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Universidad Autónoma de Madrid

Tag der Disputation: 09.07.2020



A witty saying proves nothing.
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Abstract
In this thesis, we investigate aspects of non-equilibrium dynamics of strongly coupled field
theories within holography. While quantum field theories are systematically accessible in
the weakly coupled regime, we still lack a standard approach to strongly coupled quantum
field theories. One approach which is particularly well suited to study the non-equilibrium
dynamics in strongly coupled field theories is holography. Within holography, we relate
strongly coupled quantum field theories to weakly coupled gravity in anti de-Sitter space.
In the following, we give a brief summary of the main results.

So far, hydrodynamics – an effective long range description of systems at finite tem-
perature – was only considered in the limit of weak magnetic fields. We establish a
hydrodynamic description for anomalous quantum field theories subject to strong exter-
nal field for the first time in the literature. By means of Einstein-Maxwell-Chern-Simons
theory in AdS5, we explicitly demonstrate which transport coefficients are non-vanishing
due to the chiral anomaly and thus important for the transport behavior.

Spontaneously broken continuous symmetries lead to exciting phenomena such as the
appearance of Goldstone bosons in the low energy spectrum. The hydrodynamics for
spontaneously broken translational invariance is considered in textbooks; in this thesis,
we show that this is more subtle and the textbook treatment has to be revised since the
description is missing a novel thermodynamic coefficient. Within the holographic dual to
systems with broken translations – holographic massive gravity – we lay out a road map
for extensions of hydrodynamics to momentum dissipation. Furthermore, we study the
imprint of spontaneously broken translations beyond linear response theory in terms of
periodically driven strongly coupled quantum field theories.

Another important non-equilibrium scenario specially important for the understanding
of our universe is quantum gravity in de-Sitter. Recently, the bold claim of the so-called
swampland conjectures has attracted great interest since it banishes all stable theories
of quantum gravity on de-Sitter with matter into swampland. Within the well-defined
framework of the DS/dS correspondence, we set out to derive consistency conditions on
the matter content in de-Sitter. Surprisingly, our proposed bound is violated by any
reasonable form of matter. In our discussion, we find a novel one-parameter family of
entangling surfaces which interpolates between the two solutions known so far.

The last chapter of this chapter is dedicated to solvable irrelevant deformations in quan-
tum field theory – the T T̄ deformation. Within holography, we derive the entanglement
entropies for generic subintervals in a T T̄ deformed quantum field theory on a sphere.
We also resolve the confusion in the literature about a seeming mismatch between the
holographic and field theory results for the entanglement entropy in general dimensions.

The thesis is based on my research partly published in [1–8].





Zusammenfassung
In dieser Dissertation werden Aspekte der Nichtgleichgewichtsdynamik in stark gekop-
pelten Quantenfeldtheorien im Rahmen von Holographie untersucht. Bisher wurde, im
Gegensatz zur perturbativen Entwicklung in schwach gekoppelten Quantenfeldtheorien,
noch kein systematischer Zugang zu stark gekoppelten Quantenfeldtheorien gefunden.
Ein Zugang, der besonders effektiv für die Nichtgleichgewichtsdynamik funktioniert, ist
Holographie. Im Rahmen von Holographie werden stark gekoppelte Quantenfeldthe-
orien mit schwach gekoppelten Gravitationstheorien in einer Anti-de Sitter Raumzeit
in Verbindung setzt. Im Folgenden wird eine kurz Zusammenfassung der Ergebnisse
gegeben.

Die Hydrodynamik, welche eine für große Distanzen gültige effektive Beschreibung bei
endlicher Temperatur ist, wurde bisher nur für schwache Magnetfelder ausgearbeitet. In
dieser Dissertation wird die bisherige Literatur um eine hydrodynamische Beschreibung
für anomale Quantenfeldtheorien in starken externen Magnetfeldern erweitert. Des Weit-
eren werden Transportgrößen in Einstein-Maxwell-Chern-Simons Theorie in AdS5 berech-
net und explizit gezeigt, welche neuen Transportgrößen aufgrund der chiralen Anomalie
auftreten.

Die spontane Brechung kontinuierlicher Symmetrien führt zu interessanten Effekten wie
das Auftreten von Goldstonebosonen im Niederenergiespektrum. Dabei wird die hydro-
dynamische Theorie für spontan gebrochene Translationsinvarianz als Lehrbuchmaterial
angesehen. In der vorliegenden Dissertation wird jedoch gezeigt, dass die Beschreibung
nicht vollständig ist und ein neuartiger Transportkoeffizient mit in die Betrachtung ein-
bezogen werden muss. Des Weiteren wird die lineare Antwort für Theorien mit explizit
und pseudo-spontan gebrochener Translationsinvarianz innerhalb von holographisch mas-
siver Gravitation, welche die duale Beschreibung für Theorien mit gebrochener Transla-
tionsinvarianz darstellt, ausgearbeitet. Dies stellt einen wichtigen Fortschritt für die
Entwicklung einer auf hydrodynamischen Methoden basierenden Beschreibung von The-
orien mit schwacher Impulsdissipation dar. Anschließend werden die Effekte von spontan
gebrochener Translationsinvarianz auf stark gekoppelte, periodisch getriebene Quanten-
feldtheorien ohne die Beschränkung auf lineare Antworttheorie untersucht.

Ein Nichtgleichgewichtsszenarium, welches insbesondere für die Beschreibung unseres
Universums wichtig ist, stellt Quantengravitation in de Sitter dar. Diese Diskussion
wurde insbesondere durch die kontroversen Sumpfland Vermutungen angeheizt. Die
Sumpfland Vermutungen verbannen alle stabilen Quantentgravitationstheorien für de Sit-
ter die Materie beinhalten ins Sumpfland. Diese Vermutung wird in dem wohldefinierten
Konzept der DS/dS-Korrespondenz untersucht und eine Konsistenzbedingung an den
Materieinhalt postuliert, die sich auf informationstheoretische Argumente stützt. Übe-



raschenderweise wird diese Konsistenzbedingung von jeglicher Form von Materie, die die
Null-Energiebedingung der allgemeinen Relativitätstheorie erfüllt, verletzt. Während der
Diskussion wurde eine bisher unbekannte einparametrige Schaar von Minimalflächen in
de Sitter gefunden, die alle dieselbe Verschränkungsentropie liefern und zwischen den
beiden bisher bekannten Lösungen interpolieren.

Im letzten Kapitel dieser Dissertation wird eine exakt lösbare irrelevante Deformation
von Quantenfeldtheorien, die so genannte T T̄ -Deformation diskutiert. Unter Zuhilfe-
nahme der neu gefundenen einparametrigen Schaar von Minimalflächen werden die Ver-
schränkunsentropie für beliebige Teilintervalle einer mit einer T T̄ deformierten Quanten-
feldtheorie auf einer Sphäre in einem holographischen Modell brechnet. Dabei wird die
Unstimmigkeit in der Literatur bezüglich den Resultaten für die Verschränkungentropie
gegenüberliegender Punkte gelöst. Bisher gab es eine scheinbare Diskrepanz zwischen
den Resultaten von Holographie und Feldtheorie in höheren Dimensionen.

Diese Dissertation basiert auf meinen Forschungsarbeiten, die bereits teilweise in den
folgenden Referenzen veröffentlicht wurden [1–8].
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1. Introduction
Modern theoretical physics is based on the universal language of quantum fields, with
applications ranging from particle physics, cosmology, and the early universe to condensed
matter and statistical physics. For example, the Standard Model of particle physics [9–
11] (see also references in [12]) is based on a relativistic quantum field theory (QFT)
which successfully describes all elementary particles and their interactions by bringing
together three of the four known fundamental forces (electromagnetic, strong- and weak
interactions but not the gravitational force). The predictions of the Standard Model have
been experimentally verified up to high precision – most prominently the discovery of the
Higgs boson at the Large Hadron Collider (LHC) in 2012 [13–18].

Moreover, QFT also plays an important role in statistical and condensed matter physics,
for example by explaining the universality associated with critical exponents of second
order phase transitions. Universality is a prediction of the renormalization group theory
of phase transitions, which states that the properties of a system near a phase transition
depend only on a small number of features, such as dimensionality and symmetry, and
are insensitive to the underlying microscopic properties of the system.

Within QFT, the coupling constant determines the strength of the associated force and
thus the physical interactions. For sufficiently small coupling constants, we may expand
the QFT perturbatively order by order in the coupling constant and determine the scat-
tering amplitudes or other observables. Even though the perturbative approach is very
powerful, it is not sufficient for deriving very basic quantities which are only accessible
by non-perturbative approaches. For example, using perturbative methods we cannot
compute the masses of protons, neutrons, and other bound states, such as mesons and
hadrons, from first principles. Another open question in particle physics is how to obtain
the phase diagram of quantum chromodynamics at finite temperature and density. In
condensed matter, the renowned BCS theory of superconductivity [19–22] describes the
phenomenon of superconductivity in conventional (weakly coupled) superconductors in
terms of Cooper pairs. For a certain class of superconductors which exhibit superconduc-
tivity up to high temperatures BCS theory breaks down and the corresponding systems
are likely strongly coupled and standard methods are no longer applicable.

While we have standard methods to solve problems in weakly coupled QFTs, a standard
approach to the strong coupling regime of QFT is still an open research question. Un-
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1. Introduction

fortunately, there is no one-size-fits-all approach for calculations in the non-perturbative
regime of QFTs, but rather a custom tailoring of a lot of seemingly different methods to
specific problems. The standard approaches are lattice QFT techniques, the (functional)
renormalization group, and the so-called anti de-Sitter/conformal field theory (AdS/CFT)
correspondence.

One particular challenging task within theoretical physics is to describe the out-of-
equilibrium dynamics of strongly coupled quantum fields; this includes the far-from equi-
librium dynamics and the near-equilibrium dynamics in the context of linear response
theory. In recent years, the central research question in the understanding of the men-
tioned strongly coupled condensed matter systems was how they react to a time dependent
coupling, i.e. a quantum quench [23–54]. In particular, does the system equilibrate and if
so, does it thermalize to a new ground state? The non-equilibrium dynamics is not only
interesting for questions within condensed matter physics but also in particle physics
fundamental questions require us to study the real-time dynamics of strongly coupled
QFTs. The Quark-Gluon Plasma (QGP) has been extensively studied at the RHIC and
the LHC with Heavy-Ion Collisions [55, 56]. A fundamental problem in the theoretical
understanding of the QGP is why it reaches its equilibrium state so fast.

Unfortunately, the powerful conventional approaches to strongly coupled field theories,
for instance lattice field theories, are limited regarding real-time calculations and hence
also within non-equilibrium dynamics. For example, the application of statistical Monte-
Carlo methods to perform the path integral for lattice gauge theories only works for
imaginary times and real actions; this restriction makes the computation of the phase
diagram of strong interactions at finite density, and studying out-of-equilibrium dynamics
very challenging.1

There is an approach to strongly coupled quantum field theories which is is particularly
well suited for studying out-of-equilibrium phenomena from first principles: the AdS/CFT
correspondence [61–63]. The AdS/CFT correspondence maps certain strongly coupled
supersymmetric quantum field theories to classical (super-)gravity theories in weakly
curved asymptotically Anti-de Sitter (AdS) spacetimes. Even though there is no proof
for the AdS/CFT correspondence in a strict mathematical sense, but a lot of evidence
in favour of it, it is an ideal theoretical laboratory for deepening our understanding of
strongly coupled quantum field theory and the diverse phenomena it describes. The
AdS/CFT correspondence emerged as an appropriate playground for strongly coupled
condensed matter systems [64–66] starting with the holographic superconductors and
superfluids [67–101], the Kondo model [102–110], topological fractional insulators [111–
114], and external electromagnetic sources [23, 24,115–124].

1Note that there has been made made progress in studying real time dynamics on the lattice in so-called
quantum simulations [57–60].
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The equilibrium behavior of strongly coupled field theories at finite temperature is –
in terms of the AdS/CFT correspondence – captured by the thermodynamics of black
holes in the gravitational theory. If we want to study the out-of-equilibrium response of
a physical system, we have to drive it out of its equilibrium state. The linear response
regime, where we consider small perturbations about the thermal equilibrium, is well
established in holography and mapped to computing the so-called quasi-normal modes
of a black hole [125]. Not only can we study the near equilibrium behavior within the
AdS/CFT correspondence, but we also have a powerful tool to investigate the full non-
linear far-from-equilibrium dynamics. In particular, we might get insights into whether
systems equilibrate or what turbulence in a normal fluid is. The non-equilibrium dynam-
ics of strongly coupled QFTs translates in the language of AdS/CFT into time-dependent
problems in classical general relativity which is tractable by methods developed within
numerical relativity. As we will see, the price we have to pay for re-formulating the
problem in classical gravity is the so-called large N limit in the field theory.

Throughout this thesis, we will employ the AdS/CFT correspondence to shed light into
different non-equilibrium phenomena:

• Broken translational invariance and transport: (ch. 3)
What is the imprint of spontaneously and explicitly broken spacetime symme-
tries on the transport properties of strongly coupled QFTs? Can we describe
the physics in terms of a consistent hydrodynamic theory?

• Anomalous hydrodynamics in strong external magnetic fields: (ch. 4)
How do strong external magnetic fields influence the various transport coeffi-
cients such as the viscosity tensor of strongly coupled (anomalous) QFTs? Are
novel transport coefficients present as an effect of the chiral anomaly?

• Entanglement entropy and non-equilibrium dynamics in dS: (ch. 5)
Phenomenological swampland conjectures banish quantum theories with matter
in de-Sitter into swampland. Can we provide a swampland bound within a well
defined microscopic framework?

• T T̄ deformed QFTs: (ch. 6)
How does the entanglement entropy for generic subintervals in a QFT on a
sphere change along the T T̄ trajectory? Can we derive the trajectory for field
theories dual to dS in general dimensions and match the field theory calculation
and the computation within holography?

5



1. Introduction

Broken translational invariance and transport

In the first part of thesis, we will study the effects of broken symmetries on the out-
of-equilibrium behavior of strongly coupled field theories. First, we restrict ourselves to
the long range dynamics for small perturbations about the equilibrium state – the hy-
drodynamic regime. Hydrodynamics is an effective theory and based on the symmetries
of the system under consideration. In particular, the hydrodynamic equations are based
on the conservation equations – for example energy and momentum – and are supple-
mented by so-called constitutive relations. The conservation of energy and momentum is
via Noether’s theorem intimately related with its associated symmetry – the invariance
under spacetime translations.

Translational invariance is one of the fundamental symmetries in nature; it is however
broken in many condensed matter systems. The spontaneous breakdown of a continuous
symmetry leads to exciting phenomena such as the appearance of so-called Goldstone
phonons. However, breaking the translational symmetry explicitly also implies momen-
tum non-conservation and we can no longer apply the standard textbook hydrodynamics.
In order to extend hydrodynamics beyond the standard regime, we need a playground
to test and verify our results. The AdS/CFT correspondence provides us with a suitable
framework to deepen and verify our knowledge about effective field theories such as hy-
drodynamics. The successful implementation of momentum relaxation into the AdS/CFT
correspondence via massive gravity theories [126–129] and successively the identification
of holographic phonons [130, 131] fuelled extensive work on (pseudo)-spontaneously and
explicitly broken translations [1–4, 126–193]. In terms of effective field theories and hy-
drodynamics, we have at least some field theoretic understanding of the near-equilibrium
physics with broken translational symmetry. In the nonlinear regime, however, the ap-
proaches are still based on phenomenological models (such as [194, 195]). Within holog-
raphy, we investigate the influence of broken symmetries on the far-from-equilibrium
behavior.

Anomalous hydrodynamics in strong external magnetic fields

Another interesting aspect of the influence of broken symmetries on the non-equilibrium
behavior are anomalies in field theories. Within this thesis, we will develop a consistent
hydrodynamic framework for quantifying the effects of the chiral anomaly on the transport
behavior in strongly coupled anomalous QFTs in the presence of strong external magnetic
fields. In order to show which transport coefficients are non-zero in the presence of the
anomaly (and if the novel transport coefficients generically contribute), we probe the
system within holography. Studying anomalies within the AdS/CFT correspondence is
especially interesting since the underlying physics is universal i.e. phenomena such as
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the chiral-magnetic effect for example are totally determined in terms of the anomaly
coefficient. Chiral anomalies, as they appear in so-called top-down constructions for four
dimensional N = 4 super-Yang Mill theory, have a crucial impact on the non-equilibrium
behavior [23, 24, 196–259] (see [260] for a review) and we cannot neglect them as it is
overwhelmingly done in the present literature.

Entanglement entropy and non-equilibrium dynamics in de-Sitter

The Planck data from 2018 confirmed that our universe exhibits a slightly positive cosmo-
logical constant (Λ = (2.846± 0.076) 10−122m2

Pl [261]). Together with a positive vacuum,
the positive cosmological constant implies a negative pressure and thus an accelerated
expansion of the universe. So far, we focused on non-equilibrium properties of strongly
coupled field theories in flat spacetimes. In de-Sitter (dS) space, the absence of a globally
timelike Killing vector makes the tasks at hand inherently a non-equilibrium scenario. In
the following, we want to study non-local observables in the context of dS.

While quantum gravity in AdS is accessible in terms of the AdS/CFT correspondence,
its definition in dS is still unknown albeit its crucial importance for the understanding
of our universe. The question about dS gravity was fueled by the bold swampland con-
jectures [262] claiming that quantum gravity in dS requires a scalar potential with large
negative mass squared, rendering dS unstable, or a non-vanishing derivative destroying
dS completely [263,264]. In short, the swampland conjectures ban all stable solutions for
dS quantum gravity into swampland. Since this is a big assertion, we want to investigate
the conjecture within a well defined framework for the microscopic theory.

One way to obtain such a framework is to try to embed dS into the framework holog-
raphy [265–274]; this may be done in terms of the DS/dS correspondence [267, 268] (see
[6,7,275–280] for recent developments) or the dS/CFT correspondence [265]. Throughout
this thesis, we will employ the former. In contrast to the AdS/CFT correspondence, the
DS/dS correspondence consists of two asymptotic infrared AdS regions glued together in
the middle by means of a ultraviolet (UV) brane (see figure 1.1). The two CFTs – dual
to the two dSd+1 regions – are located on the UV brane and are coupled to dynamical
gravity since the graviton is localized on the UV slice.

In the second part of this thesis, we want to probe the swampland conjectures for dS
within a well defined microscopic framework by means of an information theoretic mea-
sure – the entanglement entropy. The entanglement of quantum state is one remarkable
aspect of quantum theories which gained a lot of interest over the recent years. Entan-
glement entropy may be defined in the universal language of quantum fields, even though
explicit calculations are notoriously difficult. Ryu and Takayanagi [281,282] (see [283] for
a review) showed that the entanglement entropy for a subsystem of a strongly coupled

7



1. Introduction

Figure 1.1.: Euclidean dS3 at a fixed time. The two asymptotic AdS3 regions are depicted
in purple and green, respectively. The UV brane is the middle slice and
corresponds to the maximum dS2 static patch (and we exemplarily show two
additional static patches).

field theory is the holographic dual to computing the area of the minimal surface enclos-
ing the subsystem in the spacetime of the gravitational theory. The notion of holographic
entanglement entropy was extensively studied in AdS but we may also extend the dis-
cussion to dS [6,7,276,280,284–293]. The central question we want to investigate is: can
we formulate constraints on the matter content in dS in terms of consistency conditions
from entanglement entropy?

T T̄ deformed QFTs

While within the DS/dS correspondence there are many open questions about how to
relate the behavior in the gravitational theory to the field theory on dSd, we have much
better control about this process within the AdS/CFT correspondence. In the deep in-
frared (IR), AdS and dS are indistinguishable and the AdS/CFT correspondence provides
us with a field theory dual to (A)dS.

In [277] the authors showed that a particular irrelevant deformation of QFTs might
help us to understand the embedding from the DS/dS correspondence in the AdS/CFT
correspondence better – the T T̄ deformation. The T T̄ deformation, where T refers to the
energy-momentum tensor, is an irrelevant deformation which is exactly solvable [294–296]
and thus attracted great interest in field theory and holography [277–279,297–338]. The
holographic dual to the T T̄ deformation is to simply chop off part of the spacetime and to
“move the CFT into the bulk” [297]. To embed the DS/dS correspondence into AdS/CFT,
we move the boundary with T T̄ deformations inwards to the IR, where we know the field
theory dual in terms of the AdS/CFT correspondence. From the IR, we may trigger the
flow towards the UV with a T T̄ deformation of opposite sign and “grow back” the UV
region. The last section of this thesis is dedicated to deepen our understanding of this
intriguing irrelevant deformation and its realization within holography.

8



2. The AdS/CFT correspondence

In the seminal paper [61], Maldacena conjectured a duality between two theories which
might look very surprising at first sight: N = 4 SU(N) super-Yang Mills theory in 3+1
dimensional Minkowski space is equivalent to type IIB superstring theory on AdS5×S5.
We may not only write down AdS/CFT dualities for different spacetime dimensions in
the form AdSd+1/CFTd but also for less supersymmetric and non-relativistic field the-
ories [339–343]. The AdS/CFT correspondence is an example of a deeper underlying
physical principle: holography. Rooted in the pioneering work of Bekenstein and Hawk-
ing on the area law of the black hole entropy [344, 345], the holographic principle states
that the complete information of a spacetime volume element may be stored on its lower
dimensional spatial boundary. The AdS/CFT correspondence realizes the holographic
principle in terms of equating the dynamics of an (effectively) d+1 dimensional theory of
gravity with a d dimensional quantum theory on the spatial boundary of the spacetime.1

Another intriguing feature of the AdS/CFT correspondence is that it is a strong/weak
duality; we may obtain insights into a strongly coupled theory by studying its conceptually
much easier accessible weakly coupled dual by means of the AdS/CFT correspondence.
In order to apply the AdS/CFT correspondence to study a specific system in a strongly
coupled field theory there are two very different approaches on how to obtain the cor-
responding gravitational theory. The first approach is the so-called top-down approach;
we start with a model in string theory and truncate the field content of the gravitational
theory to AdSd+1. This approach is preferable since we know the exact field theory dual
but it is extremely difficult to find consistent truncations from string theory and its dual
field theory. There is another approach, however, where we motivate the gravitational
action phenomenologically – the so-called bottom-up approach. In bottom-up holography,
we write down a gravitational toy model which models the core features of the dual field
theory. The recipe of how to obtain the gravitational toy model is formulated in the
AdS/CFT dictionary which is the topic of the next section.

In this chapter, we present the foundations of the AdS/CFT correspondence. In par-
ticular, we formulate the so-called holographic dictionary which translates the quantities
in the gravitational theory into the quantities in the dual field theory and vice verse.
In order to get an intuition about how the dictionary works in practice, we discuss two

1When we speak of spacetime, we usually refer to the spacetime of the gravitational theory.

9



2. The AdS/CFT correspondence

examples: the massive scalar field and correlation functions in AdS, and the boundary
energy-momentum tensor. We then proceed to generalize the AdS/CFT correspondence
to finite density and finite temperature. At finite temperature, we discuss applications
of the AdS/CFT correspondence for example within linear response theory. We close the
chapter by discussing non-local observables such as entanglement entropy and a general-
ization of the holographic concept to de-Sitter space.

2.1. The AdS/CFT dictionary
In this section, we formulate the AdS/CFT correspondence in general terms on the level
of the partition functions of both theories. We also write down the field operator map at
the conformal boundary where both theories are defined.

For a generic CFT, we consider the generating functional WCFT[γµν , Aµ, φ(s)] for the
connected Green’s functions of the conserved energy-momentum tensor Tµν , global sym-
metry currents Jµ and any composite operatorO in the dual field theory. For any operator
Tµν , J

µ, and O, we have the corresponding source terms, the induced metric γµν at the
conformal boundary, a gauge field Aµ, and the scalar source φ(s). In CFT language, the
partition function ZCFT = exp(−WCFT) thus reads

ZCFT[γµν , Aµ, φ(s)]=
〈
exp

(∫
ddx
√
−γ

(1
2 T

µν(x) γµν(x) + Jµ(x)Aµ(x) +O(x)φ(s)(x)
))〉

.

(2.1)
The energy-momentum tensor, conserved current- and the composite operator may be
extracted from eq. (2.1) by varying the generating functional with respect to the corre-
sponding source, i.e.

〈O(x)〉 = δWCFT

δφ(s)(x)

∣∣∣∣∣γµν(x)=ηµν
Aµ(x)=0
φ(s)(x)=0

, 〈T µν(x)〉 = 2√
−γ

δWCFT

δγµν(x)

∣∣∣∣∣γµν(x)=ηµν
Aµ(x)=0
φ(s)(x)=0

, (2.2)

〈Jµ(x)〉 = δWCFT

δAµ(x)

∣∣∣∣∣γµν(x)=ηµν
Aµ(x)=0
φ(s)(x)=0

. (2.3)

It is important to emphasize that the field theory content in eq. (2.1) is not restricted to
one current- or composite operator only. We can include N current operators JNµ and M
composite operators OM into our prescription by including them with their source terms
ANµ and φM(s), respectively.

To simplify the following discussion, we restrict the field content in eq. (2.1) to one
composite operator O. The generalization to multiple operators and to including the
energy-momentum tensor and current operators is straightforward. In this case, eq. (2.1)

10



2.1. The AdS/CFT dictionary

reads
ZCFT[φ(s)] = exp(−WCFT[φ(s)]) =

〈
exp

(∫
ddxφ(s)(x)O(x)

)〉
. (2.4)

To understand the equivalent of the CFT partition function in the gravitational theory,
we consider a general propagating field φ.2 We parametrize the AdS spacetime in so-called
Poincaré coordinates

ds2 = L2

u2

(
du2 + ηµνdxµ dxν

)
, (2.5)

where u denotes the extra dimension and the conformal boundary is located at u = 0.
The greek indices sum over field theory dimensions µ ∈ {0, 1, . . . , d − 1}, while latin
indices are the indices including the radial coordinate u and sum i ∈ {0, 1, . . . , d}. In
order to formulate the map between the gravity fields and the dual field theory operators,
we expand the gravitational fields near the conformal boundary – where both theories
are defined. Generally, the source term for the dual field theory operator is identified
with the leading term of the asymptotic near-boundary expansion of the corresponding
gravitational field (in standard quantization). By comparing the symmetries, we may
find the dual pairs to the gravitational fields (see [346] for a detailed and comprehensive
explanation) at the conformal boundary.

The claim of the AdS/CFT correspondence is the equality of the partition functions of
both theories at the conformal boundary and is known as the Gubser-Klebanov-Polyakov-
Witten (GKPW) formula [62,63]

ZCFT[φ(s)] = Zstring|limu→0(φ(u,x)u∆−d=φ(s)(x)) . (2.6)

In eq. (2.6), we identified the leading behavior φ(s) of the gravitational field φ with
the source of the composite operator O in the dual CFT. Additionally, we identify the
coefficient ∆ which appears in the asymptotic expansion of the gravitational field with
the dimension of the dual field theory operator O (this will be more clear in example 1).
The subleading mode of the supergravity field determines the dynamics of the expectation
value of the dual operator O.

The equivalence of the partition functions (2.6) is referred to as the strongest form of
the AdS/CFT correspondence. However, it is very hard to perform calculations for some
generic parameter in the strongest form; in particular, the partition function of type IIb
string theory Zstring is not known explicitly. It is thus practical to weaken the form of
the duality in order to make it better tractable. We may approximate Zstring in terms
of supergravity by performing a saddle point approximation. On the field theory side
this is equivalent to taking the large N limit, where N is the rank of the gauge group.
The weak form of the correspondence (2.6) equates the partition function of a strongly

2φ does not have to be a scalar field though we will we suppress all indices for simplicity.
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2. The AdS/CFT correspondence

coupled conformal field theory in the large N limit with a supergravity theory

ZCFT[φ(s)]
∣∣∣
N large

≈ exp (−Sgrav)|limu→0(φ(u,x)u∆−d=φ(s)(x)) . (2.7)

Let us take stake at where we are at: eq. (2.7) is highly non-trivial statement; it equates
the partition function of a d+1 dimensional classical theory of gravity to a d dimensional
quantum field theory (in flat space).

Example 1: Scalar fields and correlation functions in AdS

The prescription in eq. (2.6) looks very abstract at first. In order to illustrate the
underlying consequences of this statement, we consider the simplest example – a massive
scalar toy model in AdS. For simplicity, we also restrict our discussion to CFTs in the
large N limit dual to supergravity on AdSd+1 [347–350].3

The action of a real scalar field φ with mass m in AdSd+1 is given by

Sgrav = −C2

∫
du ddx

√
−g

(
gmn∂mφ ∂nφ+m2φ2

)
, (2.8)

with the AdS metric in the Poincare patch given by eq. (2.5).
The equation of motion for the scalar field on the curved AdS background follows from

the Euler-Lagrange equations

(�g −m2)φ = 0, �g|AdS = 1
L2

(
u2 ∂2

u − (d− 1)u ∂u + u2 ηµν ∂
µ∂ν

)
. (2.9)

By solving eq. (2.9) for the second radial derivative (and transforming to Fourier space
φ(u,x) = 1/(2π)d

∫
ddk exp(i kµxµ)φk(u)), we see that u = 0 is a singular point of the

differential equation

∂2
uφk(u)− p(u) ∂uφk(u)− q(u)φk(u) = 0, p(u) = (d− 1)/u, q(u) = m2L2/u2 + k2.

(2.10)
However, p(u) and q(u) are analytical after multiplying with appropriate powers of u and
u = 0 is only a regular singular point. For regular singular points, Frobenius’ theorem
guarantees the existence of a solution at this point in terms of a power series with two
undetermined coefficients φ(s)(x) and φ(v)(x)

φ(u, x) ∼ φ(s)(x)u∆− + c1u
∆−+1 . . .+ φ(v)(x)u∆+ + . . . . (2.11)

3By choosing spherical harmonics on the sphere, we may decompose the supergravity fields into Kaluza-
Klein towers on the S5. Since we do not source the Kaluza-Klein modes, they are gapped and we
neglect them.
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2.1. The AdS/CFT dictionary

We will refer to the mode φ(s)(x) as leading (or non-normalizable) mode and to φ(v)(x) as
the sub-leading (or normalizable) mode.4 The exponents of the undetermined coefficients
follow immediately by plugging the ansatz φ(u, x) ∼ u∆ in eq. (2.10) and solving the
quadratic equation to leading order in u, which gives

∆± = d

2 ±
√
d2

4 +m2L2. (2.12)

The remaining unknown coefficients appearing in the power series (2.11) are totally deter-
mined in terms of the two undetermined coefficients by solving the differential equation
order by order in u. The two undetermined coefficients φ(s)(x) and φ(v)(x) are the in-
put parameters of the underlying theory and may be related to field theory quantities
by dimensional analysis [346]; recall that φ(v)(x) corresponds to the expectation value
of the dual scalar field operator O of dimension ∆ ≡ ∆+. Similarly, the leading mode
φ(s)(x) = limu→0 φ(u, x)u−∆− acts as source term for the dual scalar operator in eq. (2.4).
In particular, by comparing the representations of the supergravity field φ and the CFT
operators we find the important relation

m2L2 = ∆(∆− d), (2.13)

which relates the mass m of the supergravity scalar field to the conformal dimension
∆ ≡ ∆+ of the dual field theory operator O. For positive masses m, the conformal
dimension of the dual operator is bigger than d and the operator corresponds to an
irrelevant deformation. In the case of massless scalars, the scaling dimension is ∆ = d

corresponding to a marginal operator. In flat space, negative masses lead to tachyonic
instabilities; interestingly and in contrast to that, we have to give the scalar fields in AdS
a negative (but not too negative) mass in order to source a relevant operator in the dual
field theory5

m2L2 ≥ −d2/4 (2.14)

which is the famous Breitenlohner-Freedman bound [351]. For masses in the range

− d2/4 < m2L2 ≤ −d2/4 + 1, (2.15)

we may interchange the definition of source and expectation value since both modes are
normalizable. In that case, the former expectation value φ(v)(x) acts as source term and

4If (∆+−∆−) ∈ Z, the power series (2.11) may contain logarithmic terms ∼ u∆+ log(u) For simplicity,
we omit this technical detail in eq. (2.11).

5This may be seen by rescaling the scalar φ = ud/2φ̃ and introducing a new variable y = log(u) in
eq.(2.5) followed by an integration by parts. In the new variables, we may find the action of a scalar
field in flat space by introducing the effective mass m2

effL
2 = m2L2 + d2/4.

13



2. The AdS/CFT correspondence

vice versa. We thus may use either of them to quantize the theory which implies that
there exist two possible conformal field theories dual to the same classical AdS action.

So far, we discussed the one-point function of the composite operator O. From eq. (2.2)
and (2.6), it is also clear how to calculate n-point functions in the dual quantum field
theory. The variation of the CFT partition function with respect to the CFT sources
translates within the AdS/CFT correspondence to varying the gravitational partition
function with respect to the leading mode in the asymptotic expansion

〈O1(x1)O2(x2) . . . O(xn)〉 = −
δnSren

grav[φ]
δφ1

(s)(x1) δφ2
(s)(x2) . . . δφn(s)(xn)

∣∣∣∣∣∣
δφi(s)=0

, (2.16)

where Sren
grav refers to the renormalized action [352,353].

