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Abstract

We derive cooling rate and coefficient of performance as well as their variances for a quantum

Otto engine proceeding in finite-time cycle period. This machine consists of two driven strokes,

where the system isolated from the heat reservoir undergoes finite-time unitary transformation, and

two isochoric steps, where the finite-time system-bath interaction durations take the system away

from the equilibrium even at the ends of the two stages. We explicitly calculate the statistics of

cooling rate and coefficient of performance for the machine operating with an analytically solvable

two-level system. We clarify the role of finite-time durations of four processes on the machine

performance. We show that there is the trade-off between the performance parameter and its

corresponding variance, thereby indicating that the cooling rate or coefficient of performance can

be enhanced, but at the cost of increasing the corresponding fluctuations.
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I. INTRODUCTION

A refrigerator as an inverse operation of a heat engine transfers energy from a cold thermal

bath of temperature Th to a a hot one with temperature Tc by consuming work. Quantum

refrigerators well as quantum heat engines use quantum systems as their working substance

and can be classified either cyclic [1–7] or steady-state [8–13] models. The quantum Otto

cycle of operation, as a typical example of cyclic machines, is controlled by the segments

of time that the working system is coupled to a hot and a cold bath, and by the time

interval required to driving the control parameter of the system. It was most studied [1–

5, 7, 14, 15] as it is easier to analyze and realize. To describe the performance characteristics

of a refrigerator, one introduces the coefficient of performance (COP) that is defined as the

ratio of heat absorbed from the cold reservoir and work input. An upper bound on the COP

imposed by the second law of thermodynamic is given by the Carnot COP: εC = Tc/(Th−Tc),

which, however, requires infinitesimally slow transitions between thermodynamic states and

thus produces vanishing cooling rate. Hence, the refrigerators actually operate far from the

infinite long time limit in order for positive cooling rate to be produced [16–19]. The finite

cooling rate for a cyclic refrigerator consisting of a sequence of thermodynamic processes

indicates that each process must proceed in finite time. For an adequate description of an

actual machine, the effects induced by finite-time duration along any thermodynamic stroke

on heat and work have to be considered.

While in a macroscopic system the work and heat are deterministic, for a microscopic

quantum system (with a limited number of freedoms) these physical variables become ran-

dom due to non-negligible thermal [20, 21] and quantum [22, 23] fluctuations. Theoretical

and experimental investigation on the statistics of work [24–30] and heat [31–33] has at-

tracted much interest in the literature. On the other hand, for heat engines the statistics

of power [4, 34–36] and efficiency [37–43] has been analyzed, under the assumption that

either system-bath interaction interval or unitary driving process is quasistatic. However,

a unified thermodynamic description of quantum refrigerators with non-negligible quantum

and thermal fluctuations, particularly when every thermodynamic stroke of these machines

evolves in finite time, is available.

In the present paper, we study the thermodynamics of a quantum Otto refrigerator where

all the four strokes proceed in finite time, within a framework of stochastic thermodynamics.
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FIG. 1: (Color online) Schematic diagram of a quantum Otto refrigeration cycle operating with

a two-level system in (ω, n) plane. The cycle consists of the two adiabatic strokes (connecting

states A and B, and C and D), where the system isolated from the heat reservoir evolves unitary

transformation, and two isochoric strokes (connecting states B and C, and D and A), where the

system is kept in thermal contact with the cold and the hot reservoir, respectively. The average

population n3 (n1) at the end of the cold (hot) isochoric stroke would approach its asymptotic value

n
eq
c (neq

h ), when and only when the system-bath interaction duration τc (τh) tends to be infinitely

long.

Having determined distribution functions for heat and work, we derive general formulae for

the COP and cooling load as well as their variances. With these we then analyze a quantum

Otto cycle working with a two-level system which is exactly solvable analytically. We discuss

the effects of thermal and quantum fluctuations on finite-time performance and the statistics

of the machine, and also demonstrate that there is trade-off of the physical variable (COP or

cooling rate) and its fluctuations. We finally show that, the average COP 〈ε〉 can be always

larger than the conventional thermodynamic COP εth for adiabatic driving, but it can be

equal to or smaller than COP εth for nonadiabatic driving.

