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Owing to comparably strong spin-orbit coupling and Hubbard interaction, iridium based 227
pyrochlore oxides harbor a rich confluence of competing magnetic orders and emergent multipo-
lar Weyl quasiparticles. Here we show that this family of materials is predominantly susceptible
toward the nucleation of electronic noncoplanar all-in all-out (AIAO) and three-in one-out (3I1O)
orders, respectively transforming under the singlet A2u and triplet T1u representations, supporting
octupolar and dipolar Weyl fermions, and favored by strong on-site Hubbard and nearest-neighbor
ferromagnetic interaction. Furthermore, a coplanar magnetic order generically appears as an in-
termediate phase between them. This order transforms under the triplet T2u representation and
also hosts octupolar Weyl fermions. With the AIAO and 3I1O phases possibly being realized in
(Nd1−xPrx)2Ir2O7 when x = 0 and 1, respectively, the intervening T2u order can in principle be
found at an intermediate doping (0 < x < 1) or in pressured (hydrostatic) Nd2Ir2O7.

Introduction. Experimentally accessible materials har-
boring emergent topological phases tend to combine two
key ingredients: strong spin-orbit coupling and electronic
correlation [1–3]. One class of materials bordering the
territory dominated by either of them are the iridium-
based pyrochlore oxides Ln2Ir2O7, also known as 227 py-
rochlore iridates. Here Ln is a lanthanide element. Due
to a delicate balance between the strong spin-orbit cou-
pling and on site Coulomb repulsion among 5d electrons
of Ir4+ ions, 227 pyrochlore iridates exhibit rich phase di-
agrams featuring metal-insulator transition (MIT), com-
peting magnetic orders hosting Weyl quasiparticles, as
well as spin liquid behavior [1–24]. Various cuts of the
global phase diagram of Ln2Ir2O7 can be unveiled by tun-
ing the ionic radius of the lanthanide element [5] and/or
applying chemical and hydrostatic pressures [16, 18]. In
this Letter, we study the confluence of dominant mag-
netic orders in this class of materials, which involves both
noncoplanar and coplanar arrangements of itinerant elec-
tronic spin of Ir4+ ions [Fig. 1], and construct a repre-
sentative cut of the global phase diagram in the presence
of both on-site Hubbard (U) and nearest-neighbor ferro-
magnetic (J) interactions [Fig. 2].

Most of the 227 iridates display insulating antiferro-
magnetic state at the lowest temperature, which possi-
bly results from an all-in all-out (AIAO) arrangement
of electronic spin on corner-shared Ir tetrahedrons [5].
One member of the familiy, Pr2Ir2O7, in contrast remains
metallic down to the lowest temperature and supports a
large anomalous Hall conductivity (AHC) in the 〈111〉 di-
rection, despite possessing an immeasurably small mag-
netic moment [25–27]. These seemingly contradicting
observations can be reconciled by noting that Pr2Ir2O7

possibly resides at the brink of an electronic two-in two-
out (2I2O) or spin-ice ordering, which ultimately pro-
duces an itinerant three-in one-out (3I1O) order that sup-
ports only a single pair of Weyl nodes in the 〈111〉 direc-
tion [20]. The emergent dipolar Weyl quasiparticles then

FIG. 1. Noncoplanar (a) AIAO, (b) 2I2O, and (c) 3I1O ar-
rangements of electronic spins on Ir tetrahedron. The AIAO
and 2I2O orders transform under the singlet A2u and triplet
T1u representation of cubic (Oh) point group, respectively;
their coupling with the low-energy Luttinger fermions are
shown in Eqs. (3) and (4). The 3I1O order also transforms
under T1u representation. Bottom: Three possible coplanar
arrangements of electronic spins following the irreducible T2u

representation. Their couplings with Luttinger fermions are

shown in Eq. (5), with T x
2u ≡ T

(1)
2u , T y

2u ≡ T
(2)
2u and T z

2u ≡ T
(3)
2u .

yield a large AHC without an appreciable magnetic mo-
ment. This example underlines that a systematic analy-
sis of competing magnetic orders and emergent magnetic
Weyl fermions is a worthwhile task in pyrochlore iridates.