Example 2: The holographic stress tensor

In this subsection, we show how to extract the renormalized stress tensor on a cutoff slice
with radial position r = rc. For the holographic renormalization procedure, we usually
set 1/rc = ε � 1. However, with regards to our discussion about T T̄ deformations in
section 6, we will keep the cutoff surface at an arbitrary radial distance for now.

The bare quantum field theory quantities will be divergent per se. On the gravity side,
the divergences are manifest in terms of the infinite volume of AdS [352, 353]. Similar
to the renormalization procedures developed for quantum field theories, we have a recipe
available on how to cure the divergences in AdS: the holographic renormalization [352–
356]. Within the AdS/CFT correspondence, low energies correspond to the region deep
in the bulk while high energies correspond to the asymptotic region. In this sense, the
radial coordinate may be viewed as the energy scale of the dual field theory and the
UV divergences of the dual field theory are mapped to the infinite extension of AdS
in the radial direction. In order to regularize quantities such as correlation functions,
holographic renormalization tells us to move the boundary slightly into the bulk and
consider the cutoff surface 1/rc = ε� 1 to read off the field theory quantities instead of
the conformal boundary located at u = 0. To ensure that the quantities are finite in the
limit ε→ 0, we have to supplement the Einstein-Hilbert action of the gravitational theory
with counter terms [352,353]. With the extrinsic curvature K, the d+1 dimensional Ricci
scalar R, the AdS curvature radius L and the cosmological constant Λ, the renormalized
action reads

Stot = SEH + Ssurf + Sct, (2.17)
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2.1. The AdS/CFT dictionary

with

SEH = − 1
16π GN

∫
dd+1x

√
g (R− 2Λ) , Ssurf = − 1

8π GN

∫
ddx√γ K, (2.18)

Sct = 1
16π GN

∫
ddx√γ

(
2c1

d− 1
L

+ c2 L

d− 2 R̃ + c3 L
3

(d− 4) (d− 2)2

(
R̃µνR̃

µν− d

4 (d− 1)R̃
2
))
,

(2.19)

In eq. (2.19), we denote the d dimensional quantities with tildes, i.e. R̃, R̃µν are the
Ricci scalar- and tensor, respectively, on the cutoff slice u = ε with the induced metric γ.
Furthermore, c1 = 1 for d ≥ 2, c2 = 1 for d ≥ 3 and c3 = 1 for d ≥ 5 and zero otherwise.

On the cutoff slice r = rc, the stress tensor of the boundary field theory T bdy
µν is related

to the bulk stress tensor computed by varying eq. (2.17) with respect to the metric in
terms of the rescaling TBY

µν = rd−2
c T bdy

µν . Similarly, the induced metric on the cutoff slice
is related to the metric of the CFT by gµν(r = rc, x) = γµν(x) = r2

c γ
bdy
µν (x). In particular,

for rc → ∞ the CFT metric is flat. The complete dictionary to translate the quantities
at the cutoff surface into field theory quantities is described in [306]. For simplicity, we
set rc = 1 from now on.

For clarity and comprehensibility, we split the renormalized stress tensor in two parts
T ren
µν [γ] = Tµν [γ] + Cµν [γ], the standard holographic stress tensor on the cutoff surface
r = rc, Tµν , and the corresponding curvature contributions of the counterterms eq. (2.19),
denoted by Cµν [306,327,352,357]

Tµν = 1
8πGN

(
Kµν −K γµν − c1

d− 1
L

γµν + c2 L

d− 2 G̃µν

+ c3 L
3

(d− 4)(d− 2)2

(
2
(
R̃µνρσ −

1
4 γµν R̃ρσ

)
R̃ρσ − d

2 (d− 1)

(
R̃µν −

1
4 R̃ γµν

)
R̃

− 1
2 (d− 1)

(
γµν �R̃ + (d− 2)∇µ∇νR̃

)
+�R̃µν

))
. (2.20)

With eq. (2.19) the curvature dependent counterterms give thus rise to the contribution
(in d ≥ 3) [352,353]

Cµν =− 1
8πGN

(
c2 G̃µν + c3 bd

[
2
(
R̃µνρσ −

1
4 γµν R̃ρσ

)
R̃ρσ − d

2(d− 1)

(
R̃µν −

1
4 R̃ γµν

)
R̃

− 1
2 (d− 1)

(
γµν �R̃ + (d− 2)∇µ∇νR̃

)
+�R̃µν

])
. (2.21)

Note that for a finite radial cutoff, the stress tensor is inherently regularized. The diver-
gences become apparent in the limit rc →∞.
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2. The AdS/CFT correspondence

2.2. Generalizations of the AdS/CFT correspondence
So far, we have discussed the AdS/CFT correspondence only at vanishing temperature.
However, by including the option to study strongly coupled QFTs at finite temperature
and finite density, we are opening the possibility to strengthen our knowledge about
strongly coupled field theories in the areas where lattice QFT is limited, for example the
phase diagram at finite temperature and finite density.

2.2.1. Finite temperature

The gravity duals of QFTs at finite temperature are black branes in AdS. In classical
general relativity, black branes are thermodynamic objects which may be associated with
a temperature: the Hawking-temperature TH ; in terms of the AdS/CFT correspondence
the Hawking temperature of the black object in the gravitational theory corresponds to
the temperature of the field theory.

At finite temperature T , we do not only observe quantum fluctuations of the field the-
ory operators but also thermodynamic fluctuations. The macroscopic quantity, to which
we refer to as temperature within thermodynamics, are statistical averages of the ther-
modynamic fluctuations in the microscopic theory. In this section, we restrict ourselves
to the so-called canonical ensemble where the particle number is fixed. It is straight-
forward to adapt the results for the grand canonical ensemble, where the temperature
T , the volume V , and the particle number N are kept fixed [346]. In field theory, the
probability operator for finding a system in a thermal state at temperature T is formally
equivalent to the time evolution operator if we complexify the time according to t = iβ,
where β = 1/T [346,358].

On the gravity side, we will see that the dual to the temperature T in the field theory
is the Hawking temperature of black holes or black branes by considering the metric of
D3 branes

ds2 = H−1/2
(
−f dt2 + dx2

)
+H1/2

(
dr2

f
+ r2 dΩ2

5

)
, f(r) = 1−

(
rh
r

)4
, (2.22)

where H(r) = 1 + L4/r4. After a change of coordinates u ≡ L/r and Wick rotating
τ = i t, we find for the AdS part of the metric in the near horizon limit u→ uh

ds2 ≈ 4ρ2

u2
h

dτ 2 + L2

u2
h

dx2 + dρ2, (2.23)

where we also introduced the coordinate u = uh(1− ρ2/L2) which measures the distance
from the horizon uh. In order to avoid conical singularities, the time coordinate has to

16



2.2. Generalizations of the AdS/CFT correspondence

be periodic 2τ/uh ∼ 2τ/uh + 2π or in other words ∆τ = uhπ. However, we already know
this periodicity from the temperature of the dual field theory. For a discussion about
how to implement a finite density in terms of the AdS/CFT correspondence, we refer the
reader to the literature on that topic (see e.g. [346]).

2.2.2. Linear response in field theory and holography

By including a finite temperature T to the AdS/CFT machinery, we are able to study
the thermodynamical properties of a QFT at equilibrium. Small fluctuations about this
equilibrium state lie within the range of linear response theory. By slightly perturbing
the system with a small external source it is possible study the equilibration process. In
QFT, the response of a system subject to the presence of external influences ϕI coupled
to a set of operators OI(x) is given in terms of [346]

δĤ = −
∫

ddxϕI(t,x)OI(t,x). (2.24)

The external field ϕI(t,x) induces a shift in the expectation values of the corresponding
operators

δ〈OI(x)〉 =
∫

ddy GIJ
R (x, y)ϕJ(y) +O(ϕI), (2.25)

where the retarded Green’s function is defined as

GR
IJ(x, x′) = i θ(t− t′) 〈{ÔI(x), ÔJ(x′)}±〉. (2.26)

The cases ± denote the commutator and anticommutator for bosonic and fermionic op-
erators, respectively. Using the retarded Green’s function means that only sources in the
past can influence the physics. This prescription implements causality in a natural way.
At time t, the shift of the vacuum expectation value δ〈OI(t, x)〉 is only caused by sources
ϕI(t′, x′) with t′ < t. In Fourier space, eq. (2.25) is given by [346,359]

δ〈OI(k)〉 = GIJ(k)ϕJ(k) +O(ϕ2) ⇒ GIJ(k) = δ〈OI(k)〉
ϕJ(k) +O(ϕ2). (2.27)

In the following, we want to work out how to implement the prescription of retarded
Green’s function in the AdS/CFT correspondence and how to compute the corresponding
object in the gravitational theory. The black brane in eq. (2.22) in AdS5 reads in
coordinates with u = r2

h/r
2, H(r) = L4/r4 and rh = πT

ds2 = (π T L)2

u

(
−f(u) dt2 + dx2

)
+ L2

4u2 f(u) du2, f(u) = 1− u2. (2.28)
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We now consider a massive scalar field on top of this background with equation of motion
(�−m2)φ = 0. In Fourier space φ(k, u) =

∫
d4k/(2π)4 ei kµx

µ , the equation of motion for
the scalar field reads

4u3 ∂u

(
f(u)
u

∂uφ(u, k)
)

+ u

(πT )2 f(u) (ω2−|k|2 f(u))φ(u, k)−m2L2 φ(u, k) = 0, (2.29)

with the near-boundary behavior as outlined in eq. (2.11)

φ(u, k) ∼ φ(s)(k)u(d−∆)/2(1 +O(u)) + φ(v)(k)u∆/2(1 +O(u)). (2.30)

The horizon, which is a zero of f(u), is the second regular singular point of the differential
equation and similarly to eq. (2.11), we make a power series ansatz

φk(u) ∼ (1− u)κ ⇒ κ = ±i ω/(4 π T ). (2.31)

The boundary solution with “+” corresponds to outgoing waves at the horizon while the
“-” solution correspond to the infalling solution. Note that the infalling solution can only
be influenced by boundary sources in the past. If φk(u) is a solution to the equation of
motion (2.29) which satisfies the the infalling condition at the horizon (2.31) and with
leading and sub-leading mode at the conformal boundary denoted as in eq. (2.30), the
retarded Green’s function is (up to contact terms) defined by [360]

GR
φφ(k) = Ld−1 (2∆− d) φ(v)(k)

φ(s)(k) . (2.32)

In this section, we identified the thermal equilibrium of a QFT in terms of the AdS/CFT
correspondence with a black object in the gravitational theory. Small perturbation of the
black holes in asymptotically AdS spacetimes are dual to small perturbations of the QFT
about its equilibrium state. If we perturb black holes or black branes, the surrounding
geometry will ring and settle back down to equilibrium. The frequencies of the “ringing”
and the relaxation time back to equilibrium are independent of the perturbation and
totally determined by the properties of the black object. In context of the AdS/CFT
correspondence, we are only interested in perturbations subject to ingoing boundary con-
ditions at the horizon since these solutions satisfy the causality requirement in the dual
CFT. By restricting the solution to ingoing waves, we neglect the solution for outgoing
waves at the horizon which renders the boundary value problem non-hermitian and the
corresponding frequencies are complex. At the conformal boundary, we subject the fluc-
tuations to Dirichlet boundary conditions, since we do not explicitly source them. Note
that black hole horizons and the ingoing boundary conditions lead to matter falling into
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the black hole and thus to dissipation (see [361–368] for the so-called membrane paradigm
and its implementation into holography). This is exactly what we want to describe in
the dual field theory! Small fluctuations in the field theory are damped by dissipation
and the system settles back to its equilibrium state. Dissipation introduces singularities
in the retarded Green’s functions throughout the complex frequency plane. In terms of
the AdS/CFT correspondence, this corresponds to the gravitational fluctuations which
satisfy Dirichlet boundary conditions at the conformal boundary since the denominator
of eq. (2.32) vanishes.

2.2.3. Hydrodynamics

One interesting regime within linear response is the hydrodynamic regime where the
length scales of interested are much larger than the characteristic length scale of the
system, i.e. we study long-wavelength fluctuations close to thermal equilibrium. In this
section, we want to get an intuition about hydrodynamics by considering the simplest
scenario: the relativistic fluid, following the references [369,370] closely. We will explore
the hydrodynamics of more complex systems in the context of broken symmetries, i.e.
spontaneous symmetry breaking and anomalies in later chapters. The hydrodynamic
equations are based on the conservation of the energy-momentum tensor and the present
global charges. In particular, for continuous symmetries (of the fundamental microscopic
theory) Noether’s theorem implies the existence of conserved currents. We consider a
theory with translational invariance and conservation of the particle number with the
associated conserved currents

∂µ〈T µν〉 = 0, ∂µ〈Jµ〉 = 0. (2.33)

In the following, we neglect the indication of 〈. . .〉 throughout this section as convention
in hydrodynamics, even though quantities such as T µν and Jµ are operator valued. The
decomposition of the energy-momentum tensor T µν and the current Jµ in terms of the
hydrodynamic variables, i.e. the local temperature T (x), the local fluid velocity v(x) and
the chemical potential µ(x) is referred to as the constitutive relations. For an arbitrary
timelike vector uµ, the decomposition reads

T µν = E uµuν + P ∆µν + (Qµ uν +Qν uµ) + T µν , Jµ = N uµ + J µ, (2.34)

where ∆µν = gµν + uµν is the projector on the spatial dimensions, E , P , N are scalars,
Qµ, J µ transverse vectors and T µν a transverse, symmetric, and traceless tensor. Within
hydrodynamics, we write the coefficients appearing in the decomposition in terms of the
hydrodynamic variables uµ, T, and µ (constitutive relations).
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In the hydrodynamic expansion, we expand the constitutive relations in a derivative
expansion in the hydrodynamical variables. The zeroth order of the hydrodynamic ex-
pansion corresponds to ideal hydrodynamics (thermodynamics) and no dissipative terms
are present. The first order computes the dissipative corrections to ideal hydrodynamics.

Zeroth order

The transverse vectors and tensorQµ, J µ, T µν can only be constructed in terms of deriva-
tives. The scalars E , P , N , however, are functions of the hydrodynamic variables. The
zeroth order coefficients of the expansion corresponds to thermal equilibrium and are thus
determined by means of the energy-momentum tensor T µν = diag(ε̄, p, . . . , p) and current
Jµ = (n, 0, . . . , 0) in static equilibrium. In these expressions, ε̄ corresponds to the energy
density, p is the thermodynamic pressure and n the equilibrium charge density, respec-
tively. In case of a fluid flowing with constant velocity uµ(x) the local thermodynamic
quantities correspond to the scalars, i.e. E(x) = ε(x), P(x) = p(x), N (x) = n(x). We
may extract the charge density n, the entropy density s, and the energy density ε̄ form the
equilibrium equations of state p(T, µ) by n = ∂p/∂µ, s = ∂p/∂T , and ε̄ = −p+s T +nµ.
Note that the entropy does not increase in ideal (zeroth order) hydrodynamics.

First order

The first order takes dissipative effects of the equilibration process of the fluid into account
and corresponds to a non-equilibrium process. Out-of-equilibrium, the local thermody-
namic quantities are ambiguous; specifically, their definition depends on the frame we
choose. The transport coefficients, which are physical observables of the system, have to
be frame invariant. One method to fix the redefinition of the variables is the so-called
Landau frame (no energy flow in the local rest frame). In this frame, the constitutive
relations read to first order

T µν = ε uµuν + p∆µν− η∆µα∆νβ
(
∂αuβ + ∂βuα −

2
d
ηαβ ∂µu

µ
)
− ζ∆µν∂λu

λ +O(∂2)

Jµ = nuµ − σ T ∆µν ∂ν(µ/T ) + χT ∆µν∂νT +O(∂2), (2.35)

where we introduced the coefficients σ (charge conductivity),χT , ζ (bulk viscosity) and
η (shear viscosity) which have to be determined from the underlying microscopic theory.

Correlation functions from hydrodynamics

In this section, we connect the hydrodynamic formalism to the retarded Green’s function
which we considered within linear response theory. In general, the source λa causes a
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2.3. Entanglement Entropy from QFT and Holography

shift in the expectation values of the hydrodynamic variables ϕa

δ〈ϕa(ω,k)〉 = GR
ab(ω,k)λb(ω,k). (2.36)

At t = 0, the hydrodynamic variables ϕa and the sources λa are related (in Fourier space)
by the thermodynamic susceptibilities

ϕa(ω = 0,k→ 0) = χab λb(ω = 0,k→ 0), χab =
(
∂ϕa
∂λb

)
. (2.37)

This concept is easy to generalize in order to obtain the hydrodynamic dispersion rela-
tions. For simplicity, we restrict ourselves to µ = 0 and 2+1 dimensions. In this case,
the hydrodynamic equations of the preceding section read

ε̇+ i k π‖ = 0, π̇‖ + i k

(
∂p

∂ε̄

)
ε+ η + ζ

ε̄+ p
k2π‖ = 0, π̇⊥ + η

ε̄+ p
k2 π⊥ = 0, (2.38)

where we denote the equilibrium energy density by ε̄ in order to distinguish it from the
hydrodynamic variable ε. In the transverse sector, it is straightforward to write down
the Green’s function since the hydrodynamic equation of motion is formally a diffusion
equation

GR
π⊥π⊥

(ω, k) = − η k2

i ω − η k2/(ε̄+ p) . (2.39)

Taking the imaginary part of eq. (2.39), we find the Kubo formula for the shear viscosity

η = − lim
ω→0

lim
k→0

ω

k2 ImGR
π⊥π⊥

(ω, k). (2.40)

Similarly to the transverse sector, we are able to derive the Green’s function in the lon-
gitudinal sector which consists of the two coupled equations for energy- and longitudinal
momentum conservation in the order ϕa = (ε, π‖), λa = (δT/T, v‖)

GR
ab(ω, k) = − η/(ε̄+ p)

ω2 − k2 ∂p/∂ε̄+ i ω (η + ζ)/(ε̄+ p) k2

 k2 ω k

ω k k2 η
ε̄+p − i ω

η+ζ
ε̄+p k

2

 . (2.41)

2.3. Entanglement Entropy from QFT and Holography
After discussing local observables within the AdS/CFT correspondence in terms of local
operators, we will now switch to non-local observables. In quantum field theories, the
notion of entanglement is very natural. If we divide a quantum system into two parts,
the natural question arises: how entangled are they? As we will see throughout this
chapter, entanglement is directly related to the degrees of freedom of the theory. In a two-
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2. The AdS/CFT correspondence

dimensional CFT, for example, the entanglement entropy is proportional to the central
charge c. For dimensions greater than d = 2, computing the entanglement entropy is a
daunting task even in free theories. Using the AdS/CFT correspondence, however, we
can translate the complicated task of doing the calculation in quantum field theory to a
problem of differential geometry in a classical theory of gravity.

2.3.1. Entanglement Entropy in Field Theory

In this subsection, we review the basic definition and how to compute entanglement
entropy in quantum theories. At zero temperature, the system is in the pure ground
state |Ψ〉, which we assume to be non-degenerated. In order to compute the von Neumann
entropy of the quantum system, we have to compute the density matrix ρtot = |Ψ〉〈Ψ|.

In the ground state, the von Neumann entropy is zero by Stot = −tr ρtot log ρtot = 0. If
we divide the system in two parts A and B, where Htot = HA⊗HB, an observer restricted
to subsystem A will only see part of the density matrix describing the full system

ρA = trBρtot. (2.42)

Using the reduced density matrix eq. (2.42), the entanglement entropy of subsystem A

is defined as the von Neumann entropy in the reduced Hilbert space

SA = −trAρA log ρA. (2.43)

Another important quantity is the so-called Rényi entropy (n 6= 1)

S(n) = 1
1− n log tr ρnA, (2.44)

which reduces to the von Neumann entropy (2.43) in the limit n → 1. With the notion
of entanglement entropy at hand, we can work out the procedure of how to compute it.
In general, it is not possible to compute the right side in (2.43) for a generic subsystem A

explicitly which we need in order to apply (2.43). Calabrese and Cardy realized that we
can adapt a trick from statistical physics – the replica trick. Let λi be the i-th eigenvalue
of the reduced density matrix ρA and we furthermore assume that all eigenvalues lie in
the range λi ∈ [0, 1] and the sum is normalized to ∑i λi = 1. Then we find that the sum
trρnA = ∑

i λ
n
i is analytic for Re(n) > 1, even for non-integer n [371]

− ∂

∂n
trA ρnA|n=1 = − ∂

∂n
log trA ρnA|n=1 = trA ρnA − 1

1− n

∣∣∣∣
n=1

= SA. (2.45)

The last equality holds because the Rényi entropy (2.44) converges in the limit n → 1+
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2.3. Entanglement Entropy from QFT and Holography

to the value of the entanglement entropy (2.43) if (2.43) is finite. According to eq. (2.45),

Figure 2.1.: Cartoon of the n copies sewn together to form a n-sheeted Riemann surface.
Graphic taken from [372].

we have to compute the trace of the n reduced density matrices ρnA for a given subsystem
A within the QFT. In the following, we consider a two-dimensional QFT, where A is the
single interval x ∈ [u, v] at tE = 0 in Euclidean signature (see the left side of figure 2.1 for
a graphical representation). The ground state follows from by integrating the partition
function over all possible field configurations φ from tE = −∞ to tE = 0

Ψ(φ0(x)) =
∫ φ(tE=0,x)=φ0(x)

tE=−∞
Dφ e−S(φ). (2.46)

The density matrix is given in terms of the ground state eq. (2.46) by ρ(Ψ(φ0)Ψ̄(φ′0)).
We have to integrate out the degrees of freedom in region B since we are interested in
obtaining the reduced density matrix ρA. At tE = 0, we integrate out φ(tE = 0, x) on B

by imposing the boundary condition φ0(x) = φ′0(x) for all x ∈ B and 0± as defined in
figure 2.1

ρA(φ+φ−) = (Z1)−1
∫ tE=∞

tE=−∞
Dφ e−S[φ] ∏

x∈A
δ(φ(0+, x)−φ+(x)) δ(φ(0−, x)−φ−(x)), (2.47)

where Z1 is the vacuum partition function we use to normalize the reduced density matrix
trA ρA = 1. In order to apply the replica trick as explained in eq. (2.45), we have to make
n copies of the reduced density matrix and trace over them successively

trA ρnA = trA (ρA(φ1+φ1−) . . . ρA(φn+φn−)) = Z−n1

∫
(tE ,x)∈Rn

Dφ e−S[φ] = Zn
(Z1)n , (2.48)

where we are gluing the n−copies {φi±(x)} together as φi−(x) = φ(i+1)+(x) and integrate
over φi+(x) (see the right side of figure 2.1 for a cartoon).
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2. The AdS/CFT correspondence

2.3.2. Holographic Entanglement Entropy

In holography, the notion of entanglement entropy is an example of how the emergent
extra radial direction organizes the degrees of freedom in the dual CFT. Motivated by the
Bekenstein-Hawking formula for the entropy of black hole horizons, Ryu and Takayanagi
suggested that the generalization of the Bekenstein-Hawking formula to the area A of
minimal surfaces γA is the holographic dual of the entanglement entropy in quantum
field theory

SEE = A(γA)
4GN

, (2.49)

where the d−2 dimensional manifold ∂γA = ∂A corresponds to the boundary of subsystem
A. In order to illustrate the Ryu-Takayanagi formula, we calculate the entanglement
entropy of a spherical region of radius R [66, 283, 373, 374]. For spherical symmetry,
the boundary metric in a constant time slice reads ds2

bdy = dρ2 + ρ2 dΩ2
d−2, where ρ is

the radial coordinate of the boundary. In these coordinates, the entangling surfaces are
parametrized by z = z(ρ) and we can write the Lagragian for the minimal area surfaces
in terms of the induced metric

L(z(ρ), ρ) = Ld

zd
ρd−1

√
1 + (z′(ρ))2. (2.50)

After imposing the boundary conditions z(R) = 0 and z′(0) = 0, we find the solution
z(ρ) =

√
R2 − ρ2. The regularized area follows from integrating the induced metric eval-

uated on the solution (2.50)

A(γA) = Ld−1Ωd−2

∫ R−ε

0
dρ R ρd−2

(R2 − ρ2)d/2 (2.51)

= Ld−1Ωd−2

d− 1

(
1− ε

R

)d−1
2F1

(
d− 1

2 ,
d

2 ,
d+ 1

2 ,
(

1− ε

R

)2
)
, (2.52)

where 2F1 is the hypergeometric function 2F1(a, b; c; z) and ε � 1 is the cutoff. In the
ε → 0 limit of (2.51), we see that the leading term of the entanglement entropy (2.49)
depends on the dimension of the spacetime and is given by [373]

SEE ∼


Ld−1

GN

(
R
ε

)d−2
+ subleading d > 2,

L
2GN log R

ε
+ subleading d = 2 .

(2.53)

In d = 2, we find with the central charge c = 3L/(2GN) the universal result

SEE = c

3 log R
ε

+ . . . . (2.54)
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2.4. The DS/dS-correspondence
One attempt to resolve the puzzle of quantum gravity in de Sitter (dS) – using the
powerful tools of holography – is the DS/dS-correspondence [268] which is based on
uplifting the AdS/CFT correspondence [267,269,270,275]. In contrast to AdS, dS may be
viewed as two asymptotic AdS IR regions glued together on their UV slice [375,376]. This
scenario corresponds to a Randall-Sundrum type setup [377] with a localized graviton on
the UV slice [378]. The DS/dS-correspondence conjectures that warped dSd+1 spacetime
is dual to two d-dimensional CFTs which are coupled to one another and are living on
the central UV slice. Due to the localized graviton on the central slice, the CFTs are also
coupled to gravity.

The basic idea of DS/dS becomes apparent by writing the (d + 1)-dimensional (A)dS
as a warped spacetime in d-dimensional dSd

ds2 = dr2 + e2A(r) ds2
dSd
, eA(r) =

L sin(r/L) for dSd+1

L sinh(r/L) for AdSd+1

(2.55)

where we denote the radial direction by r. While the warpfactor of AdS grows without
bound for r → ∞, the warpfactor of dS reaches a maximum on the central (UV) slice
located at r/L = π/2. This inherently implies that the dS spacetime has a built-in UV
cutoff and all quantities are automatically regularized. Both warp factors vanish on the
horizon r = 0. Note that the warp factor of dS has a second zero at r = πL, indicating
a second horizon. In the highly redshifted region r/L� 1, the warp factors both vanish
linearly and the spacetimes are indistinguishable. For dSd sliced AdSd+1, the AdS/CFT-
correspondence provides us with a dual CFT. Since the spacetimes are identical in the
infrared region, the authors of [268] conjectured, that this is also the dual CFT to dSd+1.
We will see later that this dual may be constructed for the whole spacetime by deforming
the dual field theory with a so-called T T̄ deformation [277]. Concretely, the proposal
of [268] suggests that the holographic dual of dSd+1 consists of two d-dimensional CFTs
which live on the central UV slice. In particular:

Quantum Gravity on dSd+1 (+matter)
is equivalent to

Two d dimensional CFTs with UV cutoff + dynamical gravity on dSd.

The two CFTs act only as a pair at fairly low energies and are coupled in terms of
irrelevant interactions [276]

Smix ∼
∫

ddx
√
−γ L2∆−d

dS O1O2 + . . . , (2.56)
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2. The AdS/CFT correspondence

where γ is the metric of the d-dimensional gravity theory on the central slice.

2.4.1. Density matrix in 2d CFT with cutoff

We consider a CFT in d = 2 with large central charge dual to classical gravity. In
the energy spectrum, there is a transition ECFT? = ∆ − c

12 = c
12 , where the entangle-

ment entropy starts following a Cardy formula [276]. The number of states in the CFT
Hilbert space – up to energy ECFT? – is to leading order in the central charge c given by
dim(H∆≤c/6) = eπc/3. The strong interactions between the two CFTs lead to an approxi-
mately maximally entangled state with density matrix given by

ρ1,max ' I
1

dim(H∆≤c/6) . (2.57)

The entanglement entropy of this maximally entangled state is given by tracing out one
of the CFTs [276]

S = log dim(H∆≤c/6) = πc

3 . (2.58)

2.4.2. Holographic entanglement entropies in DS/dS

For the dSd+1 metric in the coordinates of (2.55), the minimal areas minimize

L = Ld−1 cosd−2(β) sind−2
(
r(β)
L

) √√√√(r′(β)2 + L2 sin2
(
r(β)
L

)
. (2.59)

where we used the dSd metric ds2
dSd = − sin2 βdτ 2 + dβ2 + cos2 β dΩ2

d−2 in the static patch
τ = 0. One consistent solution minimizing eq. (2.59) is given in terms of a great circle
with r/L ≡ π

2 . The constant solution for the entangling surface leads to a volume law
for the entanglement entropy (2.49). For a volume of the size of de-Sitter A = LdS, the
volume is given by Ad−1(γA) = 2πd/2 Ld−1

dS /Γ(d/2)

Sd=2,EE = 2π LdS

4GN

= πc

3 , (2.60)

where we used the expression c = 3LAdS/(2GN) and identified LdS = LAdS in the infrared.
Note that this result is in perfect agreement with the universal CFT result for CFTs with
cutoff (2.58). The result is finite within the field theory and holography because the
Hilbert space of the former and the radial distance of the latter are finite.
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3. Broken spacetime symmetries

The spontaneous breakdown of a global symmetry, such as translational invariance, leads
to the appearance of gapless degrees of freedom – the Goldstone bosons. Goldstone
bosons were first introduced in the context of the BCS theory of superconductivity [379–
381]. Imagine, the global symmetry is not an exact symmetry but lightly broken by
a small explicit source term. Breaking this not-exact symmetry spontaneously leads
still to (pseudo-)Goldstone bosons in the spectrum which acquire a small mass. In this
chapter, we study the effects of broken translational invariance on the hydrodynamic
spectrum. First, we discuss the set-up in terms of spontaneously broken translations
and establish the hydrodynamic and holographic description and compare the predictions
within our holographic model. After discussing the spectrum of the hydrodynamic modes,
we proceed to break translations first explicitly and then discuss the so-called pseudo-
spontaneous regime. To conclude the discussion about broken translational invariance,
we go beyond the linear response regime and discuss the full time-dependent response.
This chapter is based on my work published in [1–4] in collaboration with Martin Ammon,
Matteo Baggioli, Seán Gray, Akash Jain, and Hesam Soltanpanahi.

3.1. Fluids and solids – a symmetry consideration
In this section, we consider a medium extended throughout the whole spatial volume of the
flat spacetime. In d spacetime dimensions, we may define an invertible mapping φ between
the physical coordinates and the internal space by introducing (d−1)-scalar fields φI(t,x),
I ∈ [1, . . . , d] [181,382–389]. The φI are the comoving coordinates which characterize the
position of local fluid elements at a given time in terms of the spacetime coordinates x
and t. The comoving coordinates φI are related to the normalized hydrodynamic velocity
field uµ(x) in terms of an orthogonality constraint

d
dτ φ

I(x(τ)) ≡ uµ ∂µφ
I = 0, (3.1)

where uµ satisfies uµuµ = −1. Note that the comoving coordinates φI stay constant along
the lines of uµ.

The symmetry group of fluids is very large and includes for example shifts and rotations
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of the comoving coordinates. The comoving coordinates of fluids respect internal volume
preserving diffeomorphisms (VPDiffs) given by

φI → ξI(φJ), det(∂ξI/∂φJ) = 1. (3.2)

In equilibrium, we may choose the comoving coordinates to agree with the physical ones
by setting (where i, j, I, J sum over the spatial dimensions in this section)

〈φI〉 = xi δIi . (3.3)

By making this particular frame choice, the field configuration breaks the internal symme-
tries down to a linear combination of internal- and spacetime translations and rotations.
At sufficiently low energies and momenta, fluctuations about the equilibrium state are
totally dominated by the Goldstone bosons associated with the breakdown of the con-
tinuous symmetries by the ground state. To summarize the symmetries of the system,
let us denote the generators of spacetime translations, rotations, and Lorentz boosts by
Pµ, Jij and Ki, respectively. We also refer to internal rotations as LIJ . The following
symmetries are (un)broken1 [389,390]:

unbroken =

P̄µ ≡ Pµ + aµ translations

J̄ij ≡ Jij + Lij rotations
broken =


Ki boosts

aµ constant shifts

Mij special linear

What changes if we want to describe a solid instead of a fluid? The solid is only invariant
under a small subset of the symmetry group defining the fluid eq. (3.2). In particular, the
solid is invariant under constant internal translations Tφ and rotations RI

J ∈ O(d− 1)

Tφ(aI) : φI(t, x)→ φI(t, x) + aI , φI → RI
J φ

J . (3.4)

Even though the ground state breaks translations spontaneously, there is still a combi-
nation of internal and ordinary translations left invariant. For the translation operator
Tx(c) : φI(x, t)→ φI(x+c, t), the combination Tx(c)−Tφ(cI) is conserved and represents
the momentum operator. The broken generators Tx+Tφ give rise to the (d−1) Goldstone
bosons of the spontaneously broken translational symmetry. The Goldstone bosons have

1Note that we do not consider charge in our description. This may be done by introducing and additional
scalar field φ0 which transforms under the U(1) symmetry. In that case, the symmetry group is bigger
and we have to include shifts in the chemical potential in the category of broken symmetries.
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to satisfy the commutation relations

[φI(x), πJ(y)] = i δ(d−1)(x− y)
(
δIJ + δJj ∂jφ

I
)
. (3.5)

The smaller internal symmetry group of the solid compared to the fluid requires us to
replace Mij with Lij in the chart of symmetry breaking. In order to implement the
translational and rotational invariance into the hydrodynamic description, we construct
it from the derivatives of φI and demand the theory to be rotationally invariant.

