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We numerically study the structure of the interactions occurring in three-dimensional systems of
hard spheres at jamming, focusing on the large-scale behavior. Given the fundamental role they play
in the configuration of jammed packings, we analyze the propagation through the system of the weak
forces and of the variation of the coordination number with respect to the isostaticity condition ∆Z.
We show that these correlations can be successfully probed by introducing a correlation function
weighted on the density-density fluctuations. The results of this analysis can be further improved
by introducing a representation of the system based on the contact points between particles. In
particular, we find evidence that the weak forces and the ∆Z fluctuations support the hypothesis of
randomly jammed packings of spherical particles being hyperuniform by exhibiting an anomalous
long-range decay. Moreover, we find that the large-scale structure of the density-density correlation
exhibits a complex behavior due to the superimposition of two exponentially damped oscillating
signals propagating with linearly depending frequencies.

Introduction. Amorphous packings of nearly incom-
pressible particles, such as marbles and pebbles, have
been the object of an intense investigation during the
past decades as they represent a suitable benchmark for
studying a broad range of dense-packing and optimiza-
tion problems [1, 2]. This rising interest led to the devel-
opment of many experiments [3–5] and simulations [6–8]
that made possible an extensive study of the features
of these systems. Moreover, this field appeared to be
the perfect environment to apply the theories of frus-
trated interactions [9]. In particular, the application of
the replica theory [10] led to the elaboration of an exact
analytical solution valid in the limit of high-dimensional
packings [11–13].

We focus on athermal packings of frictionless hard
spheres (HSs) compressed until particles come into me-
chanical contact with their nearest neighbors. The
trapped spheres form a rigid network and cannot explore
the surrounding environment (ergodicity breaking). Un-
der these conditions, the system enters a phase of matter
known as “jamming” [14, 15]. It has been hypothesized
that saturated jammed systems (no space to add another
particle) are hyperuniform [16], implying that their radial
distribution function (RDF) tends to zero from negative
values and as a power law [17] – g(r) − 1 ∝ r−4. Even
though the tendency of the jammed packings to hyper-
uniformity has been observed (with deviations from the
postulated behavior) [18], such power-law scaling of the
pair correlation function has never been directly mea-
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sured.
In this framework, we find evidence of hyperuniformity

in the long-range correlation of the forces exchanged be-
tween adjacent particles and the deviation of the number
of contacts per particle from the average value, ∆Z =
Z − 〈Z〉. On the one hand, jammed packings exhibit a
unique force network [19], whose long-range fluctuations
demand study. On the other hand, it has been shown
that ∆Z exhibits interesting features at jamming [20–22]
and that the fluctuations of the coordination number σ2

Z
for a fixed ∆Z are similar to those of density hyperunifor-
mity [23]. The research for a static observable exhibiting
a nontrivial behavior close to jamming is motivated by
the existence of a corresponding long-ranged dynamical
response. It has been shown [20, 24, 25] that a local per-
turbation to the position of a pair of adjacent particles,
i.e., breaking the contact between particles, produces a
response propagating through the system up to a maxi-
mum length, the “response length”, ξR that diverges at
jamming [26]. The main hindrance to this analysis is
represented by the strong statistical noise exhibited by
the correlation functions in the long range and superim-
posing to the (weak) signal of interest. To overcome this
problem, we define a suitable pair correlation function to
point out the long-range behavior of the observables by
filtering out the interfering signals. Moreover, we intro-
duce a representation of the interparticle network based
on the contact points between particles instead of their
centers of mass. We show that the shift to a system of
fictive particles improves the resolution of the correlation
function and is fundamental in identifying the long-range
features of the jammed packings.
System Setup. Given a system of N randomly dis-

tributed monodisperse HSs of diameter σ, let us intro-
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duce the interaction via the dimensionless interaction po-
tential

U =
∑

〈i,j〉

(
1− |ri − rj |

σij

)
, (1)

where ri,j is the position of particles i, j and σij is the
distance between the centers of particles i and j when
they are in contact. Note that, for monodisperse HSs,
σij = σ and that for particles in kissing contact r =
|ri − rj | = σ so that particles’ interaction potential is
zero.

