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We study transport in the presence of magnetic domain walls (DWs) in a lattice model of fer-
romagnetic type-I Weyl metals. We compute the diagonal and Hall conductivities in the presence
of a DW, using both Kubo and Landauer formalisms, and uncover the effect of DW scattering.
When the Fermi level lies near Weyl points, we find a strong skew scattering at the DW which leads
to a significant additional Hall effect. We estimate the average Hall resistivity for multi-domain
configurations and identify the limit where the DW scattering contribution becomes significant. We
show that a continuum model obtained by linearizing the lattice dispersion around the Weyl points
does not correctly capture this DW physics. Going beyond the linearized theory, and incorporating
leading curvature terms, leads to a semi-quantitative agreement with our lattice model results. Our
results are potentially relevant for the Hall resistivity of spin-orbit coupled ferromagnetic metals,
such as CozSna2S2, CoaMnGa, and SrRuOs, which can have Weyl points near the Fermi energy.

I. INTRODUCTION

The anomalous Hall effect (AHE), a spontaneous de-
flection of electronic currents in magnetic solids, is now
well-understood to result from two mechanisms: an in-
trinsic effect due to the Berry curvature of electronic
bands, and an extrinsic effect arising from impurity scat-
tering of electrons near the Fermi level [I]. The intrinsic
Berry curvature is also intimately tied to band topology
and topological invariants [2], as known from the two-
dimensional (2D) quantum Hall effect, where the Hall
conductivity o, takes on a quantized value determined
by the Chern number [3H5]. In 3D, a layered quantum
Hall state with a full bulk gap can undergo a transition
into a topological Weyl semimetal as we increase the in-
terlayer hopping [6]. The simplest inversion-symmetric
and time-reversal broken Weyl semimetal features elec-
tronic bands which touch at two Weyl points [7], around
which the dispersion is approximately linear. Such a pair
of Weyl points cannot be removed by any small perturba-
tions, and they act as a source and a sink of the Berry cur-
vature. When the Fermi level coincides with the energy
of the Weyl points, it leads to an intrinsic Hall conduc-
tivity o,y = €2Q/27h where Q is the momentum-space
separation between the Weyl points [6]. In fact, as a re-
sult of the linear dispersion around the Weyl points, 0,
is pinned to this value for a finite range of the Fermi en-
ergy around the Weyl point energy [§]. In this regime,
the system is a Weyl metal with Fermi surfaces enclosing
the individual Weyl points []].

It is worth emphasizing that breaking time reversal
symmetry alone does not guarantee a non-zero AHE,
even if it does lead to Weyl nodes in the band disper-
sion. Indeed, the antiferromagnetic all-in-all-out ordered
Weyl semimetal proposed in the pyrochlore iridates [9]
is an illustrative example where a non-symmorphic glide
symmetry, a mirror M, followed by a non-Bravais trans-
lation, results in a vanishing AHE. Application of uniax-
ial pressure on the pyrochlore iridates which breaks this
glide symmetry can then induce a non-zero AHE [10].

The large AHE in several magnetic metals, includ-
ing ferromagnetic CoszSnaSy [111, 12] and CoeMnGa [13],
and antiferromagnetic Mn3X (X = Sn, Ge)[I4] 5], has
been attributed to Weyl points in their band dispersions.
Among oxide ferromagnets, previous work [I6HI9] have
suggested that SrRuOj3 [20] hosts Weyl points near the
Fermi level, which could account for the unusual non-
monotonic dependence of its AHE on the magnetization,
including a sign-change at a certain temperature below
T.. This non-monotonic AHE may be understood from
the magnetization dependence of the band structure,
with the Weyl points and Berry curvature being tuned
by the temperature-dependent magnetization [11, [I6, [I7].

Remarkably, recent Hall resistivity measurements of
SrRuOg thin films have discovered highly unusual hys-
teresis loops, with bump-like anomalies in p;, near the
coercive field where the magnetization begins to reverse
direction as we go through the hysteresis loop [2I]. The
origin of these anomalies is still actively debated. Early
proposals regarded these bumps as an extra Hall effect
induced by chiral magnetic skyrmions [21H25] which can
nucleate during the magnetization reversal and can be
stabilized by the interfacial Dzyaloshinkii-Moriya (DM)
interactions stemming from the strong spin-orbit cou-
pling and the inversion-breaking substrate-film interfaces
[21]. An alternative proposal argued that these anoma-
lies emerged from imperfections in the thin films due to
thickness inhomogeneities or site vacancies [26H31], lead-
ing to multiple regions in space with distinct electronic
and magnetic properties. Simply adding up contributions
to pgy from distinct regions was argued to qualitatively
reproduce the Hall anomalies [26H30].