3.2. Elasticity theory and Phonons
In elasticity theory, deforming a medium with a strain, is given in terms of the strain
tensor [391]

uij = 1
2 (∂iuj + ∂jui), (3.6)

where we introduced the displacement variable u. For simplicity, we want to restrict
ourselves to homogeneous and isotropic mediums. The impact of the elastic deformations
on the medium is captured by Hooke’s law, which relates the stress tensor to the strain
tensor

σij = ∂f

∂uij
= κukk δij + 2G

(
uij −

1
d
ukk δij

)
, (3.7)

where f denotes the free energy. The parameter G is the shear elastic modulus and κ

is the bulk modulus, respectively. By integrating with respect to uij, we find the free
energy

f = 1
2 κ (ujj)2 + 2G

(
uiju

ij − 1
d

(ujj)2
)

+ c, (3.8)

where c is a constant. In the following, we recast the deformations in field theory language
for two spatial dimensions. The effective action of the low energy theory reads

S =
∫

d2+1xF (X,Z), (3.9)

where X and Z are the building blocks

X = tr
(
IIJ

)
, Z = det

(
IIJ

)
, IIJ = ∂µφ

I∂µφJ . (3.10)

The indices I, J run over the two spatial dimensions I, J ∈ {x, y} and are raised and low-
ered with the Kronecker delta δIJ . The homogeneous and isotropic equilibrium configura-
tion is given by eq. (3.3). Under small deformations out of the equilibrium configuration,
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the φI transform as

φI = 〈φI〉+ ΦI , IIJ → 〈IIJ〉+ ∂µ〈φI〉 ∂µΦJ + ∂µΦI ∂µ〈φJ〉+O(Φ2), (3.11)

with the equilibrium values 〈IIJ〉 = δIJ , ∂µ〈φI〉 = δ I
µ . From this transformation property,

we identify the elastic deformation defined in eq. (3.6) with

uIJ ≡ 1
2
(
IIJ − 〈IIJ〉

)
, (3.12)

where the displacements from the equilibrium configuration are encoded in Φ. In this
language, the free energy (3.8) reads

f = 1
2 (κ+G)λ2

‖ + 1
2 Gλ

2
⊥ + b δε λ‖, (3.13)

where we introduced variables for the transverse and longitudinal part of the Goldstone
operator ΦI by λ‖ = ∇ · φ and λ⊥ = ∇ × φ.2 For fluids, the elastic shear modulus G
is zero and we immediately see from (3.13) that the coupling of the Goldstones to the
transverse part vanishes.

In the following, we want to embed the phonon physics into an hydrodynamic descrip-
tion. The hydrodynamic description contains five hydrodynamic variables ϕA and their
corresponding sources sA [1, 161,392,393]

ϕA = ∂f

∂sA
= {δε, π‖, π⊥, λ‖, λ⊥}, sA = {δT, v‖, v⊥, s‖, s⊥}, (3.14)

which are the energy density, the longitudinal and transverse momentum density, and
the longitudinal and transverse part of the phonon. The hydrodynamic variables are
accompanied by their sources, the temperature, velocity, and displacement. As we dis-
cussed in section 2.2.3, the relation between ϕA and sA is given by the thermodynamic
susceptibilities

ϕA = χAB s
B, χAB = ∂ϕA

∂sB
, χAB = diag(cV , χππ, χππ, (κ+G)−1, G−1), (3.15)

with the specific heat cV = ∂ε/∂T . From eq. (3.15) it is clear that the G → 0 limit is
subtle and must already be taken on the level of the free energy (3.13). The conservation
equations of our model are energy conservation and momentum conservation

ε̇+ ∂jτ 0
j = 0, π̇i + ∂jτij = 0, (3.16)

2The Kubo formulas in our holographic model indicate that b = 0 and we thus neglect b for simplicity.
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respectively. The conservation equations are accompanied by the so-called Josephson
relations. The Josephson relations, known from the hydrodynamic theory of superfluidity,
are the equations of motions for the Goldstones. In equilibrium, the system evolves as
φ̇i = u̇i = vi which provides a non-dissipative coupling between the elastic displacement
variable u ∼ s and the momentum density π.3 This implies that we treat λ ∼ s ∼ ∂φ

as zeroth order in the derivative expansion.4 Out-of-equilibrium, the Josephson relation
reads to first order in the derivatives

φ̇i = vi + γ2 ∂iT + ξ⊥ ∂
j(∂jφi − ∂iφj) + ξ‖ ∂i∂

jφj, (3.17)

where γ2, ξ⊥, ξ‖ are the dissipative coefficients. By taking the divergence and the rota-
tion of eq. (3.17), we find the Josephson relation for the longitudinal and transverse
Goldstones. To complete the hydrodynamic description, we have to write down the con-
stitutive relations which relate the currents to their respective thermodynamic variables.

The linear displacements u act as sources for the energy momentum conservation. By
splitting them in their transverse s⊥ and longitudinal s‖ part, the (symmetrized) energy-
momentum tensor takes the form

τ 0
i =χππ vi − κ̄0 ∂iT − T γ2 ∂is‖ +O(∂2), (3.18)
τij =δij [p− (κ+G) ∂ · Φ]− 2G

[
∂(iΦj) − δij ∂ · Φ

]
− σij +O(∂2), (3.19)

where κ̄0 and γ2 are transport coefficients, p the thermodynamic pressure, and σij are the
one-derivative corrections. The σij have to respect the same symmetries as the elastic
deformations in eq. (3.7)

σij = η (∂ivj + ∂jvi − δij (∇ · v)) , (3.20)

where we introduced the shear viscosity η and already set the bulk viscosity to zero as it
vanishes in CFTs [394].

3.3. The holographic model
After laying out the field theoretical framework, we want to construct the holographic
gravity dual incorporating broken translations. In order to describe the dual of strongly
coupled crystal and fluid dynamics, we employ the simple bottom up model consisting of

3The coupling is non-dissipative since it describes a steady state.
4Note that this situation is similar to the superfluid where the equation of motion for the Goldstones

are related to changes of the free energy with respect to the particle number φ̇ = −µ.
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the Einstein-Hilbert action with a mass term for the graviton Lφ [126,128,137]

S = M2
p

∫
d4x
√
−g

(
R

2 + 3
L2 + Lφ

)
+M2

p

∫
d3x
√
−γ K. (3.21)

The mass term for the graviton Lφ breaks the translational invariance of the theory leav-
ing us with a Lorentz violating gravity theory. However, adding generic mass terms for
the graviton is a highly non-trivial task since the theory is plagued by various instabilities
– some such as the Boulware-Deser ghost only appearing at the nonlinear level [395]. In
2010, de Rahm, Gabadaze, and Tolley (dRGT) successfully constructed a stable mas-
sive gravity theory for asymptotically flat space [396] (see [397] for a review). In gen-
eral [126,151,398], the mass terms couple via the metric perturbations hµν to the action
as Lφ ∼ 1/2(m0(r) (htt)2 + 2m2

1(r) (hti)2 −m2(r) (hij)2 + . . .), where the ellipsis denotes
the remaining combinations. The mass term breaks the diffeomorphism invariance of
the spacetime explicitly since the metric fluctuations are not invariant under coordinate
transformations xµ → x̃µ(x). There is an elegant way to restore diffeomorphism invari-
ance in the physical coordinates – the Stückelberg trick. We introduce the Stückelberg
scalars φI , which are the physical coordinates in order to write the mass term as a gauge
invariant combination of the spacetime metric

IIJ ≡ ηµν ∂µφ
I ∂νφ

J (3.22)

together with the reference metric in the configuration space of the Stückelbergs fAB(φC).
The breakdown of a subset of the diffeomorphism invariance in our gravity theory becomes
apparent in the unitary gauge where the Stückelberg scalars read

〈φI〉 = xiδIi , (3.23)

which spontaneously breaks the diffeomorphism invariance and internal symmetries up
to a diagonal subgroup. The ground state is left invariant by the diagonal subgroup of
transformations

φI → φI − φ̃I , xµ → xµ + x̃µ (3.24)

for the ground state (3.23) since 〈φI〉 → 〈φI〉 + x̃µ − φ̃I . The Stückelberg scalars which
correspond to the dual Goldstone operators at the conformal boundary render the gravi-
ton massive and in equilibrium their spatially linear profile (3.23) breaks the translational
invariance [126,128]. In the following, we will focus our attention on the two fundamental
phases of matter: solids and fluids. As argued in the field theory section, we use a set of
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3.3. The holographic model

bulk scalars φI(x, t, u) as building blocks

IIJ = ∂µφ
I∂µφJ , X = tr(IIJ), Z = det(IIJ), (3.25)

where potentials of the form V (X,Z) describe solids and V (Z) fluids. It is important
to notice that the bulk Stückelberg scalars are generally different than the Goldstone
operators in the dual field theory. All in all, the holographic model is given by the
action [137]

S = M2
p

∫
d4x
√
−g

(
R

2 + 3
L2 −m

2 V (X,Z)
)
, (3.26)

where m is the coupling of the scalars to gravity. In order to ensure that our gravity theory
is not plagued by the severe pathologies which might arise in massive gravity theories, we
have to impose some restrictions on the form of the potential V (X). As shown in [137],
the absence of ghosts in the theory imposes the constraint V ′(X̄) > 0 on the potential,
where X̄ is evaluated on the equilibrium configuration. To make sure that the theory
does not include gradient instabilities, we also demand that 1 + X̄ V ′′(X̄)/V ′(X̄) > 0.

Finally, to complete the holographic model, we have to make an ansatz for the metric;
we want to consider a strongly coupled CFTs in 2+1 dimensions at finite temperature;
on the gravity side this is realized by a black brane in asymptotically AdS4

ds2 = 1
u2

(
−f(u) dt2 − 2 dt du+ dx2 + dy2

)
, (3.27)

where u denotes the radial direction. Note, that we chose Eddington-Finkelstein coordi-
nates for numerical convenience and set the AdS curvature radius L = 1. The horizon uh
is the zero of the blackening factor f(u) and the conformal boundary is located at u = 0.
The energy momentum tensor for our setup follows by varying the action with respect to
the metric and reads with VY = ∂V/∂Y

T φµν = − 2√
−g

δSφ
δgµν

= −gµνV +∂µφ
I∂νφI VX +2 (∂µφI ∂νφI IJJ −∂µφI ∂νφJ IIJ)VZ . (3.28)

The big advantage of those simple holographic models compared to similar approaches
is that we may solve the background Einstein’s equations analytically. This allows us
to compute the thermodynamic properties of our system exactly. By integrating the
background Einstein’s equations with respect to the radial coordinate, we find the em-
blackening factor in terms of the scalar potential V (X,Z)

f(u) = u3
∫ uh

u

dζ
ζ4

(
3−m2 V (X(ζ2), Z(ζ4))

)
. (3.29)

With the emblackening factor at hand it is straightforward to compute the temperature
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of the dual CFT given by

T = −f
′(uh)
4π = 3−m2 V (X(u2

h), Z(u2
h))

4π uh
. (3.30)

The Einstein’s equations are supplemented by the equations of motion for the Stückelberg
scalars φI

∂µ

(
√
−g gµν ∂νφI

∂V

∂IIJ

)
= 0. (3.31)

In section 2.2.2, we discussed that transport properties are encoded in the response of
the system to small fluctuations. In holography, we find the linear response of the dual
quantum field theory by solving the linearized equations for the fluctuations. Concretely,
we consider perturbations of the metric and the scalar fields about the equilibrium state
(φI = xI , gmn)

φI(t,x, u) = xI + ε δφI(u) ei (ky−ωt), gmn(t,x, u) = ĝmn + ε hmn(u) ei (ky−ωt), (3.32)

where we chose the momentum to point in the y-direction. The Goldstone operators
on the dual field theory side are encoded in the asymptotic behavior of the Stückelberg
scalars φI at the conformal boundary

φI ∼ φI(0)(x, u) + φI(1)(x, u)uα + φIlog(φI(0)(x, u))uα log(u) + . . . , (3.33)

where the exponent depends on the exact form of the potential V (X,Z). For polyno-
mial potentials of the form V (X) = XN and V (Z) = ZM , we find α = 5− 2N and
α = 5− 4M , respectively. The term φI(0)(x, u) is always non-zero evaluated on the equi-
librium configuration since φI(0)(x, u) = xI .

According to the AdS/CFT-dictionary, the leading term in the asymptotic expansion
(3.33) corresponds to a source for the dual field theory operator OI , while the subleading
free coefficient in (3.33) corresponds to the vacuum expectation value of OI .5 However,
which of the two coefficients in (3.33) is the leading term is not a priori clear but rather
depends on the value of α and thus on the form of the potential V (X,Z). If α > 0,
φI(0) acts as source term for the dual operator OI and thus the translational symmetry is
broken explicitly. In the case of α < 0, φI(0) is associated with the vacuum expectation
value for the dual operator O in the field theory and φ(1) is the source term. In that
case, the translational symmetry breaking is spontaneous and totally dynamical for the

5In the following, we only consider the standard quantization; in the case of the alternative quantization
or mixed boundary conditions the discussion has to be altered appropriately.
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3.4. Spontanous symmetry breaking

equilibrium solution φI = xI . To summarize, for potentials of the form

V (X,Z) =

X
N , N > 5/2

ZN , N > 5/4
(3.34)

the field theory operator OI is not explicitly sourced and translations are broken spon-
taneously. In the following, we will focus on the transport properties in systems where
the translational invariance is broken explicitly (EXB) or spontaneously (SSB) and the
interplay of EXB and SSB [1,2, 130,131,191].

3.4. Spontanous symmetry breaking
In the last section, we laid out the fundamentals about the physics of spontaneously bro-
ken translations. The spontaneous breakdown of the continuous translational symmetry
leads to Goldstone bosons in the spectrum [381,399]. In this section, we want to investi-
gate the hydrodynamic modes from a holographic perspective and explicitly compute the
dispersion relations and transport coefficients. For simplicity, we consider a momentum
pointing in y-direction and classify the direction with respect to their orientation to the
momentum.

Transverse sector

In the transverse sector, the hydrodynamic variables (introduced in eq. (3.14)) are the
transverse phonon λ⊥ and momentum density π⊥. The corresponding hydrodynamic
equations are given in terms of momentum conservation eq. (3.16) and the transverse
part of the Josephson relation eq. (3.17). By evaluating the hydrodynamic equations for
the constitutive relations of the energy-momentum tensor eq. (3.18) in Fourier space, it is
straightforward to obtain the dispersion relations in the transverse sector; in particular,
since the sector is composed of two hydrodynamic variables, we are expecting two modes
consisting of the two propagating diffusive sound-like modes – the transverse phonons
[1, 391]

ω = ±cT k − iDTk
2, (3.35)

with the transverse speed of sound cT and the transverse diffusion constant DT given by

c2
T = G

χππ
, DT = 1

2

(
Gξ⊥ + η

χππ

)
. (3.36)

Recall that G is the shear elastic modulus, χππ the momentum susceptibility, η the shear
viscosity and ξ⊥. The quantities on the right hand side of eq. (3.36) are encoded in Kubo
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3. Broken spacetime symmetries

formulas which we may compute in terms of linear response theory within holography.
The left hand side, i.e. the speed of sound and attenuation constant are encoded in
the quasi-normal modes. This means, we can verify the hydrodynamical predictions by
using the hydrodynamic formulas with the transport coefficients and thermodynamical
quantities extracted from our holographic model and compare to the dispersion relations
obtained by means of QNM. The Kubo formulas relevant for the sound modes are given
by

G = lim
ω→0

lim
k→0

Re
[
GR
TxyTxy(ω, k)

]
, (3.37)

χππ = lim
ω→0

ω lim
k→0

1
k

Re[GR
επ‖

(ω, k)], (3.38)

ξ⊥ = lim
ω→0

ω lim
k→0

Im
[
GR

Φ(1)Φ(1) (ω, k)
]
, (3.39)

η = − lim
ω→0

1
ω

lim
k→0

Im
[
GR
TxyTxy (ω, k)

]
, (3.40)

where GR refers to the the retarded Green’s function.
By computing the Kubo formulas, we notice one important difference between the

models for solids V (X,Z) and the fluid model V (Z) – the shear elastic modulus vanishes
in the latter. According to (3.36), this has a drastic effect on the transverse phonons;
without shear modulus they are non-propagating and thus purely diffusive. As we al-
ready noted in the field theory section, this is clear on the level of the free energy (3.8);
the transverse part of the strain decouples and the time derivative of the transverse mo-
mentum density vanishes to zeroth order. In this case, the physics we observe in the
transverse sector is the same as for the relativistic fluid – a purely diffusive mode which
we discussed in section 2.2.3 (see e.g. eq. 2.39). The dispersion relation for the solid
model was first considered qualitatively in [131].

In the left side of figure 3.1, we match the diffusion constant obtained in the fluid model
V (Z) [2] quantitatively to the expression derived from hydrodynamics eq. (3.36). To do
this comparison, we have to compute two sets of data: on the one hand, we compute
the dispersion relations in terms of QNMs. For given m/T , we compute the QNMs
for several values of k and extract the coefficient scaling like k2 by doing a polynomial
fit. The red dashed line, on the other hand, we obtain by computing the transport
coefficients appearing in (3.36) directly in terms of the Kubo formulas (3.37)-(3.40). To
extract Kubo formulas, such as the elastic shear modulus G (3.37), we have to solve
the linearized equations for the fluctions in the presence of sources. For example, to
compute χππ according to eq. (3.39), we have to set the source of the metric fluctuation
hty(t, y) (encoding the hydrodynamic variable π‖) to 1, solve the equations in dependence
of the momentum k and the frequency ω and extract the expectation value of the metric
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3.4. Spontanous symmetry breaking

fluctuation htt (encoding the hydrodynamic variable ε). All other sources are zero. At
fixed m/T , we perform a scan in k for each value of ω to determine the coefficient linear
in k and subsequently scan ω to extract the 1/ω behavior for those values. Note that
k and ω are restricted to small values and the order of the limits is important. The
comparison of both predictions for the diffusion constant is shown in figure 3.1 and both
results match for our holographic model. We solve all equations of motion in this chapter
by means of so-called pseudo-spectral methods (see appendix A for an introduction to
the numerical methods and appendix A.7 and B for convergence and details on equations
of motion).

0.5 1.0 1.5 2.0 2.5 3.0

0.065

0.070

0.075

0.080

m/T

D
T

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.025

0.030

0.035

0.040

m/T

D
s
T

Figure 3.1.: Left: The diffusion constant of the transverse sound modes in terms of the
dimensionless m/T for a potential of the form V (Z) = Z2. The dashed line
corresponds to the hydrodynamic formula (3.36) evaluated on the quantities
obtained by means of Kubo formulas. Right: The sound attenuation con-
stant Dp in the longitudinal sector as function of m/T for a potential of the
form V (Z) = Z2. The black line computed in terms of the hydrodynamic
formula (3.43). Within the precision of the numerical data, we find good
agreement for m/T � 1.

Longitudinal sector

The longitudinal sector consists of three hydrodynamic variables, λ‖, π‖, ε, the longitu-
dinal phonon, the longitudinal momentum density, and all scalar quantities (in our case
the energy density ε). In Fourier space, we may solve the three hydrodynamic equa-
tions, the two conservation equations for energy and momentum conservation (3.16) and
the longitudinal part of the Josephson equation (3.17). This yields three modes in the
spectrum; two propagating, diffusive sound modes – the longitudinal phonons – and a
purely diffusive mode. The dispersion relation of the longitudinal phonons are to diffusive
propagating modes given in terms of

ω = ±cL k − iDp k
2 (3.41)
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with the corresponding longitudinal speed of sound cL is given by

c2
L = ∂p

∂ε
+ κ+G

χππ
= 1

2 + c2
T = 1

2 + G

χππ
, (3.42)

where we explicitly took the derivative of the thermodynamic pressure with respect to
the energy density. The attenuation constant Dp is given by

Dp = 1
2

η

χππ
+ 1

2
cV (κ+G)2ξ‖ − (κ+G)cV (∂p/∂ε)T̄ γ2 + (∂p/∂ε)κ̄0χππ − γ2(κ+G)χππ

cV (κ+G+ (∂p/∂ε)χππ) ,

(3.43)
where cV ≡ ∂ε/∂T is the specific heat. Similarly, we find for the purely diffusive mode
the dispersion relation

ω = −iDΦ k
2, (3.44)

with diffusion constant given by

DΦ = (κ+G) κ̄0 + γ2χππ + cV (∂p/∂ε)(T̄ γ2 + ξ‖χππ)
cV (κ+G+ (∂p/∂ε)χππ) . (3.45)

The relevant Kubo formulas for the hydrodynamic expressions in the longitudinal sector
may be extracted from the following correlators

ξ‖ = lim
ω→0

ω lim
k→0

Im
[
GR

Φ(y)Φ(y) (ω, k)
]
, (3.46)

κ̄0 = − lim
ω→0

ω lim
k→0

1
k2 Im

[
GR
εε(ω, k)

]
, (3.47)

Tγ2 = − lim
ω→0

ω lim
k→0

1
k

Re
[
GR
εΦ(y)(ω, k)

]
. (3.48)

With these expressions at hand, we are able to check the hydrodynamic expressions
by means of our holographic model. The longitudinal sound mode in the solid model [1]
is depicted in left side figure 3.2 for various exponents N of the solid model potential
V (X) = XN . We note that the behavior is for all exponents qualitatively the same,
where the exact values depend on the underlying theory determined by N . In the right
side of figure 3.2, we demonstrate that the hydrodynamic formula eq. (3.42) matches
the real part of the sound QNM. We see that the deviation of the speed of sound from
the result for a CFT is governed by the magnitude of the shear elastic modulus G. In
the case of the fluid, this inherently implies that the longitudinal speed of sound always
matches 1/2, independent of the symmetry breaking strength m/T . This is exactly what
we observe when we compute the longitudinal speed of sound in the holographic fluid
V (Z) [2]. Note that in contrast to the transverse sector, the longitudinal phonons are
coupled to the system even at G = 0 in terms of the bulk shear modulus κ.
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Figure 3.2.: Left: The speed of the longitudinal phonons for various potentials
N = 3, 4, 5, 6, 7, 8 (from lighter to darker color) as function of the dimen-
sionless spontaneous symmetry breaking scale m/T . Right: Real part of
the dispersion relation of the longitudinal phonons determining the speed of
sound for the potential N = 3 and various m/T ∈ {0, 3.5, 12.6}. The dashed
black lines are the comparisons with the theoretical formula (3.42).

The attenuation constant of the sound modes is depicted in the left side figure 3.3
for a potential of the form V (X,Z) = X5. We find excellent agreement between the
hydrodynamics prediction (black dashed line) and our results obtained from holography
(orange line). We also verified that the sound attenuation constant fits the hydrodynamic
formula eq. (3.43) for the fluid model V (Z) = Z2 [2] as shown in the right side of figure
3.1.
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Figure 3.3.: Left: The comparison between the damping coefficient Dp extracted from
the numerical data (solid line) and the hydrodynamic formula (3.43), for the
specific N = 5. We found similar results for several N > 5/2. Right: The
comparison between the numerical value of the diffusion constant DΦ for
N = 5 (solid line) and the predictions given by the hydrodynamic formula
(3.45) (lower, dashed line). The upper dashed black line is the formula (3.45)
with an additional constant shift. The agreement between the shifted hydro-
dynamic formula and the data is evident and valid until quite large values of
m/T .

The last aspect to check for spontaneous symmetry breaking is the diffusion constant
of the purely diffusive mode. The results are shown in the right side of figure 3.3. The
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QNM results are depicted in orange while the hydrodynamic prediction is given in terms
of the red dashed line. Surprisingly, the results do not agree. If we shift the line by a
constant, however, we find very good agreement between the hydrodynamic prediction
and the holographic results. We verified that this shift is independent of the precise form
of the potential, i.e. independent of the exponent N . Even in the limit of small m/T ,
the results do not agree. In this limit, we can take the probe approximation and study
the holographic side analytically. In this limit, the scalar equation of motions reads

δφ′‖

(
f ′

f
+ 2iω

f
+ 2N

u
− 4
u

)
+ δφ‖

(
−k

2N

f
+ 2iNω

uf
− 4iω
uf

)
+ δφ′′‖ = 0, (3.49)

with the background given in terms of

f(u) = 1 −
(
u

uh

)3
. (3.50)

By matching the horizon and boundary asymptotics, we are able to obtain the dispersion
relations perturbatively in k which yields

D̃φ = N

2N − 3 uh , (3.51)

where N is the exponent of the potential V (X) which defines the model. The hydrody-
namic prediction reads for small m/T

DΦ ≈ (κ+G) ξ‖ +O(m2) = 3
2

1
2N − 3uh +O(m2). (3.52)

By comparing (3.51) and (3.52), we find

D̃φ T = DΦT + 3
8π (3.53)

which is indeed independent of the exponent of the potential. We will comment on the
resolution of this disagreement in the conclusions.

Hydrodynamics is only a subset of the parameter space of linear response theory. In
holography, we can go beyond the hydrodynamic regime and compute the full regime
of linear response in terms of the QNM spectrum. In the left side of figure 3.4, we
draw a cartoon of the QNM spectrum at vanishing momentum in dependence of the
spontaneous symmetry breaking scale. In the right side of figure 3.4, we present the first
higher QNMs in the spectrum as well as the QNMs for larger values of the momentum k

in the longitudinal sector of the solid model V (X,Z) = X3.
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Figure 3.4.: Spectrum of higher QNMs for the potential V (X) = X3. Left: The QNM
spectrum for vanishing momentum as a function of the dimensionless (in-
verse) temperature m/T ∈ [0, 6.5]. Blue dots denote low temperatures while
red dots refer to high temperatures. Right: The QNM spectrum for fixed
temperature m/T = 0.179 as a function of the dimensionless momentum
k/T ∈ [0.186, 7.45].

3.5. Explicit symmetry breaking
In this section, we focus on breaking the translational symmetry explicitly. Unlike for spo-
nanteous translational symmetry breaking, the momentum is no longer conserved when
translations are broken explicitly. We may implement this into our hydrodynamic for-
malism by “breaking” textbook hydrodynamics and relaxing the momentum conservation
equation [134,138]

π̇i(t, y) + ∂jτij(t, y) = −Γπi(t, y), (3.54)

where we introduced the momentum dissipation rate Γ. We assume that Γ is sufficiently
small so that the Josephson equations discussed in the spontaneous case still hold. It
is important to note that eq. (3.54) is beyond hydrodynamics and motivated by phe-
nomenological arguments. In this section, we will use holography, to demonstrate that
these phenomenological arguments are indeed consistent in the regime Γ � 1. In eq.
(3.54), we have two very different regimes:

• Γ � k � 1: Since Γ is neglectable compared to k, momentum is approximately
conserved and the physics is analog to the spontaneous case.

• k � Γ� 1: In this regime, even for small momentum dissipation rates momentum
will have dissipated significantly at large distances. The physics is totally dominated
by the remaining conserved quantity – energy – and thus purely diffusive.

In the intermediate regime between the two regimes, the system transitions from the
purely diffusive physics to the physics of spontaneously broken translations with two
sound-like modes after undergoing a collision at k?.
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From the equation for the momentum non-conservation (3.54) and the energy conser-
vation (3.16), it is straightforward to derive the two-point functions using the approach
of Kadanoff and Martin as explained in section 2.2.3. In particular, we find [128,134,138]

GR
π⊥π⊥

= χππ
Γ + k2 η/χππ

−iω + Γ + k2 η/χππ
, GR

π‖π‖
= χππ

k2 ∂p
∂ε
− i ω (Γ + k2 η/χππ)

i ω (−i ω + Γ + k2 η/χππ) − k2 ∂p/∂ε
.

(3.55)

For example, the heat conductivity κ and the so-called transverse momentum conductivity
κ⊥ are given by taking first the k → 0 and then the ω → 0 of [138,400]

κ(ω, k)= i

ω T
(GR

π‖π‖
(ω, k)−GR

π‖π‖
(0, k)), κ⊥(ω, k)= i

ω T
(GR

π⊥π⊥
(ω, k)−GR

π⊥π⊥
(0, k)).

(3.56)

The dispersion relations in the longitudinal and transverse sector are encoded in the poles
of the Green’s functions and we obtain them with the method of Kadanoff and Martin
by solving the denominator of eq. (3.56) for ω.

Transverse sector

In this section, we want to explicitly compute the dispersion relations within the holo-
graphic fluid model V (Z) = Z in the presence of explicit symmetry breaking and match
the QNM data to expressions obtained from hydrodynamics. For small explicit break-
ing (which corresponds to small masses m), we may implement the momentum non-
conservation as described in eq. (3.54). The modes in the transverse sector are given by
(using eq. (3.56)) [134,138,166]

ω = −iΓ− iDp k
2 +O(k4), Γ = m2 (VX + 2VZ)

2π T +O(m4), Dp = η

χππ
+ . . . . (3.57)

To leading order in m, the diffusion constant is unchanged but we observe that the mode
is gapped with ω = −iΓ. Increasing m and hence the strength of the explicit symmetry
breaking, the mode eventually collides with another mode at Γ ∼ T (m/T ≈

√
π).

After this collision, the response is no longer dominated by a single long-lived pole close
to the origin of the complex frequency plane. In the left side of figure 3.5, we probe
this regime and the transition by computing the lowest QNM at zero momentum for
increasing strength of the explicit translational symmetry breaking. The QNM data is
depicted in blue while the gap of the lowest mode Γ – obtained from equation (3.57) – is
represented by the red dashed line. We find excellent agreement for values of m/T . 1.
We also note that the transition is located at approximately m/T ≈ 1.8 in agreement
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with Γ ∼ T . The physics observed in the transverse sector of the fluid model V (Z) = Z

with explicitly broken translations is very similar to previous studies in the linear axion
model representing solids [138,401].

In figure 3.6, we present the real and imaginary part of the two lowest modes in the
QNM spectrum for several values of m/T beyond the limit k/T � 1 and the transition
at Γ ∼ T . In this limit, the dispersion eq. (3.57) is no longer applicable. However, we
observe a very interesting interplay between the first two modes. For the smallest value
of m/T (blue in figure 3.6), the modes collide at a certain momentum k1 and exhibit a
finite real part after the collision. This is referred to as a k-gap like behavior and was
already observed in the similar solid model [152]. Following the the modes to even large
k/T , the modes collide again and the real part ceases to exist. Increasing the explicit
breaking scale, the first collision moves to smaller momenta until it reaches the origin.
When it reaches the origin, we note that the imaginary part shows a large gap at k = 0,
as we observed in figure 3.5 after the transition.
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Figure 3.5.: Left: The imaginary part of the lowest mode of the transverse spectrum
for V (Z) = Z as function of m/T . The red dashed line is eq. (3.57). Around
m/T ≈ 1.8 the mode collides with another pole. Right: The momentum of
the poles collision k? extracted from the numerical data (red bullets). The
dashed line is the hydrodynamic approximation of eq. (3.60) which show
good agreement for m/T � 1.
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Figure 3.6.: The two lowest modes in the transverse spectrum of the fluid model V (Z) =
Z for m/T ∈ [0.67, 6.28] (from blue to red).
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Longitudinal sector

Similar to the transverse sector, the physics in the longitudinal sector depends on the
value of the momentum compared to the explicit symmetry breaking. In the longitudinal
sector, the dispersion relation follows in terms of the Kadanoff and Martin procedure in
terms of the heat conductivity. The generic dispersion relation of the lowest mode reads
using eq. (3.56) [138]

ω = ±

√√√√∂p

∂ε
k2 − 1

4

(
Γ + η

χππ
k2

)2

− i

2

(
Γ + η

χππ
k2
)

+ . . . . (3.58)

The sound mode of relativistic hydrodynamics is recovered in absence of momentum
dissipation Γ = 0 [402]. At small momenta, k/Γ� 1, sound is destroyed by momentum
dissipation and the relevant hydrodynamic poles are6

ω = − i ∂p
∂ε

Γ−1 k2 + . . . , ω = − iΓ + i k2
(
∂p

∂ε
Γ−1 − η

ε + p

)
+ . . . (3.59)

which is obtained by expanding eq. (3.58) for small k/Γ. Increasing the momentum,
these two modes collide with each other at k = k? when the square root in eq. (3.58)
vanishes

Γ + η

χππ
(k?)2 − 2 k?

√
∂p

∂ε
= 0. (3.60)

After the collision the modes form a propagating sound-like mode

ω = ±∂p
∂ε

k − i

(
Γ + η

χππ

)
k2 + . . . . (3.61)

In the right side of figure 3.5, we depict the collision at k? where the crossover predicted
by hydrodynamic methods in eq. (3.60) happens. The data extracted from the QNM
data is shown as red dots while the hydrodynamic prediction is the black dashed line.
Interestingly, at m/T ≈ 1.8 k?/T starts scaling linearly in m/T . The collision of the
modes is shown explicitly in figure 3.7 for three different values of m/T . The behavior
before, at, and after the collision is well described by equation eq. (3.58). For small
k, the physics is completely determined by the energy conservation. We observe purely
diffusive modes with dispersion relation eq. (3.59). After the collision sound-like behavior
is restored and we observe a pair of modes with dispersion relation given by (3.61).