II. THE PROBABILITY OF STOCHASTIC COP FOR QUANTUM OTTO RE-

FRIGERATORS

The quantum Otto cycle under consideration is sketched in Fig. 1. It consists of two iso-

choric branches, one with a cold and another with a hot heat reservoir where the Hamiltonian
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is kept constant, and two other strokes, where the system undergoes unitary transformation

while isolating from the thermal reservoirs. In the adiabatic branch A → B, the system

is isolated from any heat reservoir and undergoes a unitary expansion from time t = 0 to

t = τhc. Initially, the system is assumed to be with local thermal equilibrium at inverse

temperature βA(≥ βh). The probability distribution of stochastic work done by the system,

whc, can be given by [44]

p(whc) =
∑

n,m

δ[whc − (Ec
m −Eh

n)]p
τhc
n→mp

0
n(βA). (1)

where Eh
n and Ec

m are the respective energy eigenvalues at the initial and final instants

along this expansion. Here p0n(βA) =
e−βAEh

n

ZA
, with the partition funciton ZA =

∑

n e
−βEn,

denotes the thermal occupation probability at instant A, and pτhcn→m = |〈n|Uexp|m〉|2 is the

transition probability from eigenstate |n〉 and |m〉, with the unitary time evolution operator

Uexp. and the population 〈n〉 remains unchanged in the adiabatic stage (ξ = 0). If the

system Hamiltonian evolves slowly enough wherein the quantum adiabatic condition [45] is

satisfied in time interval τhc, the the system remains in the same state and the transition

probability therefore satisfies pτhcn→m = δnm, with the Dirac’s delta function δ.

In the next step B → C, the quantum system with constant frequency ω = ωc is kept

in contact with a cold thermal bath of inverse temperature βc during a period τc. The

probability density of the stochastic heat qc can be determined by conditional distribution

to arrive at

p(qc|whc) =
∑

k,l

δ[qc − (Ec
l − Ec

k)]p
τc
k→lp

τhc
k , (2)

where pτhck is the occupation probability at time t = τhc and it satisfies the constraint

pτhck = δkm. We assume that at the end of the system-bath interaction interval, the system is

at the local thermal equilibrium state with inverse temperature βC(≥ βr
c ), thereby indicating

that pτck→l = e−βCEc
l /ZC with partition function ZC =

∑

l e
−βCEc

l . Without loss of generality,

the internal energy of system along the isochoric process can be expressed as 〈n(t)〉 =

[Z(t)]−1
∑

n ne
−β(t)Ec

n , where 〈n〉 is the population (which is also the the expectation value

of the particle number operator in Appendix A). When the time duration τc tends to be

infinity, the mean population nC at end of the isochoric process approaches the equilibrium

value,

〈nc〉
eq ≡ n(τc → ∞〉 = Z−1

∑

n

ne−βcEn, (3)
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with Zc =
∑

n ne
−βcEn . It is shown in Appendix A that the dynamics of the system along

the thermalization can be described by the motion equation of population, which gives

〈nc〉
eq = 〈nc〉

eq + [〈nB〉 − 〈nc〉
eq]e−γcτc , (4)

where 〈nC〉 = 〈n(τhc + τc)〉 and 〈nB〉 = 〈n(τhc)〉, and γc is the thermal conductivity when

ω = ωc.

On the adiabatic compression C → D, the system is isolated in time duration τch while

the energy gap ω varies from ωc to ωh. For given work output whc and the heat qc released

from the system, the probability density of stochastic work input is given by

p(wch|qc, whc) =
∑

δ[wch − (Eh
j − Ec

i )]p
τch
i→jp

τhc+τc
i , (5)

where the occupation probability pτhc+τc
i = δil, and pτchi→j = |〈i|Ucom|j〉|

2 is transition probabil-

ity from eigenstate |i〉 and |j〉, with the time evolution operator Ucom along the compression.

