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Abstract

We discuss general aspects of renormalization group (RG) flows between two

conformal fixed points in 4d with a broken continuous global symmetry in the UV.

Every such RG flow can be described in terms of the dynamics of Nambu-Goldstone

bosons of broken conformal and global symmetries. We derive the low-energy ef-

fective action that describes this class of RG flows from basic symmetry principles.

We view the theory of Nambu-Goldstone bosons as a theory in anti-de Sitter space

with the flat space limit. This enables an equivalent CFT3 formulation of these 4d

RG flows in terms of spectral deformations of a generalized free CFT3. We utilize

this dual description to impose further constraints on the low energy effective ac-

tion associated with unitary RG flows in 4d by invoking the chaos bound in 3d.

This approach naturally provides a set of independent monotonically decreasing

C-functions for 4d RG flows with global symmetry breaking by explicitly relating

4d C-functions with certain out-of-time-order correlators that diagnose chaos in 3d.

We also comment on a more general connection between RG and chaos in QFT.
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1 Introduction

The renormalization group (RG) and quantum chaos are two fundamentally important

but distinct phenomena in quantum field theory (QFT) with some similar qualitative

features. For example, both RG flows and semiclassical chaos exhibit certain universal

positivity and monotonicity properties in generic quantum systems. Over the years, a
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great deal of progress has been made on understanding such general features of both RG

and chaos, however, any connection between their positivity and monotonicity properties

has never been established. This is not surprising since the underlying physics associated

with RG and chaos are believed to be different. Nevertheless, in this paper we present

a precise but indirect connection between RG and semiclassical chaos by considering a

rather general class of RG flows in 4d. This also provides a tool to constrain unitary RG

flows by utilizing the chaos bound of Maldacena, Shenker, and Stanford [1].

Most physical systems, when viewed at different energy scales, admit descriptions in

terms of completely different degrees of freedom. The RG is a concrete realization of this

phenomenon in QFT. It is a systematic coarse-graining procedure that identifies relevant

long-distance degrees of freedom of a given quantum theory. Conformal field theories

(CFTs) play a central role in RG since it is long believed that fixed points of RG flows

are CFTs.1

On physical grounds, it is expected that all RG flows should be irreversible. Consider

a CFTUV which is deformed by adding a relevant (or marginally relevant) operator that

breaks conformal symmetry.2 This triggers an RG flow that ends at CFTIR. The irre-

versibility requires that any RG flow that starts from CFTIR and ends at CFTUV must be

forbidden. A closely related but not exactly equivalent statement is that there exist real

positive definite C-functions on the space of couplings with the following properties: (i)

C decreases monotonically under RG flows, (ii) at the fixed points of the RG flow, C is

constant and independent of the energy scale. Moreover, the value of a C-function at fixed

points depends only on CFTUV and CFTIR, respectively. The existence of a C-function

necessarily implies irreversibility of RG flows when it interpolates between some central

charge of CFTUV and CFTIR. Such a C-function was first found by Zamolodchikov in

1986 for any unitary, Lorentz invariant QFT in 2d establishing the irreversibility of 2d

RG flows [3]. In 4d, a C-function was found by Komargodski and Schwimmer in 2011

that interpolates between the Euler central charges in the ultraviolet and the infrared [4]

(see also [5]). This proved Cardy’s conjecture [6] ∆a = aUV − aIR > 0 establishing that

all unitary RG flows are irreversible in 4d.3

1In d > 4, a CFT can flow to a fixed point which is scale-invariant but non-conformal [2]. However,
in this paper, we will only consider 4d RG flows between two CFTs.

2There are RG flows in which conformal symmetry is broken spontaneously. The same discussion
applies for such RG flows as well.

3A general proof of the RG irreversibility is still missing in 6d (for attempts see [7, 8]). On the other
hand, the 6d a-theorem has been established for all 6d flows that preserve (2, 0) supersymmetry in [9].
The proof was later extended to RG flows of (1, 0) SCFTs onto the tensor branch in [2]. However, a
proof of the a-theorem for RG flows of (1, 0) SCFTs onto the Higgs branch is still an open problem even
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In many 4d RG flows (e.g., supersymmetric RG flows), the breaking of conformal

symmetry is accompanied by the breaking of some other global symmetries of CFTUV.

In this paper, we consider RG flows between two conformal fixed points in 4d in which

conformal symmetry and a continuous global symmetry are broken in the UV. Our main

argument can be briefly summarized as follows:

1. Many general features of these RG flows, such as irreversibility and positivity, can

be studied by analyzing the effective action of Nambu-Goldstone (NG) bosons of

broken conformal and global symmetries. By extending the argument of [4], we

show that the general form of the effective action that describes 4d RG flows with

global symmetry breaking is completely fixed from symmetries. The effective action

makes it obvious that the proof of the a-theorem remains unaffected even when

global symmetries are broken.

2. Next, by following the framework of [8] we analyze the flat space effective theory of

NG bosons by viewing it as a theory in anti-de Sitter (AdS) space with finite but

large radius RAdS and then take the flat space limit RAdS → ∞. This provides an

alternative description of this class of 4d RG flows in terms of spectral deformations

of a generalized free CFT in 3d.4

3. Finally, we utilize this dual description to derive positivity conditions for the effective

action by invoking the chaos bound [1, 13, 14] in the dual CFT3. In particular, the

chaos bound in 3d implies the a-theorem in 4d.5 Furthermore, the 3d chaos bound

provides a natural basis for constructing a set of 4d C-functions for RG flows with

global symmetry breaking.

Our approach, as summarized in figure 1, connects RG and quantum chaos, albeit in

different spacetime dimensions.

1.1 RG Flows with Global Symmetry Breaking

In [4] Komargodski and Schwimmer taught us how every RG flow can be described in

terms of a spontaneous breaking of conformal symmetry. We consider a more general class

though there is strong evidence in favor it [10–12].
4Alternatively, one can combine the first two steps by imagining the RG flow between CFTUV and

CFTIR is taking place in AdS4 with RAdS → ∞. These two interpretations are completely equivalent
in the leading order of the effective action (up to four-derivative interactions). However, in general two
interpretations may differ at higher derivative order.

5This connection was already noticed in [8].
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Figure 1: Every RG flow with global symmetry breaking can be described by the effective
action of Nambu-Goldstone (NG) bosons of broken conformal and global symmetries. Any such
RG flow in 4d has a dual CFT3 description where the dual CFT3 is obtained by deforming
operator dimensions and OPE coefficients of a 3d generalized free theory. The 3d chaos bound
then imposes constraint on the effective action of the NG bosons.

of RG flows in 4d where CFTUV has some global symmetry G, where G is a compact Lie

group. The conformal symmetry and the global symmetry of CFTUV are broken either

spontaneously or explicitly. This triggers an RG flow that preserves some subgroup H

of G. Following [4], we argue that every such RG flow can be described as spontaneous

breaking of conformal and global symmetries. The spontaneously broken conformal sym-

metry generates a massless NG boson – the dilaton φ. The dilaton is accompanied by

N = dim G/H additional massless NG bosons ξi arising from the spontaneous breaking of

the global symmetry. So, in general the low energy theory consists of CFTIR and (N + 1)

massless scalars φ and ξi.
6 We derive the effective action Seff[φ, ξi] of φ and ξi from basic

symmetry principles. In particular, we show that the effective action, up to four-fields

four-derivative terms, can be written in the form7

Seff[φ, ξi] = Sconformal[φ; ∆a] + Sglobal[ξi;Bijkl] + Smixed[φ, ξi; ∆a, bi] . (1.1)

6For RG flows in which the symmetries are broken explicitly, the scalars φ and ξi should be thought
of as compensator fields. For a discussion on compensator fields, see [4].

7The explicit form of the effective action is given by equation (4.31).
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The first term Sconformal[φ; ∆a] results from the conformal symmetry breaking alone and

hence it is precisely the dilaton effective action of [4]. Similarly, Sglobal[ξi;Bijkl] with

coupling constants Bijkl is the part of the effective action that depends only on the global

symmetry breaking. Dimensionless coupling B ≡ {Bijkl} is a strongly paired symmetric

4-tensor which has the symmetries of the N -dimensional elasticity tensor. Finally, the

mixed part of the action Smixed[φ, ξi; ∆a, bi] represents interactions between φ and ξi with

coupling constants ∆a and bi, i ∈ {1, · · · , N}. Interestingly, a part of Smixed[φ, ξi; ∆a, bi]

is also universal. In general, bi and Bijkl depend on CFTUV, CFTIR, and deformations

(or VEVs) that break the conformal symmetry in the UV. For unitary RG flows, these

coefficients must also satisfy various positivity conditions which we will derive in this

paper.

There is a discrete difference between RG flows with and without global symmetry

breaking. Nevertheless, the decomposition (1.1) of the effective action states that RG

flows that do not break any global symmetries are a special case of the general scenario

with ξi → 0 implying Seff[φ, ξi] has a smooth ξi → 0 limit. This in turn implies that

breaking of additional global symmetries does not interfere with the proof of the 4d a-

theorem by Komargodski and Schwimmer. This was already noticed by Bobev, Elvang,

and Olson in [15] for 4d RG flows with U(1) symmetry breaking.

It is a fact that scalar effective field theories in AdSd are in one-to-one correspondence

with perturbative solutions of crossing symmetry in CFTd−1 [16–28]. This connection

was utilized in [8] to argue that every RG flow connecting two conformal fixed points in

d dimensions is equivalently described as deformations of the spectrum of a generalized

free CFTd−1 for d ≥ 3. In this paper, we adopt the same philosophy and analyze the

dual CFT3 description of the effective action (1.1) of NG bosons. The dual CFT3 is

obtained by deforming specific operator dimensions and OPE coefficients of a generalized

free theory of (N + 1) scalar primary single-trace operators that are dual to NG bosons

φ and ξi. This dual CFT3, for any unitary RG flow, must obey the Euclidean axioms.

This immediately implies that the space of {∆a, bi, Bijkl} for unitary RG flows can be

constrained by invoking the chaos bound [1, 13, 14] in the dual CFT3. In particular, we

argue that couplings ∆a, bi, and Bijkl must be positive definite.8 Moreover, interference

effects in the chaos bound impose further nonlinear constraints among {∆a, bi, Bijkl}.
8To be specific, by positive definiteness of the 4-tensor B we simply mean that B has a positive definite

bi-quadratic form Bijklcic̃jck c̃l > 0 for all non-zero c, c̃ ∈ RN . This can be alternatively stated as B is
strongly elliptic. Note that there can be loop effects when G is non-abelian, as we will explain later. Of
course, B should be understood as the 1-loop effective B when loop effects are present.
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∆a = aUV − aIR > 0

Figure 2: For unitary RG flows between two conformal fixed points in 4d with a broken
U(1) global symmetry only the shaded region (along with ∆a > 0) is consistent with the chaos
bound. Notice that there is a kink at b = 0 and B = 2∆a. The black dot corresponds to RG
flows between two 4d N = 1 SCFTs in which flows preserve the N = 1 supersymmetry. The red
dot corresponds to an RG flow in which the CFTUV is a theory of two massless scalars. This
theory is deformed with mass terms that are infinitesimally different. The red line represents
the same RG flow as we increase the mass difference.