6The ellipsis in all the following expressions represent higher order corrections in ω/T, k/T .
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Figure 3.7.: The dispersion relation of the lowest modes for m/T = {0.297, 0.773, 0.544}
(from black to magenta). The dashed lines are the hydrodynamic formula
(3.58) which works well for m/T � 1.

3.6. Interplay between EXB and SSB
The interplay of the explicit and spontaneous symmetry breaking has a crucial impact on
the phonons; they acquire a mass term i.e. a finite real part at k = 0. Since the phonons
are no longer hydrodynamic modes in a strict sense, we will refer to them as pseudo-
phonons and denote their mass by the pinning-frequency ω2

0. The mass of the pions
in chiral theory is determined by the same mechanism [403]. Within the framework of
chiral symmetry breaking Gell-Mann-Oakes-Renner showed in 1968 [404] that the mass
depends on both symmetry breaking scales, the explicit 〈EXB〉 and the spontaneous
〈SSB〉 symmetry breaking scale ω2

o = 〈EXB〉〈SSB〉. The validity of this relation in the
context of holographic phonons for broken translations was verified in [2, 130, 148, 155,
166,183,191,405,406].

In this section, we will combine the concepts of the last two sections and focus on
the so-called pseudo-spontaneous limit where the ratio of the EXB to the SSB is much
smaller than 1. In our holographic model, we realize this by considering

V (X) = αX + βX5 (solid), V (Z) = αZ + βZ2 (fluid), (3.62)

with α/β � 1. The physics we described in the last two sections are the limiting cases
α = 0 and β = 0. For α = 0, the translational symmetry breaking is spontaneous while
for β = 0 the associated translational symmetry breaking is explicit.

Let us briefly summarize what we have observed so far. In the transverse sector of the
fluid model with spontaneously broken translations, we found a non-propagating diffusive
mode while the explicit symmetry breaking yields a purely diffusive mode in the limit
of small momentum dissipation. In order to model this with hydrodynamic methods,
we relaxed the momentum conservation equation to account for momentum dissipation;
by switching on spontaneous symmetry breaking in addition to the explicit breaking, we
have to take yet another mechanism into account – the phase relaxation of the phonons
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3. Broken spacetime symmetries

Ω̄ [2, 161,166,184,191,193].
On the one hand, the explicit symmetry breaking related to momentum non-conservation

required to relax the momentum conservation equation

π̇i(t, y) + ∂jτij(t, y) = −Γπi(t, y). (3.63)

On the other hand, taking also the spontaneous symmetry breaking into account, we have
to relax the Josephson-equations since the spontaneous breakdown of the translational
symmetry yields a shift in the Goldstone fields

(∂t + Ω̄‖ )λ‖ = ∇ · v + . . . and (∂t + Ω̄⊥)λ⊥ = ∇× v + . . . . (3.64)

On the gravity side, the momentum dissipation rate is encoded in the momentum oper-
ator which is holographically realized by metric fluctuations in the gravitational sector.
In the case of breaking the translational invariance explicitly, the system dissipates mo-
mentum with finite momentum dissipation rate, i.e. Γ 6= 0. By switching on spontaneous
symmetry breaking, we observe a second relaxation scale Ω̄, captured by the scalar sec-
tor, since the internal shift symmetry of the Stückelberg fields is broken resulting in a
finite phase relaxation, i.e. Ω̄ 6= 0. In the pseudo-spontaneous limit, both relaxation
mechanisms are present since the sectors are coupled in terms of m (see eq. (3.26)). This
novel relaxation scale is only small in the pseudo-spontaneous limit and it depends on
the relaxation scales as

Ω̄ ∼ 〈EXB〉
〈SSB〉 . (3.65)

In this section, we test the validity of previous results for the transverse sector in our
fluid model. We also provide insights into the more complex longitudinal sector of the
fluid and the solid model.

Transverse sector

Using the modified Josephson relations (3.64) together with the non-conservation of
the momentum (3.54) and the energy conservation equation, we may write down the
momentum-momentum correlators in analogy to eq. (3.56). From the poles, we find the
retarded Green’s function which yields at vanishing momentum k = 0 in the transverse
sector [161,193]

ω = 1
2

(
−i (Γ + Ω̄)±

√
4ω2

o − (Γ− Ω̄)2
)
, (3.66)

where we introduced the so-called pinning frequency ω0 which corresponds to the mass
gap of the pseudo-phonons. Depending on the values of ω2

o , Γ and Ω̄, we have three
different scenarios.
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Figure 3.8.: Left: Lowest modes in the transverse sector of the fluid model at k = 0
at fixed m/T = 0.1, β = 5 and increasing α (from blue to red). Right:
The dynamics of the lowest two modes in the transverse sector for m/T =
0.3, α = 0.05 and increasing β from zero to large values. The collision
between the two poles happens at β ∼ 1 and it produces the two modes with
finite real part.

(i) 4ω2
o > (Γ − Ω̄)2: Deep in the pseudo-spontaneous regime, the radicand is positive

and we have two real solutions at k = 0 – the two light pseudo-phonons.

(ii) 4ω2
o = (Γ − Ω̄)2: Increasing the quotient EXB/SSB, the square root eventually

vanishes where the two poles collide.

(iii) 4ω2
o < (Γ − Ω̄)2: After the collision, the square root is purely imaginary yielding

two purely imaginary solutions at k = 0.

In the section about explicit breaking, we verified Γ = m2(VX + 2VZ)/(4πT ) ∼ m2/T

for potentials corresponding to explicit breaking within our holographic model. In fact,
generalizing this to potentials containing explicit and spontaneous translational breaking,
we find [1,134,166,191]

Γ + ω2
o

Ω̄
= m2 (VX + 2VZ)

4π T = m2

2π T α + c
m2

π T
β ∼ 〈EXB〉2 + 〈SSB2〉, (3.67)

where c = 5/2 for the solid potential in (3.62) and c = 1 for the fluid. In the pseudo-
spontaneous limit, the EXB scale is much smaller than the SSB scale implying

〈EXB〉 ∼
√

Γ ∼ m
√
α/T , 〈SSB〉 ∼

√
ω2
o/Ω̄ ∼ m

√
β/T . (3.68)

The QNMs in the pseudo-spontaneous limit at k = 0 encode Ω̄ and ω2
o according to eq.

(3.66), where we approximate Γ by eq. (3.57). The results are depicted in figure 3.9.
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Figure 3.9.: Left and Middle: Dependence of the novel relaxation scale Ω̄ and the
pinning frequency ω0 in function of the SSB parameter 〈SSB〉 ∼

√
β for

fixed m/T = 0.3, α = 0.05. The red lines indicate linear scalings. Right:
The phase relaxation Ω̄ vs (3.70) (dashed, red).

In the pseudo-spontaneous limit, the results indicate the following scaling behaviors7

Ω̄/T ∼
√
α

β
∼ 〈EXB〉
〈SSB〉 , ω2

o/T
2 ∼ m2/T 2

√
αβ ∼ 〈EXB〉 〈SSB〉/T 2. (3.69)

The scaling behavior signifies the following results

(i) The mass of the pseudo-phonons satisfies the GMOR relations, i.e. the mass is
proportional to the symmetry breaking scales EXB and SSB.

(ii) The phase relaxation parameter Ω̄/T is proportional to the fraction of EXB and
SSB. The phase relaxation parameter vanishes in the spontaneous limit (EXB= 0)
on the one hand. On the other hand, for mostly explicit symmetry breaking the
mode is overdamped and does not influence the low energy physics.

(iii) In the fluid model, we did not observe any propagating phonons for purely sponta-
neous symmetry breaking since the elastic shear modulus is zero. Yet, by switching
on a small explicit symmetry breaking term, we observe light and underdamped
modes – the pseudo-phonons.

The authors of [191], also observed the pseudo-phonons in the solid model. Yet our obser-
vation of propagating shear waves is even more surprising, since the transverse phonons
are non-propagation in the spontaneous regime. In [156, 166], the authors suggested a
universal relation between the phase relaxation Ω̄, the pinning frequency ω2

o and the
Goldstone diffusion ξ⊥

Ω̄/T ∼M ξ⊥/T ∼ ω2
o χππ ξ⊥/T, (3.70)

7In contrast to [1, 2], we conclude that the dimensionless quantity Ω̄/T is proportional to the fraction
〈EXB〉
〈SSB〉 , which differs by a factor of T .
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where M is the mass of the pseudo-phonons and [1, 191,193]

ξ⊥ = lim
ω→0

ω lim
k→0

GR
φ⊥φ⊥

(ω, k) = 4π s T 2

2m2 χ2
ππ (VX(1, 1) + 2VZ(1, 1)) . (3.71)

In the right side of figure 3.9, we checked the validity of this formula in our fluid model.
To conclude our discussion of the k = 0 behavior in the transverse sector, we investigate

the lowest modes at k = 0 in dependence of the SSB and EXB scale and connect the
behavior to hydrodynamic arguments.

In the left side of figure 3.8, we depict the modes at k = 0 extracted from the QNMs
in the holographic model. We keep the SSB scale fixed and slowly increase the EXB
scale. For small EXB, we observe two modes with finite real part. Initially, the mass of
the pseudo-phonons, i.e. the real part of the modes, increases for increasing EXB. After
reaching a maximum the modes are bound towards one another and eventually collide for
increasing the EXB further. After the collision the modes are sitting on the imaginary
axis moving away from one another.

In the right side of figure 3.8, we depict the limit in the opposite direction. This time,
we hold the EXB scale constant. Increasing the SSB scale brings us deeper in the pseudo-
spontaneous regime and we observe two modes on the imaginary axis colliding with one
another and moving away from the axis.

For the remainder of the section, we focus on the momentum dependence of the dis-
persion relations in the three different regimes. For dispersion relations of the form of eq.
(3.58), we find indeed three different regimes, depending on the values of Γ, Ω̄, ω0. Simi-
lar to the k = 0 case, we discuss the cases in the order 4ω2

o > (Γ− Ω̄)2, 4ω2
o = (Γ− Ω̄)2,

4ω2
o < (Γ− Ω̄)2.

(i) ω = i c1± c2 + (i c3± c4) k2. For vanishing momentum, the modes have a finite real
part at k = 0. The real part scales quadratic in the momentum and either increases
or decreases depending on the sign of c4. For the negative sign, the two modes will
collide eventually at k?.

(ii) ω = −i c1±c2 k− ic3 k
2. In this limit, the modes have vanishing real part for k = 0.

For sufficiently small momenta, the real part increases linearly.

(iii) ω = −i (c1± c2)− i(c3± c4) k2. The modes are purely imaginary around k = 0 and
we observe the k-gap phenomenon. Furthermore, we observe two non-propagating
diffusive modes since the dispersion relation has two branches. For larger k, the
modes eventually collide.
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Figure 3.10.: The lowest modes in the transverse sector for m/T = 0.1, β = 1, α ∈
{0.001, 0.151} (blue to red). At small EXB, i.e. small α, a gapped phonon
is present in the spectrum. Going to large EXB, such mode is destroyed
and the k−gap, typical of the pure EXB case, appears.

In figure 3.10, we depict the dispersion relations obtained from QNMs in our holographic
model in the three different regimes. The dispersion relation depicted in red corresponds
to regime (iii) where we observe two purely imaginary modes for small k. Regime (ii)
is depicted in yellow; we find two sound-like modes with gapped imaginary part. Even
deeper in the pseudo-spontaneous regime, we find the dispersion relations depicted in
green. The modes have a finite real part at k = 0 indicating regime (i).

Longitudinal sector

After we discussed the transverse sector in depth, we shift our focus on the longitudinal
sector of the fluid and solid model. The longitudinal sector is significantly more com-
plicated in hydrodynamics and holography. For simplicity, we will focus on the results
obtained from holography in this chapter. Furthermore, since some of the results of this
section are very similar to one another or to previous section we move the respective
graphics to the appendix for the sake of a compact presentation. In addition to the two
sound modes in the longitudinal sector, the system also includes a third diffusive mode
in the hydrodynamic regime. Similar to the transverse sector, we will outline the k = 0
behavior of the modes first.

In figure 3.11, we are increasing the EXB scale in the longitudinal sector of the solid
model while keeping the SSB scale fixed. Note that the limit is the same limit we took
in the left side of figure 3.8 in the transverse sector of the fluid model, even though we
chose to a different graphic presentation. In this limit, we start deep in the pseudo-
spontaneous regime with two modes displaying a finite real part at k = 0. In contrast
to the transverse sector, we observe an additional mode depicted in green which stays at
the origin for k = 0. In figure 3.12, we depict the emergence of the light pseudo-phonons
with finite real part at k = 0 in more detail. Note that the cartoon is similar to our
observations for (mostly) explicit symmetry breaking. For explicit symmetry breaking,
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3.6. Interplay between EXB and SSB
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Figure 3.11.: The dynamics of the lowest modes in the longitudinal spectrum of the solid
model V (X) = αX + β X5 increasing the EXB scale. The parameters are
fixed to m/T = 0.1, β = 5.

the purely imaginary modes collide for a certain k?. With increasing SSB strength,
k? decreases to the point where the collision already happened at k = 0. However,
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Figure 3.12.: The lowest modes in the longitudinal sector for the fluid model V (Z) =
αZ + βZ2. We fix α = 0.01,m/T = 0.1 and β ∈ [1.8, 5] (left to right).

the dynamics is not as simple as it looks like as may be seen from figure 3.11. In the
spontaneous case, both modes are located at the origin for k = 0 (see right side of figure
3.4). Introducing a small explicit breaking, renders the sound modes massive yielding the
light pseudo-phonons. As shown in figure 3.13, the purely diffusive mode still vanishes
for k = 0 and the sound-like and diffusive mode are crossing one another at a certain
momentum. Dialing up the explicit breaking further, a complex dynamic is unfolding;
the diffusive mode and the sound modes collide. For large enough explicit symmetry
breaking, the diffusive mode decouples, explaining the splitting of the modes we saw at
k = 0. In this case, the two sound modes collide and sound is restored after the collision.
In this regime, we observe the k-gap phenomenon as we observed for explicit symmetry
breaking in figure3.6. The numerical results show that the purely diffusive mode does
not simply acquire a damping term and the dynamics of the full system can not be
understood simply by adding up the different contributions to the phase relaxation as
suggested in [156, 161, 166]. The relaxation mechanism is more complicated and highly
entangled with the longitudinal sound. For the sake of completeness, we also checked
that the GMOR relations are satisfied in the longitudinal sector.
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3. Broken spacetime symmetries
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Figure 3.13.: The lowest modes in the longitudinal sector of the solid model V (X) =
αX + βX5 for β = 5,m/T = 0.1 and α ∈ [0.0005, 0.0412] (top to bottom).

3.7. Nonlinear dynamics and broken translations
In the preceding sections, we studied the properties of systems with broken translations
in the linear response regime. This is particularly valuable to strengthen our under-
standing of the effects of broken spacetime symmetries on the transport behavior of
strongly coupled field theories. Within the linear response regime, we have some access
to physics in terms of effective field theories and hydrodynamic methods. Beyond linear
response, however, we still lack a satisfying theoretical field theoretic framework. The
AdS/CFT correspondence is the appropriate framework to study time-dependent prob-
lems in strongly coupled field theories from first principles. In this section, we study
periodically driven QFTs with (spontaneously) broken translational invariance. Notably,
we drive the system periodically for various amplitudes and driving frequencies of the
applied strain as initiated for various periodically driven systems in [407–416].

The nonlinear holographic setup

In this section, we employ the same setup as in the previous sections given by eq. 3.26
with potentials of the form V (X) = X3 corresponding to spontaneous breaking of the
translational symmetry in the dual field theory. In contrast to the last sections, we
consider the full nonlinear time-dependent behavior in this section instead of small fluc-
tuations about the equilibrium state. Far from equilibrium, the configuration is no longer
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3.7. Nonlinear dynamics and broken translations

described by a black brane and we make the ansatz

ds2 =−A(u, t) dt2 − 2
u2 du dt+ S(u, t)2

(
cosh(H(u, t)) (dx2+dy2) + 2 sinh(H(u, t)) dxdy

)
,

based on the characteristic formulation adapted to AdS by Chesler and Yaffe [417–420].
At the boundary, we require asymptotically AdS boundary conditions for the unperturbed
state and the metric functions behave near u = 0 as

A = 1
u2 + 2(s1 − ṡ0)

s0 u
+
s2

1
s2

0
− 2ṡ1

s0
− 3ḣ0

2

4

+ a3u+O(u2),

S = s0

u
+ s1 −

s0ḣ0
2

8 u+ s1ḣ0
2

8 u2 +O(u3), (3.72)

H = h0 + ḣ0u−
s1ḣ0

s0
u2 + h3u

3 +O(u4).

We focus on driving the xy component of the boundary metric periodically with the
applied shear

hxy(t) = γ(t) = γ0 sin(2π ω t), (3.73)

where γ0 is the strain amplitude and ω the characteristic frequency.8 In terms of our
metric ansatz, this translates to

h0(t) = arcsinh
(

γ(t)
(1− γ(t)2)1/2

)
, s0(t) = (1− γ(t)2)1/4. (3.74)

In eq. (3.74), we restrict the amplitudes to be in the range γ0 ∈ [0, 1], where γ0 = 1
is the extremal amplitude. The response to the applied strain function may be read
off in terms of the shear stress σ(t) encoded in the Txy(t) component of the boundary
stress tensor.9 There is one caveat, however. Imposing a strain at t = 0 violates the
boundary conditions at the beginning of the time evolution since time derivatives of the
strain are non-zero. Following [23, 24], we turn on the amplitude smoothly according
to γ(t) = γ0

2

(
1 + tanh

(
t−tc
wc

))
sin (2πωt), where parameters tc, wc control the width and

abruptness. Recall that in the linear response limit, the shear response is given in terms
of the two point function GR

TxyTxy(ω, k = 0). Beyond linear response, we may expand the
stress in the sinusoidal strain by

σ(t) =
∑
n,odd

n∑
p,odd

γn0 (G′np sin(2π pω t) +G′′np cos(2π pω t)), (3.75)

8We keep the length scales of the spatial dimensions fixed, i.e. hxx = hyy = 1.
9For details on the numerics and how to read of the shear stress see appendix B, in particular eq.

(B.30).
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Figure 3.14.: Demonstration of nonlinearities. Left: γ(t) = sin(t−1) over σ(t) = sin(t).
Right: γ(t) = sin(t− 1) over σ(t) = sin(t− 0.9) + sin(t− 0.9)3 + 2 sin(t−
0.9)5 + sin(t− 0.9)7

.

where linear response theory is captured by n = 1.
First, we work out the so-called Pipkin diagram for the dual field theory in order to

get an intuition about the holographic model at hand. In the Pipkin diagram, we depict
the Lissajous figures of the response, i.e. we plot σ(t) over γ(t). As shown in figure 3.14,
the Lissajous figures give insight into the the linearity and nonlinearity, respectively, of
the system [421]. In the left side, we see that σ(t) is described by a simple sinus. The
graphics on the right side includes higher order corrections to eq. (3.75), indicating the
nonlinear regime. The Lissajous figures of our system are depicted in figure 3.15 for
various frequencies and amplitudes. In the linear response regime (γ0 � 1), the Lissajous
figures are perfectly elliptic shaped. By increasing the amplitude, we see higher harmonics
contributing to σ(t) and the Lissajous figures are more and more elongated.

0.03 0.32 1.58 3.16

0.01

0.1

0.3

0.5

0.7

0.9

ω/m

γ
0

1th
3rd

5th 7th 9th 11th

strain

amplitude

0 1 2 3 4

10-12

10-10

10-8

10-6

10-4

10-2

ω/m

P/m

Figure 3.15.: Left: Pipkin diagram: the Lissajous figures as function of γ0 and ω for
m/Tin = 1.81. Right: Fourier spectrum P ≡ |I|2 of the stress for increasing
γ0 = {0.01, 0.1, 0.4, 0.75} (orange to black).

In the Pipkin diagram, we also see the dissipation of our system. On one hand, if the
system has more time to react to the strain and dissipate (small frequencies), the viscous
properties are dominant. On short time scales (large frequencies), on the other hand, the
elastic properties dominate the response. In the intermediate regime, we observe both
properties; for small amplitudes, we are in the regime of linear viscoelasticity, which is
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3.7. Nonlinear dynamics and broken translations

described by linear response theory for spontaneously broken translations. For large am-
plitudes, linear response theory breaks down and we are in the regime of large amplitude
oscillatory shear tests. The inclination of the curves – either bound to the left like in the
first column or bound to the right – gives insights how the system with spontaneously
broken translations dissipates energy; we observe viscous and elastic nonlinearities. The
latter are not present in systems with translational invariance. Note that when the Lis-
sajous figures changes over the different cycles, we are also breaking the discrete time
translation symmetry of our periodically driven system.

The onset of the nonlinearity is also apparent in the Fourier spectrum in dependence
of the strain amplitude as depicted in the right side of figure 3.15. For small strain
amplitudes (orange, γ0 = 0.01), the response is completely captured in terms of the first
frequency (p = 1) which is described by linear response. For larger γ0, we see the onset
of higher harmonics which contribute to the stress eq. (3.75) indicating the onset of
nonlinearity. The bigger γ0, the more higher harmonics appear in the spectrum.
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Figure 3.16.: Left: Normalized intensity In/1 ≡ In/I1 as function of γ0. Right: First
complex moduli G′1(ω, γ0), G′′1(ω, γ0) at fixed frequency, as function of the
strain amplitude for m/Tin = 0.01, 1.81, 30 (yellow, red, purple).

In figure 3.16, we investigate the normalized intensity of the first three higher harmonics
in dependence of the amplitude γ0 of the applied strain. In the range 0.3 ≤ γ0 ≤ 0.5, only
the first higher harmonic I3/1 contributes. For larger values of γ0, the higher harmonics
I5/1 and I7/1 are also present in the spectrum. Furthermore, the higher harmonics I5/1 and
I7/1 follow a power law behavior for large amplitudes as found in [422]. Another indicator
to investigate the nonlinearity are the first nonlinear complex moduli G′1(ω, γ0), G′′1(ω, γ0),
defined as contributions of the first harmonics (p = 1) in eq. (3.75). In the limit γ0 � 1,
the complex moduli are in the linear response limit and thus independent of γ0 as shown
in the right side of figure 3.16. For small γ0, the response does not change for increasing
the amplitude. At around γ0 = 0.25, the first complex moduli start increasing with the
amplitude, thus indicating the onset of the nonlinear regime. Note that this happens
independently of the value of m/T . In the nonlinear regime, the complex moduli grow
faster than linearly indicating a strain stiffening mechanism as exhibited by hyperelastic
materials such as rubber-like systems or complex polymers.
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3. Broken spacetime symmetries

The three dimensional response curves encode two perspectives: the elastic perspective
and the viscous perspective. In figure 3.17, we show both perspective for increasing the
amplitude of the applied strain (green to black). In the elastic perspective, we project
the response onto the {σ(t), γ(t)} plane. Since the response of the black curve clearly
deviates from an ellipsis, we nonlinearitites in the elasticity are present in the response
of the system. The viscous perspective consists of projecting the three-dimensional curve
onto the {σ(t), γ̇(t)} plane. Recall that the elastic properties of the system are caused by
the spontaneously broken translations

The area of the Lissajous curves measures the energy dissipated in each cycle C of the
periodic driving, E ≡

∫
C σ(γ) dγ. In figure 3.18, we depict the dissipated energy for the

first 5 cycles. At fixed frequency, the energy dissipation grows in response to increasing the
amplitude. For small strains, we observe a quadratic increase of the averaged dissipated
energy E ∼ γ2

0 .
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Figure 3.17.: Three dimensional phase space {σ(t), γ(t), γ̇(t)} for γ(t) = γ0 sin(2πωt)
with γ0 = 0.1, 0.5, 0.7 (from green to black) at fixed m/Tin = 1.81, ω = 0.1.
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Average over the first 5 cycles; low amplitude scaling ∼ γ2
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4. Anomaly induced transport in the
presence strong magnetic fields

In this chapter, we study the influence of chiral anomalies on the transport proper-
ties of systems subject to strong magnetic fields. So far, only weak magnetic fields,
which are of order 1 in the derivatives, were considered in the literature. We derive
the anomalous hydrodynamics for strong external magnetic fields for the first time. We
characterize the transport properties of the system in terms of thermodynamic suscep-
tibilities and the so-called shear and bulk viscosities. The magnetic field breaks the
rotational invariance down to an SO(2) symmetry and hence the viscosities are different
depending on the orientation with respect to the magnetic field. For a magnetic field
pointing in the z-direction of the field theory, we focus specially on the shear viscosi-
ties η⊥ ≡ ηxyxy, η̃⊥ ≡ 1/2(ηxyxx − ηxyyy), (perpendicular to the magnetic field, helicity-2
sector), η‖ ≡ ηxzxz = ηyzyz, η̃‖ ≡ ηyzxz = ηxzyz (parallel to the magnetic field, helicity-1
sector) and the bulk viscosities ζ1, ζ2, η1, η2. Shear viscosities in strong magnetic field
have previously been investigated in [423–428]. This chapter is based on my work in col-
laboration with Martin Ammon, Juan Hernandez, Matthias Kaminski, Roshan Koirala,
Julian Leiber, and Jackson Wu which will appear shortly in [5].

Thermodynamics

Following [5, 423, 429–432], we consider the equilibrium generating functional in order
to study the anomalous thermodynamic system subject to a strong axial magnetic field
(F ∼ B ∼ O(1))

Ws =
∫
d4x
√
−g

(
p(T, µ,B2) +

5∑
n=1

Mn(T, µ,B2) sn +O(∂2)
)
, (4.1)

where we count T, µ, uµ, Bµ ∼ O(1). In this equation, µ refers to the chemical potential,
B to the magnetic field, uµ the velocity, T is the temperature, g the external metric, sn
the first order equilibrium scalars1 and the associated coefficients Mn are determined by

1In particular, we have s1 = Bµ∂µ(B
2

T 4 ), s2 = εµνρσuµBν∇ρBσ, s3 = B·a, s4 = B·E, s5 = B·Ω, with
Ωµ = εµναβuν∇αuβ and aµ = uλ∇λuµ. For more details see [5, 423].
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4. Anomaly induced transport in the presence strong magnetic fields

the underlying theory. M5, for example, is the magneto-vortical susceptibility. In parity
preserving theories, M5 is the only coefficient Mn which may be non-zero. However, in
the presence of an axial chemical potential (or a chiral anomaly) parity is broken and all
other Mn might be non-vanishing and will contribute in the thermodynamic constitutive
relations.

By the method of Kadanoff and Martin as explained in section 2.2.3 and [423], we
are able to derive the thermodynamic transport coefficients in terms of static correlation
functions at small momentum. We will focus on M2 and M5 which are given by varying
the generating functional (4.1) with respect the the metric gµν

1
kz

ImGTxzT yz(ω = 0, kzk̂) = −2B2
0 M2 ,

1
kz

ImGT txT yz(ω = 0, kzk̂) = −B0M5, (4.2)

where B0 refers to the external axial magnetic field.

Hydrodynamics

The next step after considering the equilibrium coefficients is to discuss the non-equilibrium
transport properties. In the presence of chiral anomalies and a strong axial background
magnetic field, the generating functional is no longer gauge invariant. The consistent
generating functional of a 3+1 dimensional theory is given by

Wcons = Ws+
∫
d4x
√
−g

(
c1T

2 Ω·A+ c2 T (B·A+ µΩ·A) + C

3 µ
(
B·A+ 1

2µΩ·A
))
, (4.3)

where Ws is the generating functional for the theory without anomalies (4.1). The con-
sistent generating functional gives rise to the consistent current Jcons

µ and the energy-
momentum tensor Tµν . Note that Wcons is no longer gauge invariant; under a gauge
transformation it transforms as

δαWcons = C

24

∫
d4x
√
−g α εµνρσFµνFρσ ≡ A . (4.4)

The ci are transport coefficients. Note that c1 is related to the mixed gauge-gravitational
anomaly [234,433] and will not be present in our holographic model since we do not take
higher curvature terms into account. The coefficient c2 breaks the CPT symmetry and is
hence not allowed in Lorentz invariant theories [233].

The associated conservation laws read

∇µT
µν
A = F µνJ consν − Aν∇µJ

µ
cons , ∇µJ

µ
cons = −C24ε

µνρσFµνFρσ = C

3 E·B , (4.5a)

where we see that the (consistent) axial current is anomalous. In equilibrium, the de-
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composition of the energy-momentum tensor T µνeq. and current Jµeq. is given by eq. (2.34),
with E = Eeq.,P = Peq.,Qµ = Qµeq., T µν = T µνeq. ,J µ = J µ

eq., and N = Neq.. We do not
give explicit expressions for the equilibrium quantities since they are very complicated
expressions in terms of the thermodynamic variables. The deviations from equilibrium
are given in terms of the constitutive relations

P = Peq. − ζ1∇·u− ζ2b
µbν∇µuν + c3b · V , (4.6)

T µν = T µνeq. − η⊥σ
µν
⊥ − η‖(bµΣν + bνΣµ)− b〈µbν〉

(
η1∇·u+ η2b

αbβ∇αuβ − c14b · V
)

− η̃⊥σ̃µν⊥ − η̃‖(bµΣ̃ν + bνΣ̃µ) + c15(bµV ν
⊥ + bνV µ) + c17(bµṼ ν + bνṼ µ) , (4.7)

where σµν⊥ ≡ 1
2

(
BµαBνβ + BναBµβ − BµνBαβ

)
σαβ is the part of the shear viscosity trans-

verse to the magnetic field and σ̃µν⊥ = 1
2

(
εµλαβuλbασ

ν
⊥β + ενλαβuλbασ

µ
⊥β

)
. Furthermore,

the current is given by

J µ = J µ
eq. + σ⊥V

µ
⊥ + σ̃⊥ Ṽ

µ + bµ(σ||b · V + c4∇ · u+ c5b
µbν∇µuν) + c8Σµ + c10Σ̃µ .

The two-point correlation functions of the energy-momentum tensor and conserved
currents may be obtained by varying the one-point functions in the presence of external
sources with respect to those external sources. In particular, we may vary the on-shell
expressions T µν [A, g] and Jµ[A, g] with respect to gµν and Aµ to determine the retarded
hydrodynamic correlation functions [5, 423]

GR
TµνTαβ = 2√

−g
δ

δgαβ

(√
−g T µνon-shell[A, g]

)
, GR

JµTαβ = 2√
−g

δ

δgαβ

(√
−g Jµon-shell[A, g]

)
,

(4.8a)

GR
TµνJα = δ

δAα
T µνon-shell[A, g] , GR

JµJα = δ

δAα
Jµon-shell[A, g] , (4.8b)

and the source perturbations δg and δA are set to zero after the variation. In this way,
we may directly derive the Kubo formulas for transport coefficients as well as Onsager
constraints imposed on the transport coefficients. The retarded Green’s functions are
constrained due to Onsager relations. Consider an anti-unitary operator Θ, which is in
our case time-reversal (Θ = T ) or a combination of parity and time reversal (Θ = PT );
then the retarded Green’s function has to satisfy [5, 423,434,435]

GR
ϕaϕb

(ω,k;χ) = ηϕaηϕbG
R
ϕ†
b
ϕ†a

(ω,−k;−χ) , (4.9)

where ηϕi is the Θ eigenvalue of ϕi. In case of Θ = T , we have to reverse B, i.e. χ = B

while for Θ = PT , χ = µ, we have to reverse the chemical potential, χ = µ. All two-
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4. Anomaly induced transport in the presence strong magnetic fields

point functions must satisfy the Onsager constraints which is an important check of our
numerical methods.

4.1. The holographic setup
In the following, we determine the hydrostatic and hydrodynamic transport coefficients in
a particular top-down holographic model. In particular, we consider an Einstein-Maxwell-
Chern-Simons theory with negative cosmological constant in five spacetime dimensions,
which is a consistent top-down truncation of IIb supergravity compactified on the S5.
The action reads

Sgrav = 1
2κ2

[∫
M
d5x
√
−g

(
R + 12

L2 −
1
4FmnF

mn
)
− γ

6

∫
M
A ∧ F ∧ F

]
, (4.10)

where we have to set γ = 2/
√

3 in order to obtain the bosonic part of minimal gauged
supergravity in five dimensions [66,436–439].2 The additional CS term in the bulk corre-
sponds to a chiral anomaly in the dual field theory.

Coupling the axial gauge field to gravity has dramatic consequences for the four di-
mensional energy momentum tensor; its trace is anomalous since it is proportional to the
field strength squared. To cure the resulting divergences caused by the trace anomaly
of the energy momentum tensor T µµ ∼ F 2, we have to include a logarithmic term to the
boundary terms. This term is not diffeomorphism invariant since it explicitly depends on
the radial coordinate. In addition to the logarithmic term, we have to supplement the
action by the usual Gibbons-Hawking term in order to have a well defined variational
principle 3

Sbdy = 1
κ2

∫
∂M

d4x
√
−h

(
K − 3

L
+ L

4R(h) + L

8 ln
(
%

L

)
FµνF

µν
)
. (4.11)

The equations of motion associated with the action (4.11) read

Rmn = −4 gmn + 1
2

(
FmoFn

o − 1
6gmnFopF

op
)
, d ? F + γ

2F ∧ F = 0. (4.12)

In addition to the equation of motion (4.12), the field strength also has to satisfy the
Bianchi identity dF = 0. In the following, we want to consider the simplest possible
static ansatz for the a CFT in the presence of a homogeneous external magnetic field
pointing in the z-direction (note that this is the 3-direction in the field theory) and

2The coupling strength of the anomaly in our holographic model γ is related to the hydrodynamic
description (4.3) by γ = −C.