Strikingly, measurements of the magneto-optical Kerr
effect in SrRuOg films [32] discovered similar bump-like
anomalies, but in films which were hundreds of unit cells
thick, so that interfacial DM interactions and skyrmions
play no role. In previous theoretical work, we have shown
that such anomalies in the Kerr effect could be captured
by locally averaging the Kerr effect over magnetic do-
mains [32], an approach justified by the locality of the
high frequency response.



In contrast to our theory for the Kerr anomalies, it is
far from clear that previous theories for the Hall anoma-
lies, which simply add up pgy from spatially distinct re-
gions, provide a meaningful way to account for d.c. trans-
port. In particular, such approaches do not explicitly
account for bulk states scattering off DWs. Given the
large number of magnetic solids with Weyl points, and
the ubiquity of magnetic domains in such systems, it is
clearly important to understand how magnetic DWs im-
pact the Hall response of Weyl semimetals and metals.
This is the key goal of our paper.

In order to examine the impact of magnetic DWs on
transport in a Weyl metal, we study a minimal cubic-
lattice model of a ferromagnet which supports two Weyl
points in the bulk band structure. In our paper, we use
the terminology ‘Weyl metal’ as defined as in Ref. [§ and
[33; we use this term to refer to a system with Fermi sur-
faces surrounding isolated Weyl points and thus carrying
nontrivial Chern number. The present model does not
accommodate cases with additional Fermi surfaces dis-
sociated with Weyl nodes. However, our computation of
AHE from DW can be straightforwardly generalized to
those cases. Fig. [l shows a configuration with two mag-
netic domains having uniform vector magnetizations M,
and Mpg. We assume the magnetization in each domain
is uniform and choose the DW to be in the yz-plane. For
large domains with linear dimension much larger than
the electron mean free path, we may also view such an
idealized flat DW as a section of a realistic meandering
DW. In this paper, we compute the diagonal and Hall
conductivities in the presence of such a DW using a full
real-space Kubo formula and compare this with a Lan-
dauer theory framework which focuses on the states near
the Fermi level scattering off the DW. This comparison
allows us to discover a strong skew-scattering contribu-
tion to the Hall transport arising at the DW, which is
significant when the Fermi energy is not too far from the
Weyl points.

Previous theoretical work on the AHE in antiferromag-
netic Weyl metal Mn3Sn/Ge [34] has studied Hall trans-
port in the plane of a magnetic DW and shown that chiral
Fermi arc modes localized on the DW can dominate this
Hall effect. By contrast, our work here examines trans-
port in the plane perpendicular to the DW and the DW
scattering of bulk states at the Fermi level. We compare
our lattice model result with a continuum theory where
we linearize around the Weyl points and discover that
such a linearized description completely fails to account
for the lattice model calculations. We show that going
beyond the linearized theory and incorporating leading
curvature terms lead to semi-quantitative agreement with
our lattice model results. In addition to ferromagnets
such as SrRuQOj, our results may also be broadly ap-
plicable to the AHE anomaly in antiferromagnetic Weyl
metals such as CeAlGe observed during a domain prolif-
eration process [35].

This paper is organized as follows. In Section [[I} we in-
troduce the lattice model for ferromagnetic Weyl metals
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FIG. 1. Thin film with two magnetic domains, having uniform
magnetizations (M, Mg), separated by a yz DW.

and study its Hall conductivity for a uniform magneti-
zation. In Section [[TI, we consider the DW as shown in
Fig.[l] and study its impact on AHE using the real-space
Kubo formula. The scattering contribution is crudely
extracted and is found to be of the order of the Berry
curvature contribution. In Section [[V] we confirm this
by extracting the DW scattering contribution using Lan-
dauer formula. Reflection coefficients (RCs) and trans-
mission coefficients (TCs) for the Bloch states at the
Fermi level scattering at the DW are found to be highly
skew. We estimate the DW scattering contribution for a
multi-domain configuration with parallel DWs and com-
pare it with the bulk Hall contribution. In Section [V] we
linearize the lattice model around the Weyl points and
show that RCs and TCs obtained from the linearized
model lead to an incorrect result for the scattering con-
tribution. We show that curvature terms are needed to
reproduce the qualitative features of RCs and TCs of the
lattice model. Section [V]] presents a summary and dis-
cussion.