These nonlinear analytic constraints, among other things, provide an upper bound on ∆a

in terms of bi and Bijkl.

As a representative example, we analyze RG flows between two conformal fixed points

in 4d with a broken U(1) global symmetry. Every such RG flow can be described in terms

of exactly three parameters {∆a, b, B} that uniquely determine the low-energy effective

action of NG bosons (see equation (2.18)) of broken conformal and U(1) symmetries.

These RG flows, as we described before, have a dual description in terms of spectral

deformations of a generalized free CFT in 3d of two scalar primary single-trace operators.

For unitary RG flows, we invoke the chaos bound to constrain the space of {∆a, b, B},
as shown in figure 2. Interestingly, there is a “bootstrap” kink in the exclusion plot 2.

However, we are not aware of any RG flow that sits on the kink.

In the exclusion plot 2, we identify a special point in the allowed parameter space

that corresponds to RG flows between two 4d N = 1 SCFTs in which the N = 1
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supersymmetry is preserved along the flow. These flows break the U(1) R-symmetry of the

CFTUV since the stress tensor and the R-current are in the same supermultiplet [15, 29].

In the dual CFT3 language, these supersymmetric flows are equivalently described by

spectral deformations in which anomalous dimensions of certain double-trace operators

obey simple relations (see equation (3.3)). Moreover, for N = 1 supersymmetric flows

we show that there are infinitely many distinct C-functions that decrease monotonically

from aUV to aIR under RG flows.

It should be noted that the same bounds can be obtained directly in flat space, perhaps

with some additional assumptions about the scattering amplitudes.9 However, the dual

CFT3 description has several conceptual as well as technical advantages. For example, our

derivation of the bounds does not make any assumptions about the dual CFT3 beyond the

usual Euclidean axioms. This simply means that some properties of low energy effective

actions, such as (1.1), are more transparent in AdS. This parallels the idea of S-matrix

bootstrap where conformal bootstrap methods are used to constrain QFTs in AdS [34–37].

1.2 RG and Quantum Chaos

The CFT3 based description of 4d RG flows naturally provides a set of 4d C-functions.

Furthermore, this construction has the conceptual advantage that it explicitly relates C-

functions with certain out-of-time-order correlators (OTOCs) in 3d which have been used

extensively in recent years as a quantum field theoretic measure for chaos [1, 38, 39]. In

particular, we will construct a series of C-functions all of which has the form

C(µ) ∼ 1

β
lim

t∗�t0�β

∫ t0+µ

t0

dtR e−2πtR/β Re

(
Fd − F

(
tR −

iβ

4

))
, (1.2)

where, Fd and F (t), as defined in [1], are standard thermal correlators of simple operators

that diagnose chaos.10 To be specific, in the above expression F (tR−iβ/4) is a CFT3 four-

point correlator of scalar primaries dual to NG bosons in the Minkowski vacuum state –

which we interpret as an OTOC in a thermal state of temperature 1/β on Rindler space,

where tR is the Rindler time. Monotonicity and positivity of C(µ) follow directly from

positivity conditions that F (t) satisfy [1] (see also [13, 14, 40]). A special case of (1.2) is

a set of monotonically decreasing independent functions, also known as a-functions, that

interpolate between aUV in the UV (µ→∞) and aIR in the IR (µ→ 0) establishing the

9For similar bounds on effective actions from scattering amplitudes see [30–33].
10Note that C(µ) in equation (1.2) is independent of t0 as long as t0 is much smaller than the effective

scrambling time t∗.
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RG irreversibility. As a byproduct, we obtain a relation between 4d ∆a and 3d OTOC

∆a ∝ 1

β
lim

t∗�t0�β

∫ ∞
t0

dtR e−2πtR/β Re

(
Fd − F

(
tR −

iβ

4

))
> 0 . (1.3)

It is only natural to wonder whether there is a deeper, more fundamental connection

between RG and chaos in QFT. At first sight, a more general connection seems unlikely.

After all, chaos probes long-time but not necessarily low energy properties of quantum

systems. So, it is not expected that the full richness of physics associated with chaos

can be captured by RG which only deals with low energy degrees of freedom. However,

information about the high energy degrees of freedom is not completely lost in any unitary

RG flow. They are simply hidden in the positivity and monotonicity properties of RG.

The relation (1.2) connects these general features of RG with analogous monotonicity and

positivity properties of semiclassical chaos, however, in different spacetime dimensions. It

is certainly possible that this connection is more fundamental and holds even in the same

spacetime dimensions.11

One significant hint for this general connection is that both RG and chaos are inti-

mately related to causality. This is certainly true in 4d in which the a-theorem of [4] could

be derived by invoking causality [42]. Moreover, for holographic theories, the RG mono-

tonicity follows directly from causality in general spacetime dimension [43,44]. Likewise,

the chaos bound of [1] is known to be related to causality as well [13,14,40].

There is another nice interrelation between RG, chaos, and causality in 4d CFT. Any

unitary CFT must obey certain causality constraints that are known as the conformal

collider bounds [45–48]. The collider bounds can also be thought of as a special case

of the chaos bound for vacuum CFT correlators [40]. In 4d, the collider bounds impose

that the Euler central charge a must be positive. This positivity together with the 4d

a-theorem then imply that the Euler central charge is a good measure of the effective

number of degrees of freedom in 4d CFT.

All these hints are suggestive of a much deeper relationship between RG and chaos. It

would be very interesting to make this connection more direct and explicit. For example,

chaos in QFT could be formulated as coarse-graining of the operator algebra. Such a

description of chaos does exist in quantum mechanics [49]. It is also possible that both

RG and semiclassical chaos are related by some version of the eigenstate thermalization

hypothesis (ETH) [50–52].

11A related but somewhat different question is how chaotic dynamics in QFT changes under RG flows.
This has been discussed recently in [41] for holographic theories.
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1.3 Outline

The rest of the paper is organized as follows. We begin with a detailed analysis of 4d

RG flows with a broken U(1) global symmetry in section 2. In section 3 we discuss

4d RG flows with N = 1 supersymmetry and compare it with our general results. In

section 4 we derive the most general low energy effective action that describes 4d RG

flows with a broken continuous symmetry group G, where G can be a direct product of

finite number of simple Lie groups. Furthermore, we derive constraints on this effective

action for unitary RG flows. In section 5 we construct C-functions that have the form

(1.2). Finally, in section 6 we provide a simple example which highlights basic features of

our general framework. We take the CFTUV to be a theory of two massless scalars. The

conformal symmetry and the global U(1) symmetry are broken explicitly by introducing

different mass terms for two scalars. The CFTIR is this case is trivial with no degrees of

freedom.

2 RG Flows with a Broken U(1) Global Symmetry

In this section we consider 4d CFTs with some U(1) global symmetry in which the con-

formal symmetry and the U(1) symmetry are broken either spontaneously or explicitly.

We assume that the induced flow terminates in a different CFT in the deep IR which is

invariant under the same U(1) transformation. Every such RG flow can be described as

spontaneous breaking of conformal and U(1) symmetries. This enables us to study gen-

eral features of these RG flows in terms of the effective action of some Nambu-Goldstone

bosons of spontaneously broken conformal and U(1) symmetries.

2.1 The Dilaton-Axion Effective Action

Consider a CFTUV in (3+1)-dimensions with a global U(1) symmetry. We assume that the

CFTUV has a moduli space of vacua which enables us to break the conformal symmetry

and the U(1) symmetry spontaneously by turning on VEVs for an operator O. The

VEV 〈O〉 ∼ f triggers an RG flow that leads to some CFTIR which we assume to be

invariant under the UV U(1) symmetry.12 In other words, the global U(1) symmetry of

the UV theory is also a symmetry of CFTIR (which can be anomalous in the presence

12It should be noted that there could be other emergent U(1) symmetries in the IR that do not embed
at all in the UV theory. These additional U(1)s will not affect our argument.
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of background fields). Of Course, the CFTIR can transform trivially under the UV U(1)

symmetry group.

Each broken generator associated with spontaneous breaking of continuous global

symmetries produces a massless Nambu-Goldstone (NG) pseudo-scalar. The low energy

effective action of the NG bosons can be obtained in a systematic way by using the coset

construction introduced in [53,54] (see also [55]). The coset construction for spontaneous

breaking of space-time symmetries is more subtle [56]. When the conformal algebra is

spontaneously broken to Poincaré sub-algebra

so(4, 2)→ iso(3, 1) , (2.1)

one may expect that there are five NG modes – a scalar τ associated with the broken

dilation generator D and a vector aµ associated with the broken special conformal gen-

erators Kµ. However, not all these modes are independent because of the inverse Higgs

effect [57]. This follows from the fact that the commutator [Kµ, Pν ] = 2 (Jµν − ηµνD) can

be utilized to eliminate aµ = 1
2
∂µe

τ [58–63].

So, the spontaneously broken conformal symmetry generates only one massless NG

boson – the dilaton τ . The dilaton is accompanied by a pseudo-scalar β, which is the NG

boson of the spontaneously broken U(1) symmetry. For RG flows in which the conformal

symmetry and the U(1) symmetry are broken explicitly, the dilaton τ and the axion β

can be introduced as compensators for broken symmetries. So, in general the low energy

theory consists of CFTIR and massless scalars τ and β

SIR = CFTIR + Seff [τ, β] . (2.2)

The effective action Seff [τ, β] can be obtained by using the coset construction. However,

following [15] we will derive the effective action in a physically more transparent way by

coupling the theory to background fields.

We begin by coupling the theory to a background metric gµν(x) and a background

U(1) gauge potential Aµ(x). In the presence of background fields, the conformal trace

anomaly has the following structure

〈T µµ 〉 = −aE4 + cW 2 + κ0F
2 , (2.3)

up to total derivative terms which can be removed by adding finite and covariant counter-

10



terms in the UV theory. Here, E4 is the 4d Euler density, Wµναβ is the Weyl tensor

and F = dA is the flux for the background gauge field. Global symmetries can also

have ’t Hooft anomalies. In 4d, such anomalies reveal themselves through the current jµ

associated with the U(1) symmetry which is no longer conserved

〈∇µj
µ〉 = c1FµνF̃

µν + c2RµναβR̃
µναβ . (2.4)

Note that Hodge dualization

F̃µν =
1

2
εµναβF

αβ , R̃µναβ =
1

2
εµνγδR

γδ
αβ (2.5)

are defined with respect to the background metric gµν . Since, the global symmetry is

anomalous, one may worry that the trace anomaly (2.3) can also have non-gauge invariant

terms. However, as shown in [15], the Wess-Zumino consistency conditions guarantee that

the trace anomaly is gauge-invariant.

In the IR, the gauge field Aµ may not couple to CFTIR at all or it can couple to some

spin-1 abelian conserved current jIR
µ of CFTIR. In the latter case, the U(1) symmetry

associated with jIR
µ can also have ’t Hooft anomalies. The standard anomaly matching

arguments of [29] imply that the IR theory (2.2) must have the same anomalies as the

UV theory CFTUV. This requirement completely fixes the low energy effective action

Seff [gµν , Aµ; τ, β]. The flat space limit of Seff [gµν , Aµ; τ, β] with no background gauge field

then leads to the effective action Seff [τ, β].