3Throughout this chapter, we will refer to the radial direction as % and to the induced metric as h. For
simplicity, we set L = 1 and 2κ2 = 16πG5 = 1.
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4.1. The holographic setup

a finite charge density ρ. For our holographic setup (4.10), we require translational
invariance in (t, x, y, z) and rotational invariance in the x − y plane. The most general
ansatz respecting these symmetries was worked out by D’Hoker and Kraus [116]

F = E(%) dt ∧ d%+B dx ∧ dy + P(%) dz ∧ d% (4.13)

for the field strength and

ds2 = 1
%2

[(
−u(%) + c(%)2w(%)2

)
dt2 − 2 dt d%+ 2 c(%)w(%)2 dz dt

+v(%)2
(
dx2 + dy2

)
+ w(%)2 dz2

]
(4.14)

for the metric in Eddington-Finkelstein coordinates. The temporal of the field strength
(4.13), corresponds to a radial gauge field. In addition, the radial derivative of the
%z-component P ′(%) corresponds to a current induced by the magnetic fields and the
chiral anomaly. Furthermore, the Bianchi identities require that the magnetic field B is
constant. The field strength eq. (4.13) may be induced by a gauge field of the form

A = At(%) dt+ B

2 (−y dx+ x dy) + P (%) dz , (4.15)

where P ′(%) = −P(%) and A′t(%) = −E(%). By fixing the radial shifts, we set the event
horizon to % = 1, where u(%) = 0 = c(%) which fixes all residual symmetries.4

The conformal boundary is located at % = 0 in our coordinates. At the conformal
boundary, the metric functions asymptote to AdS which fixes the leading coefficients in
the asymptotic expansion. The subleading powers are affected by the trace anomaly
of the energy momentum tensor which induces logarithmic divergences scaling with the
squared of the magnetic field

u(%) = 1 + %4
[
u4 +O(%2)

]
+ %4 ln(%)

[
B2

6 +O(%2)
]
,

v(%) = 1 + %4
[
−w4

2 +O(%2)
]

+ %4 ln(%)
[
−B

2

24 +O(%2)
]
,

w(%) = 1 + %4
[
w4 +O(%2)

]
+ %4 ln(%)

[
B2

12 +O(%2)
]
,

c(%) = %4
[
c4 +O(%2)

]
+ %8 ln(%)

[
−B

2

12 c4 +O(%2)
]
,

At(%) = µ− ρ

2%
2 − γBp1

8 %4 +O(%6) ,

P (%) = %2
(
p1

2 + γBρ

8 %2 +O(%4)
)
, (4.16)

4There is an additional shift symmetry discussed in [116] which we may fix by setting c(1) = 0.
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4. Anomaly induced transport in the presence strong magnetic fields

where u4, w4, c4, ρ, p1 are the undetermined coefficients in the asymptotic expansions.

Thermodynamics of charged magnetic branes

Charged magnetic branes were previously discussed in [115,116,196,205]. In this section,
we explain the fundamental thermodynamic quantities which are important for charac-
terizing the transport behavior.

Without matter content, the one-point function of the energy-momentum tensor is
given by eq. (2.20) and (2.21). It is straightforward to include the matter contributions
by varying the matter action with respect to the induced metric according to [357]

〈Tµν〉 = lim
%→0

1
%2

(
−2Kµν + 2(K − 3)hµν + ln(%)

(
F α
µ Fνα −

1
4 hµνF

αβFαβ

))
. (4.17)

Similarly, the covariant current follows from varying the action with respect to the gauge
field [116]

〈Jµcov〉 = lim
%→0

1
%3h

µα∂%Aα . (4.18)

In our specific ansatz, the one-point function of the energy-momentum tensor (4.17) reads

〈T µν〉 =


−3u4 0 0 −4 c4

0 −B2

4 − u4 − 4w4 0 0
0 0 −B2

4 − u4 − 4w4 0
−4 c4 0 0 8w4 − u4

 . (4.19)

Similarly, the one-point function of the covariant current reads 〈Jµ〉 = (ρ, 0, 0, p1) . By
taking the trace of the energy-momentum tensor one-point function (4.19), the trace
anomaly of the energy-momentum tensor is clearly evident 〈Tµµ〉 = −B2/2. The entropy
density s is encoded in the horizon values of the metric functions v(%) and w(%) reads
evaluated at % = 1,

s = 4π v(1)2w(1). (4.20)

The pressure p is defined in terms of the variables and their respective thermodynamic
conjugate

p = s T − ε+ µ〈J t〉 = u′(1) v(1)2w(1) + 3u4 + µρ (4.21)

where we introduced the energy density ε = 〈T tt〉. Finally, the enthalpy w is given by
w = ε+ p = sT + µ〈J t〉.
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4.1. The holographic setup

Transport properties from holography

In order to probe the transport properties of the system within linear response theory, we
have to consider fluctuations of the metric and gauge field (h̃nm, ãm) about the numerically
constructed equilibrium state (ḡnm, Ām). Expanding the fields to first order for ε � 1,
the fields read

gmn = ḡmn + ε h̃mn , Am = Ām + ε ãm , (4.22)

where the zeroth order (ḡnm, Ām) corresponds to the equilibrium state and the first order
(h̃nm, ãm) to the linear fluctuations

h̃mn(x, %) =
∫ d4k

(2π)4 e
ikµxµ hmn(k, %) , ãm(x, %) =

∫ d4k

(2π)4 e
ikµxµ am(k, %) , (4.23)

with kµxµ = −ωt+ k · x. In the following, we align the momentum with the direction of
the magnetic field, i.e. k = (0, 0, k). By classifying the fluctuations with respect to the
momentum pointing in the z−direction, we find that the fluctuations decouple in three
different sectors – helicity-2, helicity-1, and helicity-0:

Helicity Fluctuation modes
2 hxy, hxx − hyy
1 htx, hxz, ax, h%x

hty, hyz, ay, h%y

0 htt, htz, hzz, hxx + hyy, h%t, h%z, h%%, at, az, a%

In particular, we may treat the three sectors separately since the equations of motions of
different helicities are decoupled. First, we have to fix the gauge. We implement radial
gauge for the gauge field a% = 0 and for the metric fluctuations, we choose a gauge where
hm% = 0,m 6= t and ht% = 1/2htt. Fixing the gauge in this way leads to constraint
equations consisting of the equations of motions of the modes we set to zero. In terms of
helicity, we will find constraint equations from the following modes:

Helicity Constraint modes
2 none
1 h%x, h%y

0 h%t, h%z, h%%, a%

In order to calculate the expectation values of the fluctuations and extract the one-
point function of the energy momentum tensor and the current, respectively, we have to
perform the holographic renormalization procedure for the fluctuations. By evaluating
eq. (4.17) and eq. (4.18) for the metric fluctuations, we obtain for the one-point functions

〈Tµν〉 = 1
6
∂4

∂%4hµν(%)
∣∣∣∣
%=0

, and 〈Jµ〉 = ∂2

∂%2aµ(%)
∣∣∣∣
%=0

. (4.24)
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4. Anomaly induced transport in the presence strong magnetic fields

Equipped with this, we are now able to compute the two-point functions in our setup
corresponding to the thermodynamic and hydrodynamic transport coefficients.

Throughout this chapter, we will normalize all quantities by means of the temperature,
i.e. the respective dimensionless quantities in our holographic setup are

B̃ ≡ B/T 2, µ̃ ≡ µ/T, k/T, ω/T. (4.25)

We solved all appearing equations of motions by means of so-called pseudo-spectral meth-
ods (see A and A.7).

4.2. Results
To compute the Kubo formulas, for example (4.2), we have to compute two-point func-
tions of the form

1
kz

ImGTabT cd(ω = 0, kzk̂) or 1
ω

ImGTabT cd(ω,k=0) (4.26)

and similarly JT and TJ correlators. Note that we implicitly assume the ω and kz in
the pre-factors to be small. Given we have a solution for the retarded Green’s function,
there are two ways to extract the coefficient linear in ω and kz, respectively. On the one
hand, we can extract the coefficient by a linear fit in ω and kz. On the other hand, we
can recast the problem by introducing the auxiliary metric functions

hmn(%, ω) = h(0)
mn(%) + ω h(1)

mn(%) and hmn(%,k) = h(0)
mn(%) + kz h

(1)
mn(%), (4.27)

and the same combinations for the gauge fluctuations. By expanding the functions to
linear order we may solve the coupled equations of motion to order for order in ω or k. In
the two-point functions of the form 1

ω
ImGTabT cd(ω,k=0), for example, we have to source

the fluctuation h
(0)
cd and read of the vacuum expectation value of the fluctuation h

(1)
ab in

order to get the order linear in ω.

4.2.1. Thermodynamics

In this section, we apply the just outlined procedure to compute two-point functions and
study the thermodynamic properties of our system subject to a strong axial magnetic
field in presence (and absence) of chiral anomalies by means of our holographic model. In
particular, we will focus on the impact of the chiral anomaly on the transport properties
of the system.

We start with the magneto-vortical susceptibility, given by the right equation in eq.
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Figure 4.1.: Double logarithmic plot of the dimensionless magneto-vortical susceptibility
M5/T divided by the dimensionless chemical potential µ̃ in dependence of B̃.
The dashed lines are quadratic fits.
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Figure 4.2.: Logarithmic plot of the dimensionless magneto-vortical susceptibility M5/T
divided by the dimensionless chemical potential µ̃ in dependence of B̃ without
(left) and in presence (right) of the chiral anomaly for various µ̃.

(4.2). The authors of [440] derived the magneto-vortical susceptibility for a non-anomalous
system in the limit B → 0 and found M5 = −1/2µ. We may compute the magneto-
vortical susceptibility according to eq. (4.2). In order to make M5 dimensionless, we
have to multiply it by T . In figure 4.1, we present the the magneto-vortical susceptibility
extracted by the novel method developed in section 4.2. We see that the curves for all
considered µ̃ all correctly tend to M5/T = −µ̃/2 in the B̃ → 0 limit. Furthermore, for
increasing B̃ the curves all grow quadratic in B̃ for small enough B̃.

In the right side of figure 4.2, we consider the same scenario in presence of the chiral
anomaly, i.e. γ = 2/

√
3. Most notably, for increasing chemical potential µ̃ the increas-

ingly deviates from the value observed for γ = 0 and the ratio M5/(T µ̃) is approaching
0. Without anomaly, the absolute value of M5/(T µ̃) decreases for increasing B̃ but it
behaves the opposite for the theory with chiral anomaly; after a plateau in the small B̃
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4. Anomaly induced transport in the presence strong magnetic fields

regime, the absolute value of M5/(T µ̃) increases significantly in the large B̃ regime.
We quantified the dependence on the chemical potential µ̃ in figure 4.3 for three different

values of the magnetic field B̃. In the anomalous case with γ = 2/
√

3, the curve clearly
deviates from a straight line, specially for the smallest considered value of the magnetic
field B̃ = 0.1. The γ = 0 case on the right side, however, is clearly linear in µ̃ for B̃ = 0.1.
In both cases we notice that M5 is odd under parity transformations, i.e. changes sign
for µ̃→ −µ̃.

The imprint of the chiral anomaly is even more clear in terms of M2. Similar to M5, we
have to multiply the thermodynamic susceptibility M2 by T to render it dimensionless. In
figure 4.4, we see that the thermodynamic susceptibility M2 is only non-zero in presence
of the anomaly (and non-vanishing chemical potential) and we show for the first time
in the literature that this coefficient is present and indeed contributes in an anomalous
QFT. For increasing the value of magnetic field B̃, the absolute value M2 T decreases in
the range of the considered magnetic fields and chemical potentials. In a similar fashion
as we already observed for the magneto-vortical susceptibility, M2 T is odd under parity
transformations µ̃→ −µ̃. We furthermore numerically verified that M1 = M3 = M4 = 0
within our holographic model.
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Figure 4.3.: Dependence of the dimensionless magneto-vortical susceptibility M5/T on µ̃
for fixed B̃. We show B̃ = {0.1, 12.5, 32} (red, blue purple) in presence of
the chiral anomaly (left) and without anomaly (right).

4.2.2. Hydrodynamic transport coefficients in the helicity-two sector

After discussing the thermodynamical susceptibilities, we will now examine the hydro-
static transport properties of the system. We start with the helicity-two sector, where
we have analytical control of the transport coefficients. The helicity-two sector contains
only two decoupled fields, hxy and hxx−hyy, both formally satisfying the same differential
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Figure 4.4.: Dependence of the dimensionless thermodynamic susceptibility M2/T on µ̃
for fixed B̃. We show B̃ = {0.1, 12.5, 32} (red, blue purple) in presence of
the chiral anomaly (left) and without anomaly (right).

equation. In particular, the transport coefficient of interest in this sector is the so-called
transverse shear viscosities η⊥ and η̃⊥ given by

1
ω

ImGTxyTxy(ω,k=0) = η⊥ ,
1
ω

ImGTxyO3(ω,k=0) = η̃⊥ sign(B0) , (4.28)

where we introduced O3 = 1
2 (T xx − T yy). Since both two-point functions are evaluated

at k = 0, we can set it to zero throughout this calculation. Both transport coefficients in
eqs. (4.28) correspond to the coefficient linear in ω. We can extract this coefficient easily
by introducing auxiliary fields in terms of a ω expansion

hxy(z) = h0(z) + ωh1(z) +O(ω2) . (4.29)

The split in powers of ω (and also k) is an important concept on which we will rely
heavily when we compute the transport coefficients in the helicity-1 and helicity-0 sector.
In the new variables, we may solve the equation of motion analytically and read off the
expectation value in presence of the source hxy(0) = 1 according to eq. (4.18)

η⊥
s

= 1
sω

ImGTxyTxy(ω,k=0) = 1
6 s

∂4

∂%4h
x
y(%)

∣∣∣∣∣
%=0

= 1
6 s

∂4

∂%4 Imh1(%)
∣∣∣∣∣
%=0

= 1
4π , (4.30)

where we used eq. (4.20) for the entropy. The second transport coefficient η̃⊥ given by
the two-point function in (4.28) is zero since the differential equations are decoupled and
the metric fluctuation hxy is not influenced by a source term for O3.
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4. Anomaly induced transport in the presence strong magnetic fields

4.2.3. Hydrodynamic transport coefficients in the Helicity-one sector

In this section, we focus on the effects of the chiral anomaly on the helicity-1 transport
coefficients. Notably, we discuss the parallel shear viscosities η‖, η̃‖ and the perpendicular
resistivity ρ⊥ as well as the perpendicular Hall resistivity ρ̃⊥.

Kubo formulas in the presence of anomalies in the helicity-one sector

In [423], the authors classified the transport coefficients in strong magnetic fields without
chiral anomaly. In contrast to [423], we [5] find that in presence of the chiral anomaly
the parallel shear viscosities acquire extra contributions in terms of novel transport coef-
ficients, for example c8, c15, c̃10, c̃17

1
ω

ImGTxzTxz(ω,k=0) = η‖ + (c8c15 − c̃10c̃17)ρ⊥ − (c8c̃17 + c̃10c15)ρ̃⊥ , (4.31)
1
ω

ImGT yzTxz(ω,k=0) =
(
η̃‖ + (c8c̃17 + c̃10c15)ρ⊥ + (c8c15 − c̃10c̃17)ρ̃⊥

)
sign(B0) , (4.32)

where c̃10 = c10 − ξTB, c̃17 = c̄17 + ξTB = c17 +B2
0M2,µ + ξTB with ξTB = 1

2Cµ
2 + c1T

2 +
2c2Tµ. The Kubo formulas for parity violating non-equilibrium coefficients are

1
ω

ImGT txTxz(ω,k=0) = −w0 −M5,µB
2
0

B0
(c8ρ̃⊥ + c̃10ρ⊥) , (4.33)

1
ω

ImGT txT yz(ω,k=0) = −w0 −M5,µB
2
0

|B0|
(c8ρ⊥ − c̃10ρ̃⊥) , (4.34)

1
ω

ImGTxzT tx(ω,k=0) = w0

B0
(c15ρ̃⊥ + c̃17ρ⊥) , (4.35)

1
ω

ImGT yzT tx(ω,k=0) = − w0

|B0|
(c15ρ⊥ − c̃17ρ̃⊥) . (4.36)

In the following, we discuss the parallel shear viscosity η‖ in a strong external magnetic
field. In figure 4.5, we depicted the parallel shear viscosities η‖ and η̃‖ with and without
chiral anomaly. As usual, the parallel shear viscosity is encoded in the T xzT xz correlators
as indicated in eq. (4.31). In the left side of figure 4.5, we depict the dimensionless ratio
of the parallel shear viscosity and the entropy in dependence of the magnetic field divided
by the temperature squared. We see that for a certain range of the chemical potential
5 . µ̃ . 10 the parallel shear viscosity initially increases for small magnetic fields with
the increase being maximal for µ̃ ≈ 7.5. We thus observe either an increase or decrease in
the parallel shear viscosity depending on the considered value of the chemical potential.
Since the magnetic field breaks the rotational invariance to a SO(2) subgroup, it is not
surprising that the dimensionless ratio of parallel shear viscosity and entropy deviates
from the universal value of 1/(4π). Indeed, this was first noticed by the authors of [441]
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Figure 4.5.: Dimensionless ratio of parallel shear viscosity and entropy density for
µ̃ = {0., 0.253, 1.224, 2.078, 3.404, 5.105, 6.521, 7.5} (red to dark blue). Left:
In presence of the chiral anomaly, the ratio increases for certain values of the
chemical potential and small B̃. Right: Without the anomaly, all curves
tend downwards.

in the context of spontaneously broken rotations in an anisotropic p-wave superfluid. The
increase in the parallel shear viscosity for small values of the magnetic field is solely an
effect of the chiral anomaly which is obvious if we compare to the system without chiral
anomaly. In the right side of figure 4.5, we present the ratio of parallel shear viscosity
over entropy in a strong external magnetic field without chiral anomaly in dependence of
B̃. As it can be seen from the inset of the graphics, the shear viscosity always decreases
with increasing magnetic field independent of the value of the chemical potential. This
is in strong contrast to the behavior in presence of the chiral anomaly.

Even more remarkable are the results for the parallel Hall viscosity depicted in figure
4.6. The parallel Hall viscosity may be extracted from the T yzT xz according to eq. (4.32).
From the left side in figure 4.6, we can see that the parallel Hall viscosity is non-zero in
the anomalous system when a finite chemical potential is present. We furthermore notice
that the Hall viscosity increases for increasing the magnetic field. Similar to the parallel
shear viscosity, the behavior for small B̃ depends on the considered chemical potential.
There is a certain critical µ̃0 for which the parallel Hall viscosity increases the fastest for
small B̃. The inset indicates, however, that the behavior for very large B̃ is monotonous
in µ̃. Note that larger values of the chemical potential yield bigger values of η̃‖/s at large
B̃. Without anomaly, the situation changes drastically. In the right side of figure 4.6, we
see the parallel Hall viscosity in strong magnetic fields without chiral anomaly. It vanishes
for all values of the chemical potential and not only for vanishing chemical potential as
in the anomalous case. The parallel Hall viscosity is a novel transport coefficient which
is only present in the anomalous system and vanishes without chiral anomaly, similar to
the thermodynamic susceptibility M2.
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Figure 4.6.: Dimensionless ratio of parallel Hall viscosity and entropy density for
µ̃ = {0., 0.253, 1.224, 2.078, 3.404, 5.105, 6.521, 7.5} (red to dark blue). In
presence of the chiral anomaly (left), all curves increase with B̃ (except
µ̃ = 0). Without chiral anomaly, the viscosity is zero for all values µ̃ (right).

To conclude the discussion of the transport coefficients in the helicity-one sector, we
compute the perpendicular resistivity ρ⊥ and the perpendicular Hall resistivity ρ̃⊥ with
formula (4.33)-(4.36). Note that in order to evaluate eq. (4.33) and (4.34), we have to
(numerically) calculate the derivative of M5 (4.2) with respect to µ̃ at fixed B̃. In order
to make the results for the resistivities dimensionless, we have to multiply them by T .

In the left side of figure 4.7, we show a cartoon of the dimensionless perpendicular
resistivity ρ⊥ T in dependence of the magnetic field. With increasing magnetic field,
the resistivity also increases while it decreases for increasing chemical potential. We
furthermore note that the behavior is qualitatively not effected by the presence of the
chiral anomaly and we do not display the results for γ = 0 for the sake of a compact
presentation.

The results for the perpendicular Hall resistivity are similar and depicted in right
side of figure 4.7. The perpendicular Hall resistivity increases for increasing magnetic
field and the absolute value decreases for increasing chemical potential. Similarly to the
perpendicular resistivity the perpendicular Hall resistivity is not qualitatively affected by
the presence of the chiral anomaly and we thus do not present a cartoon of it.

4.2.4. Hydrodynamic transport coefficients in the Helicity-zero sector

In this sector, we consider the transport coefficients in the helicity-zero sector. For the
helicity-zero sector, the parity-violating terms do not yield new contributions to the bulk
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Figure 4.7.: Perpendicular resistivity in presence of the chiral anomaly
(left) and perpendicular Hall resistivity (right) for
µ̃ = {0.253, 1.224, 2.078, 3.404, 5.105, 6.521, 7.5} (from red to dark blue).
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viscosities which are thus given by the expressions derived in [423]

1
ω
δijImGT ijO1(ω,k=0) = 3ζ1 + · · · , (4.37)

1
3ωδijδkl ImGT ijTkl(ω,k=0) = 3ζ1 + ζ2 + · · · , (4.38)
1
ω

ImGO1O1(ω,k=0) = ζ1 − 2
3η1 + · · · , (4.39)

1
ω

ImGO2O2(ω,k=0) = 2η2 + · · · , (4.40)

where O1 = 1
2(T xx + T yy) and O2 = T zz − 1

2(T xx + T yy). The δij is the projector onto
the spatial coordinates, i.e. i = x, y, z. The ellipsis denote terms which are zero when
M1 = M3 = M4 = 0, or when B0 � T 2

0 as we already confirmed numerically.
By computing the correlators in eq. (4.38) and eq. (4.38) numerically, we are able to

extract the bulk viscositites ζ1 and ζ2. Both viscosities ζ1 and ζ2 vanish in both cases,
with and without chiral anomaly and we thus do not show them in a graphic.

We may extract bulk viscosities by computing the corresponding 2-point functions in
our holographic model according to eq. (4.39) and (4.40) since ξ1 = 0. In order to make
the viscosities dimensionless, we divide them by the entropy density.

In figure 4.8, we depict the numerical results for the bulk viscosity η1 with and without
chiral anomaly. In presence of the chiral anomaly (left side of figure 4.8). In particular,
we observe that the anomaly influences the bulk viscosity η1 in the left side of the figure
in a way that they change slope at B̃ → 0 in a certain range of the chemical potential. As
we already observed for the parallel shear viscosity in the helicity-1 sector, the absolute
value of viscosity η1 increases for a certain range of values of the chemical potential as may
be seen from the inset in figure 4.8. This increase is not present in the non-anomalous
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4. Anomaly induced transport in the presence strong magnetic fields
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Figure 4.8.: Dimensionless ratio of bulk viscosity η1 and entropy density for
µ̃ = {0., 0.253, 1.224, 2.078, 3.404, 5.105, 6.521, 7.5}. In presence of chiral
anomaly (left) the absolute values increase for certain µ̃ and small B̃. With-
out anomaly (right) all curves decrease in absolute value for increasing B̃.
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Figure 4.9.: Dimensionless ratio of bulk viscosity η2 and entropy density for
µ̃ = {0., 0.253, 1.224, 2.078, 3.404, 5.105, 6.521, 7.5}. In presence of chiral
anomaly (left) the absolute values increase for certain µ̃ and small B̃. With-
out anomaly (right) all curves decrease in absolute value for increasing B̃.

theory (right side of figure 4.8), where we notice that the absolute value of η1/s decreases
for all values of the chemical potential. We hence conclude that the presence of the chiral
anomaly changes – similar to the helicity-1 case – the slope of η1/s in the small B̃ regime
for certain values of the chemical potential.

We observe qualitatively the same behavior for η2. In figure 4.9, we show that the
presence of the chiral anomaly changes the slope of η2/s for small values of B̃. All curves
eventually decrease for larger B̃. In case of vanishing chiral anomaly, the curves always
decrease with increasing the magnetic field independent of the value of the chemical
potential.
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5. Entanglement entropy, Dirichlet
walls and the swampland

So far, two types of Ryu-Takayanagi surfaces have been known in de Sitter: One measures
the entanglement entropy between the two CFTs on the UV slice [276] while the other
measures the entanglement entropy across the horizon on the UV slice in the static patch.
The natural question to ask is: what happens with the entangling surfaces between
the horizon and the UV slice? Do they interpolate between the two already known
entanglement entropies? Furthermore, can we use the notion of entanglement entropy
to establish possible consistency requirements on matter fields in dS gravity (swampland
bounds)?

This chapter is based on my work with Hao Geng and Andreas Karch, published in [6].

5.1. Entanglement entropy in DS/dS: A one parameter
family

First, we consider spherical entangling surfaces in the static patch of dS given by the
metric

ds2
dSd+1

= dr2 +L2 sin(r/L) ds2
dSd , with ds2

dSd = −(1−ρ2) dτ 2 + dρ2

1− ρ2 +ρ2 dΩ2
d−2, (5.1)

where ρ = cos(β). We choose our observer to sit at the origin of the static patch

ρ = ρ0 ∈ (0, 1], τ = 0. (5.2)

Note that the cosmological horizon is located at ρ = 1. The two known classes of
entangling surfaces are the “U”-shaped entangling surfaces (class U) which are hanging
down from the central UV slice to the IR along the cosmological horizon. The second
class (class D) – constructed in [277] – are living on the UV slice and separate the left
CFT from the right CFT. In order to illustrate the difference between the two classes,
we depict both cases in the left side of figure 5.1.
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5. Entanglement entropy, Dirichlet walls and the swampland

Figure 5.1.: Euclidean dS3 in the static patch at τ = 0. Left: The class U surface is
depicted in red and the class D surface in black, respectively. The UV slice
separates the left half (purple) from the right (green). Right: The one-
parameter family of entangling surfaces interpolates between class U and
class D.

5.1.1. Spatial entanglement in dS (class U)

The class U surfaces compute the entanglement entropy between the left and the right
CFT. In the gravity picture, this corresponds to a double sided surface, which stretches
from the left side to the right side. The easiest way to obtain this solution is to write
down the Lagrangian for the minimal surfaces parametrized as β(r)

LU = Ld−2 cosd−2(β) sind−2
(
r

L

) √
1 + L2 sin2

(
r

L

)
(β′(r))2. (5.3)

For β0 = 0 (ρ0 = 1), we find the simple solution β(r) = 0, or

ρ(r) = 1, (5.4)

since β′ vanishes for constant β and (cos(β))′ vanishes for β = 0. This implies the class U
surfaces (depicted in red in figure 5.1) just stretch along the cosmological horizon which
is located at β = 0 and the entanglement entropy associated with this type of surfaces is
simply given by the entropy of the de-Sitter space

SEE,U = SdS. (5.5)

For entangling surfaces with ρ0 < 1, we naturally expect to end up with surfaces which
end at ρ(r) < 1 and thus yield a smaller entanglement entropy as SdS (as it is the case
in AdS). First, we discuss the other known type of entangling surfaces – the class D.
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5.1. Entanglement entropy in DS/dS: A one parameter family

5.1.2. Integrating out one CFT (class D)

In order to see the solution for the other class of entangling surfaces, we consider yet
another parametrization namely r(β) (instead of β(r))

LD = Ld−1 cosd−2(β) sind−2
(
r(β)
L

) √√√√(r′(β)2 + L2 sin2
(
r(β)
L

)
. (5.6)

Similar to the preceding subsection, we note that the Euler-Lagrange equations vanish
for

r(β)/L = π

2 , (5.7)

since r′ = 0 and (sin(r(β)/L))′ vanishes for r(β)/L = π/2. Moreover, since r(β)/L = π/2
for all β, the entangling surface lives completely on the UV slice for generic β0. In par-
ticular, the enclosed volume is given by the β0 = 0 surface which yield the entanglement
entropy

SEE,D = Ωd−2
∫ π/2
0 cosd−2(β) dβ

4GN

= 1
2 SdS. (5.8)

The authors of [277] argued that the class D surfaces integrate out the degrees of freedom
of one CFT and we are thus left with half of the original de-Sitter entropy. Intuitively this
makes sense, since the entangling surface separates the left and the right side. Moreover,
if we are tracing out the entire spatial part of one CFT, the Ryu-Takayanagi surface is
simply the whole spatial region of the dSd localized at r/L = π/2.

The volume inside the static patch is given by half the volume of the unit sphere, while
the spatial volume of the dSd is the volume of a unit sphere. Hence, the “global” or “full”
entropy is twice the entropy of the static patch and we find

Sglobal,D = SdS. (5.9)

To summarize, we calculated the de-Sitter entropy in two very different ways: first,
we calculated the entanglement entropy on the gravity side captured by the entangling
surface along the horizon. In the second, we traced out the degrees of freedom of one of
the CFTs on an entire spatial slice yielding the same result.

5.1.3. A one parameter family of entangling surfaces

Interestingly, it is possible to combine both concepts in terms of a one parameter family
of entangling surfaces interpolating between both concepts. In this section, we consider
entangling surfaces of class U but with ρ0 < 1 and turning point at r? in the bulk. The
already known class U surface corresponds to the case r?/L = 0 and r?/L = π.
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5. Entanglement entropy, Dirichlet walls and the swampland

The Lagrangian for the minimal surface is given in eq. (5.5). It is straightforward to
check that the corresponding equations of motions are solved by1

β(r) = arcsin [tan (r?/L) / tan (r/L)] . (5.10)

By evaluating the Lagrangian eq. (5.5) on the analytical solution eq. (5.10) and inte-
grating over r (where Ωd−2 is the volume of the sphere), it is straightforward to obtain
the entanglement entropy

SEE = Ωd−2

2GN

∫ π/2

0
drL(β(r)) = Ld−1√π Γ((d− 1)/2)

4GNΓ(d/2) = SdS. (5.11)

Surprisingly, all entangling surfaces yield the same entropy – the de-Sitter entropy –
independently of their turning point r?. The exact field theoretic interpretation of these
entangling surfaces is not clear. Since they interpolate between the two extreme cases –
the class U and D surfaces – a possible explanation is that they are all representing slightly
different ways of how to trace out degrees of freedom. From a geometric point of view, the
picture in the bulk is a lot clearer. In the right side of figure 5.1, we depicted five different
values of r? of the one-parameter family: the two extreme cases r?/L = π/2 (class D)
and r? = 0 (class U), as well as three intermediate values. The entangling surfaces all
correspond to great circles on the sphere which inherently have the same area. This also
implies, however, that the existence of the one-parameter family of solutions is closely
related to the symmetry of de-Sitter. In geometries slightly deviating from de-Sitter, for
example, by introducing a black hole or matter fields, the family of solutions is no longer
present. We will see an interesting application of the one-parameter family of solutions
in the next chapter.

5.2. Warped de-Sitter
In order to probe our notion of entanglement entropy in DS/dS, we switch on sources
in the dual field theory. The sources deform the spacetime and we have to allow for a
general warpfactor in the metric

ds2
dSd+1

= dr2 + e2A(r) ds2
dSd . (5.12)

We have to impose certain conditions on the warpfactor, since we still want to apply the
framework of DS/dS

• The spacetime should still asymptote to the two de-Sitter horizons. This requires
1Note that our r is shifted by πL/2 compared to the original work [6].
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5.2. Warped de-Sitter

that the warpfactor A(r) exhibits two asymptotic horizon regions rmin and rmax

indistinguishable from the ones in dSd sliced dSd+1.

• We assume that the deformations act symmetrical on both de-Sitter halves. How-
ever, our final conclusions are independent of this assumption, as argued later.

• The warpfactor A(r) has a maximum rm between the two asymptotic regions rmin

and rmax. Without loss of generality, we can redefine our coordinates system in a way
that the maximum rm is located at rm = 0. By doing so, we allow rmax = π L/2−rmin

to have values different than −πL/2 and πL/2, respectively, due to stretching and
contracting of the spacetime in response to the deformation.