In the fourth step D → A, the system is coupled to a hot reservoir of inverse temperature

βh in time duration τh while keeping its frequency in a constant with ω = ωh. Since the

system returns to its initial state A after the cycle period τcycle = τhc+τc+τch+τh, we will do

not derive the expression of the stochastic heat exchanged qh along this process. As shown

in Appendix A, the populations at the beginning and end of the heating process (〈nD〉 and

〈nA〉) satisfies the constraint:

〈nA〉 = 〈nh〉
eq + [〈nD〉 − 〈nh〉

eq]e−γhτh , (6)

where 〈nA〉 = 〈(τcycle), 〈nD〈= 〈n(τcycle − τh)〉,

〈nh〉
eq ≡ 〈n(τh → ∞)〉eq = Z−1

h

∑

n

ne−βhEn (7)

with Zh =
∑

n e
−βhEn, and γh is the thermal conductivity between the system and the hot

reservoir.

The probability p(wch, qc, whc) for the machine which has certain values of wch, qc, whc

can be calculated from the the chain rule for condition probabilities p(wch, qc, whc) =

p(wch|qc, whc)p(qc
∣

∣whc)p(whc):

p(wch, qc, whc) =
∑

δ [qc − (Ec
k − Ec

m)] δ
[

whc −
(

Ec
m −Eh

n

)]

δ
[

wch −
(

Eh
l − Ec

k

)]

× |〈n|Uexp|m〉|2|〈i|Ucom|j〉|
2e

−βAEh
ne−βCEc

k

ZAZC
.

(8)
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In deriving this, we have used Eqs. (1), (2) and (5). For the quantum Otto refrigerator, the

stochastic coefficient of performance reads ε = qc/(whc + wch). It follows, integrating over

all values of wch, qc, whc, that the probability distribution p(ε) becomes

p (ε) =
∑

m,n,i,j

δ

(

ǫ−
Ec

k −Ec
m

Ec
m −Eh

n + Eh
l − Ec

k

)

×
e−βAEh

ne−βCEc
k

ZAZC
|〈n|Uexp|m〉|2|〈i|Ucom|j〉|

2. (9)

While for adiabatic driving, the system remains in the same state (n = m, i = j), in the

nonadiabatic driving the transition probability |〈n|Uexp|m〉|2 (or |〈i|Ucom|j〉|
2) is positive

due to transitions between sates n and m (or i and j). For the quantum Otto refrigerator,

its efficiency statistics is fully determined by the unitary time evolution for the adiabatic

expansion and compression (Uexp and Ucom), and by the finite-time system dynamics along

the thermalization processes, when the two temperatures of the two heat reservoirs (βh and

βc) are given.

III. A QUANTUM OTTO REFRIGERATOR USING A TWO-LEVEL SYSTEM

We now consider a quantum Otto refrigerator operating with a two-level system of the

eigenenergies E+ = −~ω/2 and E− = −~ω/2. If the unitary expansion and compression

during the Otto cycle (from ωh to ωc to ωh and vice versa) is such that there is a probability

of level transitions due to quantum fluctuations, then there is a probability that population

〈n〉 may change with varying time. After a simple calculation (see Appendix B), we find

that

〈nB〉 = (1− 2ξ)〈nA〉, 〈nD〉 = (1− 2ξ)〈nC〉 (10)

where ξ = |〈±|Uexp|∓〉|2 = |〈±|Ucom|∓〉|2 is called the adiabacity parameter indicating the

probability of transition between state |+〉 and |−〉 during the compression or expansion.

As shown in Fig. 1, the populations at any instant along the cycle is negative, which means

that ξ must be situated between 0 ≤ ξ < 1/2. The probability of no state transition along

either driving phase is accordingly |〈±|Uexp|±〉|2 = |〈±|Ucom|±〉|2 = 1− ξ. The adiabaticity

parameter ξ depends on the the speed at which the driving process is performed [5, 7, 37].