In this Letter, we show that 227 pyrchlore iridates con-
stitute a conducive platform for three competing mag-
netic ground states. Two of them are antiferromagnetic,
transforming under the irreducible singlet A2u and triplet
T2u representations, otherwise resulting from noncopla-
nar and coplanar arrangements of electronic spin on Ir

ar
X

iv
:2

01
2.

10
44

2v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

5 
Ju

n 
20

21



2

tetrahedron, respectively, and a ferromagnetic spin-ice or
2I2O order, which ultimately gives rise to a 3I1O order.
These two classes of ordered states respectively accom-
modate octupolar and dipolar Weyl fermions. More in-
triguingly, we find that the transition between the AIAO
and 3I1O orders is generically mediated by an intervening
T2u magnetic order, which, however, is shown to be topo-
logically equivalent to the A2u state [Fig. 3]. A cut of the
global phase diagram captures the competition among
these ordered states [Fig. 2], which is in accordance with
a proposed selection rule among them [Fig. 2(inset)].

Model. In Ln2Ir2O7, one iridium (Ir4+) atom resides
at each vertex of the corner-shared tetrahedral unit cell
of the pyrochlore lattice. An effective model with a single
Kramers doublet at each Ir site then leads to a total of
eight bands that split in a 2-4-2 pattern [6, 10, 13, 20].
Therefore, when the system is near half-filling, one can
neglect the split-off bands and focus on the four bands
close to the Fermi energy. Within this manifold, the low-
energy Hamiltonian is described by so-called the Lut-
tinger model for effective spin-3/2 fermions [28–30]

Ĥ(k) = h̄2k2

[
1

2m0
−

3∑
i=1

d̂i(k̂)

2m1
Γi −

5∑
i=4

d̂i(k̂)

2m2
Γi

]
, (1)

where m0, m1 and m2 bear the dimension of mass, and

d̂(k̂) is a five-dimensional unit vector transforming in
the l = 2 representation under orbital SO(3) rotations.
Its components are constructed from the spherical har-
monics Y ml=2(θ, φ). The four-component spinor basis is
Ψ>k =

(
ck,+ 3

2
, ck,+ 1

2
, ck,− 1

2
, ck,− 3

2

)
, where ck,ms

is the

fermion annihilation operator with momentum k and
spin projection ms = ±3/2,±1/2. The mutually anti-
commuting four-component Γ matrices are

Γ1 = κ3σ2,Γ2 = κ3σ1,Γ3 = κ2,Γ4 = κ1,Γ5 = κ3σ3, (2)

where Pauli matrices {κµ} and {σµ} with µ = 0, · · · , 3
operate on the sign and magnitude of ms, respectively.
The Luttinger Hamiltonian emerges as an effective de-
scription near half-filling, obtained by projecting a tight-
binding model of spin-1/2 electrons on pyrochlore lattice
in the presence of strong spin-orbit coupling [10, 20].

The Luttinger Hamiltonian describes a biquadratic
touching of the Kramers degenerate valence and conduc-
tion bands at the Γ = (0, 0, 0) point of the Brillouin zone
protected by the cubic symmetry, as recently observed in
Pr2Ir2O7 [31] and Nd2Ir2O7 [32]. The Kramers degener-
acy of the bands is maintained by the time reversal (T )
and inversion (P) symmetries. In particular, k → −k
and Ψk → Γ13Ψ−k under T , yielding T = Γ13K, where
Γjk = [Γj ,Γk]/(2i), K is the complex conjugation and
T 2 = −1. By contrast, Ψk → Ψ−k under P. In a cubic
environment, m1 6= m2 in general, where m1(m2) is the
mass parameter along the C3v (C4v) axis.

