(1)
I

A
ZA sin(2\) − 2gw

c

(
|' |2 − 5

2

)
2
(0)
1

A
sin \

− 2gw

c

Z\

A
�(|' |) − 2gw

c

1

G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

) ]
, as Y ց 0 with A fixed,

(37)

where \ = Arctan( G2

G1+ c

2
). Hence, qHK is matched to the first two terms of qZ if
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qHK1 → 2gwΓ
(1)
I

A
ZA sin(2\) − 2gw

c

(
|' |2 − 5

2

)
2
(0)
1

A
sin \

− 2gw

c

Z\

A
�(|' |) − 2gw

c

1

G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

)
, as A → 0. (38)

Separating the Hilbert part from the Knudsen-layer part, we have

qH1 → 2gwΓ
(1)
I

A
ZA sin(2\) − 2gw

c

(
|' |2 − 5

2

)
2
(0)
1

A
sin \ − 2gw

c

Z\

A
�(|' |), (39)

as A → 0. Thus, the radial and circumferential components of the flow velocity

DAH1 = 〈ZAqH1〉 and D \H1 = 〈Z\qH1〉 near the point of discontinuity behave as

DAH1 → gwΓ
(1)
I

A
sin(2\), D \H1 → 0, as A → 0, (40)

with

A =

√(
G1 +

c

2

)2

+ G2
2
, \ = Arctan

(
G2

G1 + c
2

)
. (41)

The condition describes a source-sink pair located at (G1, G2) = (− c
2
, 0) and serves

as a “boundary condition” that provokes a non-vanishing flow velocity in the Stokes

system. As we will see later (Sect. 5), Γ
(1)
I is likely to be a positive number. Thus, a

sink flow toward the discontinuity point appears in the region G2 < 0 and a source

flow in the region G2 > 0.

To summarize, after the consideration of the Knudsen zone, Step 3 should be

replaced by

Step 3’. The Stokes problem for the first order in Y is given by

m8D8H1 = 0, W1ΔD8H1 − m8%H2 = 0, ΔgH1 = 0, lH1 = −gH1, in �−, (42a)

D8H1 = 0, gH1 = −
2gw2

(0)
1

c

1

sinh G2

, on G1 = −c
2
, G2 ≠ 0, (42b)

DAH1 → gwΓ
(1)
I

A
sin(2\), D \H1 → 0, as A =

√(
G1 +

c

2

)2

+ G2
2
→ 0. (42c)

The solution gH1 is given by (30b), while (D1H1, D2H1) can be obtained, for instance,

by applying the Fourier transform. With these solutions, the first-order HK solution

qHK1 is given by
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qH1 = 2Z1D1H1 + 2Z2D2H1

−
8gw2

(0)
1

c2

(
|' |2 − 5

2

)
G2 cos G1 cosh G2 + G1 sin G1 sinh G2

cos(2G1) + cosh(2G2)

− 4gw

c
�(|' |) Z1 sin G1 sinh G2 + Z2 cos G1 cosh G2

cos(2G1) + cosh(2G2)
, (43a)

qK1 = −2gw

c

1

sinh G2

i
(0)
1

(
G1 + c

2

Y
, Z1, |' |

)
, (43b)

qHK1 = qH1 + qK1. (43c)

Note that qK1 has not been modified from (31b).

5 Numerical results for the Knudsen-zone problem

Finally, we show some preliminary results for the Knudsen-zone problem. To sim-

plify the numerical analysis, we employ the Bhatnagar-Gross-Krook (BGK) collision

operator [4, 20] instead of the Boltzmann collision operator. The linearized BGK

collision operator is well-known and its explicit form is omitted [16]. Figure 2(a)

shows the streamlines of the flow velocity (D1Z0, D2Z0) and the (perturbed) tempera-

ture gZ0 in the upper-half domain H1 ≥ 0 and H2 ≥ 0. Here, D8Z0 and gZ0 are defined

by

D8Z0 = 〈Z8qZ0〉, 8 = 1, 2, gZ0 =
2

3

〈(
|' |2 − 3

2

)
qZ0

〉
. (44)

Note that the wall temperature is discontinuous at H2 = 0 along H1 = 0 (the plates’

temperature is )0 (1 ± gw) for H2 ≷ 0). Figure 2(b) shows the flow-velocity vector