The system is controlled via the “packing fraction”
φ, defined as the fraction of the system volume occu-
pied by the spheres. The jammed phase is reached when
the packing fraction hits the critical value φJ ≈ 0.64 in
three-dimensional systems [27–30]. By starting in the
overjammed region (φ ≈ 2φJ), φ is gradually decreased
by gently shrinking the particles’ diameter until the sys-
tem reaches jamming. The jamming point is approached
by iteratively minimizing the potential energy [Eq. (1)]
using the “FIRE” algorithm [6] according to the proto-
col described in [19] (Appendix B). The simulation ends
when the targeted precision is reached, i.e. when it is
impossible to distinguish between a kissing contact and
a small overlap.

At the end of this protocol, the particles form a net-
work of enduring contacts that is stable only if the iso-
staticity condition holds [20, 31–33], i.e., the average
number of contacts per particle satisfies (in a first ap-
proximation) 〈Z〉 ≡ Ziso ≈ 2d, where d is the system
dimension. As shown in [34], this property depends on
the system mechanical stability being ensured by the ex-
act balancing between the affine and the nonaffine (neg-
ative) components of the interparticle interactions over
the whole network. Within this picture, it is important
to point out the existence of “bucklers”, i.e., particles
that still form part of the rigid network but that are
minimally constrained so that Z = d+ 1 [19]. A notable
exception to the isostaticity condition is represented by
“rattlers”, particles that are not part of the contact net-
work and freely move inside cages bounded by particles
permanently in contact. The identification and the ex-
clusion of rattlers are fundamental for obtaining reliable
results. By adopting this method, we generated 96 criti-
cally jammed packings of N = 16 384 particles in d = 3.

Generalized RDF. Given a generic observable O, we
defined the “generalized pair correlation function” as

CsO(r) =
gsO(r)

g(r)
, (2)

where r is the distance between particle pairs, g(r) is the
usual RDF [35] and

gsO(r) =
1

C

∑

i,j

δ(|ri − rj | − r)OsiOsj , (3)

ri and rj being the positions of particles i and j, C the
normalization factor and s ∈ < a control parameter. No-
tice that by choosing s = 0 in Eq. (3), one gets the

RDF (additional details can be found in the Supplemen-
tal Material[36]). We studied the two cases O = f and
O = ∆Z ≡ Z − Ziso, f being the force exchanged be-
tween particles and ∆Z the deviation of the number of
contacts per particle from isostaticity.

To study the long-range correlations with higher ac-
curacy, we also introduced the jammed packings’ rep-
resentation with respect to the contact points between
particles instead of the centers of mass. To do this, let us
consider the densest packing in which HSs can arrange
(see the inset in Fig. 1). Each contact point between
the HSs can be seen as the center of a fictive particle
with radius σ′ = σ/2. Thus, given a system of N parti-
cles and Ziso = 2d average contacts per particle, the new
contacts-based system will be formed byN ′ ≤ 2dN = 6N
particles.
Contacts RDF. Switching from the centers-of-mass-

based to the contact-points description of the network,
allowed us to study the radial distribution function of the
contact-centered model (called “contacts RDF” in what
follows) with a much higher resolution. Figure 1 shows
the short-range behavior of the contacts RDF (blue line)
compared to the real spheres RDF (red dashed line). The

FIG. 1. Contacts and original RDFs (in blue and red, respec-
tively) in d = 3 as a function of the distance (expressed in the
respective diameter units r/σ′ and r/σ). Each peak (labeled
with a different letter) occurs in correspondence to a different
configuration of the fictive particles, as shown in the corre-
spondent representations (which, however, do not exhaust all
the possibilities), along with the distance at which each dis-
continuity appears (red lines). (Inset) Schematic represen-
tation of the contacts-centered spheres model in d = 3. Each
fictive particle (dashed black lines) results from the contact of
two HSs and has a diameter σ′ = σ/2, being σ the diameter
of the original HS.
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contacts RDF points out new features of the pair correla-
tion function at jamming, evidencing discontinuities that
were much smoother [peaks (e),(f),(g)] or completely ab-
sent [peak (b)] in the original system description. The
higher accuracy of the contacts RDF is further reflected
by the enhanced sharpness of peaks (c) and (d). The
origin of each one of these discontinuities can be easily
addressed. The first peak (r = σ′) is due to a nearest-
neighbor contact, while the others are determined by dif-
ferent possible configurations of HSs forming a chain of
contacts. Notably, peaks (c) and (d) in Fig.1 correspond
to “real” δ functions, i.e., to mechanically rigid configura-
tions of perfectly centrosymmetric particles with respect
to the transmission of forces. The local centrosymme-
try ensures a zero nonaffine component of the response
and therefore the full mechanical stability [37]. All the
other peaks are the result of a wide range of possible
arrangements. Interestingly, as shown in Fig.2, the mid-