Magnetic Weyl fermions. We now discuss the promi-
nent itinerant magnetic orderings on the pyrochlore lat-
tice, the corresponding reconstructed band structure,
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FIG. 2. Mean field phase diagram of an interacting Luttinger
semimetal (LSM) in the presence of on-site Hubbard (U) and
nearest-neighbor ferromagnetic (J) interactions for a fixed
J/U = 1/4 [Eqs. (8)-(10)] at zero temperature, which should
also be qualitatively applicable at sufficiently low tempera-
tures close to the MIT. The noncoplanar A2u and T1u phases
are separated by an intervening coplanar T2u magnetic order
[Fig. 1]. Interaction couplings are dimensionless, obtained by

taking XΛ(2mp)3/2/(32π3) → X for X = U and J , where Λ

is the ultraviolet momentum cutoff, mp = m1m2/
√
m2

1 +m2
2

and α = tan−1(m1/m2) [Eq. (1)]. A possible coexistence be-
tween adjacent phases can be realized above the dashed lines,
which we estimate from mean field susceptibilities, that, how-
ever, can be renormalized due the presence of the primary
dominant order [30]. Experimentally such a phase diagram
can be constructed by changing the ionic radius of the Ln ele-
ment [5] or applying hydrostatic or chemical pressure [16, 18].
Inset: Internal algebra among the components of three mag-
netic orders. Six vertices (center) of the hexagon are (is)
occupied by the components of T1u and T2u (A2u) magnetic
orders [Eqs. (3)-(5)]. Mutually anticommuting matrix opera-
tors associated with them are connected by solid lines. When
two order parameters mutually anticommute (even partially),
coexistence between them gets energetically favored.

and its emergent nodal topology. In what follows we
consider noncoplanar and coplanar magnetic orders of
spin-1/2 electrons on pyrochlore lattice [Fig. 1], and sub-
sequently project them onto the Luttinger bands [30].
As all magnetic orders break T symmetry, their coupling
to the Luttinger fermions is captured by linear combi-
nations of products of odd numbers of spin-3/2 matrices
(J). Onset of any magnetic order lifts the Kramers de-
generacy of the bands and yields emergent Weyl nodes,
at least when its amplitude is sufficiently small [33].

We begin by detailing the frequently encountered
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AIAO arrangement of electronic spins between corner-
shared Ir tetrahedra. The coupling between the AIAO
magnetic order of amplitude ξ with Luttinger fermions
reads ξ

(
Ψ†Â2uΨ

)
[4, 12, 13], where

Â2u ≡ Γ45 = − 2√
3

(J1J2J3 + J3J2J1) . (3)

The AIAO order transforms under the singlet A2u repre-
sentation of the cubic (Oh) point group and supports
eight Weyl nodes at (±1,±1,±1)kA2u

? , where kA2u
? =[

2m1ξ/(3h̄
2)
]1/2

. Four of them act as sources and sinks
of Abelian Berry curvature, and they are arranged in an
octupolar fashion in momentum space [Fig. 3(a)]. The
AIAO phase preserves the cubic symmetry, and the net
Berry flux through any high-symmetry plane is exactly
zero, yielding zero AHC, as in most of the 227 iridates.

A somewhat uncommon magnetic order results from
2I2O or spin-ice configurations of electronic spins [20].

Their coupling with Luttinger fermions reads ρjΨ
†T̂

(j)
1u Ψ,

where ρj are the amplitudes of the 2I2O orders. For
j = 1, 2, and 3, the magnetic moment points in the ±x̂,
±ŷ and ±ẑ direction, respectively, as

T̂
(j)
1u ≡ ΓjΓ45 =

1

3

(
7Jj − 4J3

j

)
(4)

and the itinerant 2I2O orders possess dominant dipole
moments along the principle axes. However, in a cu-
bic environment the magnetic moment of the itiner-
ant spin-ice order gets locked along one of the body-
diagonal 〈111〉 directions, causing nucleation of a triplet
spin-ice or 3I1O order. Both 2I2O and 3I1O orders
transform under the triplet T1u representation. The
coupling of a 3I1O order with Luttinger fermion reads
(ρ/
√

3)Ψ† (Γ1 + Γ2 + Γ3) Γ45Ψ, when ρ1 = ρ2 = ρ3 = ρ.
The 3I1O phase supports only a single pair of Weyl
nodes in the body diagonal direction that are located at

±(1, 1, 1)kT1u
? , where kT1u

? =
[
2m1ρ/(3h̄

2)
]1/2

. The 3I1O
order consequently supports AHC in the 〈111〉 direction,

given by σ〈111〉 = e2
√

2m1ρ/(πh̄
2
√

3) [20], which makes
it a prominent candidate for Pr2Ir2O7 [25–27].