We can declare the surface at the maximum of the warpfactor to be our UV brane with
curvature radius given by L? = eA(0) since the graviton is localized at rm = 0. The
Newton’s constant on the slice dSd, gN , and in the bulk dSd+1, GN , are related by

g−1
N = G−1

N

∫
dr e(d−2)A(r). (5.13)

The class U and class D surfaces with general warpfactor read

LU = cosd−2(β(r)) e(d−2)A(r)
√

1 + e2A(r)(∂rβ(r))2 (5.14)

LD = cosd−2(β) e(d−2)A(r(β))
√

(∂βr(β))2 + e2A(r(β)), (5.15)

where the two special solutions (note that we shifted the middle slice by π/2 to rm = 0
instead of rm/L = π/2 as considered in the last section)

β(r) = 0 and r(β) = 0 (5.16)

still solve the equations of motion with general warp factor. The former solves the equa-
tions of motion since (cos(β))′ vanishes at the horizon of each patch. The latter relies on
the fact that the warp factor has a maximum on the UV slice, namely A′(rm) = A′(0) = 0.
With eq. (5.13), the class U surface simply yields the entanglement entropy

SEE,U = A

4GN

=
Ωd−2

∫ rmax
−rmax dr e(d−2)A(r)

4GN

= Ωd−2

4 gN
= SdS. (5.17)

We conclude that the class U surfaces always reproduce the correct de-Sitter entropy,
since the Newton’s constant picks up exactly the contribution of the warp factor. Even
for general deformations, the class U surface reproduces the correct de-Sitter entropy, as
we already expected from general considerations in [442, 443] since the class U surface
corresponds to a horizon in the bulk.
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5. Entanglement entropy, Dirichlet walls and the swampland

For the class D surfaces, however, the situation is entirely different. Even if we account
for the entire spatial volume, hence integrating out one CFT, the entanglement entropy
does not correspond to the entropy of dSd+1. On the UV slice, the volume is totally
determined by the maximum of the warpfactor eA(rm) which sets the curvature radius
L?. It would be natural to assume that the entropy of dSd is an upper bound for any
entanglement entropy which we can obtain for a density matrix by tracing out degrees
of freedom or in other words an upper bound on the class D entanglement entropy. This
assumptions leads to constraints on the warp factor A(r) and thus on the matter content
which ensure that the obtained entanglement entropy is never larger than the dSd entropy.
Recall that we focus on the class D entangling surface associated with tracing out the
degrees of freedom of one of the CFTs. In the undeformed case, the class D entangling
surfaces correctly reproduce the dSd entropy. For a general warp factor the entanglement
entropy associated with two copies of this particular class D surface reads

Sglobal,D = Ld−1
? Vd−1

2GN

= Ωd−2 L
d−1
?

4GN

∫ π/2

−π/2
dβ cosd−2(β). (5.18)

Our consistency requirement thus imposes the constraint

1 ≥ Sglobal,D

SdS
= e(d−1)A(rm)

∫ π/2
−π/2 dβ cosd−2(β)∫ rmax
−rmax dr e(d−2)A(r) . (5.19)

At first sight, this consistency constraint seems to be really challenging to evaluate since
we have to compare a local quantity ∼ eA(0) to an integrated one

∫
dr e(d−1)A. As we will

see in the next section though, we are able to derive quite general statements from this
bound.

Matter fields in warped de-Sitter

In order to understand the implications of our consistency requirement, we consider the
backreaction of matter fields on the de-Sitter space. We study a generic, homogeneous
matter content in d > 2 by considering the action

S = 1
16π GN

∫
dd+1x

√
−g (R− 2Λ) + Smatter, (5.20)

with positive cosmological constant Λ = d (d − 1)/(2L2) and energy-momentum tensor
Tij = −2/√−g δS/δgij.
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5.2. Warped de-Sitter

The Einstein’s equations for a massive scalar field in de-Sitter read

d (d− 1)
2

(
A′ 2 − e−2A

L2 + 1
L2

)
= 8π GN T

r
r (5.21)

(d− 1)
(
A′′ + d

2 A
′ 2 − e−2A d− 2

2L2 + d

2L2

)
= 8π GN T

t
t . (5.22)

Equipped with the Einstein’s equations, we may rewrite the integral of the warp factor
as
∫ rmax

−rmax
dr e(d−2)A = 2

∫ A(0)

−∞

dA
A′

e(d−2)A = 2
∫ A(0)

−∞

dA√
16πGN T rr
d (d−1) −

1
L2 + e−2A

L2

e(d−2)A, (5.23)

where we replaced the derivative of A′ using eq. (5.21). The change of variables from r

to A is valid because of the monotonicity of A. The warp factor A increases monotonous
from rmin, reaches a maximum at 0 and decreases monotonous until it eventually reaches
its second minimum at rmax. The monotonicity tells us even more about the integral. We
know that the integrand vanishes at the maximum and we thus have

16π GN

d (d− 1)T
r
r (0) = 1

L2 −
e−2A(0)

L2 . (5.24)

We furthermore note that A′(r) > 0 for −rmax < r < 0 and A′(r) < 0 for 0 < r < rmax.
Combining these two observations, we may rewrite the integral eq. (5.23) with a shift of
the integration variable by its maximum value A(r) = F (r) + A(0) as

∫ rmax

−rmax
dr e(d−2)A = 2Le(d−1)A(0)

∫ 0

−∞

e(d−2)F dF√
e−2F − 16πGN L2 T rr−d(d−1)

16πGN L2 T rr (0)−d(d−1)

. (5.25)

In order to find an inequality for this expression, we have to take a look at the mono-
tonicity of T rr . We note that

∂rT
r
r = d (d− 1)

8π GN

A′
(
A′′ + e−2A/L2

)
= dA′

(
T tt − T rr

)
, (5.26)

where we used Einstein’s equation in the last step. Since we know, when A′ is greater or
smaller than zero, the sign of the derivative of T rr depends on the sign of the difference
(T tt − T rr ). Equation (5.24) tells us that the left hand side is bounded by 1/L2 since the
exponential function is always greater than zero. We conclude that the fraction in the
denominator of eq. (5.25) is smaller or equal than one if and only if

− T tt + T rr > 0. (5.27)
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5. Entanglement entropy, Dirichlet walls and the swampland

The inequality in eq. (5.27) has to be satisfied for any reasonable form of matter since it
is exactly the Null-Energy Condition. In this case, we may approximate the integral by

∫ rmax

−rmax
dr e(d−2)A ≤ 2Le(d−1)A(0)

∫ 0

−∞

dF e(d−2)F
√
e−2F − 1

= Le(d−1)A(0)
∫ π/2

−π/2
dβ cosd−2(β).

(5.28)
However, this is exactly equal to the nominator in eq. (5.19) leading to

Sglobal,D

SdS
≥ 1. (5.29)

This is a rather surprising result; eq. (5.29) states that any form of matter satisfying the
Null-Energy condition violates our proposed consistency requirement.
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Irrelevant deformations within QFTs are still very uncharted territory. This is particularly
the case because we cannot follow the normal renormalization group procedure; consider
a theory where we switch on an (IR) relevant coupling in the UV. In the UV the coupling
does not contribute and we can follow the trajectory to the IR. For irrelevant operators, we
have to start in the IR and flow towards the UV. The so-called T T̄ deformation is unlike
the generic irrelevant deformations exactly solvable [294–296]. In the field theory space
for a generic seed QFT, we may define a trajectory from the IR towards the ultraviolet
(UV) by triggering the flow with a T T̄ deformation. Even though we flow towards the
UV, we may extract valuable information about the theory such as the finite volume
spectrum, the S-matrix, and the deformed Lagrangian exactly.

In this chapter, we derive entanglement entropies in the T T̄ deformed theories from field
theory and holography in general spacetime dimensions. Since it challenging to compute
entanglement entropies in higher dimensions – even for free theories – we employ the
trick introduced in [305] and consider a QFT on a sphere. For spheres, we may compute
the entanglement entropy in terms of the sphere partition function. Within holography,
the QFT on a sphere is realized by choosing dS slicing in the radial direction (in contrast
to Poincaré/flat slicing for example). The results in this chapter are based on my work
published in [7].

6.1. T T̄ deformations in 2d field theory
We can view the T T̄ flow from a renormalization group perspective, where t parametrizes
the trajectory in the field theory space. We start with the undeformed Lagrangian L and
trigger the flow by deforming the theory with the operator irrelevant operator det

(
T (t)
µν

)
)

L(t+δt) = L(t) + δt det(T (t)
µν ) = L(t) − δt T T̄ (t), (6.1)

where T T̄ = 1
8

(
T µνTµν − (T µµ )2

)
for a 2d QFT. In this equation, T T̄ denotes a composite

operator of dimension 4.
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Starting from a conformal field theory, the stress tensor of the T T̄ deformed theory is
no longer traceless

SQFT = SCFT + 2πλ
∫

d2x
√
γ T T̄ (6.2)

where the deformed action obeys dSQFT/dλ = 2π
∫

d2x
√
γ T T̄ . Assuming the theory

exhibits only a single mass scale µ, we may perform a dimensional analysis and find

µ
dSQFT

dµ =
∫

d2x
√
γ T µµ . (6.3)

With µ = 1/
√
λ, the trace of the energy momentum tensor yields

T ii = − c

24π R̃− 4π λT T̄ + . . . , (6.4)

where the dots denote higher orders in λ; we also introduced the two dimensional Ricci
tensor R̃ which accounts for the curvature on a sphere and vanishes for flat space.

6.2. T T̄ deformations in holography
To understand the holographic proposal by McGough, Mezei, and Verlinde [297], we
consider AdS3 restricted to [277,304,306]

ds2 = dr2 + gµν(r, x) dxµ dxν , with r < rc, (6.5)

where the radial coordinate r is related to the “standard” radial coordinate in eq. (2.5)
by 1/u = er/L. The CFT is located at the boundary as usually. Throughout this section,
the boundary of the space (6.5) is no longer at conformal infinity but rather at a finite
radial distance r = rc. The central charge is given by [444]

µ = 16πGN

r2
c

= 24π L
c r2

c

. (6.6)

At large central charge c, we can employ the weak form of the AdS/CFT correspondence
and equate the generating functionals at r = rc (with notation g0

µν = gµν(rc))

ZQFT(γµν , J) = exp
(
−Sgrav(g0

µν = e2 rc/L γµν)
)
, (6.7)

where Sgrav is the action of the classical gravitational theory with metric eq. (6.5) subject
to Dirichlet boundary conditions ds2|r=rc = gµν dxµ dxν . In the following, we set erc/L = 1
for convenience.
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To understand the trajectory within the holographic duality, we consider a gravity theory
in (A)dS3

S = − 1
16π GN

∫
M

d3x
√
g
(
R− 2 η

L2

)
− 1

8π G

∫
∂M

d2x
√
γ (K − L−1) (6.8)

with the holographic stress tensor (see eq. (2.20))

Tµν = 1
8π GN

(
Kµν −K γµν + γµν

L

)
. (6.9)

In expression (6.8), we introduced η which is 1 for AdS and −1 for dS and hence reflecting
the sign change in the cosmological constant. The metric for dSd sliced (A)dSd+1 as
introduced in eq. (2.55) reads in a unified notation

ds2
(A)dSd+1

= dr2 + L2 sin(h)(r/L) ds2
dSd , (6.10)

where the hyperbolic sine corresponds to the AdSd+1 case and the sine to dSd. In d = 2,
the trace of the radial Einstein equation reads

Gr
r = 1

2
(
K2 −KµνKµν

)
− R̃− η

L2 = 0, (6.11)

where we denote the d dimensional Ricci scalar on the cutoff slice by R̃. By evaluating
T T̄ = (T µνTµν − (T µµ )2) for the energy-momentum tensor (6.9) and using (6.11) to remove
the extrinsic curvature from the expressions, we find the more generalized trace flow
equation

T µµ =− L R̃

16 π GN

− 4π GNL (T µνTµν − (T µµ )2)− η − 1
8π GN L

= − c R̃

24 π − 4π T T̄ + η − 1
8π GNL

.

(6.12)
In eq. (6.12), the trajectory for dS picks up and additional contribution from the cosmo-
logical constant compared to AdS and the “usual” field theory trajectory (6.4). For the
sphere (or in other words Euclidean dS), we can immediately solve for the ground state;
on the sphere, the energy-momentum tensor is proportional to the metric of the sphere
〈Tµν〉 = ω2(R) γµν , where R denotes the radius of the sphere. Using this expression for
the first equality in (6.12) yields a quadratic equation in ω2(R)

8π GN ω
2
2 −

2
L
ω2 −

η − 1
8π GN L2 −

R̃

16π GN

= 0 (6.13)
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with solutions

ω2 = 1
8π GN L

1±
√
R̃

2 + η

4L2

 . (6.14)

For dS2 sliced (A)dS3, we simplify this further by evaluating the Ricci tensor R̃ for the
two-sphere of radius R = sin(h)(rc/L).

Note that the previous statements implicitly assumed that we are taking the expecta-
tion values of the operator valued quantities, i.e. we should write

〈T T̄ 〉 = 1
8
(
〈T µν〉〈Tµν〉 − 〈T µµ 〉2

)
, (6.15)

where we assumed a factorization property. In general, this does not hold for a higher
dimensional CFT. However, if we work in the large N limit the factorization of the
expectation values holds even in d > 2.

6.3. Entanglement entropy and T T̄ deformations
In this section, we derive the entanglement entropy for antipodal points on a sphere in T T̄
deformed theories from field theory and holography. The calculation was first performed
in [305] and we follow it closely.

The partition function of a two dimensional CFT on a sphere parametrized by
ds2 = R2 (dβ2 + sin(β)2 dφ2), with φ ∈ [0, 2π] and β ∈ [−π/2, π/2] is given by

d
dR log(Z) = − 1

R

∫
d2x
√
γ T µµ . (6.16)

Note that the trace of the energy momentum tensor, deformed by the T T̄ deformation,
is given in terms of eq. (6.12). As we explained in (6.14), the symmetries on the sphere
dictate that the energy momentum tensor is proportional to the metric on the sphere
〈Tµν〉 = ωd(R) γµν . Re-writing eq. (6.14) in terms of field theory quantities according to
eq. (6.6), we find for the proportionality function ω2(R)

ω2(R) = 2
µ

(
1−

√
1 + c µ

24π R2

)
. (6.17)

The partition function is given by integrating eq. (6.16) with (6.17)

logZ = c

3 sinh−1
(√

24π
c µ

R

)
+ 8π

µ

(
R

√
c µ

24π +R2 −R2
)
, (6.18)

where we fixed the integration constant by imposing logZ|R=0 = 0 as argued in [305].
Throughout this thesis, we follow this convention of fixing the integration constant which
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6.4. Dirichlet walls in (A)dS

is based on the argument that it leads to a free theory in the UV even though we have
concerns if this is consistent with the AdS/CFT machinery. To compute the entanglement
entropy from the partition function, we employ the replica trick which works in our case
as follows; we consider the n-sheeted cover of the sphere with radius R

ds2 = R2 (dβ2 + n2 sin(β)2 dφ2). (6.19)

The energy-momentum tensor is isotropic on the sphere and the sphere partition function
picks up for varying n

d logZ
dn

∣∣∣∣∣
n=1

= −
∫

d2x
√
γ T φφ = −1

2

∫
d2x
√
γ T µµ . (6.20)

For antipodal points on the sphere, we can rotate in the φ direction around the axis
connecting the two points. In this case, the entanglement follows from the partition
function by taking the limit n→ 1 by

SEE =
(

1− n d
dn

)
logZ

∣∣∣∣∣
n=1

= c

3 sinh−1
(√

24π
cµ

R

)
. (6.21)

On the other side of the duality, it is straightforward to derive the entangling surfaces
which correspond to antipodal points. In the coordinates of eq. (5.1), the entangling
surfaces are given by the solutions to

L =

√√√√1 + L2 sin(h)
(
r

L

) (dβ(r)
dr

)2

(6.22)

which are anchored to the cutoff surface at r = rc. For antipodal points, the straight-
forward solution is r = 0, dβ/dr = 0 with the associated entanglement entropy given
by

SEE = 1
4GN

∫ rc

0
dr = L

2GN

arcsin(h)(R/L), (6.23)

where we introduced the radius of the circle R in terms of the cutoff R = L sin(h)(rc/L).

6.4. Dirichlet walls in (A)dS
In this section, we work out the impact of a Dirichlet wall at a fixed radial position on the
entanglement entropy associated with spherical entangling surfaces. We first derive the
results for the one-parameter family of entangling surfaces in dS which we constructed
in the last chapter. Then we proceed to generalize the results to (A)dS by considering
spherical entangling surfaces in AdS.
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6. T T̄ deformations and cutoff (A)dS

6.4.1. Entanglement entropy for subintervals on the sphere in dS

In the last chapter, we found a novel one-parameter family of entangling surfaces in dS [6].
All entangling surfaces correctly reproduce the entanglement entropy of dS and are given
in terms of the standard “U”-shaped surfaces that are hanging down towards the IR and
are parametrized in terms of β(r)

LI = Ld−2 cosd−2(β) sind−2
(
r

L

)√
1 + L2 sin2

(
r

L

)
(β′)2. (6.24)

The equations of motions associated with the Lagrangian are solved by [6]

β(r) = arcsin [tan (r?/L) / tan (r/L)] , (6.25)

where r? is the turning point of the entangling surface.
For pedagogical reasons, we consider the solutions (6.25) in the parametrization r(β)

LII = Ld−2 cosd−2(β) sind−2
(
r

L

)√
(r′)2 + L2 sin2

(
r

L

)
, (6.26)

where the entangling surfaces are given by

r(β) = L arccot (sin(β)/ tan(r?/L)) . (6.27)

The one-parameter family of entangling surfaces all reach the cosmological horizon with
vanishing first derivative. The second derivatives, however, are different and the entan-
gling surfaces yield different entanglement entropies in presence of a bulk cutoff

rc/L = ε/L. (6.28)

The Dirichlet wall starts eating up the entangling surfaces when we move it deeper in the
bulk since the entangling surfaces have to satisfy r?/L > ε/L (figure 6.2).

To find the entanglement entropy, we have to evaluate the Lagrangian (6.26) on the
analytical solution (6.27) and integrate β from the cutoff surface at β = βε to the turning
point of the entangling surfaces β = π/2

π/2∫
βε

dβL(r(β)) =
Ld−1√π Γ

(
d−1

2

)
2 Γ(d/2) −

Ld−1
2F1[1

2 ,
3
2 −

d
2 ,

3
2 ,

sin(βε)2

sin(r?/L)2+cos(r?/L)2 sin(βε)2 ]√
cos(r?/L)2 + sin(r?/L)2/ sin(βε)2

= 4GN EEdS −∆(ε, r?/L), (6.29)

where 2F1 is the hypergeometric function 2F1(a, b; c; z). We denote the de-Sitter entropy
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6.4. Dirichlet walls in (A)dS

by EEdS which we recover if we either push the turning point to r? = 0 (studied in
[277]) or remove the cutoff ε = 0 (studied in [6]). Since the quantity ∆(ε, r?) is strictly
positive for ε > 0 and r? > 0, the entanglement entropies in presence of the cutoff are
smaller than the de-Sitter entropy. The bulk variable r? does not have an obvious field
theory interpretation and we hence rewrite it in terms of the boundary coordinate β by
introducing βε. The angle βε is related to the turning point in terms of the analytical
solution r? = L arctan

(
R sin(βε)√
L2−R2

)
, where we also introduced the radius R = L sin(ε/L)

on the slice given in terms of the warpfactor at rc. With this, the quantity ∆ reads in
field theory variables

∆(ε, βε) = 2Ld−2
√
L2 −R2 cos(βε)2 2F1

(
1/2, 3/2− d/2, 3/2, 1− R2 cos(βε)2

L2

)
. (6.30)

6.4.2. Entanglement entropy for subintervals on the sphere in AdS

We can use the analytical solutions of the last section in order to perform an analog
calculation in AdSd+1. In particular, dSd sliced AdSd+1 follows from dSd+1 by Wick
rotating the d + 1-dimensional curvature constant. We therefore change the warpfactor
in the Lagrangian from sin(r/L) to sinh(r/L)

LI = Ld−2 cosd−2(β) sinhd−2
(
r

L

) √
1 + L2 sinh2

(
r

L

)
(β′)2, (6.31)

which is solved by replacing tan(r/L) with tanh(r/L) compared to the last section

β(r) = arcsin(tanh(r?/L)/ tanh(r/L)). (6.32)

The cutoff r/L = ε/L implies a radius of R = L sinh(ε/L) in the AdS case and the
turning point of the entangling surfaces reads in terms of field theory coordinates βε =
arcsin(tanh(r?/L)/ tanh(ε/L)).

The minimal area associated with the entangling surfaces is given by integrating the
Lagrangian evaluated on the analytical solution (6.32)

A = 2LD−3
∫ ε

r?
dr

sinh(r/L)
cosh(r?/L)

(
−1 + cosh(r/L)2

cosh(r?/L)2

)d/2−3/2

. (6.33)

The integral is straightforward to solve by switching coordinates according to
y2 = −1 + cosh(r/L)2/ cosh(r?/L)2

A = 2Ld−1
∫ y(ε)

y(r?)
dy

yd−2
√

1 + y2 = (R cos(βε))d−1

d− 1 2F1

(
1
2 ,
d− 1

2 ; d+ 1
2 ;−R

2 cos2(βε)
L2

)
.

(6.34)
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Figure 6.1.: The effective radius Reff = R cos(βε) (blue) corresponds to the radius, where
the points of the interval are antipodal by the basic definition of the cosine.

6.4.3. Entanglement entropy for generic intervals: Summary

The entanglement entropies for cutoff (A)dS are given in eq. (6.29) and (6.34), respec-
tively. By varying the turning point in the bulk, we are able to probe arbitrary subinver-
vals of the entanglement entropy on the cutoff sphere. The radius R of the sphere on the
cutoff slice appears in the expressions for the entanglemenet entropy only in combination
with the cosine of the ending point on the cutoff surface R cos(βε); we can simplify the
expressions by introducing an effective radius Reff(βε) = R cos(βε). Interestingly, in terms
of the effective radius, the entanglement entropies match formally the expressions for the
entanglement entropies of antipodal points on the sphere

d = 2 : SEE(βε) = L

2GN

arcsin(h)
(
Reff

L

)
(6.35)

d = 3 : SEE(βε) = Lπ

2GN

η
(
−L+

√
L2 + η R2

eff

)
(6.36)

d = 4 : SEE(βε) = π L

2GN

η
(
Reff

√
η R2

eff + L2 − L2 arcsin(h)
(
Reff

L

))
(6.37)

d = 5 : SEE(βε) = π2 L

6GN

(
2L3 + (η R2

eff − 2L2)
√
L2 + η R2

eff

)
(6.38)

d = 6 : SEE(βε) = π2 L

12GN

(
Reff

√
L2 + η R2

eff (2 η R2
eff −3L2)+3L4 arcsin(h)

(
Reff

L

))
.

(6.39)

The results are easier to interpret from a geometric perspective in d = 2 (see figure
6.1 and 6.2). The half circle in figure 6.1 corresponds to antipodal points on a sphere
with radius R. If the entangling surfaces end on the sphere with angle βε, the interval
corresponds to the region highlighted in green. With the basic definition of cosine, we
see that the points are the endpoints of a smaller circle with radius Reff. In figure 6.2,
we notice that the entangling surfaces without cutoff correspond to great circles on the
sphere (in the dS case). By introducing a cutoff surface (magenta), we cut away part of the
entangling surface. With a rotation along the sphere, we may bring the entangling surface
to the top of the sphere. On the top, the entangling surface correspond to antipodal points
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6.4. Dirichlet walls in (A)dS

Figure 6.2.: Left: The entangling surface for r?/L = π/3 – (θ, r) are the polar and
azimuthal angles, respectively, in the static patch of Euclidean dS3 in presence
of a cutoff ε (magenta surface) restricting the entangling surface to the bolder
line. We may rotate this surface by θ0 = π/3 to bring it to the top of the
sphere corresponding exactly to a cutoff surface for antipodal point with
radius Reff = R cos(βε(r?)) (blue). Right: Analogous picture for Euclidean
AdS3. In AdS3, the transformation consists of a spacetime rotation and a
special conformal transformation.

on the cutoff surface with smaller radius, Reff, depicted in blue. A similar result holds
for the AdS case. Instead of rotating the entangling surface to the top of the sphere, we
have to perform a boost which brings the entangling surface on the top of the cone. The
endpoints correspond to antipodal points for a boundary sphere with radius Reff.

In the previous expressions, the angle βε indicates how much smaller the subintervall
is compared to antipodal points on the sphere. It therefore makes sense to introduce the
angle δ = π/2−β, with Reff = R cos θε = R sin δ. In the AdS case, the results for pushing
the cutoff surface to the boundary have asymptote to the results without cutoff surface.
Introducing the cutoff Λ, the entanglement entropies for AdS read

Sd=2
EE (δ)= L

2GN

(
log
(

2 Λ sin(δ)
L

)
+ L2

4Λ2 sin(δ)2 +O
( 1

Λ3

))
(6.40)

Sd=3
EE (δ)= Lπ

2GN

(
Λ sin(δ)− L+ L2

2Λ sin(δ) +O
( 1

Λ3

))
(6.41)

Sd=4
EE (δ)= Lπ

2GN

(
Λ2 sin(δ)2 − 1

2L
2 − L2 log

(
2 Λ sin(δ)

L

)
+ L2

4Λ2 sin(δ)2 +O
( 1

Λ3

))
(6.42)

Sd=5
EE (δ)= π2 L

6GN

(
Λ3 sin(δ)3 − 3

2ΛL3 sin(δ) + 2L3 − 9L4

8 Λ sin(δ) +O
( 1

Λ3

))
(6.43)

Sd=6
EE (δ)= π2 L3

12GN

(
2Λ4 sin(δ)4

L2 − 2Λ2 sin(δ)2 − 7L2

4 + 3L2 log
(

2Λ sin(δ)
L

)
+O

( 1
Λ2

))
,

(6.44)

which agrees with the result of Casini, Huerta and Myers [373]. In d = 2, we can compare
our result to the well known field theory result for a subsystem ` in a system of length
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L [445–447]

S = c

3 log
(
L

π a
sin

(
π`

L

))
, (6.45)

with the cutoff a (a→ 0). In the dS case, the quantity ∆ vanishes for pushing the cutoff
to the UV slice and we recover the full de-Sitter entropy as observed in [6].

6.4.4. Renormalization and Generalized entanglement entropies

On the one hand, in computations of the entanglement entropies in field theory or holog-
raphy, we expect the result per sé to be divergent. The leading coefficients are sensitive
to the cutoff, and the leading term is the so-called area term [372, 448–451]. Subleading
terms, in particular the logarithmic divergences, encode universal information character-
izing the properties of the underlying QFT. On the other hand, in CFT calculations we
consider renormalized quantities since they are universally well defined and make sense in
the continuum limit. As we have seen in the holographic picture, the T T̄ deformation acts
as UV regulator which renders all quantities inherently finite. In principle, we are allowed
to add an arbitrary amount of counterterms to the dual effective action describing the
field theory but we are restricting ourselves to the standard counterterms obtained within
the canonical holographic renormalization procedure [352, 353]. If we now näıvely com-
pare the holographic entanglement entropies to entanglement entropies from field theory
obtained from the renormalized action, we will find a seeming mismatch as the authors
of [327]. The counterterms of the field theory action on the cutoff slice have an impact on
the entanglement entropy and thus must also be taken into account in the calculation of
entanglement entropies by means of Ryu-Takayanagi surfaces (see for example [317] for a
discussion about this) [452–456]. They contribute to the entanglement entropy precisely
on the points where the entangling surface reaches the cutoff surface.

The renormalized action for the gravity theory which also leads to the renormalized
holographic energy-momentum tensor is given by eq. (2.17). The counterterms living
on the cutoff slice are higher curvature terms and we may compute the contributions
to the holographic entanglement by calculating the Wald entropy associated with the
counterterms.1 The Wald entropy [459] is given by [460–462]

SWald = −2π
∮

ddx δL
δR̃abcd

ε̂ab ε̂cd, (6.46)

where ε̂ab are the binormals to the horizon. It is easier to rewrite the metric in terms of

1An alternative approach is considering the counterterms outlined in [457,458].
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eq. (5.1) with R(r) = L sin(h)(r/L), R ≡ R(rc) and ρ = cosφ

ds2
(A)dS = dr2 +R2(r)

(
−(1− ρ2) dτ 2 + dρ2

1− ρ2 + ρ2 dΩd−2

)
. (6.47)

In these coordinates the radial coordinate in the cutoff slice is ρ and we can parametrize
inward pointing quantities in terms of it. On the cutoff slice r/L = rc/L in the static
patch, the ε̂τρ, are the binormals and we have to vary the Lagrangian in eq. (6.46) with
respect to R̃τρτρ in order to find the Wald entropy associated with the co-dimension 2
entangling surface ending on the cutoff slice.

For the counterterms given in eq. (2.19), we find on the slice r/L = rc/L for an entan-
gling surface ending on the surface at ρε = cos(βε) with the effective radius Reff = R(rc) ρε

SW,ct = − 1
4GN

Rd−2
eff

∮ √
h

(
c2 L

d− 2 + c3 L
3

(d− 4)(d− 2)2

(
R̃− habR̃ab −

2d
4 (d− 1)R̃

))

= − π(d−1)/2Rd−2
eff

2 (d− 2)GN Γ((d− 1)/2)

(
c2 L−

c3 L
3

2 (d− 4)R2
eff

(d− 2)
)
, (6.48)

where hab is the induced metric on the unit boundary sphere and where we used that on
the cutoff slice R̃ = d (d− 1)/R2

eff and Rab = (d− 1)/R2
eff hab. Evaluating the expression

in eq. (6.48) for 3 ≤ d ≤ 6, we find

Sd=3
W,ct = −π LReff

2GN

, Sd=4
W,ct = −π LR

2
eff

2GN

, (6.49)

Sd=5
W,ct = π2 L

8GN

(
−4R3

eff
5 + 2Reff L

2
)
, Sd=6

W,ct = π2 L

8GN

(
−4R4

eff
3 + 4R2

eff L
2

3

)
. (6.50)

In d = 2, the contributions of the counterterms to the entanglement entropy vanish since
the counterterm acts as a boundary cosmological constant.

6.5. T T̄ deformations from field theory in DS/dS
In this section, we derive the corresponding entanglement entropies from field theory in
general dimensions. So far the results for field theories living on the cutoff slice of (A)dS3

were found in the literature in [305] and we reviewed them in section (6.3). For higher
dimensions, the entanglement entropies for T T̄ deformed theories dual to AdSd+1 were
derived in [327]. However, as already alluded to in the last section, the authors only
found a match up to missing area terms. In this section, we generalize the calculation for
the field theory dual to dSd+1 to general dimensions and demonstrate that we are able
to find an exact match between the results from cutoff (A)dSd+1 and the corresponding
field theories.
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6.5.1. The d dimensional deforming operator

In section 2.1, we gave the explicit expressions for the holographic energy momentum
tensor Tij (2.20) with curvature counter terms Cij (2.21) for spacetimes up to 6 + 1
dimensions. The trajectory of the T T̄ deformation may be expressed in terms of the
trace of the energy momentum tensor and we can define a deforming operator according
to

Xd = − 1
d λd
〈T µµ 〉. (6.51)

We drop all 〈. . . 〉 from now on and implicitly assume to take the expectation values of the
operator valued quantities since we are working in the large N limit of the field theory
which exhibits a factorization property. In order to eliminate the extrinsic curvature from
the expression for the energy momentum tensor eq. (2.20), we consider the trace of the
radial Einstein equation of the (d + 1)−dimensional gravitational theory in with metric
(2.55)

K2 −KµνKµν − η
d(d− 1)
L2 − R̃ = 0, (6.52)

where R̃ is the d dimensional Ricci scalar, describing the curvature on the cutoff slice
r = rc. Analogous to the preceding section, we introduced η = 1 for AdS and η = −1
for dS. Using eq. (6.52), to eliminate the extrinsic curvature we find for the trace of the
energy momentum tensor

Xd =
Tµν+ αd

λ
d−2
d

d

Cµν

2

− 1
d− 1

T µµ + αd

λ
d−2
d

d

Cµ
µ

2

+1
d

αd

λ
2(d−1)
d

d

(
d− 2

2 R̃+Cµ
µ

)
+(d− 1)(η − 1)

4 d λ2
d

.

(6.53)
For d = 2, the Cµν vanish and we find the results derived in eq. (6.12). Analogous to the
d = 2 case, the deforming operator for the field theory dual to dSd+1 exhibits an extra
term compared to the AdS case.

The field theory parameters are related to the parameters on the gravity side by [327]

λd = 4π GN L

d
, αd = L2(d−1)/d

(2d) d−2
d (d− 2) (8π GN)2/d

, L2 = 2d (d− 2)αd λ2/d
d . (6.54)

In particular, in a two-dimensional CFT, the central charge c is related to the gravity
theory quantities by eq. (6.6).
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6.5.2. From sphere partition functions to entanglement entropy

Analogous to the case d = 2 explained in section 6.3, we compute the entanglement
entropy in the field theory by means of the sphere partition function. The energy mo-
mentum tensor is proportional to the metric on the sphere Tµν = ωd(R) γµν , where the
function ω(R) depends on the radius R of the sphere. Taking the trace of this expression,
the sphere partition function reads

R
∂

∂R
logZSd = −d

∫
ddx
√
γ ωd(R), (6.55)

from which we may compute the entanglement entropy for antipodal points on the sphere
using the replica trick by

Sd,EE =
(

1− R

d

d

dR

)
logZSd . (6.56)

The n−folded cover of the sphere needed for the replica trick is given by [305,327]

ds2 = R2

dβ2
1 +

d−1∑
i=2

i−1∏
j=1

cos(βj)2 dβ2
i + n2

d−1∏
j=1

cos(βj)2 dβ2
d

 , (6.57)

with βj ∈ [−π/2, π/2] for j = 1, . . . , d − 1 and βd ∈ [0, 2π]. By evaluating the de-
forming operator for the metric of the boundary sphere and using the flow equation
dωd(R) = T µµ = −d λdXd, we find a quadratic equation in the proportionality function
ωd(R). In the following, we denote the two signs of the solution by s

ω2(R) =
1 + s

√
η + c λ2

3π R2

4λ2
, (6.58)

ωd>2(R) = (−1 + d)
4 dR4 λd

(
2 (d− 2) dR2 λ2/d c2 αd − (d− 2)2 d2 λ4/d c3 α

2
d

+2R3
(
R + s

√
η R2 + 2 (d− 2) d λ2/dαd

))
. (6.59)

From (6.59), it is easy to obtain the entanglement entropies. The recipe goes as follows:
Use the proportionality function ωd(R) eq. (6.59) to compute the partition function
according to eq. (6.55). Fix the integration constant by demanding logZ|R=0 = 0,
leading to a trivial theory in the UV. For antipodal points on the sphere, the entanglement
entropy follows with eq. (6.56).
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6.6. Entanglement Entropy from field theory in general
dimensions

With the recipe outlined in the last section it is straightforward to compute the entangle-
ment entropies. The entanglement entropies and their holographic counter-parts obtained
from the gravitational theory read (for more details see appendix C).