Let us now study the variation of the action (2.2) under diff×Weyl transformations

and gauge transformations. Under Weyl transformations

gµν(x)→ e2σ(x)gµν(x) , τ(x)→ τ(x) + σ(x) . (2.6)

Similarly, the gauge transformation is defined in the usual way

Aµ(x)→ Aµ(x) +∇µα(x) , β(x)→ β(x) + α(x) . (2.7)

Of course, in general CFTUV and CFTIR have different set of anomalies. Hence, all changes

in anomalies in the flow from CFTUV to CFTIR must be compensated by the dilaton and

the axion. Hence, the Weyl variation of the effective action is completely fixed

δσSeff [gµν , Aµ; τ, β] =

∫
d4x
√
−gσ(x)

(
−∆aE4 + ∆cW 2 + ∆κ0F

2
)
. (2.8)
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Likewise, variation of the effective action under the gauge transformation (2.7) is also

fixed

δαSeff [gµν , Aµ; τ, β] =

∫
d4x
√
−gα(x)

(
∆c1FµνF̃

µν + ∆c2RµναβR̃
µναβ

)
. (2.9)

In the above equations ∆(· · · ) denotes the change of an anomaly under the RG flow,

where IR anomalies should be understood as the total anomalies of CFTIR, the dilaton,

and the axion. The variational equations (2.8) and (2.9) can now be solved systematically

to obtain Seff [gµν , Aµ; τ, β] by a straightforward generalization of [15].

It is useful, as discussed in [8], to decompose the effective action in the following way

Seff [gµν , Aµ; τ, β] =

∫
d4x
√
−gβ(x)

(
∆c1FµνF̃

µν + ∆c2RµναβR̃
µναβ

)
+

∫
d4x
√
−gτ(x)

(
−∆aE4 + ∆cW 2 + ∆κ0F

2
)

+ δSWZ + Sinv . (2.10)

Note that the first term in the above equation generates the correct gauge variation (2.9).

On the other hand, the second term in the above equation generates the correct Weyl

variation (2.8) plus an extra term −∆a
∫
d4x
√
−gτ(x)δσE4 which is cancelled by adding

a non-linear Wess-Zumino term δSWZ of τ . Of course, we can also add a term Sinv in the

action whose gauge and Weyl variations vanish. The main advantage of this formalism is

that δSWZ is uniquely fixed by ∆a [4]

δSWZ = −∆a

∫
d4x
√
−g
(

4

(
Rµν − 1

2
gµνR

)
∇µτ∇ντ − 2 (∇τ)2 (2�τ − (∇τ)2))

(2.11)

up to terms that are invariant under both diff×Weyl transformations and gauge transfor-

mations and hence can be absorbed in Sinv.

Importantly, only δSWZ and Sinv in (2.10) contribute in the flat space limit with no

background gauge field. We now focus on Sinv. This is the part of the effective action

which, in general, depends on the details of the RG flow. Nevertheless, at each derivative

order only a finite number of independent gauge and Weyl invariant terms can appear in

Sinv.
13 These terms can be efficiently constructed by defining gauge and Weyl invariant

13The Sinv is constructed from terms that are exactly invariant under the gauge and Weyl transfor-
mations. Hence, it is possible that we miss Wess-Zumino type terms in the action that are not exactly
invariant but shifts by a total derivative under the gauge and Weyl transformations [64]. However, these
terms do not contribute at the 4-field 4-derivative level and can be ignored for our purpose.
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combinations

ĝµν = e−2τgµν , Âµ = Aµ −∇µβ . (2.12)

Up to four derivatives, the most general Sinv is given by [15]

Sinv =

∫
d4x
√
−ĝ

(
−f

2

2

(
R̂

6
+ γ2

0 ĝ
µνÂµÂν

)
+

9∑
i=1

γiWi +O(∇6)

)
, (2.13)

where R̂, is defined using the Weyl-invariant metric (2.12) and four derivative invariants

Wi are given in appendix A. Note that f has dimension of mass and γi are real dimen-

sionless coefficients. We are now ready to write down the low-energy effective action by

taking the flat space limit of (2.10) with no background gauge field. Putting everything

together, Seff[τ, β] is given by

Seff[τ, β] =

∫
d4x

(
−f

2

2
e−2τ

(
(∂τ)2 + γ2

0 (∂β)2)+ 2∆a (∂τ)2 (2�τ − (∂τ)2))
+

∫
d4x e−4τ

(
9∑
i=1

γiWi

)
gµν=ηµν ,Aµ=0

+ · · · , (2.14)

where dots represent higher derivative terms. Equations of motion at the two derivative

level are given by

�τ = (∂τ)2 − γ2
0 (∂β)2 , �β = 2 (∂τ · ∂β) . (2.15)

Terms that vanish once we impose the on-shell condition for the dilaton and the axion can

be safely ignored at low energies since these terms can only affect low energy observables

at subleading orders. Hence, the above effective action can be further simplified by using

the above equations of motion, yielding

Seff[τ, β] =

∫
d4x

(
−f

2

2
e−2τ

(
(∂τ)2 + (∂β)2)+ 2∆a (∂τ)4 − 4∆a (∂τ)2 (∂β)2

)
+

∫
d4x

(
B (∂β)4 + b (∂τ · ∂β)2)+ · · · , (2.16)

where, we have redefined β to absorb γ0. Note that coefficients b and B are some linear

combinations of γi (see appendix A).
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2.2 Physical Dilaton and Axion

The effective action (2.16) is not very useful when we wish to study the theory using

traditional tools of QFT. We resolve this issue by a simple field redefinition:

e−(τ+iβ) = 1− φ+ iξ

f
, (2.17)

where, the physical fields φ and ξ are real. Plugging this into the action (2.16) and then

expanding up to fourth order in the fields, we obtain

Seff[φ, ξ] =

∫
d4x

(
−1

2
(∂φ)2 − 1

2
(∂ξ)2 +

∆a

2f 4

(
φ2�2φ2 − 2ξ2�2φ2

))
+

1

4f 4

∫
d4x

(
Bξ2�2ξ2 + bφξ�2φξ

)
+ · · · , (2.18)

where we have used the equations of motion to simplify the action. The first line of the

action is completely fixed by the UV and the IR fixed points of the RG flow. On the

other hand, the second line depends on the details of the RG flow and parameters B and

b, in general, are completely arbitrary. Dots represent terms with more than four fields

and/or four derivatives.

To summarize, any 4d RG flow with U(1) global symmetry breaking between two CFTs

can be described by the effective action of NG bosons of spontaneously broken conformal

and U(1) symmetry. Up to four derivative order, the effective action is completely fixed

in terms of three parameters {∆a, b, B}. Also the effective action (2.18) has the structure

(1.1) implying RG flows that do not break the global symmetry are a special case of the

general scenario with ξ → 0. There is a discrete difference between RG flows with and

without global symmetry breaking, however Seff[φ, ξ] still has a smooth ξ → 0 limit.

The above feature of the effective action (2.18), as correctly pointed out in [15], has

an important implication. The 4-particle interaction of the physical dilaton remains un-

modified even when we break the global U(1) symmetry. This implies that the proof of

the a-theorem by Komargodski and Schwimmer applies here as well. Moreover, from the

action (2.18) it is clear that there are other constraints on the parameters {∆a, b, B} for

unitary RG flows. Next we will introduce an equivalent CFT3 description of these RG

flows to impose constraints on {∆a, b, B} from the chaos bound.
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2.3 Dual CFT3 Description

It was shown in [8] that every RG flow connecting two conformal fixed points in d dimen-

sions can be interpreted as deformations of the spectrum of a generalized free CFTd−1 for

d ≥ 3. This dual CFTd−1, for any unitary RG flow, must obey the Euclidean axioms. As

a consequence, 4-point correlators of the dual CFTd−1 must obey the chaos bound [1].

This imposes rigorous constraints on {∆a, b, B} for unitary RG flows.

We analyze the effective action (2.18) as a theory in AdS4 with AdS radius RAdS large

but finite. The action now is simply given by

Seff[φ, ξ] =

∫
d4x
√
gAdS

(
−1

2
gµνAdS∂µφ∂νφ−

1

2
gµνAdS∂µξ∂νξ + Lint

)
, (2.19)

where the interactions are obtained from (2.18)

Lint =
1

4f 4

(
2∆aφ2�2φ2 − 4∆aξ2�2φ2 +Bξ2�2ξ2 + bφξ�2φξ

)
+ · · · . (2.20)

This is a theory in AdS without dynamical gravity. In the dual CFT3, the stress tensor

decouples from the low energy spectrum. In other words, the CFT3 central charge cT →
∞, however, fRAdS ≡ ∆f is large but fixed.14 The resulting CFT3 must be well behaved

below the cut-off scale ∆f . This effective CFT3 contains two scalar primary operators Oφ
and Oξ which are dual to the dilaton and the axion respectively. The fact that φ and ξ

are NG bosons implies that

∆φ = ∆ξ = 3 (2.21)

will not receive perturbative corrections.

We follow the formalism developed in [8] and interpret the dual CFT3 as a small

perturbation of a generalized free CFT in 3d with two scalar primaries. First consider

the case, Lint = 0. The dual CFT3, in this case, is exactly a generalized free CFT of

scalar primaries Oφ and Oξ. In addition, crossing symmetry requires that this generalized

free CFT must also contain infinite towers of double-trace operators [OφOφ]n,`, [OξOξ]n,`,
and [OφOξ]n,` with spin ` and dimension 6 + 2n + ` for all integer n ≥ 0 [65, 66]. We

now turn on the interaction Lint in AdS4. The bulk theory (2.19) now corresponds to a

deformed solution of CFT3 crossing equations in which double-trace operators [OφOφ]n,`,

[OξOξ]n,`, and [OφOξ]n,` acquire anomalous dimensions γ
(φφ)
n,` , γ

(ξξ)
n,` , and γ

(φξ)
n,` respectively.

The information of {∆a, b, B} is contained in these anomalous dimensions.

14The central charge cT is the overall coefficient that appears in the stress tensor two-point function.
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2.4 CFT Regge Correlators

We are now in a position to study Lorentzian four-point functions for the CFT3 dual to

the effective field theory (2.19). First, we start with two-point functions which can be

easily computed from (2.19)

〈Oφ(x1)Oφ(x2)〉 = 〈Oξ(x1)Oξ(x2)〉 =
c0

|x1 − x2|6
, (2.22)

where c0 = 12
π2 .