Finally, we turn to the triplet magnetic order trans-
forming under the T2u representation. Its coupling with

Luttinger fermions reads φjΨ
†T̂

(j)
2u Ψ, where φj are the

amplitudes of three T2u orders with j = 1, 2, 3 [30], and

T̂
(1)
2u =

J1(J2
2 − J2

3 )√
3

=

(
−1

2
Γ15 +

√
3

2
Γ14

)
,

T̂
(2)
2u =

J2(J2
3 − J2

1 )√
3

=

(
−1

2
Γ25 −

√
3

2
Γ24

)
,

T̂
(3)
2u =

J3(J2
1 − J2

2 )√
3

= Γ35. (5)

The corresponding coplanar arrangements of electronic
spin on corner-shared Ir tetrahedron are shown in Fig. 1.

The emergent quasiparticle spectra inside the T
(3)
2u phase

(a) (b)

FIG. 3. Distribution of the Abelian Berry curvature for oc-
tupolar (a) A2u and (b) T z

2u magnetic orders. Weyl nodes
acting as source (sink) of the Berry curvature are represented
by outward (inward) arrows of the corresponding Berry flux.
For both magnetic orders, eight Weyl nodes are distributed
in octupolar fashions. Four of them act as source and the
remaining ones as sink of the Berry curvature. The Weyl
nodes and the distributions of the Berry flux in (a) and (b)
are related to each other by a rotation about the kz axis by
π/4. Similarly, rotation by π/4 about the kx (ky) axis causes
rotation between the A2u and T x

2u (T y
2u) orders.

are En,s(k) = E0(k) + sgn(n)εs(k), where E0(k) =

h̄2k2/(2m0) captures the particle-hole anisotropy and

εs(k) =
h̄2

2mp

[
C2
αd

2
3(k) + S2

αd
2
5(k) +

{
sgn(s)

2mp

h̄2
√

3φ3

+

[
C2
α

∑
i=1,2

d2i (k) + S2
αd

2
4(k)

]1/2}2]1/2
, (6)

with Cα = cosα, Sα = sinα, and n, s = ±. The con-
duction and valence bands correspond to n = ±, respec-
tively. While the s = + bands are gapped, the s = −
bands display touchings of Kramers nondegenerate bands
at eight isolated Weyl points in the Brillouin zone, lo-
cated at (±

√
2, 0,±1)kT2u

? and (0,±
√

2,±1)kT2u
? , where

kT2u
? =

[
4m2

1m
2
2/[3(m2

1 + 2m2
2)]
]1/4 (√

φ3/h̄
)
. (7)

Four Weyl nodes act as sources and four as sinks of Berry
curvature [Fig. 3(b)]. The overall octupolar arrangement
of eight Weyl nodes conforms with the fact that this
phase possesses only a finite octupole moment.

Despite its distinct Weyl node arrangement, we find

the T
(3)
2u phase to be topologically equivalent to AIAO. To

show this, we rotate the momentum axes by π/4 about

kz that takes k → q, such that qx = (kx + ky)/
√

2,

qy = (kx − ky)/
√

2 and qz = kz. In the new coordi-
nate basis (q), the eight Weyl nodes in the AIAO phase

are located at (±
√

2, 0,±1)kA2u
? and (0,±

√
2,±1)kA2u

? ,

while those associated with the T
(3)
2u order are placed

at (±1,±1,±1)kT2u
? . The exchange of the locations of
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the Weyl nodes for these two orders can be further sub-
stantiated from the transformation of their respective oc-
tupole moments under the rotation by π/4 about the z
direction, leading to xyz ↔ (x2 − y2)z. Consequently,
the octupole moment of A2u order (namely, xyz) trans-

forms into that for the T
(3)
2u order (namely, (x2 − y2)z)

and vice versa. Therefore, A2u and T
(3)
2u orders are

topologically equivalent. One can show that eight Weyl

nodes for the (a) T
(1)
2u and (b) T

(2)
2u orders are located

at (a) (±1,±
√

2, 0)kT2u
? and (±1, 0,±

√
2)kT2u

? , and (b)

(±
√

2,±1, 0)kT2u
? and (0,±1,±

√
2)kT2u

? . These two T2u
orders are also topologically equivalent to the A2u or-
der, which can be shown by rotating the momentum axes
about the kx and ky by π/4, respectively. Thus like AIAO
order, T2u phases do not support any AHC [34].