Sd=2,
QFT = Sd=2

holo = c

3 arcsin(h)
(√

3 π R√
c λ2

)
(6.60)

Sd=3,
QFT = Sd=3

holo = 4 π2 t3
λ3

(
−R− η

√
6t3 + η

√
η R2 + 6 t3

)(√
6− 6

√
t3√

η R2 + 6 t3

)
(6.61)

Sd=4
QFT = Sd=4

holo = 8π2 t4
λ4

(
R
(
−R + η

√
η R2 + 16 t4

)
− 16 η t4 arcsin(h)

(
R

4
√
t4

))
(6.62)

Sd=5
QFT = Sd=5

holo = 4π3 t5
λ5

(
−R3+ 45R t5+ ηR2

√
ηR2 + 30t5 +60t5

(√
30 t5−

√
ηR2 + 30t5

))
(6.63)

Sd=6
QFT = Sd=6

holo = −16π3 t6
3λ6

(
R
(
R3 − 48R t6 − η R2

√
η R2 + 48 t6 + 72 t6

√
η R2 + 48 t6

)
−3456 t26 arcsin(h)

(
R

4
√

3 t6

))
, (6.64)

where we translated the results we obtained in the gravitational theory into field theory
language by using eq. (6.54) and added the contributions of the counterterms on the slice
encoded in the Wald entropy. For the interested reader, we provide some additional steps
of the calculation in appendix C. We see that the entanglement entropies in both sides
of the proposed duality – cutoff (A)dS and T T̄ deformed field theories – match perfectly.
Since the counter terms are finite for the T T̄ deformed theory, our results depend on the
cutoff and hence on the regularization scheme. We can remove the dependence on the
cutoff and consider only cutoff independent quantities by taking daking derivatives of the
entanglement entropy according to [463,464]

SR,EE(R) =


R

(d−2)!! R
d
dR

(R d
dR
− 2) . . . (R d

dR
− (d− 2))SEE d even,

R
(d−2)!!(R

d
dR
− 1)(R d

dR
− 3) . . . (R d

dR
− (d− 2))SEE d odd.

(6.65)

The results for SR,EE(R) are also outlined in appendix C.
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7. Conclusions & Outlook
In this thesis, we investigated the non-equilibrium properties of strongly coupled field
theories within the framework of holography. Specifically, we investigated the impact of
broken spacetime symmetries and chiral anomalies on the transport behavior of strongly
coupled field theories and examined the entanglement entropy within non-equilibrium
scenarios in de-Sitter and deformed QFTs. In the following, we give a detailed summary
of the central results and discuss the further directions in the outlook.

Broken spacetime translations

The main long term goal in considering broken spacetime symmetries in hydrodynamic
is to extend the hydrodynamic prescription to explicitly broken symmetries. Within
holography, we can directly compute the dispersion relations and transport coefficients
and thus gain useful insights into how to construct the prescription. First, we considered
the case of spontaneously broken translational symmetry. Even though the hydrodynamic
description for spontaneously broken translations is considered in textbooks [392,465] and
was recently reviewed in [1, 161], we set our sight on verifying this prescription in our
holographic model in the longitudinal sector of the solid model and the transverse and
longitudinal sector of the fluid model [1,2]. A match in the transverse sector of the solid
model was established in [131]. On the field theory side, we established a comprehensive
formulation of the hydrodynamic dispersion relations in the spontaneous case. On the
gravity side, we were able to check the dispersion relations obtained from hydrodynamics
and to compute the corresponding transport coefficients. We find excellent agreement
with the predictions from hydrodynamic in the transverse sector as well as reasonable
agreement for the sound modes the longitudinal sector of the model. To our surprise,
we find a significant disagreement for the purely diffusive mode which appears to be
shifted. By considering the decoupling limit analytically, we were able to verify that
this disagreement between the hydrodynamic description and the numerical prediction
from holography is indeed systematic and not due to an error in the computation. In
the final stages of this thesis, we were able to resolve the disagreement. The authors
of [185, 466] showed that we have to take a novel transport coefficient referred to as
configuration pressure into account and hence the textbook treatment of spontaneously
broken translations in hydrodynamics has to be revised. In [4], we demonstrated that
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7. Conclusions & Outlook

the holographic results derived for [1, 2] perfectly match the hydrodynamic description
of [185, 466, 467] and the mismatch is no longer present. The novel transport coefficient
takes into account that the background configuration might be strained, as it is indeed
the cases for the holographic models we investigated in [1, 2]. However, its temperature
derivative contributes even in unstrained states.

In the second part of the discussion of chapter 3, we laid out important steps to-
wards a realization of a hydrodynamic prescription including momentum dissipation and
phase relaxation. In particular, we considered explicitly and pseudo-spontaneously bro-
ken translation in the longitudinal and transverse sector. For this kind of symmetry
breaking, we observe momentum dissipation as well as a phase relaxation mechanism for
the phonons. In the pseudo-spontaneous limit, the phonons acquire a mass term similar
to the pion in chiral symmetry breaking. We verified that the light (pseudo)-phonons
satisfy the so-called Gell-Mann-Oakes-Renner relations [404]. We demonstrate that the
holographic results agree with an heuristically extended hydrodynamic prescription where
we put in the momentum dissipation and phase relaxation by hand.

Within linear response – for example, in the hydrodynamic regime – we have some
access to the physics of broken translations in terms of effective field theories methods.
Beyond linear response, however, this intuition completely breaks down since we have
to study the full nonlinear real time dynamics of the strongly coupled field theory in
order to characterize the out-of-equilibrium behavior. We force the system out of its
equilibrium state by driving it periodically for different strengths and frequencies of the
periodic driving. We may isolate the imprint of the translational symmetry breaking
by comparing to the results for periodically driven holographic CFTs with translational
invariance (for example [407]). Within the linear response regime, the spontaneously
broken translational invariance leads to a tilted elliptic shape of the Lissajous figures.
The Lissajous figures include the information about the dissipation mechanisms in the
CFT with broken translations. Beyond the linear regime, we also break the discrete time
translations of the system. Due to the broken translations, the system shows viscoelas-
tic properties. In particular, we observe nonlinear elasticity in the nonlinear regime in
contrast to periodically driven CFTs with translational symmetry. We found a strain
hardening mechanism as typically found for rubber-like systems, contradicting the claim
that the homogeneous holographic massive gravity models describe strange metals.

The main motivation in this thesis was to address fundamental questions like how do
broken symmetries affect the hydrodynamic description and how to extend standard text-
book hydrodynamics in this regards. Some of the results, such as the broken translational
invariance, may also be interpreted within the AdS/CMT program. For example, the
far-from-equilibrium behavior in periodically driven CFTs in presence of spontaneously
broken translations describes so-called large oscillatory shear tests on solids. Not much
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is known about the theoretical description of these processes and our holographic results
might help to get a better intuition about the underlying physical processes.

Anomaly induced transport in strong magnetic fields

In chapter 4, we considered the transport coefficients of a strongly coupled anomalous
QFT subject to a strong (axial) magnetic field. In particular, we demonstrated that in
the presence of the chiral anomaly we have to take into account several novel transport
coefficients constrained by the chiral anomaly. The direct computation of those trans-
port coefficients in Einstein-Maxwell-Chern-Simons theory showed that these transport
coefficients are non-zero and thus contribute to the transport properties of the system
under consideration. Within this thesis, we focused on the computation of the shear
and bulk viscosities as well as perpendicular resistivities in strong magnetic fields and
stressed the effects of the chiral anomaly. This work is an important step within the
holographic community since the underlying Einstein-Maxwell-Chern-Simons theory is
a simple top-down construction from string theory and we thus have control over the
dual CFT. The AdS/CFT correspondence is particularly well suited to study transport
in strongly coupled anomalous QFTs since the physics is universal in a sense that the
coefficients in the anomalous currents for example are totally determined by the anomaly.
Note for example that the parallel Hall viscosity is a non-dissipative transport coefficient
and may be topologically protected.

Entanglement Entropy, (A)dS, and T T̄ deformations

So far, two sorts of entangling surfaces have been known in de Sitter: One measures the
entanglement entropy (EE) between the two CFTs on the UV slice [276], the other one
measures the EE across the horizon on the UV slice in the static patch. In chapter 5,
we constructed a one-parameter family of solutions which interpolates between the two
concepts. Surprisingly, all entangling surfaces of the one parameter family reproduce
the dS entropy correctly. We used the notion of EE to investigate possible consistency
requirements on matter fields in dS gravity (swampland bound). Starting from the as-
sumptions that the dS entropy is the largest possible EE, we explored the parameters in
which matter fields obey this bound. Remarkably, we found that any matter obeying the
Null Energy condition violates our proposal.

Starting from the one-parameter family of entangling surfaces, we derived the EE for
generic subintervals in the presence of a hard radial cutoff in (A)dS. In the field theory,
this scenario corresponds to deforming the field theory with a so-called T T̄ deformation
which is an exactly solvable irrelevant deformation. Concretely, we computed the EE
for T T̄ deformed CFTs on a sphere for generic intervals in general dimensions dual to
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(A)dS. Intriguingly, we found that we may express the results for generic subintervals
in terms of the result for antipodal points [305] by introducing an effective radius for
the sphere. Additionally, we generalized the field theory calculation for a CFT dual to
dS to general dimensions. Moreover, we solved the confusion in the literature about a
seeming mismatch between the EE on the field theory side and the holographic result
obtained from the gravitational theory and were able to demonstrate that both sides
match perfectly.

Outlook
In this thesis, we advanced our knowledge about non-equilibrium aspects in several re-
gards. In the last section, we want to discuss the future direction building upon the
central results of this thesis.

Hydrodynamic description for broken spacetime translations

In particular, we established a consistent framework to study spontaneously broken trans-
lational invariance within hydrodynamics and holography. This is first basic steps towards
a consistent “hydrodynamic description” to model explicitly and pseudo-spontaneously
broken spacetime symmetries. The road map to this description is already laid out in
the holographic results obtained within this thesis. Within holography, we worked out
the response in terms of QNMs and compared to heuristic extensions of hydrodynam-
ics which include phase relaxation and momentum dissipation “put in by hand”. The
consistent framework may help to answer some problems important for the AdS/CMT
program. One natural extension is to study the effects of spontaneous translational sym-
metry breaking at finite density within an external magnetic field in terms of so-called
magneto-phonons and magneto-plasmons. Beyond linear response, the spectrum of ques-
tions is even richer. In periodically driven systems exist non-equilibrium states which are
possibly analytically tractable – the non-equilibrium steady states. These special states
in the non-equilibrium dynamics are states in which the system is quasi-static but the
continuous driving is necessary to keep the system in this state; the system dissipates all
energy introduced by the driving at the same rate. The long-term goal is to classify the
non-equilibrium steady states. It would be interesting to investigate the existence and
properties of the steady states within the non-equilibrium dynamics of systems with bro-
ken translations. In the context of holography it would be especially interesting to apply
the procedure of computing the spatial collective modes as outlined in [468]. Another
intriguing, albeit a more technically challenging direction, is to consider quenches in the
strength of the spontaneous symmetry breaking and investigate the resulting response



with regards to universal behavior.

Chiral Anomalies in strongly coupled QFTs

The full classification of the hydrodynamic transport coefficients for a four dimensional
anomalous QFT subject to a strong magnetic field opens a wide range of interesting
follow up questions. The next step towards the full nonlinear response is to consider
the frequency and momentum dependence of the transport coefficients. The frequency
dependent coefficients allow us to quantify the transport behavior in oscillating magnetic
and electric fields.

The derivation of an upper bound on the isotropization time in supersymmetric Yang-
Mills plasma from holography was a big success [417]. However, the authors chose a
simple bottom-up model consisting of the 5D Einstein-Hilbert action. Follow-up works
included an external magnetic field and finite charge density [121,124] but still are lacking
a Chern-Simons term which is unavoidable in consistent top-down constructions giving
rise to (supersymmetric) four-dimensional QFTs. By studying the full time-dependence in
the Einstein-Maxwell-Chern-Simons setup, we may study the equilibration of the strongly
coupled anomalous QFT within a well-defined truncation from top-down models in string
theory. It is interesting, to study whether and how the holographic magnetic quantum
critical system will thermalize, in particular close to the quantum critical point and how
the anomaly coefficients affects the equilibration time scales.

Weyl semimetals may be realized by applying a circular polarised laser on a Dirac
semimetal [469]. In holography, we may mimick this by considering the time dependence
of Maxwell-Chern Simons theory in presence of a rotating electric field. Quantum states in
such a time periodic driven system can be described by Floquet theory which is restricted
to small amplitudes and frequencies. However, by studying the full time dependence
within holographic setup of [229], we overcome the usual restrictions of Floquet theory.
Within the holographic mode, we can study non-equilibrium steady states in periodically
driven anomalous QFTs, specially their stability in dependence on the applied electric
fields. It is tempting to investigate, whether we observer chaotic behavior in the regime
of large amplitudes.

Quantum gravity and matter in de-Sitter and the T T̄ deformation

In chapter 5, we discussed a framework to study quantum gravity in dS – the DS/dS cor-
respondence. Although the conjecture has been put on more solid footing over the last
years, there are plenty of open questions. For example, it would be interesting to under-
stand the exact physical interpretation of the one-parameter family of entangling surfaces
in the dual CFTs. We have some intuition about the special cases, where the entangling
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surface corresponds to the cosmological horizon or is located on the UV brane [276]. How-
ever, the precise interpretation of the one-parameter family of entangling surfaces which
interpolates between those two concepts remains an open question. With the notion of
EE in DS/dS, we set out to derive consistency conditions on the matter content in dSd+1

but surprisingly any matter obeying the null energy condition violates this bound! There
are several ways out of this dilemma. For one, the framework may not be well defined.
Either it is not possible to define a theory of quantum gravity with matter on dS or
DS/dS is not the correct framework to model it. On a more confident note, we could
conclude that the bound was simply too strong.

The EE in the nominator, Sd+1,global, accounts for the EE on the entire spatial volume.
This EE is twice as large as the EE in the dS static patch. For a single observer living on
the UV brane of dSd the maximum entropy available corresponds to SdS and this observer
thus does not have sufficient information to fully reconstruct the higher dimensional dSd+1

geometry. To do so, we require some information from beyond the horizon. This is a
surprising fact but must not necessarily be an inconsistency but may rather be another
fascinating property of the DS/dS correspondence.

For future investigations, we may postulate a less stringent bound

Sd+1,static

SdS
≤ 1 ⇔ Sd+1,global

SdS
≤ 2,

which is, however, the minimum consistency requirement we have to demand under any
circumstances. Within this bound, we are requiring the EE between the left and right
CFT within the static patch to be less than the dSd entropy. It would be interesting,
to quantify the impact of this consistency requirement in the context of constraints on
the potential of matter in dS. The one-parameter family of entangling surfaces which all
yield the same EE is intimately connected to the symmetries of dS and thus not present
if we deform the geometry away from dS. For a Dirichlet wall in dS corresponding to
a hard radial cutoff, the single member of the one-parameter family yield different EE
depending on their turning point in the bulk. This was in part topic of the EE in the
context of T T̄ deformed QFTs.

We derived the holographic EE for general subintervals for T T̄ deformed QFTs. It
would be very interesting, to also extend the field theory calculation to general geome-
tries. To realize this, we have to evaluate the associated partition functions on manifolds
with conical defects. Furthermore, we alluded to the construction of [277], relating the
QFTs in terms of the DS/dS correspondence to the AdS/CFT correspondence by T T̄

deformations. Working out this construction explicitly is an important future direction
for understanding quantum gravity in dS within the framework of holography.
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A. Numerical methods

In this chapter, we review the numerical methods we applied throughout this thesis
in order to solve the various differential equations and eigenvalue problems efficiently
and accurately following [470] closely. For problems in numerical holography, spectral
methods have the big advantage that they solve the equations of motions globally, i.e.
we can simultaneously demand boundary conditions on both ends of the domain. This
is a big advantage compared to Finite-difference or shooting methods where we have to
vary the initial conditions on one side in order to find the appropriate function values
on the other side of the domain. Another point in favor of applying a spectral method
is their fast convergence rate; we have a very robust and accurate numerical technique
at hand which is not necessarily a lot more complicated than using a shooting method.
Lastly, using spectral methods provides us with very good control of about the quality
and accuracy of the numerical solution which is essential for solving differential equations
numerically. To quote Boyd himself: “One must watch the convergence of a numerical
code as carefully as a father watching his four year old play near a busy road.”

A.1. (Pseudo)-spectral methods
In order to get an intuition about how spectral methods work, we consider the differential
equation

where L is a differential operator and u(x) the solution satisfying Lu(x) − f(x) = 0.
We can expand the solution in terms of a basis {φn(x)} by formally writing u(x) =∑∞
n=0 cnφn(x). The basic idea of spectral methods is to approximate the exact solution

u(x) by a finite number N of basis polynomials φn(x)

u(x) ≈ uN(x) =
N∑
n=0

cn φn(x) (A.1)

and find the coefficients {cn}n=0,...,N which minimize the residuum R(x; cn)

R(x; c0, c1, . . . , cN) = LuN(x)− f(x) (A.2)

The first important step is to choose the appropriate set of basis function and to discretize
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A. Numerical methods

the coordinates xi in order to make it tractable for computer algorithms.
Since we know the expressions of the basis functions analytically, we can re-write their

first and second derivative by introducing derivative matrices D̂. In the given basis, the
derivative of the basis functions is given as a linear combination of the basis functions
i.e. φ′m(x) = ∑N

n=0 D̂mnφn(x), φ′′m(x) = ∑N
n,l=0 D̂mnD̂nl φl(x). With the differentiation

matrices, we can rewrite derivatives so that they act on the coefficients

u′(x) ≈
N∑
n=0

cn φ
′
j(x) =

N∑
n,m=0

cn D̂nmφm(x) =
N∑
n=0

c′n φn(x), (A.3)

u′′(x) ≈
N∑
n=0

cn φ
′′
j (x) =

N∑
n,m,l=0

cn D̂nmD̂ml φl(x) =
N∑
n=0

c′′n φn(x). (A.4)

The difference between spectral- and pseudo-spectral methods is that the former uses
the coefficients in order to minimize the residuum (A.2) while the latter uses the func-
tion values ui evaluated on the gridpoints xi. In contrast to finite differences, the grid-
points are not necessarily equidistant but given in terms of the zeros and extrema of
the basis functions φn. The relation of the function values ui and the coefficients ci is
ui = ∑N

j=0 cj φj(xi).
The best choice for the basis functions in the homogeneous case are the so-called

Chebychev polynomials given by

Tk(x) = cos(k arccos(x)). (A.5)

In the Chebychev basis, we can choose between different grids in order to discretize the
coordinate. There are the Chebychev-Radau grids which do not include either the left
or the right boundary of the domain, the Chebychev-Gaußgrid where both boundaries of
the domain are excluded and the Chebychev-Lobatto which includes boundaries of the
domain. In AdS/CFT it is very convenient when we can impose boundary conditions at
conformal boundary and know the numerical solution there. Note that the boundary and
the horizon are regular singular points to the equations of motion in AdS/CFT and the
differential equation is degenerate there. This means that we technically do not have to
impose boundary conditions there and we can use the Chebychev-Gaußand Chebychev-
Radau grids. Even though these grids are interesting, we restrict our discussion to the
Chebychev-Lobatto grid, in particular since we want the conformal boundary to be part
of the integration domain. The Chebychev-Lobatto gridpoints are given by

xi = cosϕi = cos π i
N

(A.6)
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with the differentiation matrix given by

D̂mj



−2N2+1
6 , m = j = N,

2N2+1
6 , m = j = 0,

− xj
2 (1−x2

j )
, 0 < m = j < N,

κm
κj

(−1)m−j
xm−xj , m 6= j,

(A.7)

where we defined

κj =

2, for j = 0, j = N

1, for j = 1, . . . N − 1.
(A.8)

The differentiation matrix for the second derivative is simply given by applying the matrix
for the first derivative (A.7) twice. Note that by choosing non-equidistant gridpoints,
we avoid the Runge-phenomenon which appears in interpolations on equidistant grids.
We demand that the residuum vanishes exactly on the collocation points xi and the
numerical solution is thus exact on the gridpoints (note that the conformal boundary is
one of the gridpoints). For periodic problems it is best to use a Fourier grid. For spherical
symmetrical problems, we recommend using spherical harmonics as basis functions for
latitude and longitude. In these cases, we refer the interested reader to [470–473]. The
attentive reader might have noticed that the Chebychev-Lobatto gridpoints are defined
on x ∈ [−1, 1] while the radial coordinate of AdS is usually in the interval u ∈ [0, 1] where
the conformal boundary is located at z = 0. In practice, it is thus convenient to map the
gridpoints and differentiation matrices according to

zi = xi + 1
2 ∈ [0, 1], D̃ =

(
∂x

(
x+ 1

2

))−1
D̂ = 2 D̂, D̃2 = D̃ D̃ = 4 D̂ D̂. (A.9)

The corresponding Chebychev polynomials are given by Tk(z) = cos(k arccos(2z − 1)).

A.2. Pseudospectral solutions to Boundary Value
Problems

After discussing the discretization of differential equations in terms of spectral methods,
we now work out how to solve linear boundary value problems in practice. The step to
solving nonlinear boundary values is formally not more complicated since the nonlinear
are solved by iteratively solving the linear problem. We discuss them in section A.4.

iii



A. Numerical methods

Boundary conditions

Before we impose boundary conditions on the differential equation, we have to understand
the difference between behavioral and numerical boundary conditions. Periodicity, for
example, is a behavioral boundary condition. We require that the solution satisfies u(x) =
u(x+2π) but that does not impose any specific value on the function u(x) or its derivative.
For periodic functions, we choose sines and cosines as basis functions which obviously
satisfy the periodicity condition. By expanding the functions in terms of this basis, our
numerical solution is automatically periodic and we do not have to impose any explicit
boundary conditions since the periodicity requirement is inherently satisfied by the basis
functions. Even more interestingly, the differential equation

z (1− z) ∂2
zu(z)− (z + 1) ∂zu+ 5u(z) = 3, z ∈ [0, 1], (A.10)

is singular on both endpoints. However, the Chebychev polynomials are individually
analytic at z = {0, 1} (x = ±1) and so are linear combinations of them. This leads to the
important insight that we can solve singular differential equations with an exponential
rate of convergence (we get to the meaning of that in the next section) without imposing
any additional constraints! This is extremely convenient in the context of AdS/CFT.
As we learned, the equations of motions we come across in the context of the AdS/CFT
correspondence have regular singular points on both ends of the intervals. By solving
these equations in terms of a Chebychev basis, we cure those singularities in a very elegant
way and are able to construct numerical solutions converging exponentially despite the
singular endpoints. In contrast, numerical boundary conditions are of the form u(1) =
du/dx|x=0 = 5 and have to be imposed explicitly.

To impose boundary conditions in terms of spectral methods, we usually follow the
following strategies:

(i) boundary bordering In the N×N pseudo-spectral matrix, we replace the lines corre-
sponding to the two endpoints by the explicit boundary condition. The remaining
(N − 2) × N block corresponds to the collocation conditions in the inner of the
interval.

(ii) basis recombination We re-formulate the boundary value problem so that the new
boundary conditions in the modified boundary value boundary problem are homo-
geneous. In this strategy, we modify the set of basis functions so that they satisfy
the constraints individually.

In practice, we usually have to use (or have the luxury of using) both strategies. To
see how this works in context of the AdS/CFT correspondence, we can consider a very
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A.2. Pseudospectral solutions to Boundary Value Problems

simple setup: the famous holographic superconductor in a planar AdS4 Schwarzschild
background [68]. The resulting equations of motion are given by

z2f(z)Ψ′′(z) + z (zf ′(z)− 2f(z)) Ψ′(z) + Ψ(z)
(
z2Φ(z)2

f(z) + 2
)

= 0 (A.11)

z4 Φ′′(z)− 2 z2 Φ(z)Ψ(z)2

f(z) = 0, (A.12)

where f(z) = 1− z3. Furthermore, the function Φ(z) behaves as Φ(z) ∼ (1− z) Φh + . . .

at the horizon. We see that both of the coupled (nonlinear) differential equations are
singular at the endpoints z = 0 and z = 1 (since f(1) = 0). Additionally, we know the
solution at the boundary in terms of a power series

Ψ(z) = Ψ(s) z + Ψ(v) z
2 + . . . , (A.13)

Φ(z) = µ+ ρ z + . . . , (A.14)

where the leading and subleading mode are identified with the field theory quantities ac-
cording to the AdS/CFT dictionary. The precise physical interpretation is not important
for now. Let us formulate the following boundary value boundary problem: We want to
find the solutions of Ψ(z),Φ(z) to the differential equations (A.11) and (A.12) subject
to the boundary conditions: Ψ(0) = 0, Ψ′(0) = 0, Φ(0) = µ, Φ(1) = 0 (and also where
Ψ′′ 6= c)1.

Näıvely, we could go forward and simply implement the boundary conditions and try
to solve the system. However, there is a more elegant way. Since we know the solution
in terms of a power series at z = 0 (A.13), we notice that the re-defined function Ψ(z) =
z2 Ψ̃(z) automatically satisfies the two conditions Ψ(0) = 0, Ψ′(0) = 0 and we do not
have to impose them explicitly anymore. Similarly, the new function Φ(z) = (1− z) Φ̃(z)
automatically implements Φ(1) = 0. In terms of the new functions, the system reads

Ψ̃
(

2 z f ′ + (z − 1)2 z2 Φ̃2

f
− 2f + 2

)
+ z

(
(z f ′ + 2 f) Ψ̃ + z f Ψ̃′′

)
= 0 (A.15)

− (z − 1) Φ̃′′ − 2Φ̃′ + 2 (z − 1) z2 Φ̃ Ψ̃2

f
= 0, (A.16)

where the boundary condition Φ̃(0) = µ is left (and we want to pick the solutions with
Ψ̃(0) 6= 0). The new boundary value problem is still a system of second order differential
equations but instead of four boundary conditions, we have only one boundary condition
left! So where do we get the missing boundary conditions from? The answer is simple and
we already stated it in this chapter: in case the equation of motion degenerates (in terms

1The ambiguity of multiple possible solution is due the nonlinearity of system of equations

v



A. Numerical methods

of singular points) we do not have to impose any boundary condition since the choice
of Chebychev polynomials which are regular at the singular points we already imposed
the missing boundary conditions in terms of behavioral boundary conditions. Hence it
is sufficient to require that the residuum vanishes at the respective points (which is a
fancy way of saying, ”Do not do anything” and just impose the equation of motion at
the endpoint).

Note that it also possible to introduce the auxiliary function Φ̃(z) as Φ(z) = (1 −
z) (µ+ z Φ̃(z)). In this way, µ will inevitably appear in the equations of motion. This is
no problem as long as we have a determining equation for µ (for example, a constraint
equation). In this case, we can add the µ to the unknown parameters and solve for the
corresponding (N + 1)× (N + 1) dimensional matrix (in case of one unknown function).

All in all, we can write this in a compact way (for a (non)linear problem depending
on one coordinate). Let n be the number of unknown functions with I ∈ {1, . . . , n} and
ξ denote additional m additional parameters with J ∈ {1, . . . ,m}. Then we find the
following set of equations (see eq. (A.2) for the definition of the residuum) for a given
resolution N

RI
0(u′I , uI ; ξJ) = 0 for z = 0, (A.17)

RI(u′′I , u′I , uI , z; ξJ) = 0 for 0 < z < 1, (A.18)
RI

1(u′′I , u′I , uI , z; ξJ) = 0 for z = 1, (A.19)
ξJ(u′′I , u′I , uI ; ξJ) = 0 for 0 < z < 1. (A.20)

The coordinate is discretized according to (A.9) and all derivatives are replaced by the
differentiation matrices (A.9). The resulting spectral matrix is a (n ·N+m)× (n ·N+m)
matrix. For a pseudo-spectral methods, we can then determine the numerical values of
the solution by solving (R, ξ)(u) = 0 for the components u. The spectral coefficients may
be determined by inverting (A.1).

A.3. Convergence, Accuracy & All that
The approximation by N basis polynomials in (A.1) is only a good approximation if
the coefficients beyond the truncation do not contribute significantly. Furthermore, we
can only make statements about higher coefficients if the coefficients of our solution
consistently fall off for larger indices. There are various rates of convergence. Instead of a
rigorous abstract mathematical treatment, we will keep the discussion about convergence
on a graphical level. This is more than enough for using spectral methods on a day-to-day
basis. The different rates of convergence are depicted in graphic A.1. Spectral convergence
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Figure A.1.: Different rates of convergence.

corresponds to exponential decay of the coefficients. In a log-linear plot where we plot
the absolute value of the coefficients against the number of basis polynomials a purely
exponential decay corresponds to a straight line with negative slope (geometric, black
line). The coefficients decay according |an| ∼ O(c1 exp(− c2N)). If the coefficients decay
even faster, we speak of supergeometric convergence (|an| ∼ O(c1 exp(−(N/c2) log(N)))
depicted as green line in figure A.1. In the log-linear plot, the slope of supergeometric
convergence rate gets more and more negative instead of converging to a straight line.
On the contrary, in the case of |an| ∼ O(c1 exp(− c2N

r)) with r < 1, the coefficients
are decaying slower than the straight line in a log-linear plot and we refer to the decay
rate as subgeometric (depicted in red in figure A.1). Lastly, if the coefficients decay as
a polynomial in the number of gridpoints, the convergence is algebraic. In this case, the
curve is bend upwards in a log-linear plot with slope tending to zero. There is one caveat;
the notions of convergence we just discussed are asymptotic quantities and in practise
the effective rate of convergence might differ from the asymptotic ones.

Coordinate mappings

As explained in [470], logarithmic singularities render the asymptotic form of the spectral
coefficients algebraic (∼ N−1 pN). The spectral solutions, we can construct in presence
of those singularities have very poor convergence. In AdS/CFT, it is very common
that logarithms appear in the asymptotic expansions of the functions at the conformal
boundary. One example is the trace anomaly of the energy momentum tensor in 4 + 1
dimensions due to the presence of a magnetic field. As so often when dealing with
problems in spectral methods, there is a solution by Boyd for it [474]. For functions with
endpoint singularities (remember that x ∈ [−1, 1] while z ∈ [0, 1]), where the expansion
reads

f(x) = c1 (1− x)k log(1− x) + c2 (1 + x)k log(1 + x), (A.21)
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the algebraic coordinate mapping

x = sin
(
π

2 y
)

(A.22)

leads to a much higher resolution near the singularity an may restore the degraded rate of
convergence. In our case, the functions have endpoint singularities only at the conformal
boundary for example

f(z) = 1 + z4 f4 + c1 log(z) z4, (A.23)

we propose the Boyd inspired mapping

z 7→ z2 (A.24)

which was put forward in my master thesis [23, 24]. This mapping is obtained by trans-
forming eq. (A.22) to z ∈ [0, 1] and expand the expression around z = 0. The mapping
moves the logarithmic divergences to higher order according to

zn log(z) 7→ 2 z2n log(z) (A.25)

and we find a much improved rate of convergence, as shown in figure A.3.

A.4. Nonlinear Ordinary differential equations
Applying (pseudo)-spectral methods to nonlinear equations instead of linear ones is con-
ceptually not significantly more difficult. In terms of Newton’s method, the equations
we have to solve numerically are still linear. Due to the ambiguity of the solutions to
nonlinear equations, however, we have to start with a good initial guess of the solution
so that the Newton method converges to the solution we are interested in.

Newton-Raphson method

The Newton method is an iterative method in order to find the roots of a nonlinear
equations. It works as follows; for an initial guess close to the true solution, the Newton
method is based on using the derivative to do a step in direction of the true solution. Let
xi be the current approximation of the solution (for the first step it is the initial guess).
Then we may find derive an expression for the next best solution by using the Taylor
expansion

y = f ′(xi)(x− xi) + f(xi) (A.26)
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The tangent intersects the x-axis at xi+1 (where y = 0)

xi+1 = xi −
f(xi)
f ′(xi)

. (A.27)

We generalize this to a nonlinear system of algebraic equations F (X) = 0. X is the
vector of all fields evaluated on the collocation points
XT = (X1

1 , . . . , X
1
N , . . . , X

n
N , ξ

1, . . . , ξm), where N is the number of collocation points, n
the number of fields and m the number of additional parameters. Since X is a vector
the generalization of the derivative f ′(xi) in eq. (A.27) will be matrix valued and we
introduce the Jacobian Ĵ(X) = ∂F (X)∂X. With this, the Newton step reads

Xi+1 = Xi − [Ĵ(Xi)]−1 F (Xi), (A.28)

where we assume that the Jacobian is invertible. For more complicated problems, it
can be very time consuming to evaluate (and store) the Jacobian. In theses cases, we
recommend introducing auxiliary variables for the derivatives (instead of evaluating them
on the gridpoints with the differentiation matrices) and compute the Jacobian according
to the chain rule. In this way, we separate zeroth, first and second derivatives acting on
the fields. For a discussion see the appendices in [196,475].