When the time scale of the state change is much larger than that of the dynamical one, the

quantum adiabatic condition is satisfied and the population 〈n〉 remains unchanged in the

adiabatic stage (ξ = 0). Rapid change in the control field ω, however, leads to nonadiabatic

behavior (ξ > 0) which can understood as inner friction [1, 2, 14, 46–48] causing state
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transitions. Equation (10) shows that 〈nC〉 > 〈nB〉 and 〈nD〉 > 〈nC〉 for ξ > 0 (see also

Fig. 1), as lies in the fact that the finite time duration of the expansion and compression

accounts for the nonadiabatic inner friction related to the irreversible entropy production.

Using Eqs. (4), (6), and (10), it follows that the populations 〈nA〉 and 〈nC〉 can be

expressed in terms of the equilibrium populations 〈nh〉
eq and 〈nc〉

eq,

〈nA〉 = 〈nh〉
eq +∆h, 〈nC〉 = 〈nc〉

eq +∆c (11)

where

∆h =
(2ξ − 1) [(2ξ − 1) 〈nh〉+ 〈nc〉

eq]− y [〈nh〉+ (2ξ − 1) 〈nc〉
eq]

xy − (2ξ − 1)2
, (12)

∆c =
(2ξ − 1) [(2ξ − 1) 〈nc〉+ 〈nh〉

eq]− x [〈nc〉+ (2ξ − 1) 〈nh〉
eq]

xy − (2ξ − 1)2
, (13)

with x = eγhτh and y = eγcτc . Hereafter we will refer x and y rather than τh and τc as the

time durations along the hot and cold isochoric branches for simplicity. Here 〈nc〉
eq defined

in Eq. (3) and 〈nh〉
eq in Eq. (7) can be obtained using the same approach as that described

in Appendix A for the derivation of Eq. (B.2) to arrive at (~ ≡ 2)

〈nc〉
eq = −

1

2
tanh(βcωc), 〈nh〉

eq = −
1

2
tanh(βhωh), (14)

which is achieved in quasi-static limit (x, y → ∞) when ∆c,h → 0. While for the finite-

time system-bath interaction interval the system is away from the thermal equilibrium, the

populations 〈nC〉 and 〈nA〉 approach the thermal values 〈nc〉
eq and 〈nh〉

eq, respectively, when

these intervals go to the infinite long time limit. Therefore, ∆c and ∆h indicate how far the

two isochoric processes deviates from the quasistatic limit.

From Eqs. (1) and (2), the average heat injection, 〈qc〉 =
∫ ∫

qcp(qc|whc)p(whc)dwhcdqc

can be obtained as (~ ≡ 2)

〈qc〉 = 2ωc [〈nc〉+∆c + (2ξ − 1) (〈nh〉+∆h)] , (15)

Integrals over the distribution function p (qc|whc) p (whc) yield the second moments

of absorbed heat qc, 〈q2c 〉 =
∫ ∫

q2c (whc) p (qc|whc) dwhcdqc, which reads 〈q2c 〉 =

8ω2
c [1/4 + (2ξ − 1) (〈nh〉+∆h) (〈nc〉+∆c)] . The variance of absorbed heat qc, δq

2
c = 〈q2c 〉−

〈qc〉
2, then becomes

δq2c = 4ω2
c

[

1

2
− (2ξ − 1)2 (〈nh〉+∆h)

2 − (〈nc〉+∆c)
2

]

. (16)
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FIG. 2: Contour plots of relative heat variance, fq̇c in the effective time duration (x, y) plane for

an adiabatic (a) and nonadiabatic (b) driving, with ξ = 0 and ξ = 0.02, respectively. The values

of the parameters are βh = 0.8, βc = 1, ωc = 0.6, and ωh = 1.

These variances are upper limited by the value of 2ω2
c and they become δq2c =

4ω2
c

[

1
2
− 〈(nh〉)

2 − (〈nc〉
eq)2

]

for the quasistatic cycle.