FIG. 2. Contacts density-density correlation g(r/σ′) multi-

plied by the factor ea r/σ
′

with a ≈ 0.3. Two sets of distinct
oscillations given by Eq. (4) appear to be superimposed. The
first one, fm(r), propagating in the middle range [4 : 9] r/σ′

and the second, fl(r), in the long-range region [9 : 22] r/σ′.
By fitting the resulting function (red line) we found that
pl ≈ 7.5 and pm ≈ 3.8. The distance is expressed in diameter
units.

range and long-range behavior of the correlation func-
tion appears to be exponentially damped as e−ar, with
a ≈ 0.3. The enhancement of such behavior by con-
sidering g(r) × ear pointed out a superposition of two
oscillatory functions of type

fi(r) = ci e
air cos(pir + ψi), (4)

where ci, ai, pi, ψi are the function parameters and i =
m, l denotes the mid- and long-range regions, respec-
tively. By performing the resulting eight parameters
fit[38] g(r) = fm(r) + fl(r), we found pm ≈ 2pl =
7.514 ± 0.003 and am ≈ 2al = 0.70 ± 0.01. This result
proves that because the contribution of the long-range
oscillations is small compared to the mid-range ones, the
fl(r) can be considered as O(2) correction to the O(1)
mid-range leading term fm(r).

Weak Forces Correlation. At the jamming point, each
particle of the system gets trapped in a fixed position by

mechanical contact with its nearest neighbors. The sta-
bility of the resulting configuration is ensured by the bal-
ance of all the forces exchanged in these contact points,
determining the formation of a complex forces network
spreading through the whole system [5, 39, 40]. Within
this picture, it is possible to distinguish between “strong”
forces, which form a backbone crossing the whole system,
and “weak” forces spreading only in small subregions of
the system confined by branches of the main network
(see Supplemental Material[41]). Let us consider Eq. (3)
with O = f . By choosing s < 0 the resulting gsf (r) will
be “weighted” on the weak forces so that the smaller the
force, the bigger its contribution to the correlation. Note
that not any value of s can be chosen. In fact, as shown
in [19], the force distribution can be described as function
P (f) ∝ fθ, with θ ≈ 0.4, Thus, the average force (raised
to the power s) can be estimated as

〈fs〉 ∼
∫
dffsP (f) =

∫
dffsfθ ∝ 1

1 + θ + s
. (5)

which diverges unless s > smin ≡ −1− θ ≈ −1.4. Figure
3 shows the weak forces correlation Csf (r) for s = −1 and

s = −1/2. In both cases, the local density-density oscil-
lations appear to be not completely damped, propagat-
ing up to large length scales and masking any power-law
decay. Therefore, we introduced the correlation func-
tion averaged over the period T of the short-range os-
cillations 〈Csf (r)〉T (orange circles), filtering out most
of the additional periodic component. The period T is
roughly equal to the particle diameter but is tuned for
each dataset. By fitting in the mid- and long-range re-
gion [7 : 23] r/σ′ and the resulting correlation functions

to the power law f(r) = Ar−γ
s
f + C for s = (−1,−1/2)

(red line in the insets) with C ≈ 0, we respectively found

γs=−1
f = 0.7 ± 0.3 and γ

s=−1/2
f = 4.1 ± 0.3. These re-

sults prove that the fluctuations of the weak force correla-
tion function at large length scales decay with the power
law expected by the hyperuniformity theory, with the
only constraint being a fine tuning of the selected (weak)
forces. In fact, for s = −1 the fluctuations rapidly go to
zero in the short range, whereas for s = −1/2 they ex-
hibit a long-ranged anomalous decay with the measured
nontrivial exponent.
Contacts Correlation. It has been proved that, at jam-

ming, the coordination number per particle – Z – plays
an essential role in determining the system features [23].
The study of the fluctuations σ2

∆Z led to the definition
of a structural relaxation length ξ∆Z ∝ ∆Z−ν , where
∆Z = Z − 2d, d is the system dimension and ν is a
nontrivial exponent. Here we point out that the ∆Z cor-
relation exhibits the expected anomalous behavior.