(D1Z0, D2Z0) and its absolute value near the origin. As seen from these figures, a flow

is induced in the positive H2 direction, which exhibits a diverging flow pattern in the

region far from the origin. Note that, by the antisymmetry, it implies that there is a

shrinking flow toward the origin in the region H2 < 0. The flow speed is strongest

near the discontinuity point and decreases as

√
H2

1
+ H2

2
increases (see Fig. 2(b)). In

this way, the flow field obtained by the numerical analysis of the BGK model clearly

indicates the presence of a source-sink flow pattern in the far field. This becomes the

source-sink condition near the point of discontinuity when rescaled with the spatial

variables G8 and the limit Y → 0 is approached, as discussed in the previous section.
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Fig. 2 Numerical results for the Knudsen-zone problem based on the (linearized) BGK colli-

sion operator. (a) The thick gray curves with arrows show the streamlines of the flow velocity

g−1
w (D1Z0, D2Z0) , and the dashed contours show the temperature gZ0/gw. (b) A magnified figure

near the origin. The arrow indicates the flow-velocity vector g−1
w (D1Z0 , D2Z0) at its starting point,

and the contours visualize the absolute value.

6 Discussions

We have considered a slightly rarefied gas confined between two parallel plates

whose common temperature distribution has a jump discontinuity along them. In the

case of a smooth temperature distribution without the jump discontinuity, the Hilbert

expansion and the Knudsen-layer correction yield a practical tool (i.e., the Stokes

system) to investigate a thermally-driven flow between the two plates (Sect. 3).

On the other hand, the case of the discontinuous surface temperature cannot be

handled solely by the Hilbert solution and the Knudsen-layer correction. Indeed, the

term qHK1 can grow indefinitely near the point of discontinuity, which disproves the

validity of the HK solution there (Sect. 4). Given this observation, we have introduced

the Knudsen zone near the point (G1, G2) = (− c
2
, 0), in which the solution is allowed

to undergo an abrupt spatial variation in both G1 and G2 directions.

The Knudsen zone is described by the system (36), which is a half-space problem

for the linearized Boltzmann equation in two space dimensions. In this problem, the

constant Γ
(1)
I occurring in the far-field asymptotic property (36c) is essential from

the macroscopic view points. Indeed, Γ
(1)
I is inherited to the source-sink condition

(42c) in the Stokes system and plays a role to induce a non-zero flow velocity D8H1. In

this sense, Γ
(1)
I is of equal importance as the viscosity or the slip/jump coefficients.

Finally, let us make a brief comment on the global flow structure when Y is

small. Since the zeroth-order flow velocity D8H0 is identically zero, the overall flow

vanishes as Y tends to zero except in the Knudsen zone. In the Knudsen zone, the

nonzero flow of the order gw$ (1) is induced as seen from Fig. 2 and remains.
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However, the Knudsen zone shrinks to (G1, G2) = (− c
2
, 0) with the decrease of Y.

Therefore, the strong flow of gw$ (1) is gradually localized near (G1, G2) = (− c
2
, 0)

as Y becomes smaller. The localized flow affects the global flow at the order Y through

the source-sink condition for D8H1 and induces an overall flow with the magnitude

gw$ (Y). In this way, a global flow of the order gw$ (Y) is established as a result of

the piecewise uniform temperature distribution of the plates. The present analysis

successfully provides a clear picture of the flow structure, which is also consistent

with the picture inferred in [2].

Acknowledgements The present work was supported by JSPS KAKENHI Grant No. 17K06146.

Appendix

In this appendix, we briefly explain the derivation of the condition (36c). Our stating

point is the asymptotic behaviors of the leading order HK solution qHK = qHK0 = qH0

near (G1, G2) = (− c
2
, 0), i.e.,

qHK0 =
2gw

c

(
|' |2 − 5

2

)
\ + $ (A2), A ≪ 1, \ = Arctan

(
G2

G1 + c
2

)
. (45)

This suggests that the leading-order term of qZ is of the form

qZ0 =
2gw

c

(
|' |2 − 5

2

)
\, as |y | → ∞, H1 > 0, \ = Arctan

(
H2

H1

)
. (46)

Thus, the problem for qZ0 consists of (36a), (36b), and (46). We regard this problem

as a kind of “scattering problem” and seek a solution with the following asymptotic

property [18]:

qZ0 → 2gwΓ
(1)
I

|y | ZA sin(2\) + 2gw

c

(
|' |2 − 5

2

) (

\ −
2
(0)
1

sin \

|y |

)

− 2gw

c

(
Z\

|y | �(|' |) +
1

H2

i
(0)
1

(H1, Z1, |' |)
)
, as |y | → ∞, (47)

where Γ
(1)
I is a constant. Note that the terms inversely proportional to |y | represent

the “reaction” to the imposed external condition (46).
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