As 〈q̇c〉 = 〈qc〉/τcycle and δq̇c = 〈qc〉/τcycle, the relative variance of cooling rare fq̇c can be

obtained by using Eqs. (15) and (16) to arrive at

fq̇c =
δqc
〈qc〉

=

[

1
2
− (2ξ − 1)2 (〈nh〉

eq +∆h)
2 − (〈nc〉+∆c)

2]
1

2

(2ξ − 1) (〈nh〉+∆h) + 〈nc〉eq +∆c
. (17)

This is a monotonically decreasing function of time durations (x and y) of system-bath in-

teraction intervals, both for adiabatic and nonadiabatic driving [see Figs. 2(a) and 2(b)]. If

the isochoric hot (or cold) branch is completed in an finite time τc (or τh), with finite value

of xc (or xh), this isochoric step is out of equilibrium and the fluctuations are inevitably

avoidable. In order to decrease the relative fluctuations, we thus need to slow down the ma-

chine, which, however, must make the average cooling rate 〈q̇c〉 down. Comparison between

2(a) and 2(b) also shows that the relative fluctuations are larger in nonadiabatic driving

with finite time (τhc or τch) than in adiabatic, quasistatic evolution.

Since no work is produced in the two isochoric processes, the average total

work per cycle is 〈whc〉 + 〈wch〉, where 〈whc〉 =
∫

whcp(whc)dwhc and 〈wch〉 =
∫

wchp(wch, qc, whc)dwhcdqcdwch. It follows, using Eqs. (1) and (5), that the total work
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can be obtained,

〈w〉 = 2 (ωh − ωc) [(〈nc〉
eq +∆c)− (〈nh〉+∆h)]− 4ξ [ωc (〈nh〉

eq +∆h) + ωh (〈nc〉
eq +∆c)] .

(18)

The thermodynamic coefficient of performance, defined by εth = 〈qc〉/〈w〉, is the given by

εth =
ωc

ωh
1−ξF
1+ξG

− ωc

, (19)

where F = 2(〈nc〉
eq + ∆c)/[(〈nc〉 + ∆c) − (〈nh〉

eq + ∆h)] and G = 2(〈nh〉
eq + ∆h)/[(〈nc〉 +

∆c) − (〈nh〉
eq + ∆h)]. As F ,G < 0 and ξ ≥ 0, the thermodynamic coefficient of perfor-

mance εth increases as the adiabacity parameter ξ decreases, and it reaches its upper bound

εadth = ωc/(ωh − ωc) in the ideal adiabatic case when ξ = 0. The fact that the additional

heat is dissipated into the hot reservoir due to finite time realization of the compression

or expansion, so that the additional work is input to overcome such heat loss, suggests

that cycles consisting of nonadiabatic transformation along the expression and compres-

sion runs less efficiently than those with ideal adiabatic strokes. While the stochastic COP

is defined by ε = qc/(whc + wch), its probability distribution p(ε) can be determined by

p(ε) =
∫ ∫ ∫

dwhcdqcdwhcp(wch, qc, whc)δ
(

ε− qc
whc+wch

)

to arrive at

p (ε) =2

{[

1

4
+ (〈nh〉+∆h) (〈nc〉+∆c)

]

(1− ξ)2 +

[

1

4
− (〈nh〉

eq +∆h) (〈nc〉
eq +∆c)

]

ξ2
}

δ (ε)

+ 2

[

1

4
+ (〈nh〉

eq +∆h) (〈nc〉+∆c)

]

ξ2δ

(

ε+
εadth

2εadth + 1

)

+ 2

[

1

4
− (〈nh〉

eq +∆h) (〈nc〉
eq +∆c)

]

(1− ξ)2 δ
(

ε− εadth
)

+ (1− ξ) ξ [δ (ε+ 1) + δ (ε)]

(20)

We examine the statistics of stochastic COP in Fig. 3 at different ξ for given time

durations allocated to the two isochoric strokes (x and y). The statistics of COP depends

on the adiabacity parameter ξ determined merely by the driving time (τhc or τch). For

adiabatic driving with ξ = 0 (blue squares), the stochastic COP may be zero or equal to the

adiabatic value εadth , with the largest peak at zero and the second largest at εadth . By contrast,

for nonadiabatic driving with ξ > 0 (red dots), the negative values [−εadth/(2ε
ad
th + 1) and −1]

of p(ε) are visible due to quantum determinacy, in addition to nonnegative ones (zero and

9



FIG. 3: The probability distribution p(ε) of the quantum stochastic COP for both adiabatic (blue

dots) and nonadiabatic (red squares) driving. We observe the appearance of peaks at negative

COP in the nonadiabatic case.