Next we consider various four-point functions of operators Oφ and Oξ. We are inter-

ested in the contributions of the four-point interaction Lint in the bulk theory (2.19) to

these four-point correlators. These are obtained from the tree-level Witten diagram in fig-

ure 3. We begin with the Lorentzian correlatorGφφφφ(ρ, ρ̄) = 〈Oφ(x4)Oφ(x1)Oφ(x2)Oφ(x3)〉
where all points are restricted to a 2d subspace:

x1 = −x2 = (x− = ρ, x+ = −ρ̄, 0) , x3 = −x4 = (x− = −1, x+ = 1, 0) , (2.23)

with 0 < ρ < 1 and ρ̄ > 1. Note that we are using null coordinates x± = x0 ± x1, where

x0 is time (see figure 4). The CFT Regge limit is defined as

ρ→∞ , ρ̄→ 0 , with ρρ̄ = fixed > 0 (2.24)

of the Lorentzian correlator 〈Oφ(x4)Oφ(x1)Oφ(x2)Oφ(x3)〉, where operators are ordered

as written. Our goal is to compute the contribution of Lint to Gφφφφ(ρ, ρ̄) in the Regge

limit (2.24). We follow [8] to obtain the leading Regge contribution

Gφφφφ(ρ, ρ̄) ≈ c2
0

(16ρρ̄)3
+ i

∆a

16π5∆4
f

ρ

(ρρ̄)7/2
f3333

(
−1

2
log(ρρ̄)

)
(2.25)

where the first term comes from the bulk identity exchange (disconnected Witten dia-

gram). The function f3333 is an integral

f3333(s) =

∫ ∞
−∞

dνΩiν(s)Γ

(
13/2 + iν

2

)2

Γ

(
13/2− iν

2

)2

(2.26)

of the Harmonic function Ωiν on hyperbolic space H2.15 The exact expression for f3333(s)

will not be important for us. The only relevant information is that f3333

(
−1

2
log(ρρ̄)

)
> 0

15Harmonic functions Ωiν are known in any dimension [67].
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Figure 3: The tree-level contact Witten diagram.

for 0 < ρρ̄ < 1.

Similarly, the Lorentzian correlator Gξξξξ(ρ, ρ̄) = 〈Oξ(x4)Oξ(x1)Oξ(x2)Oξ(x3)〉 can be

computed in an identical way. In particular, the leading Regge contribution is given by

Gξξξξ(ρ, ρ̄) ≈ c2
0

(16ρρ̄)3
+ i

B

32π5∆4
f

ρ

(ρρ̄)7/2
f3333

(
−1

2
log(ρρ̄)

)
. (2.27)

There are many mixed four-point functions that we can construct with operators Oφ
and Oξ. Clearly, the four-point interaction Lint can only contribute to mixed correlators

with two Oφ operators and two Oξ operators. For example, consider the correlator

Gφφξξ(ρ, ρ̄) ≡ 〈Oφ(x4)Oξ(x1)Oξ(x2)Oφ(x3)〉 = 〈Oξ(x4)Oφ(x1)Oφ(x2)Oξ(x3)〉 . (2.28)

At the leading order in the Regge limit, by following [8], we obtain

Gφφξξ(ρ, ρ̄) ≈ c2
0

(16ρρ̄)3
+ i

b

128π5∆4
f

ρ

(ρρ̄)7/2
f3333

(
−1

2
log(ρρ̄)

)
. (2.29)

Note that the same f3333 function appears here as well.

Moreover, the correlator Gφξφξ(ρ, ρ̄) ≡ 〈Oφ(x4)Oξ(x1)Oφ(x2)Oξ(x3)〉 and its cousins

also grow in the limit ρ→∞ for fixed ρρ̄. In particular, at tree level all these correlators

have the following Regge behavior

Gφξφξ(ρ, ρ̄) ≈ i
(b− 8∆a)

256π5∆4
f

ρ

(ρρ̄)7/2
f3333

(
−1

2
log(ρρ̄)

)
. (2.30)
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2.5 Anomalous Dimensions

The bulk theory (2.19) leads to anomalous dimensions to double-trace operators [OφOφ]n,`=2,

[OξOξ]n,`=2, and [OφOξ]n,`=2. Among these double twist operators, the operators [OφOφ]0,2,

[OξOξ]0,2, and [OφOξ]0,2 are of particular importance. So, we introduce the notation

γφφ ≡ γ
(φφ)
0,2 , γξξ ≡ γ

(ξξ)
0,2 , γφξ ≡ γ

(φξ)
0,2 (2.31)

to denote anomalous dimensions of spin-2 double-trace operators with minimal twists.

From the Regge correlators of the previous section, we can relate {∆a, b, B} to anoma-

lous dimensions γφφ, γξξ, and γφξ. Following [8], we find

γφφ = − 704∆a

13π2∆4
f

, γξξ = − 352B

13π2∆4
f

, γφξ =
88 (8∆a− b)

13π2∆4
f

. (2.32)

There are general constraints on families of minimal twist operators that appear in the

OPEs of primary operators of any unitary CFTs in more than two dimensions [14,65]. It is

tempting to apply these constraints directly to (2.32), however one should be more careful

for the following reason. The dual CFT3 must be regarded as an effective CFT which is

defined order by order in perturbation theory. Of course, even for such a theory bounds

of [14, 65] apply to minimal twist operators. However, identifying families of minimal

twist operators can be subtle for an effective CFT. In particular, it is easy to obtain

a wrong bound when the anomalous dimension and the OPE coefficient of a candidate

minimal twist operator receive contributions at different orders in perturbation theory.16

Therefore, we will not apply the CFT Nachtmann theorem directly to (2.32). Instead, we

will utilize the chaos bound which leads to similar but not exactly equivalent constraints.

Positivity conditions obtained from the chaos bound are more reliable since they follow

from rigorous CFT sum-rules [13,68,69].
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x+x−

V (1,−1) V (−1, 1)

W (ρ,−ρ̄)

W (−ρ, ρ̄)

Figure 4: A Lorentzian four-point function of W = Oφ + c1Oξ and V = Oφ + c2Oξ. All points
are restricted to a 2d subspace {x0, x1} and time x0 is running upward. Null coordinates are
defined as x± = x0 ± x1.

2.6 Constraints from the Chaos Bound

We now impose constraints on the effective action (2.18) by utilizing the chaos bound in

the dual CFT3. Consider the Lorentzian correlator

G =
〈V (x4)W (x1)W (x2)V (x3)〉
〈W (x1)W (x2)〉〈V (x4)V (x3)〉

(2.33)

in the Regge kinematics (2.23), as shown in figure 4, where operators inside the correlator

are ordered as written. In the above correlator, W and V are simple Hermitian operators

which are defined as follows

W = Oφ + c1Oξ , V = Oφ + c2Oξ , (2.34)

where c1 and c2 are arbitrary real numbers. In the Regge limit (2.24), these type of

correlators obey some nice properties in any unitary CFT. For example, any Lorentzian

correlators, such as G, where operators are inserted symmetrically in the Rindler wedges

can be interpreted as thermal correlators. More precisely, the Minkowski vacuum can be

interpreted as the thermofield double, entangling the right Rindler wedge with the left

Rindler wedge. In this “thermal” state of temperature T , a standard measure for chaos

16For example, consider the stress tensor operator which has twist 1. Obviously, it appears in the OPE
of OφOφ, as well as OξOξ. Hence, the stress tensor is truly the lowest twist spin-2 operator in the full
theory. However, in the limit cT →∞, the stress tensor contribution to 4-point correlators is subleading.
So, it is unclear whether, and in what sense, the CFT Nachtmann theorems of [14,65] apply to (2.32).
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is the out-of-time-order correlator (OTOC) [1]

F (tR) = tr [yV yW (tR)yV yW (tR)] (2.35)

where tR in this case is the Rindler time and

y4 =
e−βH

tr [e−βH ]
, β =

1

T
. (2.36)

The Minkowski correlator (2.33) now can be viewed as a thermal correlator on Rindler

space

G =
F
(
tR − iβ

4

)
Fd

, Fd = tr
[
y2V y2V

]
tr
[
y2W (tR)y2W (tR)

]
, (2.37)

where, e2πtR/β = ρ/
√
ρρ̄. The correlator G, in the Regge limit, behaves in the following

way

G = 1 + δG , (2.38)

where the growth of δG ∼ ρ/
√
ρρ̄ can now be thought of as the Lyapunov growth of

a thermal quantum system. Moreover, ∆f has now has a natural interpretation as the

scrambling time t∗ = β log(∆f ).

The chaos bound of [1] imposes rigorous constraints on δG in the Regge limit (2.24):

(i) δG must not grow faster than ρ, (ii) when δG grows as ρ

Im δG ≥ 0 for 0 < ρρ̄ < 1 . (2.39)

The chaos bound can be interpreted as a causality constraint [13,68,69] or as a unitarity

constraint in certain scenarios [67,70]. The positivity condition (2.39) applies to effective

CFTs as well since it follows from a CFT sum-rule.17

We are now in a position to compute δG by utilizing our results from section 2.4.

Specifically, we obtain

G =
(16ρρ̄)3

c2
0 (1 + c2

1) (1 + c2
2)

(
Gφφφφ + c2

1c
2
2Gξξξξ +

(
c2

1 + c2
2

)
Gφφξξ + 4c1c2Gφξφξ

)
(2.40)

17This CFT sum-rule plays a crucial role in constructing C-functions from OTOC. We will discuss this
in section 5.
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implying δG ∼ iρ ∼ ie2πtR/β. The chaos bound (2.39) now imposes

8∆a+ 4c2
1c

2
2B +

(
c2

1 + c2
2

)
b+ 2c1c2 (b− 8∆a) ≥ 0 (2.41)

for all c1, c2 ∈ R. First, the above inequality immediately implies the 4d a-theorem

∆a = aUV − aIR ≥ 0 , (2.42)

where the equality holds only when the dilaton is exactly free representing the case in

which there is no RG flow. Moreover, the inequality (2.41) imposes constraints on B and

b as well

B ≥ 0 , b ≥ 0 , b ≥ 4∆a−
√

8B∆a . (2.43)

Note that b = 0 and/or B = 0 necessarily require ∆a = 0 (no RG flow). The excluded

region in the B − b plane is shown in figure 2. The last inequality which follows from the

interference effect can be interpreted as an upper bound on ∆a.

Clearly, δG is a monotonically increasing function of Rindler time tR. This fact, as we

will explain in section 5, is closely related to the existence of multiple C-functions that

decrease monotonically under RG flows in 4d.

As mentioned in the introduction, the bounds (2.43) can also be obtained directly in

flat space following [42] with some assumption about the asymptotic behavior of four-

point scattering amplitudes. The last bound of (2.43) is more subtle and may require

additional assumptions (see [30–33] for similar bounds).

2.7 Bootstrap Corner

When we look closely, there is a kink in the exclusion plot 2. The kink is located at18

B = 2∆a , b = 0 (2.44)

which corresponds to the effective action

Seff[φ, ξ] =

∫
d4x

(
−1

2
(∂φ)2 − 1

2
(∂ξ)2 +

2∆a

f 4

(
(∂φ)2 − (∂ξ)2)2

)
. (2.45)

18As mentioned before, b = 0 is ruled out. By equation (2.44), we mean that b
∆a → 0 is parametrically

suppressed.
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This type of corner, often seen in the conformal bootstrap, is associated with interesting

theories. However, we are not aware of any RG flows that are described by the effective

action (2.45).