A.5. Eigenvalue problems and Quasi-Normal modes
Computing the Quasi-Normal modes within the AdS/CFT correspondence is a very im-
portant task since it gives us insight into the linear response regime in strongly coupled
field theories. In general, we have to find solutions to the linearized equations of motion,
subject to infalling conditions at the horizon and Dirichlet conditions at the conformal
boundary. One elegant approach to impose the infalling condition at the horizon is by
means of the coordinate choice in the gravity theory. If we use infalling Eddington-
Finkelstein coordinates instead of Poincaé coordinates, all fields automatically satisfy
infalling conditions at the horizon. We may collect the system of equations of motion in
terms of powers in ω (where ω the QNM frequency)

α[X] + ω β[X] + ω2 γ[X] = 0. (A.29)

The vectorX includes all fields and α, β, and γ are differential operators. The eq. (A.29)
is a quadratic eigenvalue problem with the eigenvalues given by the QNM frequencies. In
most cases we are lucky and γ[X] is zero. Nevertheless, it is always possible to reduce
the quadratic eigenvalue problem (A.29) to a linear one by introducing auxiliary fields.
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For example, αf + ω βf + ω2 γf = 0 may be reduced to the system

αf + ω (βf + γf̃) = 0, f̃ = ωf (A.30)

This obviously increases the spectral matrix by N for each auxiliary field since we have
to add the new fields to X. The resulting linear eigenvalue problem reads

α[X] + ω β[X] = 0. (A.31)

In order to solve this problem numerically, we discretize the (radial) coordinate with
eq. (A.9) and replace all derivatives by the differentiation matrices (A.9). The Dirich-
let boundary conditions may be implemented by using the methods explained in A.2.
We redefine the functions by factorizing out an appropriate power k in z, f = zk f̃ . In
practical applications, we have constraint equations in addition to the equations of mo-
tion2. Implementing these constraint equations is the biggest difficulty in obtaining the
QNMs (or solving the (non)linear problems described in the previous section). Usually,
it is enough to demand constraint equations at one of the endpoints and we can replace
one of the boundary condition on the fields with the constraint equation. There is no
general way to determine which boundary conditions may be replaced by the constraint
equations. One big advantage of this approach is that we are computing not only one
but up to n · N + m QNMs at once! (n is the number of fields, m the number of extra
conditions and N the number of gridpoints)

A.6. Time-dependent problems
The pioneering work of studying time-dependent problems in the AdS/CFT correspon-
dence was done by Chesler and Yaffe [417–419] (see [420] for a detailed review). The
authors developed the standard approach which is the so-called characteristic formula-
tion by Bondi and Sachs. The characteristic formulation has the advantage that the
coupled set of partial differential equations decouples and exhibits a nested structure. In
the nested structure, we can solve the equations successively which simplifies the hard
task of solving coupled partial differential equations – a numerically very costly task –
and hence allows for fast and efficient codes.

The numerical routine for nonlinear oscillatory shear tests in AdS

In this section, we display the numerical routine to solve the time-dependent partial
differential equations in chapter 3. This subsection is taken from the appendix of my

2Note that constraint equations are not present if one works in so-called gauge invariant variables
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publication [3]. We make the following re-definitions of the metric functions

A = 1 + Ã u

u2 , S = s0 + S̃ u

u
,

H = h0 + H̃ u, d+S = d̃+S

u2 , (A.32)

d+H = ḣ0

2 + d̃+H u.

In our numerical calculation, we use the Chebyshev discretization with 50-100 grid points
for the integration along the radial coordinate.

Following the characteristic feature of the bulk equations of motion in EF coordinates
[420], the numerical recipe to solve the equations of motion is: (B.24)-(B.28):

1. We start with a static black hole solution with H̃ = 0, S̃ = s1(t0) as an initial
configuration and choose the strain function γ(t).

2. We check the accuracy of the numerical calculation, by plugging H̃, S̃ in the con-
straint equation (B.24).

3. We use the definition of apparent horizon, d+S(u = 1) = 0, as a boundary condition
to calculate d̃+S by solving eq. (B.25).

4. Then we solve eq. (B.26) with one boundary condition for d̃+H at asymptotic
region, d̃+H(u = 0) = ḣ0ṡ0

s0
+ ḧ0.

5. Now we can solve eq. (B.27) to find Ã with two boundary conditions: the first is
Ã(u = 0) = 2(s1− ṡ0)/s0 and the second we can find by expanding eq. (B.28) near
the horizon which leads to

A = −1
3 (d+H)2

∣∣∣∣∣
u=1

. (A.33)

6. By using the definition of operator d+, we find ˙̃S, ˙̃H. Then we integrate in time
using a fourth-order Runge-Kutta method for the first three time steps and then
the fourth order Adams-Bashforth method, to compute H̃(u, t0 + δt) and S̃(t0 + δt)
and repeat the same routine from step 2.

To impose the sinusoidal strain, we turn on the amplitude smoothly (in the spirit
of [23, 24]) as

γ(t) = γ0

2

(
1 + tanh

(
t− tc
wc

))
sin (2πωt) , (A.34)
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where parameters tc, wc control how accurate the initial configuration satisfies the con-
straint equation (B.24) and how fast the maximum strain is reached respectively. In
figure (A.2), we show a concrete example of the constraint equation (B.24).

20 40 60 80 100
t

10-34

10-29

10-24

10-19

10-14
constraint

Figure A.2.: Constraint equation (B.24) for s1|t=0 = 0, γ0 = 0.1, wc = 2, tc = 25 for
ω/m = 0.32.

A.7. Convergence plots

Chiral transport in strong magnetic fields

In this subsection, we exemplarily present a convergence plot for chapter 4. In the
helicity-1 sector, it is convenient to decouple the fluctuation equations further by intro-
ducing ht± = htx± ihty, hz± = hxz ± ihyz, and a± = ax± iay. In figure A.3, we depict the
convergence for ht+, hz+, a+ without coordinate mapping (left) and with coordinate map-
ping (right). We note that with coordinate mapping, the coefficients fall off geometrically
to machine precision before they reach a plateau.

Holographic massive gravity

We checked that our solutions satisfy the equations of motions and all constraint equa-
tions. To check the convergence of the numerical solution, we monitor the change of the
solution for finer discretizations. As depicted in the l.h.s. of figure A.4, the change of
the quasi-normal mode frequency decays exponentially with a growing number of grid
points; the same is valid for the corresponding eigenfunctions. Another check for the
numerical method are the Chebychev-coefficients of the solution, displayed in the r.h.s.
of figure A.4; the coefficients decay exponentially, indicating exponential accuracy of our
numerical method.
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Figure A.3.: Convergence in the helicity-1 sector without (left) and with (right) the co-
ordinate mapping (A.24). The parameters are γ = 2/

√
3, B̃ = 109.658, µ̃ =

7.5 and the fluctuations are ht+, hz+, a+ (red, green, black).
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Figure A.4.: Left: Moving of the lowest three QNMs with increasing grid size. Right:
Chebychev-coefficients of the eigenfunctions corresponding to the second
lowest QNM.
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B. Holographic massive gravity

Equations of motions
In this appendix, we provide the equations of motions for the fluctuations (taken from my
publications [2, 3]). We consider the momentum aligned in the y direction, ~k = (0, 0, k).
Throughout this appendix, derivatives of the potential always denote derivatives with
respect to the argument, i.e. V ′(Z) ≡ dV (Z)/dZ, V ′′(Z) ≡ d2V (Z)/dZ2 and V ′(X) ≡
dV (X)/dX, V ′′(X) ≡ d2V (X)/dX2. To simplify the notion, we suppress all arguments
of the functions.

Transverse sector

In the transverse sector we consider the following set of metric and scalar fluctuations
{δφx, htx, hxy}, where we assumed radial gauge hxu = 0 [2].

V(Z) case

V ′ (δφ′x (f ′ + 2 i ω) + fδφ′′x + h′tx) + 4u3 V ′′ (f δφ′x + htx + i ω δφx) = 0 (B.1)
htx

(
2u f ′ − 6f + k2u2 + 4m2u4 V ′ − 2m2 V + 6

)
+ u

(
−u f h′′tx + 2f h′tx + k uω hxy + 4 im2 u3 ω δφ′x V

′ − i u ω h′tx
)

= 0 (B.2)

u
(
h′xy (−u f ′ + 2 f − 2 i u ω)− ufh′′xy − i k u h′tx

)
+ 2hxy

(
u f ′ − 3f −m2 V + i u ω + 3

)
+ 2 i k u htx = 0 (B.3)

i k u h′xy − u
(
4m2 u2 δφ′x V

′ + h′′tx
)

+ 2h′tx = 0. (B.4)

V(X) case
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B. Holographic massive gravity

− 2(1− u2 V ′′/V ′)htx + uh′tx − i k u hxy −
(
k2 u+ 2 i ω(1− u2 V ′′/V ′)

)
δφx + u f δφ′′x

+
(
−2(1− u2 V ′′/V ′) f + u (2iω + f ′)

)
δφ′x = 0 ; (B.5)

2 im2 u2ωV ′ δφx + u2 k ω hxy + (6 + k2 u2 − 2m2(V − u2 V ′)
− 6f + 2uf ′)htx +

(
2u f − i u2ω

)
h′tx − u2 f h′′tx = 0 ; (B.6)

2i k u htx − iku2h′tx − 2 i k m2 u2V ′δφx + 2hxy
(
3 + i u ω − 3f + uf ′ − m2(V − u2V ′)

)
−
(
2i u2 ω − 2uf + u2 f ′

)
h′xy − u2 f h′′xy = 0 ; (B.7)

2h′tx − uh′′tx − 2m2 uV ′ δφ′x + ik u h′xy = 0. (B.8)

Longitudinal sector

In the longitudinal sector we consider the following set of fluctuations in radial gauge
{hx,s = 1/2 (hxx + hyy), hx,a = 1/2 (hxx − hyy), δφy, htt, hty}.

V(Z) case

f ′ δφ′y V
′ + fδφ′′y V

′ + 4u3 fδφ′y V
′′ − δφy

(
k2 V ′ + 2u3

(
k2 u− 2 i ω

)
V ′′
)

− i k hxx
(
2u4 V ′′ + V ′

)
+ h′ty V

′ + 2 i ω δφ′y V ′ + 4u3 hty V
′′ = 0 (B.9)

2hty
(
−uf ′ + 3f − 2m2u4V ′ +m2V − 3

)
+ u(ufh′′ty + (−2f + i u ω)h′ty + i k u h′tt

− 4 im2 u3ωδφy V
′) + k u2 ω (hx,s + hx,a)− 2 i k u htt = 0 (B.10)

6htt + u
(
−u f ′ h′x,s + 2 f h′x,s + 4 i k m2 u3 δφy

(
2u4 V ′′ + V ′

)
− i k u h′ty + 2 i k hty

−8m2 u7 hx,s V
′′ + 2 i hx,s

(
ω + 2 im2 u3 V ′

)
+ uh′′tt − 4h′tt − 2 i u ωh′x,s

)
= 0 (B.11)

hx,s
(
2u f ′ − 6 f + k2 u2 + 4m2 u4 V ′ − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s

− u2 f ′ h′x,a + 2uhx,a f ′ − u2 f h′′x,s − u2 f h′′x,a + 4u f h′x,s + 2u f h′x,a − 6 f hx,a
+ k2 u2 hx,a − 4 i k m2 u4 δφy V

′ + 2 i k u hty − 2m2 hx,a V − 2 i u2 ω h′x,s

− 2 i u2 ω h′x,a − 2uh′tt + 6htt + 2 i u ωhx,a + 6hx,a = 0 (B.12)
hx,s

(
2uf ′ − 6 f + k2 u2 + 4m2 u4 V ′ − 2m2 V + 4 i u ω + 6

)
− u2f ′ h′x,s + u2 f ′ h′x,a

− 2uhx,a f ′ − u2 f h′′x,s + u2 fh′′x,a + 4u f h′x,s − 2u f h′x,a + 6 f hx,a + k2 u2 hx,a

− 4 i k m2 u4 δφy V
′ − 2 i k u2 h′ty + 6 i k u hty + 2m2 hx,a V − 2 i u2 ω h′x,s

+ 2 i u2 ω h′x,a − 2uh′tt + 6htt − 2 i u ω hx,a − 6hx,a = 0 (B.13)
2h′ty − u

(
i k

(
h′x,s + h′x,a

)
+ 4m2 u2 δφ′y V

′ + h′′ty
)

= 0 (B.14)

h′′x,s = 0. (B.15)
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uf ′ δφ′y V
′ + 2u2 f δφ′y V

′′ + u f δφ′′y V
′ − 2 f δφ′y V ′ − k2 u δφy V

′ − k2 u3 δφy V
′′

+ i k u hx,a V
′ − i k u3 hx,s V

′′ + 2 i u2 ω δφy V
′′ + uh′ty V

′ + 2 i u ω δφ′y V ′

− 2 i ω δφyV ′ − 2hty
(
V ′ − u2 V ′′

)
= 0 (B.16)

u(f
(
uf ′ h′x,s − 2 f h′x,s − 2 i k m2 u3 δφy V

′′ − uh′′tt + 4h′tt
)

+ k hty (i u f ′ − 2 i f + 2uω) + hx,s
(
2m2 u3 f V ′′ + ω (i u f ′ − 2 i f + 2uω)

)
)

+ htt
(
u
(
−uf ′′ + 4 f ′ + 2m2 uV ′

)
− 12 f + k2 u2 − 2m2 V − 2 i u ω + 6

)
= 0 (B.17)

2hty
(
u
(
f ′ +m2 uV ′

)
− 3 f −m2 V + 3

)
− u

(
u f h′′ty − 2 f h′ty + i k u h′tt + k uω hx,s + k uω hx,a − 2 im2 uω δφy V

′ + i u ω h′ty
)

+ 2 i k u htt = 0 (B.18)
hx,s

(
2u

(
f ′ +m2 uV ′

)
− 6 f + k2 u2 − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s

− u2 f ′ h′x,a + 2uhx,a f ′ − u2 f h′′x,s − u2 f h′′x,a + 4u f h′x,s + 2u f h′x,a − 6 f hx,a
+ k2 u2 hx,a + 2 i k u hty + 2m2 u2 hx,a V

′ − 2m2 hx,a V − 2 i u2 ω h′x,s

− 2 i u2 ω h′x,a − 2uh′tt + 6htt(u) + 2 i u ω hx,a + 6hx,a = 0 (B.19)
hx,s

(
2u

(
f ′ +m2 uV ′

)
− 6 f + k2 u2 − 2m2 V + 4 i u ω + 6

)
− u2 f ′ h′x,s + u2 f ′ h′x,a

− 2uhx,a f ′ − u2 f h′′x,s + u2 f h′′x,a + 4u f h′x,s − 2u fh′x,a + 6 f hx,a + k2 u2 hx,a

− 4 i k m2 u2 δφy V
′ − 2 i k u2 h′ty + 6 i k u hty − 2m2 u2 hx,a V

′ + 2m2 hx,a V

− 2 i u2 ω h′x,s + 2 i u2 ω h′x,a − 2uh′tt + 6htt − 2 i u ω hx,a − 6hx,a = 0 (B.20)
− 6htt + u (u f ′ h′x,s − 2 f h′x,s − 2 i k m2 u3 δφy V

′′ + i k u h′ty − 2 i k hty
+ 2m2 u3 hx,s V

′′ − uh′′tt + 4h′tt + 2 i u ω h′x,s − 2 i ω hx,s) = 0 (B.21)
k u

(
h′x,s + h′x,a

)
− i u

(
2m2 δφ′y V

′ + h′′ty
)

+ 2 i h′ty = 0 (B.22)

h′′x,s = 0. (B.23)
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Time dependent bulk equations

Using the characteristic formulation the equations of motion are,

S
′′ + 2

z
S
′ + H

′2

4 S = 0, (B.24)

d+S
′ + S

′

S
d+S = S

2z2

−3 +m22N
(

cosh(H)
S2

)N , (B.25)

d+H
′ + S

′

S
d+H = −H

′
d+S

S
−m2 2NN tanh(H)coshN(H)

z2S2N , (B.26)

A
′′ + 2

z
A
′ = d+HH

′

z2 − 4S ′d+S

z2S2 +m2 2N+1N coshN(H)
z4S2N , (B.27)

4d2
+S + d+H

2S + 2z2A
′
d+S = 0, (B.28)

where d+A := Ȧ− A
z2A

′ , and prime stands for derivative with respect to radial coordinate
z and use dot for derivative with respect to time t. Note that X = 2 cosh(H)/S2.

We make the following re-definitions of the metric functions

A = 1 + Ã u

u2 , S = s0 + S̃ u

u
, H = h0 + H̃ u, d+S = d̃+S

u2 , d+H = ḣ0

2 + d̃+H u.

We find the following near boundary expansion

A = 1
u2 + 2(s1 − ṡ0)

s0 u
+
s2

1
s2

0
− 2ṡ1

s0
− 3ḣ0

2

4

+ a3u+O(u2),

S = s0

u
+ s1 −

s0ḣ0
2

8 u+ s1ḣ0
2

8 u2 +O(u3), H = h0 + ḣ0u−
s1ḣ0

s0
u2 + h3u

3 +O(z4).

accompanied by the Ward identity,

ȧ3 + 3a3ṡ0

s0
− ḣ0

2
(
ṡ0

2 − 3s1
2

2s02 + s̈0

2s0

)
− 3ḣ0ḧ0ṡ0

2s0
+ 3

8 ḣ0
4 − 3

2h3ḣ0 −
1
2

...
h0ḣ0 = 0.

Using standard holographic renormalization, the boundary stress tensor reads

Ttt = −a3, (B.29)

Txx = −a3

2 −
3γs1

2γ̇

2 (1− γ2)3/2 + 3h3

2 −
γ
(
4 (γ2 − 1)2 ...

γ + 3 (4γ2 + 1) γ̇3 − 16γ (γ2 − 1) γ̇γ̈
)

8 (γ2 − 1)3 γ,

Txy = −a3

2 γ−
3s1

2γ̇

2 (1− γ2)3/2 + 3h3

2 −
4 (γ2 − 1)2 ...

γ + 3 (4γ2 + 1) γ̇3 − 16γ (γ2 − 1) γ̇γ̈
8 (γ2 − 1)3 . (B.30)

The shear stress to the strain hxy(t) = γ(t) is given by the expectation value of Txy(t).
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C. Entanglement entropy and T T̄

In this section, we show the entanglement entropy calculation and the comparison to
holography for general dimensions. This appendix is taken from my publication [7].

d = 2

We have

ω2 =
1 + s

√
η + c λ2

3π R2

4λ2
(C.1)

where we denote the sign of the square root of the T T̄ deformation by s. With ω2 at hand,
we may compute the partition function of the deformed CFT using eq. (6.55). As argued
in the previous section, we choose the integration constant so that logZS2(R = 0) = 0.
This yields

logZS2 = − 1
3λ2

(
cs arcsin(h)

(√
3π R√
c λ2

)
λ2 + ηR

(
3Rπ + s

√
3π
√
η 3R2 π + c λ2

))
.

(C.2)
The entanglement entropy for two antipodal points on the sphere follows from the parti-
tion function via eq. (6.56) (for the negative sign of the square root)

SEE = c

3 arcsin(h)
(√

3π R√
c λ2

)
. (C.3)

In two dimensions, we may calculate the cutoff independent renormalized entanglement
entropy immediately from the knowledge of the derivative of the partition function. Plug-
ging (C.1) into eq. (6.55) and combining eq. (6.56) and (6.65), we find the renormalized
entanglement entropy which plays the role of the running C-function in RG flow as

SR,EE = c

(
9 η + 3 c λ2

R2 π

)−1/2

. (C.4)

Comparison to the result from holography

The entanglement entropy from holography is given by eq. (6.35). In order to compare
to the field theory results, we use the dictionary relating the holography parameters with
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the field theory ones. This is done by 4πl/`p = c/3 and c λ2 = 3π L2

SEE = c

3 arcsin(h)
(√

3π R√
c λ2

)
, (C.5)

with the corresponding renormalized entanglement given by the R-derivative C = dS/dR

SR,EE = c

(
9 η + 3 c λ2

R2 π

)−1/2

. (C.6)

In d = 2 dimensions, we find the EE from field theory matches the entanglement entropy
from holography exactly for η = 1, s = −1 (AdS) and η = −1, s = −1 (dS).

d = 3

In higher dimensions, the computation is very similar to d = 2 and we only display the
relevant steps; we may read off ω3 from eq. (6.59)

ω3 = R2 + 3 t3 +R s
√
η R2 + 6 t3

3R2λ3
. (C.7)

It is straightforward to determine the corresponding partition function, given by

logZS3 = −2π2 (R3 + 9R t3 + ηs (η R2 + 6 t3)3/2)
3λ3

+ η s
4
√

6 π2 t3/2

3λ3
. (C.8)

The second term is chosen to ensure logZ(R = 0) = 0. Finally, we find with η2 = 1 and
eq. (6.56) and the negative sign of the square root

SEE = 4 π2 t3
λ3

(
−R− η

√
6t3 + η

√
η R2 + 6 t3

)
. (C.9)

The scheme independent renormalized entanglement entropy is obtained from the entan-
glement entropy by using (6.65) and reads in d = 3 dimensions

SR,EE = 4π2 η t
3/2
3

λ3

(√
6− 6

√
t3√

η R2 + 6 t3

)
. (C.10)

Comparison to the result from holography

The entanglement entropy from holography is given by eq. (6.36) and may be expressed
in terms of field theory quantities using eq. (6.54) (with 6λ3 = `2

p

√
6 t3, L =

√
6 t3)

SEE = 4 π2 t3
λ3

η
(
−
√

6 t3 +
√

6 t3 + η R2
)
. (C.11)
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We see that the field theory calculation and the results from holography match up to a
scheme dependent area term∼ −4 t3π2R/λ3. We obtain the exact same contribution from
the Wald entropy associated with the counterterms given in eq. (6.49) which yields (in
field theory variables) exactly ∼ −4 t3π2R/λ3. The entanglement entropies on both sides
match, if the contributions of the counterterms – which have been added to the field theory
side – are also taken into account in the gravitational theory. Similar to the literature, we
may compare scheme independent quantities aka the renormalized entanglement entropy.
From the entanglement entropy, we immediately obtain the renormalized entanglement
entropy by using eq. (6.65)

SR,EE = 4π2 η t
3/2
3

λ3

(√
6− 6

√
t3√

ηR2 + 6 t3

)
. (C.12)

We see that the results from holography and field theory perfectly match one another for
the negative sign of the square root η = 1, s = −1 (AdS) and η = −1, s = −1 (dS).

d = 4

In d = 4 we have using eq. (6.59)

ω4 =
3
(
R2 + 8 t6 +R s

√
η R2 + 16 t4

)
8R2 λ4

. (C.13)

We can compute the sphere partition function by integrating with respect to R, where
we fix the integration constant by demanding that logZSd(R = 0) = 0

logZS4 =− π2

λ4

(
R
(
R3 + 16R t4 +R2 s

√
η R2 + 16 t4 + η 8 s t4

√
η R2 + 16 t4

)
−128 η s t24 arcsin(h)

(
R

4
√
t4

))
. (C.14)

We obtain the entanglement entropy by using the replica trick (6.56). This gives us

S4,EE = 8π2 t4
λ4

(
R
(
−R + η

√
η R2 + 16 t4

)
− 16 η t4 arcsin(h)

(
R

4
√
t4

))
. (C.15)

In d = 4 dimensions, the renormalized entanglement entropy follows from eq. (C.15) with
eq. (6.65)

SR,EE = 128 π2R3 t24

λ4 (η R2 + 16t4)3/2 . (C.16)
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Comparison to the result from holography

In holography, the entanglement entropy in d = 4 is given by eq. (6.37) which reads in
field theory quantities by relating 8λ4 = `3

p

√
16 t4, L =

√
16 t4

SEE = 8π2 t4
λ4

η

(
R
√
η R2 + 16 t4 − 16 t4 arcsin(h) R

4
√
t4

)
. (C.17)

Again, this matches exactly our field theory computation up to a scheme dependent area
term −8π2R2t4/λ4 for the negative sign of the the square root. The area term with the
negative sign comes from adding counterterms to our action. If we also consider the
contributions of the counterterms in the gravitational theory eq. (6.49), we see that we
observe the exact same term there and thus the results of both sides match. From the
holographic entanglement entropy, we may derive the scheme independent entanglement
entropy using eq. (6.65)

SR,EE = 128π2R3t24
λ4 (η R2 + 16t4) 3/2 (C.18)

We see that the renormalized entanglement entropies from field theory and holography
in d = 4 match perfectly for η = 1, s = −1 (AdS) and η = −1, s = −1 (dS).

d = 5

In d = 5, the counterterm proportional to c(3)
d contributes for the first time. We find ω5

from eq. (6.59)

ω5 =
30R2 t5 − 225 t25R3

(
R + s

√
ηR2 + 30 t5

)
5R4 λ5

. (C.19)

With ω5, we may compute the partition function by integrating eq. (6.55) with respect
to R which results in

logZS5 =− π3

5λ

(
20 η R2 s t5

√
η R2 + 30 t5 + 1200 s t25

(√
30 t5 −

√
η R2 + 30 t5

)
+
(

2R5 + 50R3 t5 − 1125R t25 + 2R4 s
√
η R2 + 30 t5

))
, (C.20)

where we fixed the integration constant so that logZS5(R = 0) = 0. The entanglement
entropy follows from the partition function using eq. (6.56)

S5,EE = 4π3 t5
λ5

(
−R3 + 45R t5 + η R2

√
η R2 + 30 t5 + 60 t5

(√
30 t5 −

√
η R2 + 30 t5

))
.

(C.21)
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In d = 5 dimensions, we may compute the renormalized entanglement entropy using
(6.65)

SR,EE = −
240π3 t

5/2
5

(
900 t3/25 − 30t5

√
900 t5 + 30 η R2 + η R2

(
45
√
t5 −
√

900t5 + η R2
))

λ5 (η R2 + 30t5)3/2 .

(C.22)

Comparison to the result from holography

To compare with the field theory result, we rewrite the result from holography (6.38)
with the dictionary 10λd = `4

p

√
30 t5, L =

√
30 t5 in field theory quantities

SEE = 4 π3 t5
λ5

(
2 (30 t5)3/2 + (η R2 − 60 t5)

√
30 t5 + η R2

)
. (C.23)

We see that the result from holography matches the calculation from field theory up to the
scheme dependent terms ∼ 4π3 t5/λ5 (−R3 + 45R t5). However, taking the contributions
of the counterterms in the gravitational theory into account, we see find the exact same
contribution to the entanglement entropy as observed in eq. (6.50). The results of
both sides hence match. For the sake of completeness, we calculate the renormalized
entanglement entropy by using eq. (6.65)

SR,EE = 240π3t25
λ5 (η R2 + 30 t5) 3/2

(√
30 t5

√
η R2 + 30 t5

(
30 t5 + η R2

)
− 45ηR2t5 − 900t25

)
,

(C.24)
we see that the scheme dependent terms vanish and the results from field theory and
holography agree perfectly for η = 1, s = −1 (AdS) and η = −1, s = −1 (dS).

d = 6

In d = 6, ω6 is given by eq. (6.59)

ω6 =
5
(
R4 + 24R2 t6 − 288 t26 +R3 s

√
η R2 + 48 t6

)
12R4 λ6

. (C.25)

The partition function follows by inserting eq. (C.25) into eq. (6.55) and integrating
with respect to R

logZS6 =− 4π3

9λ6

(
R
(
R5 + 36R3 t6 +R4 s

√
η R2 + 48 t6 − 864 s t26

√
−η R2 + 48 t6

)
−864R t26 + η 12R2 s t6

√
η R2 + 48 t6 + 41472 s t36 arcsin(h)

(
R

4
√

3 t6

))
,
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where we chose the integration constant so that logZS6(R = 0) = 0. The entanglement
follows from the partition function by eq. (6.56)

SEE =− 16 π3 t6
3λ6

(
R
(
R3 − 48R t6 − η R2

√
η R2 + 48 t6 + 72 t6

√
η R2 + 48 t6

)
−3456 t26 arcsin(h)

(
R

4
√

3 t6

))
. (C.26)

In d = 6 dimensions, the renormalized entanglement entropy reads (using eq. (6.65))

SR,EE = 18432π3R5 t36

λ (η R2 + 48t6)5/2 . (C.27)

Comparison to the result from holography

The entanglement entropy from holography (6.39) reads in d = 6 in field theory quantities
12λ6 = `5

p

√
48 t6 and L =

√
48 t6

SEE = 8π3 t6
3λ6

(
R
√

48 t6 + η R2 (2 η R2 − 144 t6) + 6912t26 arcsin(h)
(

R

4
√

3 t6

))
. (C.28)

The entanglement entropy from field theory matches the result from holography up to the
usual area term ∼ 16 π3 t6R

4/(3λ6) and a scheme dependent term ∼ 256 π3R2t26/λ6. The
exact same terms arise in the gravitational theory too if we also take the counterterms
into account there. The contributions are calculated in eq. (6.50) and are an exact
match to the missing terms. We thus conclude that the entanglement entropies of both
sides match. For comparison with similar results in the literature, we are looking at the
renormalized entanglement entropy in d = 6. We find a perfect match between field
theory and the result from holography given by

SR,EE = 18432π3R5 t36
λ6 (η R2 + 48 t6) 5/2 , (C.29)

for η = 1, s = −1 (AdS) and η = −1, s = −1 (dS).
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[141] B. Goutéraux, “Charge transport in holography with momentum dissipation,”
JHEP 04 (2014) 181, 1401.5436.

[142] T. Andrade, “A simple model of momentum relaxation in Lifshitz holography,”
1602.00556.

[143] T. Andrade and A. Krikun, “Commensurability effects in holographic
homogeneous lattices,” JHEP 05 (2016) 039, 1512.02465.

[144] M. Baggioli and M. Goykhman, “Phases of holographic superconductors with
broken translational symmetry,” JHEP 07 (2015) 035, 1504.05561.

[145] M. Blake, A. Donos, and N. Lohitsiri, “Magnetothermoelectric Response from
Holography,” JHEP 08 (2015) 124, 1502.03789.

[146] A. Donos, J. P. Gauntlett, T. Griffin, and L. Melgar, “DC Conductivity of
Magnetised Holographic Matter,” JHEP 01 (2016) 113, 1511.00713.

xxxv

http://www.arXiv.org/abs/1303.4398
http://www.arXiv.org/abs/1306.5792
http://www.arXiv.org/abs/1404.0777
http://www.arXiv.org/abs/1406.6351
http://www.arXiv.org/abs/1411.1003
http://www.arXiv.org/abs/1411.1062
http://www.arXiv.org/abs/1412.6521
http://www.arXiv.org/abs/1406.4742
http://www.arXiv.org/abs/1401.5436
http://www.arXiv.org/abs/1602.00556
http://www.arXiv.org/abs/1512.02465
http://www.arXiv.org/abs/1504.05561
http://www.arXiv.org/abs/1502.03789
http://www.arXiv.org/abs/1511.00713


Bibliography

[147] M. Blake, “Momentum relaxation from the fluid/gravity correspondence,” JHEP
09 (2015) 010, 1505.06992.

[148] A. Amoretti, D. Areán, R. Argurio, D. Musso, and L. A. Pando Zayas, “A
holographic perspective on phonons and pseudo-phonons,” JHEP 05 (2017) 051,
1611.09344.

[149] M. Baggioli and D. K. Brattan, “Drag phenomena from holographic massive
gravity,” Class. Quant. Grav. 34 (2017), no. 1, 015008, 1504.07635.

[150] M. Baggioli and M. Goykhman, “Under The Dome: Doped holographic
superconductors with broken translational symmetry,” JHEP 01 (2016) 011,
1510.06363.

[151] L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolas, “Solid Holography and
Massive Gravity,” JHEP 02 (2016) 114, 1510.09089.

[152] L. Alberte, M. Baggioli, and O. Pujolas, “Viscosity bound violation in holographic
solids and the viscoelastic response,” JHEP 07 (2016) 074, 1601.03384.

[153] B. Gouteraux and E. Kiritsis, “Quantum critical lines in holographic phases with
(un)broken symmetry,” JHEP 04 (2013) 053, 1212.2625.

[154] M. Blake, R. A. Davison, and S. Sachdev, “Thermal diffusivity and chaos in
metals without quasiparticles,” Phys. Rev. D96 (2017), no. 10, 106008,
1705.07896.

[155] T. Andrade, M. Baggioli, A. Krikun, and N. Poovuttikul, “Pinning of longitudinal
phonons in holographic spontaneous helices,” JHEP 02 (2018) 085, 1708.08306.

[156] T. Andrade and A. Krikun, “Coherent vs incoherent transport in holographic
strange insulators,” JHEP 05 (2019) 119, 1812.08132.

[157] M. Baggioli, Gravity, holography and applications to condensed matter. PhD
thesis, Barcelona U., 2016. 1610.02681.
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[169] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, “DC resistivity of quantum
critical, charge density wave states from gauge-gravity duality,” Phys. Rev. Lett.
120 (2018), no. 17, 171603, 1712.07994.
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