εadth ). Unlike in a quantum heat engine [37] where the stochastic efficiency can not be defined

for ξ > 0, for the quantum refrigerator the average COP 〈ε〉 converges and can thus be well

defined. Using the distribution function (20), we find that the first two central moments are

〈ε〉 =2

[

1

4
− (〈nh〉+∆h) (〈nc〉

eq +∆c)

]

(1− ξ)2 εadth

− 2

[

1

4
+ (〈nh〉

eq +∆h) (〈nc〉
eq +∆c)

]

ξ2
εadth

2εadth + 1
− (1− ξ) ξ

(21)

and 〈ε2〉 = 2
[

1
4
− (〈nh〉+∆h) (〈nc〉+∆c)

]

(1− ξ)2
(

εadth
)2

+

2
[

1
4
+ (〈nh〉

eq +∆h) (〈nc〉
eq +∆c)

]

ξ2
[

εadth/(2ε
ad
th + 1)

]2
+ (1− ξ) ξ. This, combining with

Eq. (21), gives rise to the variance of stochastic COP, δε2 = 〈ε2〉 − 〈ε〉2, leading to

δε2 =2

[

1

4
− (〈nh〉+∆h) (〈nc〉

eq +∆c)

]

(1− ξ)2
(

εadth
)2

+ 2

[

1

4
+ (〈nh〉

eq +∆h) (〈nc〉
eq +∆c)

]

ξ2
(

εadth
2εadth + 1

)2

−
{

ξ (1− ξ) + (1− ξ)2
[

2 (〈nh〉+∆h) (〈nc〉
eq +∆c)−

1

2

]

εadth

+ ξ2
[

2 (〈nh〉
eq +∆h) (〈nc〉

eq +∆c) +
1
2

]

εadth
2εadth + 1

}2
+ ξ (1− ξ) .

(22)

For a cycle with either adiabatic or nonadiabatic driving branches, the average COP 〈ε〉

increases as time duration y = eγcτc increases, but it decreases as time duration x = eγhτh
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FIG. 4: Contour plots of the average COP 〈ε〉 and its variance 〈δε2〉 in the effective time duration

(x, y) plane for an adiabatic (a and c) and nonadiabatic (b and d) driving, with ξ = 0 and ξ = 0.02,

respectively. The values of the parameters are βh = 0.8, βc = 1, ωc = 0.6, and ωh = 1.

increases, see Figs. 4(a) and 4(b). This follows from the fact that, for the machine with

adiabatic or nonadiabatic processes, the heat absorbed by the system along the cold isochoric

stroke increases as y increases, and the heat released to the hot reservoir increases as x

increases. Figures 4(c) and 4(d) show that, in contrast to 〈ε〉, the variance 〈δε2〉 increases as

x increases but decreases as y increases, thereby confirming that there is trade-off between

average 〈ε〉 and the COP fluctuations 〈δε2〉. We also observe that the internal dissipation

along the adiabats results in performance deterioration for the machine by reducing the

average COP 〈ε〉 but increasing fluctuations of COP 〈δε2〉.