3 Supersymmetric Flows

A simple example of an RG flow with broken global symmetry comes naturally from

supersymmetry. Consider 4d N = 1 SCFTs in which conformal symmetry is broken by

an operator that preserves the N = 1 supersymmetry. This breaks the U(1) R-symmetry

as well since the stress tensor is in the same supermultiplet as the R-current. As a result

the theory flows to another SCFT in the deep IR. In this scenario, the NG fields τ and β

are part of a chiral superfield Φ = τ + iβ + · · · . The resulting low energy effective action

for the bosonic part is given by [15,29]

Seff[φ, ξ] =
1

2

∫
d4x

(
− (∂φ)2 − (∂ξ)2 +

∆a

f 4

(
φ2�2φ2 + ξ2�2ξ2 − 2ξ2�2φ2 + 4φξ�2φξ

))
(3.1)

implying

B = 2∆a , b = 8∆a . (3.2)

These relations can be thought of as the N = 1 supersymmetric Ward identities [15]. The

relations (2.32) allow us to reinterpret these Ward identities as simple relations among

various anomalous dimensions in the dual CFT3

γφφ = γξξ , γφξ = 0 (3.3)

as shown in figure 5.

In section 5, we will argue that there are infinitely many distinct C-functions that

decrease monotonically from aUV to aIR under RG flows. In particular, for N = 1 super-

symmetric flows in 4d, by using the Ward identities of [15], we define the following set of

independent C-functions (also known as a-functions) in the dual CFT3 description:

C(µ) = aIR +
∆̃4
fη

7
2

f3333

(
−1

2
log(η)

) lim
1

∆4
f

�x�1

∫ x

∆
−4µ/f
f x

dσ Re

(
(r2

1 + r2
2)c2

0

(16η)3
− r2

1Gφφφφ − r2
2Gφφξξ

)
(3.4)
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Figure 5: 4d RG flows connecting two N = 1 SCFTs are represented by the black dot inside
the allowed region in B-b plane. Two dashed red lines correspond to the N = 1 supersymmetric
Ward identities which can be equivalently stated as γφφ = γξξ and γφξ = 0.

for all r1, r2 ∈ R, where η and σ are defined in equation (5.2).19 In the above equation,

we have exploited the positivity of the integrand which follows from Rindler positivity

[40]. Moreover, ∆̃f is given by fRAdS times some positive numerical factor (which is

independent of η, r1, and r2). The numerical factor can always be chosen such that

C

(
µ

f
→ 0

)
= aIR , C

(
µ

f
→∞

)
= aUV . (3.5)

This will be discussed in more detail in section 5, where the integral in the right hand

side of (3.4) will be written as an integral over an OTOC. Of course, a similar set of

C-functions can also be constructed from combinations of flat space amplitudes A(φφφφ)

and A(φξφξ) by extending the procedure presented in [4].

The presence of multiple a-functions forN = 1 flows has a long and interesting history.

For example, it was a source of much interest right after a-maximization was proposed.

However, it is not clear if there is any relation between the C-functions of (3.4) and

a-maximization [71–73]. In fact, it is also not obvious whether different C-functions of

19Note that c1, c2 and r1, r2 are related in the following way

r1 = (1 + c1c2) , r2 = c1 − c2 .

Moreover, as we found before c0 = 12
π2 .
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(3.4) are truly distinct. It is possible that these C-functions just represent different RG

schemes.20

4 Generalization to Non-Abelian Global Symmetries

There are a few subtleties associated with generalizing the preceding discussion to the

breaking of non-abelian global symmetries. Now we start with a CFTUV in (3+1)-

dimensions with a global symmetry group G, where G is any compact Lie group. For

simplicity, we assume that G is simple. However, as we will explain later, our result is

applicable even when G is a direct product of finite number of simple Lie groups.

Similar to the abelian case, we again couple the UV theory to a background metric

gµν(x) and a background gauge field Aµ(x). In the present case, it is important that the

gauge field Aµ(x) is introduced in such a way that it makes the global symmetry of the

UV theory local. In general, the global symmetry G can have ’t Hooft anomaly. In that

case, the above gauging seems to be problematic. However, we can always introduce a

set of massless spectating fields which only couple to the gauge field Aµ (but not CFTUV)

in such a way that the G-anomaly is cancelled. This standard trick enables us to make

the global symmetry of CFTUV local by coupling it to a gauge field Aµ. Of course, at the

linearized level, Aµ is coupled to CFTUV through the spin-1 conserved current associated

with the global symmetry G.

Let us now imagine that the conformal symmetry and the global symmetry of CFTUV

are spontaneously broken by turning on VEVs for some operator

G× so(4, 2)→ iso(3, 1) . (4.1)

This starts an RG flow that ends at CFTIR. We will only consider RG flows in which

CFTIR is invariant under the action of the group G. This means either the “individual

fields” of CFTIR transform trivially under the group G or more generally CFTIR also has

the UV symmetry G (which can be anomalous). Equivalently, the gauge field Aµ at the

linearized level, couples only to some spin-1 conserved current of CFTIR (if at all).21 Of

course, CFTIR can have other global symmetries that do not embed at all in the UV

20We thank J. Heckman for pointing it out.
21Note that the massless spectator fields that were introduced to cancel the UV G-anomaly will survive

even at the IR. The full IR theory, including the spectators, must be free from G-anomaly. Hence, we can
simply incorporate the effects of these spectator fields by implementing the ’t Hooft anomaly matching
condition.
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theory.

These class of RG flows are also described in terms of an effective action of the NG

bosons of broken symmetries. The same effective action also describes RG flows where

the conformal symmetry and the global symmetry of the CFTUV are broken explicitly. In

that scenario, as discussed before, the NG bosons should be interpreted as compensator

fields.

4.1 Effective Action

One advantage of coupling the theory to background fields is that the standard coset

construction for spontaneous symmetry breaking emerges naturally from it. Moreover, it

is also more convenient to track all anomalies when we couple the theory to a background

metric gµν(x) and a background gauge field Aµ(x). The background gauge field Aµ(x)

can be decomposed as follows

Aµ(x) = Aiµ(x)T i , (4.2)

where T i with i ∈ {1, 2, · · · , dim G} are Hermitian generators of G in the fundamental

representation satisfying

[T i, T j] = if ijkT k (4.3)

and Tr T iT j ∝ δij.

The broken global symmetry generates massless NG bosons βi, i ∈ {1, · · · , dim G},
which accompany the dilaton τ . The low energy effective action Seff [τ, βi] can be derived

by studying the variation of the action under diff×Weyl transformations and gauge trans-

formations. Weyl transformations act in the usual way (2.6). On the other hand, the

gauge field transforms under the gauge transformation as

Aµ(x)→ Ω(x)Aµ(x)Ω−1(x) + iΩ(x)∂µΩ−1(x) , (4.4)

where Ω(x) = eiαi(x)T i ∈ G. Under the same gauge transformation, NG fields β(x) ≡
βi(x)T i transform as

g(x) ≡ eiβ(x) → Ω(x)eiβ(x) . (4.5)

The infinitesimal gauge transformation takes the familiar form

Aµ(x)→ Aµ(x) + ∂µα(x)− i[Aµ, α] ≡ Aµ(x) +Dµα(x) , β(x)→ β(x) + α(x) , (4.6)

25



where α(x) = αi(x)T i.

We now can simply repeat the argument of the U(1) case. The anomaly matching

arguments of [4, 29] applies here as well implying that the changes in anomalies in the

flow from CFTUV to CFTIR must be compensated by the NG bosons. This leads to the

variation of the effective action under an infinitesimal Weyl transformation

δσSeff [gµν , Aµ; τ, βi] =

∫
d4x
√
−gσ(x)

(
−∆aE4 + ∆cW 2 + ∆κGTrF 2

)
(4.7)

where κG is the trace anomaly associated with the background gauge field Aµ(x). Sim-

ilarly, the variation of the effective action under an infinitesimal gauge transformation

(4.6) must have the following form

δαSeff [gµν , Aµ; τ, βi] =

∫
d4x
√
−g
(

∆cAdijkα
iF j
µνF̃

µν
k + ∆cgTr(α)RµναβR̃

µναβ
)
, (4.8)

where, cA and cg are anomaly coefficients and dijk = Tr ({Ti, Tj}Tk). Note that the second

term in (4.8) vanishes since Tr Ti = 0. Hence, there is no mixed gauge-gravitational

anomaly when the symmetry group G is simply laced. Nevertheless, we kept both terms

since later we will generalize to symmetry groups that may contain U(1) factors. This

does not cost us anything because in the flat space limit with no background gauge field,

the gauge anomalies (4.8) do not contribute to the low energy effective action of NG

bosons.

The rest of the argument is exactly the same as before implying that in the flat space

limit with no background gauge field Seff[τ, βi] still has the same simple form

Seff[τ, βi] = (SWZ + Sinv)gµν=ηµν ,Aµ=0 , (4.9)

where, the Wess-Zumino part of the action SWZ produces both the conformal anomaly

(4.7), as well as the anomaly for the global symmetry G (4.8). Similar to the abelian case,

SWZ in the flat space limit with no background gauge field is uniquely fixed by ∆a

SWZ|gµν=ηµν ,Aµ=0 = 2∆a

∫
d4x
√
−g (∇τ)2 (2�τ − (∇τ)2) . (4.10)

Furthermore, Sinv can be constructed from the Weyl invariant combination ĝµν = e−2τgµν

and the gauge covariant combination Âµ = Aµ − ωµ, where

ωµ(x) ≡ ig(x)∂µg
−1(x) ≡ ωiµ(x)Ti (4.11)
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with g(x) ≡ eiβ(x). Under the gauge transformation we find Âµ → Ω(x)ÂµΩ−1(x). Note

that ωµ(x) is precisely the Maurer-Cartan form which plays a central role in the coset

construction. This allows us to define a coset covariant derivative

ωµ(x) = Dµβ(x) . (4.12)

Therefore, up to four-field level, we can write

Sinv =

∫
d4x
√
−ĝ

(
−f

2

2

(
R̂

6
+ 2γ2

0 ĝ
µν Tr

(
ÂµÂν

))
+

10∑
I=1

γIW̃I +O(∂6)

)
, (4.13)

where, W̃I are all four-derivative invariants which are given in appendix B. Similar to the

previous sections, the mass scale f represents the symmetry breaking scale. Whereas,

γ-coefficients are real, dimensionless, and theory dependent.