We furthermore find that each microscopic spin pat-
tern corresponding to a magnetic order in the Luttinger
model is part of a family of spin patterns parametrized
by M(α, β) = diag.[ασ+

xy + βσ+
yz,−ασ+

xy − βσ−yz, ασ−xy −
βσ+

yz,−ασ−xy + βσ−yz] that projects to zero when going
from the eight-band model to the Luttinger Hamiltonian,
where σ±jk = σj ± σk. The resulting low-energy equiva-
lence of microscopic magnetic patterns ties an additional

connection between the A2u and T
(3)
2u orders: the fam-

ily of magnetic patterns including the AIAO order also
contains a rotated and rescaled version of the coplanar
magnetic patterns that project to the T2u-orders [30].

Competing orders. The competition among the above
magnetic orders can be captured by a minimal Hamil-
tonian composed of only local (momentum-independent)
four-fermion interactions

Hint = g
1

(
Ψ†Â2uΨ

)2
+ g

2

3∑
j=1

(
Ψ†T̂

(j)
1u Ψ

)2
+ g(3)

3

(
Ψ†T̂

(3)
2u Ψ

)2
. (8)

The repulsive interaction g
1

(g
2
) favors the nucleation

of AIAO (3I1O) order. As the T2u orders possess zero
dipole moment, the cubic environment does not cause any
locking among its three components, unlike in the T1u
ordered state. Therefore, the T2u order displays a three-
fold degenerate ground state associated with the coplanar
T x2u, T y2u and T z2u configurations of itinerant electronic
spin [Fig. 1]. Without loss of generality, here we focus
on the interaction g(3)

3
supporting T z2u order. The bare

values of these interactions are system-dependent. To
build on a realistic microscopic model, we include both
on-site Hubbard (U) and nearest-neighbor ferromagnetic
(J > 0) interactions among itinerant spin-1/2 electrons,
as longer range interactions become prominent close to
the MIT. The corresponding Hamiltonian reads

Hmic = 3U

4∑
i=1

SiSi + 3J

4∑
i 6=j=1

SiSj , (9)

where Si ≡ Si,111 = c†i,s
[
σss′ · (1, 1, 1)>

]
ci,s′/

√
3 is the

fermionic magnetization at site i, fixed along the [111]

direction, as electronic spins in the dominant magnetic
phases (such as AIAO, 2I2O and 3I1O) align in the body
diagonal directions. Here i = 1, 2, 3, 4 correspond to four
sites of an Ir tetrahedra, summation over repeated spin
indices (s, s′ =↑, ↓) is assumed, and σ = (σx, σy, σz)

> is
the vector Pauli matrices. Upon projecting Hmic to the
low-energy spin-3/2 Luttinger manifold, we find [30]

g1 =
3

2
g(3)
3

=
U

4

(
1− J

2U

)
, g2 =

U

12

(
1 +

J

6U

)
. (10)

Near half-filling, the on-site Hubbard favors antiferro-
magnetic A2u and T2u orders. By contrast, the ferro-
magnetic interaction is conducive for T1u order (possess-
ing finite ferromagnetic moment).