For given time durations (x and y) of two isochoric processes, both the average and the

variance of the stochastic COP as a function of the inverse temperature βc of cold reser-

voir is shown in Fig. 5. When decreasing inverse temperature, both 〈ε〉 and 〈δε2〉 grow,
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FIG. 5: (Color online) The variance of stochastic COP, 〈δε2〉, and average COP 〈ε〉 (inset) as a

function of the inverse temperature of cold reservoir βc = 0.8βh for ξ = 0 (blue lines) and ξ = 0.02

(red lines). The red dashed line corresponds to the variance 〈δε2〉 in the region of nonphysical,

negative mean COP. The parameters are x = y = 20, ωc = 0.6, and ωh = 1.

and as expected, 〈δε2〉 would vanish and 〈ε〉 would be even negative in the low tempera-

ture limit. The non-positive mean COP in the low-temperature regime can be understood

that the stochastic COP may be negative due to quantum indeterminacy dominating at

low temperatures (see also Fig. 3). While the low temperature domain is characterized by

quantum fluctuations, the high temperature region is dominated by larger thermal fluctua-

tions. Therefore, the variance 〈δε2〉 gets increased while the temperature is increasing and

vice versa.

As the covariance between the total stochastic work w and stochastic COP ε can be

defined by [49]

Cov
(qc
w
,w

)

= (εth − 〈ε〉)〈w〉, (23)

the difference between the thermodynamic COP εth and average COP 〈ε〉 is determined

according to εth − 〈ε〉 = Cov
(

qc
w
, w

)

/〈w〉. The ratio Cov
(

qc
w
, w

)/

〈w〉 as a function of inverse

temperature βc is plotted in Figs. 6(a) and 6(b), where the time durations along two

isochores are x = y = 20 and x = y = 2, respectively. We notice that, for ξ = 0 the ratio

monotonically increases with increasing inverse temperature. It is moreover always positive,

for either fast or slow isochoric branch, indicating that the thermodynamic COP εth must

12



FIG. 6: (Color online) The ratio Cov
( qc
w , w

)/

〈w〉 as a function of inverse temperature βc as a

function of the inverse temperature of cold reservoir βc = 0.8βh for x = y = 20 (a) and x = y = 2

(b), where ξ = 0 and ξ = 0.02 are indicated by blue lines and red ones, respectively. The other

parameters are ωc = 0.6 and ωh = 1.

be lager than the average COP 〈ε〉. By contrast, this ratio increases and then decreases as

the temperature is lowered for ξ > 0. As this ratio can be either positive or negative, the

thermodynamic COP εth can be larger or smaller than the corresponding average COP 〈ε〉

for nonadiabatic driving.

IV. CONCLUSION

In summary, we have developed a general scheme allowing to determine statistics of

cooling rate and COP for a quantum Otto refrigerator by analyzing the time evolution of

the two isochores and two adiabats. These performance parameters as well as their statistics

are determined by the finite time durations required for completing the two nonadiabatic

driving strokes and two isochoric branches with incomplete thermalization. When treating

an analytically solvable two-level engine, we find that stochastic COP may be negative due

to quantum indeterminacy, and but its average value converges and can thus be well defined.

We show that there is trade-off between these variables and their corresponding fluctuations

at zero and finite temperature, thereby indicating that the price for enhancing the machine

performance is increasing fluctuations. We have additionally compared the average COP

and the conventional thermodynamic COP, and we found that they are positive correlated

13



for ideal adiabatic strokes, but their correlation may be negative for nonadibatic branches.

Appendix A TIME EVOLUTION OF POPULATION ALONG AN ISOCHORIC

PROCESS

When a system under external control is weakly coupled to a heat reservoir, the quantum

dynamics of the system generated by both thermal interaction and external fields can be

described by a semigroup approach. The change in time of an operator X̂ for a system with

Hamiltonian Ĥ is determined according to the master equation [1, 36]:

dX̂

dt
= i[Ĥ, X̂ ] +

∂X̂

∂t
+ LD(X̂), (A.1)

where

LD(X̂) =
∑

α

kα

(

V̂ †
α

[

X̂, V̂ †
α

]

+
[

V̂ †
α , X̂

]

V̂α

)

(A.2)

is the Liouville dissipative generator due to the system-reservoir thermal interaction. V̂α

are operators in the Hilbert space of the system and V̂ †
α are Hermitian conjugates, and

kα are phenomenological positive coefficients. In Eq. (A.2), [X̂, V̂ †
α ] = [X̂, V̂ †

α ]− denotes

commutator for the Bose system, and [X̂, V̂ †
α ] = [â, b̂]+ is used for anticommutator for the