After using the equations of motion and taking the flat space limit with no background

gauge field, we obtain the low-energy effective action (B.10) for the physical dilaton φ and

physical axions ξi (for details see appendix B). The effective action at the four-derivative

and four-field level has the form (1.1)

Seff[φ, ξi] = Sconformal[φ; ∆a] + Sglobal[ξi;Bijkl] + Smixed[φ, ξi; ∆a, b] . (4.14)

As noted in the introduction, the effective action of the dilaton Sconformal[φ; ∆a] remains

unaffected by breaking of the global symmetry G

Sconformal[φ; ∆a] =

∫
d4x

(
−1

2
(∂φ)2 +

∆a

2f 4
φ2�2φ2

)
+O

(
∂6;φ6

)
(4.15)

which agrees with the dilaton effective action of [4]. Similarly, Sglobal[ξi;Bijkl] is the axionic

part of the effective action22

Sglobal[ξi;Bijkl] =− 1

2

∫
d4x

(
∂ξi · ∂ξi −

1

6f 2
fijkfij′k′ξjξj′� (ξkξk′) +

1

4f 2

∑
i 6=j

ξ2
i�ξ

2
j

)

+
1

4f 4

∫
d4xBijklξiξj�

2 (ξkξl) +O
(
∂6; ξ6

)
, (4.16)

22Let us note that Sglobal[ξi;Bijkl] can alway be written in the form (4.16). However, this requires
scaling the generators such that Tr (TiTj) = 1

2γ2
0
δij , where γ0 > 0 is theory dependent. The structure

constants fijk are also defined in this convention.
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where, Bijkl is fixed by symmetry

Bijkl = B1δijδkl +B2 (δikδjl + δilδjk) +B3 (fi′ikfi′jl + fi′ilfi′jk) +B4Tijkl (4.17)

up to arbitrary dimensionless coefficients B1, B2, B3, and B4. Note that we have defined

Tijkl = Tr ({Ti, Tj}{Tk, Tl}) and fijk = −2i Tr
(
[T i, T j]T k

)
. Of course, for a specific G

all B-coefficients may not be independent. For example, for G = SU(2) it is sufficient to

set B3 = B4 = 0.

In contrast to the abelian case, the axionic part of the effective action (4.16) also

contains two-derivative four-field interactions. This should not be surprising since spon-

taneous breaking of a non-abelian continuous global symmetry can generate two-derivative

four-field interactions which follow directly from the Maurer-Cartan form (4.11). In fact,

this type of two-derivative interactions are already present in more familiar chiral La-

grangians in particle physics which lead to radiative corrections. However, there is a

crucial difference. The term ξ2
i�ξ

2
j in the action (4.16) appears only when the breaking of

global symmetry is accompanied by a breaking of conformal symmetry. In other words,

taking the physical dilaton φ = 0 in (4.14) does not reproduce the low energy effective

action associated with spontaneous breaking of only the global symmetry G. On the other

hand, the limit τ = 0 is actually smooth reproducing the correct effective action for the

broken global symmetry.

Finally, the mixed part of the action Smixed[φ, ξi; ∆a, b] represents interactions between

φ and ξi

Smixed[φ, ξi; ∆a, b] =
1

4f 4

∫
d4x

(
bφξi�

2 (φξi)− 4∆aξ2�2φ2
)

+O
(
∂6;φ2ξ4;φ4ξ2

)
(4.18)

where, b is a dimensionless coupling constant. Note that the second term of Smixed is

universal. In general, b andB-coefficients depend on CFTUV, CFTIR, and deformations (or

VEVs) that trigger the RG flow. As the abelian case leads us to expect, these coefficients

must also satisfy various positivity conditions for unitary RG flows which we will derive

next. However, presence of the two-derivative four-field interactions in (4.16) makes these

bounds more subtle.

4.2 Bounds from Chaos

Similar to the U(1) case, we again consider the dual CFT3 description of RG flows char-

acterized by (4.14). The dual CFT3 now contains N + 1 scalar primary operators of
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dimensions ∆ = 3. The operator dual to the physical dilaton is denote by Oφ. Similarly,

operators Oi for i = 1, · · · , N are dual to ξi. In this dual description, consider the Regge

correlator (2.33) in the kinematics (2.23), where operators W and V now are defined as

follows

W = Oφ +
∑
i

ciOi , V = Oφ +
∑
i

c̃iOi , (4.19)

where ci and c̃i are arbitrary real numbers. The chaos bound (2.39) now imposes

8∆a+ b
∑
i

(
c2
i + c̃2

i

)
+ 2 (b− 8∆a)

∑
i

cic̃i + 4
∑
i,j,k,l

Beff
ijklcic̃jckc̃l ≥ 0 (4.20)

for all c, c̃ ∈ RN . Unlike the abelian case, now there can be loop contributions

Beff
ijkl = Bijkl +B1−loop

ijkl (4.21)

where B1−loop
ijkl represents 1-loop contributions to the Regge correlator (2.33) from the

two-derivative four-field interactions in (4.16).

4.2.1 Linear Constraints

First, note that the consistency condition (4.20) imposes

∆a > 0 , b > 0 , (4.22)

implying that the broken global symmetry does not affect the proof of the a-theorem.

Similarly, we also find that Beff
ijkl is strongly elliptic. In other words, it has a positive

definite bi-quadratic form

Bc2c̃2 ≡
∑
i,j,k,l

Beff
ijklcic̃jckc̃l > 0 (4.23)

for all c, c̃ ∈ RN over unit spheres
∑

i cici =
∑

i c̃ic̃i = 1. It should be noted that in general

the constraint (4.23) is not very interesting since it is automatically satisfied because of

the 1-loop contributions from the two-derivative four-field interactions in (4.16). From

the effective field theory perspective the two-derivative four-field interactions in (4.16)

induce log runnings of B1, B2, B3, and B4 which dominate at low energies. These log

runnings ensure that the constraint (4.23) is trivially satisfied. This is very similar to the

constraints on the SU(2) chiral Lagrangian, as discussed in [42,74].
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On the other hand, if the two-derivative four-field interactions in (4.16) are para-

metrically suppressed because of weak coupling |Bijkl| � |B1−loop
ijkl |, the constraint (4.23)

becomes non-trivial.23 In this case Beff
ijkl ≈ Bijkl and hence the positivity constraint

(4.23) leads to interesting bounds on B-coefficients. Clearly, when loop contributions are

suppressed, the positivity condition (4.23) is non-trivial and holds whenever any global

symmetry is spontaneously broken with or without conformal symmetry breaking.

4.2.2 Nonlinear Constraints

When loop contributions are suppressed |Bijkl| � |B1−loop
ijkl |, there are stronger conditions

that ∆a, b, and Bijkl must also satisfy. In particular, the relation (4.20) imposes that

A[c, c̃] ≡ ∆a (1− 2c · c̃) +
1

8
b (c+ c̃)2 +

1

2
(B1 +B2) (c · c̃)2 +

1

2
B2c

2c̃2

+
1

2
(B3fi′ijfi′kl +B4Tijkl) cic̃jckc̃l ≥ 0 (4.24)

for all c, c̃ ∈ RN . Clearly, for c · c̃ =
∑

i cic̃i > 0 the above condition is stronger than the

previous positivity conditions when loop contributions are absent. Of course, these infinite

set of inequalities are not all independent. It is always possible to reduce A[c, c̃] ≥ 0 into

a finite number of constraints on ∆a, b and BI .

4.3 Example: SU(2)

Let us provide an example to persuade the reader that for specific theories the above

constraints simplify greatly. We consider a scenario in which CFTUV has a global SU(2)

symmetry. The conformal symmetry and the global symmetry of CFTUV are explicitly

or spontaneously broken

SU(2)× so(4, 2)→ iso(3, 1) (4.25)

which starts an RG flow that ends at CFTIR. This happens naturally when the CFTUV

has N = 2 supersymmetry since N = 2 SCFTs have U(1)× SU(2) R-symmetry.

The SU(2) symmetry implies

Bijkl = B1δijδkl +B2 (δikδjl + δilδjk) . (4.26)

Of course, the constraints (4.22) remain unaffected. On the other hand, the condition

23In the effective action (4.16), this weak coupling suppression can be equivalently stated as
|B1|, · · · , |B4| � 1 but not too large so that they do not affect the perturbative expansion in 1

f .
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that Bijkl is strongly elliptic imposes

B1 +B2 > 0 , B2 > 0 . (4.27)

As discussed before, the positivity conditions (4.27) are non-trivial only when 1-loop

contributions are negligible. Furthermore, when 1-loop contributions are suppressed,

A[c, c̃] ≥ 0 reduces to a stronger nonlinear constraint

b ≥ 4∆a−
√

8∆a(B1 + 2B2) (4.28)

which can be viewed as an upper bound on ∆a. Clearly, we again obtain an exclusion plot

which is exactly the same as figure 2 with the substitution B → B1 + 2B2. Furthermore,

this identification suggests that RG flows between N = 2 SCFTs in which conformal

symmetry and SU(2)R symmetry are broken by an operator that preserves the N = 2

supersymmetry, are described by b = 8∆a and B1 + 2B2 = 2∆a. It would be nice to

verify this expectation directly from supersymmetric Ward identities.

4.4 A More General Scenario

So far, we have assumed that G is a simple Lie group. However, the form of the effective

action (4.9) implies that the same analysis holds for a more general scenario. In particular,

the preceding argument applies even when G is a direct product of finite number of simple

Lie groups and U(1)

G =
∏
a

Ga . (4.29)

Now there can be mixed anomalies associated with various Ga. However, contributions

from these additional anomalies also vanish when we take the flat space limit with no

background fields. In general, the RG flow between CFTUV and CFTIR can preserve

some subgroup H of G. In such a scenario CFTIR has the global symmetry H. In fact, it

is possible that deep in the IR some of the broken UV symmetries get restored and hence

the CFTIR can have a bigger symmetry group H ′ ≥ H. This situation, for example, arises

naturally for supersymmetric flows. We can include this possibility as well since the low

energy effective action of the NG bosons depends only on H. In general, these RG flows

are also described in terms of a low energy effective action of a dilaton φ and N axions ξi
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where

N = dim G− dim H =
∑
a

dim Ga − dim H . (4.30)

The effective action still has the form (4.14) where Sconformal remains unaffected (4.15). A

straightforward generalization leads to

Seff[φ, ξi] =

∫
d4x

(
−1

2

(
(∂φ)2 +

N∑
i=1

(∂ξi)
2

)
+

∆a

2f 4

(
φ2�2φ2 − 2

N∑
i=1

ξ2
i�

2φ2

)
+ L(2)[ξ]

)

+
1

4f 4

∫
d4x

(
N∑
i=1

biφξi�
2φξi +

N∑
i,j,k,l=1

Bijklξiξj�
2ξkξl

)
, (4.31)

where N is given by (4.30). Again notice that NG modes ξi of broken global symme-

tries do not interfere with the proof of the 4d a-theorem. In this general case, the low

energy effective action of NG bosons is completely fixed by symmetry up to dimension-

less coupling coefficients {bi, Bijkl}.24 Just like before, coupling coefficients B ≡ {Bijkl}
is a strongly paired symmetric 4-tensor which has the symmetries of the N -dimensional

elasticity tensor

Bijkl = Bjikl = Bijlk = Bklij . (4.32)

However, now it may not have the form (4.17) in general. Together, {bi, Bijkl} contains
1
8
N (N3 + 2N2 + 3N + 10) independent coefficients. Although, in a specific theory some

of these coefficients can be related to each other and/or ∆a.

In the above effective action (4.31), the axionic part also contains two-derivative four-

field interactions L(2)[ξ]. This can be obtained directly from our earlier analysis

L(2)[ξ] =
1

12f 2
fijkfij′k′ξjξj′� (ξkξk′)−

1

8f 2

∑
i 6=j

ξ2
i�ξ

2
j , (4.33)

where, axions ξi with i ∈ {1, 2, · · · , N} belong in some large reducible representation with

structure constants fijk. Clearly, the first term vanishes for NG bosons associated with

broken U(1)s.