As previously discussed, changing to a contacts-based
system representation also implies changing from a sys-
tem of N particles to one of N ′ = 2dN fictive particles.
In this framework, we defined the number of contacts per
(fictive) particle as

Z ′l =
Zi + Zj

2
, (6)
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FIG. 3. (a) Weak force correlation function Cs=−1
f (r) in

d = 3 and enlargement of the long-range region in log-log scale
(inset). The density-density correlations propagating at long
range have been filtered by introducing the average over the
oscillation period T , 〈Csf (r)〉T (orange circles). The log-log
scale in the inset points out a long-range power-law behavior
(red line) decaying with an exponent γs=−1

f = 0.7±0.3 in the

range [7:23]. (b) Weak forces correlation function C
s=−1/2
f (r)

in d = 3. The fluctuations analysis points out a power-law

decay with an exponent γ
s=−1/2
f = 4.1±0.3 in the range [7:23].

Notice that both insets show the modulus of the correlation
function. The distances are expressed in diameter units.

where l = (1, . . . , N ′) and i, j = (1, . . . , N) with i 6= j.
Thus, we chose O = ∆Z ′ = Z ′ − 2d and s = 1 Eqs.
(3) and (2). The resulting correlation function Cs=1

∆Z′(r)
(shown in Fig.4) clearly exhibits a nontrivial behavior in
the middle and long-range superimposed onto some os-
cillations as a result of the incomplete damping of the
density-density correlations. As described above, this
power-low trend can be seen by fitting the period T of
the density-density oscillations and eventually recomput-
ing Eq. (3) by considering spherical shells of thickness
T (orange circles in Fig.4). Analogously to the previous
case, we fit the resulting function according to the power
law f(r) = Ar−γ∆Z′ + C in the range [4:23], finding a
nontrivial exponent γ∆Z′ = 3.9± 0.2.

Conclusion. We studied the mid- and large-scale spa-

FIG. 4. Contact correlation function Cs=1
∆Z′(r) in d = 3.

The density-density oscillations at short range (blue line) have
been filtered by introducing the correlation averaged over the
oscillation period T , 〈Cs=1

∆Z′(r)〉 (orange circles). (Inset) En-
largement of the mid- and long-range regions of the modulus
of the Cs=1

∆Z′(r) (blue line) in log-log scale. The correlation
function exhibits a power-law decay (red line) propagating
with a nontrivial exponent γ∆Z′ = 3.9± 0.2. The distance is
expressed in diameter units.

tial correlations in HS packings at jamming by defining
the correlation functions [Eqs. (3) and (2)] for the weak
forces f and the variation of the coordination number per
particle ∆Z ′. We found that the correlation functions
exhibit a long-range anomalous behavior, supporting the
hyperuniformity hypothesis and marking the transition
to the jammed phase. In fact, both the weak forces and
the ∆Z ′ correlation exhibit a power-law decay with non-
trivial exponents γs=−1

f ≈ γ∆Z′ ≈ 4. Moreover, we intro-
duced a representation of the system based on the parti-
cles’ contact points instead of their centers of mass. This
change pointed out new features of the density-density
correlation function, which appears to be a sum of two
different oscillating signals propagating in the middle and
long-range. A theoretical explanation for this two-terms
form could be recovered by writing integral equations of
the hypernetted chain kind [42] for the correlation func-
tion. However this problem has not been explored yet. It
would be of great interest to obtain such proof. Chang-
ing to the contacts-based representation of the system
also increased the sensitivity of the correlation function
at long range.