Next, we analyze this model within the mean field
approximation. To this end, we perform Hubbard-
Stratonovich decoupling of quartic interactions and sub-
sequently integrate out gapless fermions to compute the
bare mean field susceptibilities for competing magnetic
phases with zero external momentum and frequency. The
inverse of the susceptibility yields the requisite critical
couplings for the corresponding ordered states, which is
finite due to the vanishing density of states (ρ(E) ∼

√
E)

in Luttinger system. For a given set of parameters the
phase with minimal critical coupling nucleates first from
Luttinger semimetal [30]. We follow this prescription to
construct a cut of the global phase diagram in the pres-
ence of on-site Hubbard (U) and nearest-neighbor fer-
romagnetic (J) interactions for a fixed J/U , shown in
Fig. 2. The phase diagram shows that the dominant
AIAO and 3I1O orders are indeed separated by, and co-
existing with, an intervening T2u order.

The arrangement of these phases can be substantiated
from the internal algebra of corresponding matrix oper-
ators in the low-energy Luttinger subspace [Fig. 2 (In-
set)]. First, we note that the components of the T1u
order, each representing metallic spin-ice or 2I2O order,
mutually anticommute [Eq. (4)]. As a result, inside the
pure T1u ordered phase three components of 2I2O or-
der get locked along one of the 〈111〉 directions, yielding
the triplet spin-ice or 3I1O order, which is energetically
favored over its uniaxial counterparts [35]. The singlet
A2u order anticommutes with all three components of
T2u order. Finally, each component of T2u order anti-
commutes with two components of the T1u order and
vice versa. Therefore, in a conducive environment one
expects a coexistence between T2u and A2u or T1u orders
to be energetically favored, in qualitative agreement with
our findings in Fig. 2. However, each component of T2u
coexists with only two anticommuting components of the
T1u order. Hence, whenever two order parameters mu-
tually anticommute (even partially), they are expected
to reside next to each other and a coexistence between
them can be energetically favored. In the SM we show

that even when g
(3)
3 ≡ 0, pure repulsive interactions in

the A2u and T1u channels give rise to an effective interac-
tion in the T2u channel due to the Fierz relations among
them [36–39], yielding a intermediate T2u ordered phase
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in the (g1 , g2) plane, see Fig. S1 of SM [30], in agreement
with the above selection rule among competing orders.

Summary and discussions. In summary, we show that
227 pyrochlore iridates are susceptible to three dominant
magnetic phases at low temperatures: the antiferromag-
netic AIAO and T2u, and the ferromagnetic 3I1O. Re-
spectively, these two classes of ordered phases support
octupolar and dipolar Weyl fermions, but only the latter
ones produce AHC in the 〈111〉 directions as observed
in Pr2Ir2O7 [25–27]. While individually on-site Hubbard
(U) and nearest-neighbor ferromagnetic interaction (J)
support AIAO and 3I1O orders, respectively, the T2u an-
tiferromagnet can emerge as an intervening phase, when
the strengths of U and J are comparable [Fig. 2]. In fu-
ture, we will address such intriguing competition from an
unbiased renormalization group analysis [39, 40].

The MIT in 227 pyrochlore iridates can be suppressed
around a critical doping x = 0.8 in (Nd1−xPrx)2Ir2O7 or
by applying 5 GPa hydrostatic pressure on Nd2Ir2O7 [16].

Growing evidences in favor of the AIAO and 3I1O orders
in Nd2Ir2O7 [41] and Pr2Ir2O7 [42], respectively, strongly
suggest that the predicted antiferromagnetic T2u order
can be realized in (Nd1−xPrx)2Ir2O7 around x = 0.8 or
in pressured Nd2Ir2O7 around 5 GPa. Even though both
A2u and T2u orders support octupolar Weyl fermions,
they can be unambiguously identified from the distinct
locations of the associated Weyl nodes, yielding Fermi arc
surface states connecting them [43, 44], via scanning tun-
neling microscope, for example. Distinct octupolar mo-
ments associated with A2u and T2u orders can also be es-
tablished from torque magnetometry measurements [45].
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[44] R.-J. Slager, V. Juričić, and B. Roy, Phys. Rev. B 96,
201401 (2017).

[45] T. Liang, T. H. Hsieh, J. J. Ishikawa, S. Nakatsuji, L.
Fu, N. P. Ong, Nat. Phys. 13, 599 (2017).


	Competing magnetic orders and multipolar Weyl fermions in 227 pyrochlore iridates
	Abstract
	 References