Fermi system. Substituting X̂ = Ĥ into Eq. (A.1) leads to

〈

dĤ

dt

〉

=

〈

∂Ĥ

∂t

〉

+ 〈LD(Ĥ)〉. (A.3)

This reproduces the time derivative of quantum version of the first law of thermodynamics

d〈Ĥ〉/dt = d̄〈w〉/dt +d̄〈q〉/dt, when the instantaneous average power and the average heat

current are identified as, d̄〈w〉/dt = 〈∂Ĥ/∂t〉 and d̄〈q〉/dt = 〈LD(Ĥ)〉, respectively.

To proceed, we choose the operators V̂ † and V̂ as the bosonic (fermionic) creation op-

erator â† and annihilation operator â for the Bose (Fermi) system. Inserting the system

Hamiltonian Ĥ = ωâ†â into Eq. (A.1) and taking the expectation value, the motion of the

population 〈n〉 = 〈a†a〉 along an isochoric process with constant ω can be obtained as

d〈n〉

dt
= −γ(〈n〉 − 〈n〉eq), (A.4)

where γ = k↓ − k↑ (γ = k↓ + k↑) denotes the thermal conductivity for the Bose (Fermi)

system. The detailed balance k↑ = k↓e
−β~ω is assumed to be satisfied, ensuring that the
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system can achieve asymptotically the thermal state after an infinitely long system-bath

interaction duration. Here 〈n〉eq = 1
2

k↓+k↑
k↓−k↑

(

〈n〉eq = 1
2

k↓−k↑
k↓+k↑

)

is the asymptotic value of

〈n(t)〉 with t → ∞, and it corresponds to the equilibrium population: 〈n〉 = 1/(eβω − 1)

[〈n〉 = −1
2
tanh(βω/2)]. From Eq. (A.4), we find that instantaneous population 〈n(t)〉 along

the thermalization process (staring at initial time t = 0) can be written in terms of the

population 〈n(0)〉,

〈n(t)〉 = 〈n〉eq + [〈n(0)〉 − 〈n〉eq]e−γt. (A.5)

Appendix B RELATION BETWEEN POPULATIONS AT THE BEGIN AND THE

END OF A UNITARY DRIVING PROCESS

We consider the unitary time evolution along the unitary adiabatic expansion A → B

to identify the explicit relation of the populations at A and B. For a two level system, its

eigenenergies are E+ = 1
2
~ω, and E− = −1

2
~ω. The partition function at the initial instant

A along this process can be given by

ZA = e−βA~ωh/2 + eβA~ωh/2 = 2 cosh

(

βA~ωh

2

)

, (B.1)

which, together with the occupation probabilities p+ = e−β~ωh/2/ZA and p− = eβ~ωh/2/ZA,

gives the population at instant A,

〈nA〉 =
1

2ZA

(

e−β~ωh/2 − eβ~ωh/2
)

= −
1

2
tanh

(

β~ωh

2

)

. (B.2)

The average population at instant B can then be determined according to

〈nB〉 =
∑

n,m

mpτhcn→mp
0
n(A)

=
∑

n,m

m|〈n|Uexp|m〉|2p0n(A)

=
1

ZA

[

e−βAωh/2
(

|〈+|Uexp|+〉|2 − 〈+|Uexp|−〉|2
)

+ eβAωh/2
(

|〈−|Uexp|+〉|2 − 〈−|Uexp|−〉|2
) ]

=
1

ZA

[

e−βAωh/2 (1− 2ξ) + eβAωh/2 (2ξ − 1)
]

= (1− 2ξ) 〈nA〉

(B.3)

where ξ = |〈±|Uexp|mp〉|2 and 〈nA〉 was defined in Eq. (B.2). As for the two-level system

〈nB〉 < 0, ξ must be upper limited by 1/2. Similarly, for the unitary compression C → D,
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we have

〈nD〉 = (1− 2ξ)〈nC〉. (B.4)

where ξ = |〈±|Ucom|∓〉|2.
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