The chaos bound now leads to a similar positive function in the space of {∆a, bi, Bijkl}

A[c, c̃] = ∆a (1− 2c · c̃) +
1

8

N∑
i=1

bi (ci + c̃i)
2 +

1

2

∑
i,j,k,l

Beff
ijklcic̃jckc̃l ≥ 0 (4.34)

24Note that just from symmetry argument we get a real symmetric matrix bij and a 4-tensor Bijkl. We
can always perform a field redefinition to diagonalize bij ⇒ biδij .
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for all c, c̃ ∈ RN , where Beff
ijkl is defined as before (4.21). This positivity condition leads to

∆a > 0, bi > 0, and Beff
ijkl is strongly elliptic (4.23). Some of these constraints involving

Bijkl can be trivially satisfied because of the 1-loop contributions from the two-derivative

four-field interactions (4.33).

This is the most we can say about the effective action (4.14) without requiring to

know anything about the details of the flow. For specific theories, some components

of {∆a, bi, Bijkl} can actually be related. In that case, the above constraints simplify

greatly. In general, the condition (4.34) can be alternatively and equivalently stated as

an eigenvalue problem [75]

∑
j,k,l

Aijklc̃jckc̃l = λci ,
∑
i,j,k

Aijklcic̃jck = λc̃l ,
∑
i

cici =
∑
i

c̃ic̃i = 1 (4.35)

where c and c̃ are left and right eigenvectors of A with eigenvalue λ ∈ R. Now the

condition (4.23) implies that all eigenvalues of (4.35) must be positive. In spirit, this is

analogous to the matrix eigenvalue problem, however, in general the eigenvalue problem

(4.35) for N > 3 is difficult to solve. In fact, it is known that the optimization problem

(4.23) is NP-hard [76].

5 Sum-Rules, OTOC and C-Functions

It was argued in [8] that some properties of RG flows are more transparent in the dual

CFT description in one less dimension. For example we can write a rigorous CFT3 sum-

rule for A[c, c̃], as defined in (4.34) (with (2.41) and (5.7) as special cases). This can be

achieved by considering the correlator

Gcc̃(σ) =
〈V (x4)W (x1)W (x2)V (x3)〉
〈W (x1)W (x2)〉〈V (x4)V (x3)〉

(5.1)

in the kinematics (2.23) in the dual CFT3 description. The operators W and V are defined

in (4.19) with c, c̃ ∈ RN . We have also introduced variables

η = ρρ̄ , σ =
1

ρ
. (5.2)
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5.1 Sum-Rules

The correlator (5.1), as explained in section 2.6, can be viewed as a thermal OTOC on

Rindler space

Gcc̃(σ) = F

(
tR −

iβ

4

)
/Fd , e−2πtR/β =

√
ησ , (5.3)

where tR is the Rindler time. Analyticity of CFT correlators in Lorentzian signature, as

discussed in [40] (see also [8, 14]), allows us to write a CFT3 sum-rule for A[c, c̃]

A[c, c̃] =
∆̃4
fη

1
2 (1 +Nc2)(1 +Nc̃2)

f3333

(
−1

2
log(η)

) lim
1

∆4
f

�x�1

∫ x

0

dσ Re (1−Gcc̃(σ)) ≥ 0 , (5.4)

for any c, c̃ ∈ RN where 0 < η < 1. Note that f3333, as defined in (2.26), is positive.25

Positivity of the integral follows from Rindler positivity which requires Re (1−Gcc̃(σ)) ≥
0 [40]. This sum-rule does not make any assumptions about the dual CFT3 beyond the

usual Euclidean axioms. Alternatively, the positivity also follows from the bound on the

OTOC |F (tR− iβ
4

)| ≤ Fd, up to corrections that vanish in the limit |σ| � 1 [1]. Moreover,

the above CFT3 sum-rule, after using (5.3), can be rewritten as a time integral of the

OTOC

A[c, c̃] =
1

β
P (η) lim

t∗�t0�β

∫ ∞
t0

dtR e
−2πtR/β Re

(
Fd − F

(
tR −

iβ

4

))
≥ 0 , (5.5)

where P (η) is a theory independent positive function of η that does not depend on c and

c̃.26 A special case, of (5.5) is c = c̃ = 0 which provides a relation equating ∆a with the

integral of F
(
tR − iβ

4

)
.

5.2 C-Functions

Another reason the sum-rules (5.4) and (5.5) are of importance is that they provide a

basis to construct an infinite set of CFT3 functions that decrease monotonically along the

25We have also absorbed positive numerical factors in the definition of ∆̃f .
26To be precise,

P (η) =
512π5∆̃4

fη
3

9f3333

(
− 1

2 log(η)
) , t0 =

β

2π
log

(
1
√
ηx

)
. (5.6)

Also note that the integral (5.5) does not depend on t0 as long as it is much smaller than the effective
scrambling time t∗ = β log (∆f )� t0 � β.
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RG flow

A[µ; c, c̃] =
∆̃4
fη

1
2 (1 +Nc2)(1 +Nc̃2)

f3333

(
−1

2
log(η)

) lim
1

∆4
f

�x�1

∫ x

∆
−4µ/f
f x

dσ Re (1−Gcc̃(σ))

=
1

β
P (η) lim

t∗�t0�β

∫ t0+ 2µ
πf
t∗

t0

dtR e
− 2πtR

β Re

(
Fd − F

(
tR −

iβ

4

))
(5.7)

with 0 < η < 1, for all c, c̃ ∈ RN . These functions, for all c, c̃ ∈ RN , interpolate between

A[c, c̃] in the UV (µ/f →∞) and 0 in the IR (µ/f → 0). Thus, using the basis (5.7), we

can construct a general C-function

C[µ; c, c̃] = CIR +
CUV − CIR

A[c, c̃]
A[µ; c, c̃] . (5.8)

By construction, C[µ; c, c̃], for any c, c̃ ∈ RN , decreases monotonically from CUV to CIR

under the RG flow. Besides, C[µ; c, c̃] defines a function which is constant and independent

of energy scale at the UV and IR fixed points. A special case of (5.8) with CUV = aUV

and CIR = aIR is an infinite set of a-functions that monotonically decrease from aUV to

aIR. Any such a-function provides a good measure of the effective number of degrees of

freedom along 4d RG flows.

Of course, in general (5.8) is stronger than the special case we considered above. For

example, it is possible that for certain values of c and c̃ the constraint (4.34) for specific

theories leads to a positivity condition for some other central charges associated with

CFTUV and CFTIR. For any such central charges, (5.8) also provides a set of C-functions

that interpolate between the UV and the IR values.

Finally, let us comment on C-functions of 4d supersymmetric RG flows. The above

discussion immediately implies that there are infinitely many distinct functions a(µ) for

N = 1 supersymmetric flows that monotonically decrease along RG flows from aUV to

aIR. In particular, the CFT3 quantity (3.4) for any choice of r1 and r2 leads to a distinct

a(µ).

6 Example: Free Massive Scalars

The results of the preceding sections depend only on general principles and symmetries.

We now provide a simple example that highlights most of the basic features of our general

construction.
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Our UV theory contains a free complex scalar

CFTUV = −1

2

∫
d4x∂µΦ†∂µΦ , (6.1)

which enjoys an additional U(1) global symmetry: Φ → eiθΦ ,Φ† → e−iθΦ†. We now

deform this CFT by adding mass terms

SUV = −1

2

∫
d4x

(
∂µΦ†∂µΦ +m2

1Φ2
1 +m2

2Φ2
2

)
, (6.2)

where Φ = Φ1 +iΦ2 and m2
1,m

2
2 > 0. The mass terms break both the conformal symmetry

and the global U(1) symmetry explicitly. We will discuss the flow of this UV theory. The

CFTUV consists of two free massless scalars and hence

aUV = 2× 1

360(4π)2
. (6.3)

In the deep IR, the scalar field Φ decouples completely, and the CFTIR is trivial with no

degrees of freedom, implying aIR = 0.

6.1 Dilaton as a Compensator

First as a warm up, we introduce a single real compensator Ω that allows us to view the

explicit conformal symmetry breaking as a spontaneous symmetry breaking

S = −1

2

∫
d4x

(
∂µΦ†∂µΦ + ∂µΩ∂µΩ + λ1Ω2Φ2

1 + λ2Ω2Φ2
2

)
, (6.4)

where λ1 = m2
1/f

2 and λ2 = m2
2/f

2 for some arbitrary mass scale f . The scale f can be

freely tuned, however, we do not want the compensator to modify the RG flow of (6.2)

and hence we choose f � m1,m2. In this limit, Ω and Φ are weakly interacting and we

have perturbative control over the theory (6.4).

The theory (6.4), at the classical level, is conformal. This can be seen by computing

the classical stress tensor

Tµν =∂µΦ1∂νΦ1 + ∂µΦ2∂νΦ2 + ∂µΩ∂νΩ

− 1

2
ηµν
(
∂µΦ†∂µΦ + ∂µΩ∂µΩ + λ1Ω2Φ2

1 + λ2Ω2Φ2
2

)
(6.5)

which is conserved but not traceless. This can be made traceless by adding an improve-
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ment term

T full
µν = Tµν −

1

6
(∂µ∂ν − ηµν�)

(
ΦΦ† + Ω2

)
. (6.6)

The improved stress tensor T full
µν is both conserved and traceless when we apply the equa-

tions of motion.

So, the conformal compensator modifies the theory (6.2) into a classically conformal

theory (6.4). What does it imply for the quantum theory? Whenever conformal symmetry

is broken explicitly by some mass parameters such as m1 and m2, that always introduces

an operatorial anomaly to the trace of the stress tensor which spoils the anomaly matching

argument of the previous sections. One can always introduce some conformal compensator

Ω that removes the operatorial anomaly. This is reflected by the fact that T full
µν is traceless.

Moreover, the absence of the operatorial anomaly in (6.4) guarantees that aUV must match

the total IR anomaly of CFTIR plus the dilaton.

The theory (6.4) has a moduli space along Ω for 〈Φ〉 = 0. Clearly, the theory is

conformal at 〈Ω〉 = 0. However, the conformal symmetry is spontaneously broken at

〈Ω〉 = f where we recover (6.2). Note that the theory (6.4) does not have any global U(1)

symmetry even classically. From this perspective, the global U(1) symmetry of CFTUV is

emergent only at 〈Ω〉 = 0. Hence, in this description we will not produce any NG boson

for the broken U(1) symmetry.