These results show that static observables other than
the density can be used to characterize the main features
of jammed systems, marking (expected) theoretical be-
haviors that remained hidden by studying the density
fluctuations of the pair correlation function. A further
step in this analysis would involve the study of bigger
systems, i.e. systems with a larger number of particles
N , implying easier isolation of the power-law decay with
respect to the local oscillations. Moreover, it would be
of great interest to characterize these correlation func-
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tions at a packing fraction φ < φJ close to jamming and
varying it up to the jamming point.
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INTRODUCTION TO THE GENERAL PAIR CORRELATION FUNCTION

Let us first recall the equations introduced in the main text. Given a generic observable O, let us define the
correlation function between particles i and j at positions ri and rj respectively, by rewriting the RDF as the
correlation function between particles i and j at positions ri and rj respectively, as

gsO(r) =
1

C

∑

i,j

δ(|ri − rj | − r)OsiOsj , (S1)

where r is the distance between the particles i and j, C is the normalization factor and s ∈ < a control parameter.
Notice that for s > 0 the main contribution to (S1) comes from large values ofO, for s < 0 the correlation between small
values of O is enhanced and for s = 0 the usual expression for the RDF, i.e. gs=0

O (r) ≡ g(r), is recovered. However,
(S1) not only contains information about the point-to-point correlation of the observable O but also has a contribution
due to the variation in the displacement of the particles through the system. This density-density correlation appears
as periodic oscillations decreasing with the distance r. In order to suppress this added contribution let us define the
generalized correlation function

CsO(r) =
gsO(r)

g(r)
, (S2)

where gsO(r) is given in (S1) and g(r) is the classic RDF accounting only for the density-density correlation. In this
work we analyze the correlation of the forces between particles at jamming and the correlation of the variation of the
coordination number w.r.t the isostaticity, ∆Z.

RDF MID AND LONG-RANGE BEHAVIOR

We showed (see main text) that by introducing a system description w.r.t the contact points between particles it is
possible to point out RDF features in the mid and long-range that are hidden by the usual system representation. To
do this, let us note that the correlation decays with a behavior ∝ e−ar/σ

′
with a = 0.318 ± 0.009. The study of the

function g(r)ear evidenced that the RDF results by the superimposition of two different oscillating signals so that

g(r) ∝ e−ar
∑

m,l

fi(r) = e−ar
∑

m,l

cie
−air cos(pir + ψi) (S3)
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where ci, ai, pi, ψi are the function parameters and m, l denote the oscillations in the mid and long-range, respectively.
In Table I we reported the complete set of parameters obtained by fitting the RDF according to (S3). Notice that
pm ≈ 2pl = 7.514 ± 0.003 and am ≈ 2al = 0.70 ± 0.01 supporting the hypothesis that fl(r) can be considered as an
O(2) correction to the O(1) mid-range leading term fm(r). Moreover, given that cm >> cl, the long-range oscillations
get easily masked by the mid-range ones. Interestingly, the introduction of the fictive particles doubles the system
size making it possible to observe both fm(r) and fl(r). This is not possible for the real particles system, where only
the mid-range oscillations can be measured.

ci a + ai pi ψi

m 1.26 (4) 0.70 (1) 7.514 (3) -7.68 (2)

l -0.046 (1) 0.31 (1) 3.805 (3) -8.00 (2)

TABLE I. Complete set of parameters obtained by fitting the contacts RDF to (S3). m, l denote the mid and long-range
behavior, respectively. The error of each parameter is shown in parenthesis. Note that the total damping coefficients a′i = a+ai
as a consequence of the procedure adopted to analyze the g(r).

GEOMETRY OF THE FORCES NETWORK

When a system of monodisperse HS reaches the jamming point, the particles form a rigid network of contacts which
is stabilized by the total balance of the forces exchanged in the contact points. Within this picture, is it possible to
distinguish between strong and weak forces. In our work, we analyzed the weak forces originated by slight unbalances
of the interactions between neighbouring particles. In Fig.S1 we schematically show the case of three HS in contact in
d = 2. When the particles lie on the same plane, i.e. are perfectly centrosymmetric, the exchanged force is coplanar
and perfectly balanced so that no other particle can be part of the force network (Fig.S1(a)). By contrast, if the middle
sphere is out-of-plane the resulting force exhibits a small sideways component, which is the weak force (Fig.S1(b)):
the higher the coplanarity, the smaller the weak force.

FIG. S1. Schematic representation of the interparticle forces in d = 2. (a) For particles lying in the same plane the forces are
perfectly balanced (black arrows). No other particle is involved in the interaction and within this picture this is a strong force
belonging to the main network. (b) When the particles are not coplanar, the extra components of the force constitute a weak
interaction with another particle (red arrow).