The dilaton effective action can be obtained by studying fluctuations around the bro-

ken phase: Ω = f − φ. The action now becomes

S = SUV −
1

2

∫
d4x

(
∂µφ∂

µφ+ J

(
φ

f

)(
m2

1Φ2
1 +m2

2Φ2
2

))
, J

(
φ

f

)
=
φ2

f 2
− 2

φ

f
. (6.7)

At low energies, we can integrate out the massive fields Φ1 and Φ2. We proceed by

computing the dilaton four-point amplitude at the leading order in 1/f . This leads to

precisely two copies of the 1-loop diagram in [4] for a single massive field – one with Φ1

running in the loop and another one with Φ2 running in the loop. So, we get the following

four-derivative effective action for the dilaton

Sconformal[φ] = −1

2

∫
d4x

(
(∂φ)2 − 1

180(4π)2f 4

(
φ2�2φ2

)
+O

(
φ6; ∂6

))
(6.8)

which agrees with (4.15) for ∆a = aUV given by (6.3).
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6.2 Spontaneous Breaking of U(1) Symmetry

Discussion of this section can be extended to also describe the explicit U(1) symmetry

breaking of (6.2) as a spontaneous symmetry breaking. This can be done by introducing

a complex compensator Ω:

S = −1

2

∫
d4x

(
∂µΦ†∂µΦ + ∂µΩ∂µΩ† + λ̃1ΩΩ†ΦΦ† + λ̃2

(
Ω2Φ†

2
+ Ω†

2
Φ2
))

, (6.9)

where couplings between Φ and Ω are arbitrarily weak

λ̃1 =
m2

1 +m2
2

2f 2
, λ̃2 =

m2
1 −m2

2

4f 2
. (6.10)

Moreover, under the U(1) symmetry Ω transforms as

Ω→ eiθΩ , Ω† → e−iθΩ† . (6.11)

Similar to the previous case, the theory (6.9) is classically conformal. Furthermore, now

one can also define a spin-1 current

jµ = i
(
Φ†∂µΦ− Φ∂µΦ†

)
+ i
(
Ω†∂µΩ− Ω∂µΩ†

)
(6.12)

which is conserved, once we impose the equations of motion.

At the leading order in λ̃1 and λ̃2, the theory (6.9) at energies m1,m2 � E � f can be

viewed as an exactly conformal theory with a U(1) global symmetry. These symmetries

are spontaneously broken when Ω gets a non-zero VEV, 〈Ω〉 = f , where we recover (6.2).

Fluctuations around the broken phase, Ω = f −φ− iξ, create NG bosons associated with

these broken symmetries. The additional massless mode ξ arises from the spontaneous

breaking of the global U(1) symmetry.

The dilaton-axion effective action now can be obtained by integrating out the massive

fields Φ1 and Φ2 from

S = SUV −
1

2

∫
d4x

(
∂µφ∂

µφ+ ∂µξ∂
µξ + J

(
φ

f

)(
m2

1Φ2
1 +m2

2Φ2
2

)
−8λ̃2Φ1Φ2 (φξ − fξ) +

ξ2

f 2

(
m2

2Φ2
1 +m2

1Φ2
2

))
. (6.13)

As our general discussion led us to expect, the dilaton four-point scattering amplitude

remains unchanged. In order to simplify the computations of other amplitudes, we take
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m2 = m1 + δm with δm� m1. In this limit, at the 1-loop level we find27

A4 (φφφφ) =
s2 + t2 + u2

45(4π)2f 4
, (6.14)

A4 (ξξξξ) =
s2 + t2 + u2

15(4π)2f 4

(
1 +

16

3

(
δm

m1

)2

+O
(
δm

m1

)4
)

, (6.15)

A4 (φφξξ) = − s2

45(4π)2f 4
+

t2 + u2

45(4π)2f 4

(
δm

m1

)2

+O
(
δm

m1

)4

(6.16)

where s = 2p1 · p2, t = 2p1 · p3, and u = 2p1 · p4. The resulting effective action has exactly

the form (2.18) with

B = 6∆a

(
1 +

16

3

(
δm

m1

)2

+O
(
δm

m1

)4
)

, b = 8∆a

(
δm

m1

)2

+O
(
δm

m1

)4

. (6.17)

These results are shown in figure 2. Notice that b = 0 only when ∆a = 0, which is

consistent with the general results of section 2. Following our discussion of the preceding

section, we can construct a set of functions that monotonically decreases from aUV =
1

180(4π)2 to aIR = 0.
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A Invariants for U(1) Global Symmetry

Four derivative invariants Wi for U(1) global symmetry are given by [15]

W1 = Ŵ 2 , W2 = R̂2 , W3 = Âµ∇̂µR̂ , W4 =
(
∇̂µÂµ

)2

, (A.1)

W5 = ĝµνÂµ�̂Âν , W6 = R̂µνÂµÂν , W7 = R̂ĝµνÂµÂν , W8 =
(
ĝµνÂµÂν

)2

,

W9 = ĝµνÂµÂν∇̂λÂλ ,

where, R̂, R̂µν , and Ŵµναβ are computed using the Weyl-invariant metric (2.12). Terms

that vanish once we impose the on-shell condition for the dilaton and the axion can be

safely ignored at low energies since these terms can only affect low energy observables

at subleading orders. Hence, the Weyl invariants Wi in the flat space limit with no

background gauge field can be further simplified by using the free equations of motion

(2.15)

W1 = 0 , W2 = 36γ4
0e

4τ (∂β)4 , W3 = 0 , W4 = 0 , (A.2)

W5 = W6 = −2e4τ
(
γ2

0 (∂β)4 + (∂τ · ∂β)2) , W7 = −6γ2
0e

4τ (∂β)4 ,

W8 = e4τ (∂β)4 , W9 = 0 .

B The Effective Action for Non-Abelian Global Sym-

metries

B.1 Invariants for Non-Abelian Global Symmetries

Independent four derivative invariants W̃i for a general compact, simple Lie group G are

given by28

W̃1 = Tr
((
∇̂µÂµ

)(
∇̂νÂν

))
, W̃2 = ĝµν Tr

(
Âµ�̂Âν

)
, (B.1)

W̃3 = R̂µν Tr
(
ÂµÂν

)
, W̃4 = R̂ĝµν Tr

(
ÂµÂν

)
, W̃5 = ĝµν Tr

(
ÂµÂρ∇̂ρÂν

)
,

W̃6 = ĝµν ĝρσ Tr
(
ÂµÂν

)
Tr
(
ÂρÂσ

)
, W̃7 = ĝµν ĝρσ Tr

(
ÂµÂρ

)
Tr
(
ÂνÂσ

)
,

W̃8 = ĝµν ĝρσ Tr
(
ÂµÂνÂρÂσ

)
, W̃9 = Ŵ 2 , W̃10 = R̂2 .

28Note that there can be Wess-Zumino type terms that are not exactly invariant but shifts by a total
derivative under the gauge and Weyl transformations. For a detailed discussion see [64]. However, these
terms do not contribute at the 4-field 4-derivative level and hence we will ignore them.
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We now write down the low-energy effective action by taking the flat space limit with no

background gauge field of (4.13)

Seff[τ, β] =

∫
d4x

(
−f

2

2
e−2τ

(
(∂τ)2 +

N∑
i=1

(Dβi)
2

)
+ 2∆a (∂τ)2 (2�τ − (∂τ)2))

+

∫
d4x e−4τ

(
10∑
I=1

γIW̃I

)
gµν=ηµν ,Aµ=0

+ · · · , (B.2)

where dots represent higher derivative terms. Note that we removed γ0, which is theory

dependent, by rescaling the generators

Tr (TiTj) =
1

2γ2
0

δij . (B.3)

The Maurer-Cartan form Dµβ is given by

Dµβi = ∂µβi −
1

2
fijkβj∂µβk +

1

6
fnjkfnilβlβj∂µβk + · · · . (B.4)

Equations of motion at the leading order are

�τ = (∂τ)2 −
N∑
i=1

(∂βi)
2 + · · · , �βi = 2 (∂τ · ∂βi) + · · · . (B.5)

The invariants W̃I in the flat space limit with no background gauge field can be further

simplified by using the above equations of motion. At the four-field level we obtain

W̃1 = 0 , W̃2 = W̃3 = −e4τ

(∑
i

(∂βi)
2

)2

+ δij (∂τ · ∂βi) (∂τ · ∂βj)

 , (B.6)

W̃4 = −3e4τ

(∑
i

(∂βi)
2

)2

, W̃5 = e4τfijkfij′k′ (∂βj · ∂βj′) (∂βk · ∂βk′) ,

W̃6 =
1

4
e4τ

(∑
i

(∂βi)
2

)2

, W̃7 =
1

4
e4τ (∂βj · ∂βk) (∂βj · ∂βk) ,

W̃8 = Tijkle
4τ (∂βi · ∂βj) (∂βk · ∂βl) , Tijkl = Tr ({Ti, Tj}{Tk, Tl}) ,

W̃9 = 0 , W̃10 = 36e4τ

(∑
i

(∂βi)
2

)2

.
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Note that there is another possible invariant ĝµν ĝρσ Tr
(
ÂµÂρÂνÂσ

)
, however, this term

at the four-field four-derivative level can be expressed as a linear combination of W̃5 and

W̃8. Moreover, one can also construct a parity odd invariant εµνρσ Tr
(
ÂµÂνÂρÂσ

)
which

is a total derivative.

B.2 Effective Action

We can now write the effective action at the four-derivative four-field level

Seff[τ, βi] =− f 2

2

∫
d4xe−2τ

(
(∂τ)2 +

N∑
i=1

(∂βi)
2 − 1

12
fijkfij′k′βjβj′ (∂βk · ∂βk′) + · · ·

)

+ 2∆a

∫
d4x

(
(∂τ)4 − 2 (∂τ)2

N∑
i=1

(∂βi)
2

)
(B.7)

+

∫
d4x (b (∂τ · ∂βi) (∂τ · ∂βi) +Bijkl (∂βi · ∂βj) (∂βk · ∂βl)) + · · · ,

where, indices i, j, · · · ∈ {1, 2, · · · , N = dim G}. Coefficients Bijkl satisfy

Bijkl = B1δijδkl +B2 (δikδjl + δilδjk) +B3 (fi′ikfi′jl + fi′ilfi′jk) +B4Tijkl , (B.8)

where, b, B1, B2, B3, B4 are arbitrary coefficients and Tijkl = Tr ({Ti, Tj}{Tk, Tl}), fijk =

−2i Tr
(
[T i, T j]T k

)
. Note that for G = U(1), this action agrees with (2.16).

Let us now write the effective action (B.7) in a more traditional form by performing

the following field redefinition:

e−τ sin βi =
ξi
f
, e−τ =

√(
1− φ

f

)2

+
ξ2

f 2
, (B.9)

where ξ2 = ξiξi. In terms of the physical fields φ and ξi, the effective action at the

four-derivative and four-field level can be written as

Seff[φ, ξi] =− 1

2

∫
d4x

(
(∂φ)2 + ∂ξi · ∂ξi −

1

12f 2
fijkfij′k′ξjξj′ (∂ξk · ∂ξk′) +

1

4f 2

∑
i 6=j

ξ2
i�ξ

2
j + · · ·

)

+
2∆a

f 4

∫
d4x

(
(∂φ)4 − 2 (∂φ)2 (∂ξi · ∂ξi)

)
(B.10)

+
1

f 4

∫
d4x (b (∂φ · ∂ξi) (∂φ · ∂ξi) +Bijkl (∂ξi · ∂ξj) (∂ξk · ∂ξl)) + · · · .
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