II. MODEL FOR WEYL METAL

We consider a four-band ferromagnetic model on a cu-
bic lattice with a uniform magnetization M [36]:

H(k, M) = t(sin kgo, +sinkyo, +sink,o,)7.

+m(k)r, — JM - o, (1)
where the Hamiltonian H = ), C’li";'-[(k, M)Ck is de-
fined in the basis of C’;La = (CLAT, CchAw CLBT, CLBJ.
The Pauli matrices 7 act on the orbital index A and B,
while the Pauli matrices o act on spin (1,]). The mass
term is given by m(k) = r(3 — cosk; — cosk, — cosk.).
Time reversal symmetry is broken by the magnetization
M. For M = M2z, the model has a four-fold rotation

symmetry around the z-axis and the inversion symmetry
T H(—k)7, = H(k). The dispersion is then given by

B(k) = £/ (sin’k, + sin’k,) + (JM £ D(K))2, (2)

D(k) = \/m2(k) + t2sin’k,. (3)

For M =0, the band structure has a four-fold degenerate
Dirac node at the T' point of the Brillouin zone (BZ).
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FIG. 2. (a) Band structure for M = 1 where k, and ky

have been set to zero. There are two Weyl points at zero en-
ergy and at k. ~ +1.1a;". (b) Fermi energy Er dependence
of o,y exhibiting a plateau-like behaviour, enclosed by the
dashed lines, in the Weyl metal regime where the Fermi sur-
face consists of two disjointed closed surfaces surrounding the
Weyl points, and the dispersions are approximately linear.

With a nonzero M, this Dirac point splits into two Weyl
points, which are located at zero energy and momenta
kyp=1(0,0, £k3), where

r —\/t4

— ) J2M2

coski= 2 — t2 (4)

r

The Weyl point separation 2k} depends on the magne-
tization M. Figure a) shows the band structure for
M = 1. In this plot, and the rest of the paper, we fix
r=0.8t, and J =t¢. As we increase M, the two Weyl
points move away from each other and mutually annihi-
late at the BZ boundary. This results in a fully gapped
quantum Hall insulator with a quantized o,, = ¢*G/2mh
at half filling, where G = 27 /ayg is the reciprocal lattice
constant, and ag is the lattice constant of the cubic crys-
tal. In the rest of this work, we study this model in the
Weyl metal regime.

For a spatially uniform magnetization, o, is obtained
from the momentum-space integration of the Berry cur-
vatures

/ SZfEkn “kn),  (5)

where f is the Fermi-Dirac distribution at temperature
T, and Q7% (kn) is the z-component of the Berry curvature
vector for a state with momentum k and band index n.
Figure b) shows o4y at T'=0 as a function of Fermi
energy Ep for a uniform z-magnetization M =1. It ex-
hibits a plateau-like behaviour in the window sandwiched
between the two dashed lines, which has been studied in
Ref.[8l This is referred to as the Weyl metal regime where
the Fermi surface consists of two disjoint closed surfaces
surrounding the individual Weyl points, and the disper-
sions are approximately linear near the Weyl points. The
magnitude of o,y for the plateau is determined by its

value at EF'r =0, which is proportional to the momentum-
space separation between the two Weyl points, Q) =2k}.
For M =1, the separation @ = 2.2(1517 and the plateau
value is given by 0., =€2Q/2mh~0.35 €2 /hag, which can
also be seen from Fig2[b).

III. DOMAIN WALL AND HALL
CONDUCTIVITY: KUBO FORMULA RESULT

We introduce a flat DW parallel to the yz-plane as
shown in Fig. [T} which partitions the system into left and
right domains whose magnetizations are respectively de-
noted by My and Mpg. Such a DW can be viewed as a
locally flat region of a realistic meandering DW generated
by domain proliferation during a magnetization reversal
process in a field-sweep experiment. This physical pic-
ture may be a valid in the limit where the electron mean
free path is much smaller than the linear dimensions of
the domains, so that we can zoom in on electrons scatter-
ing off a small section of the domain wall. Since the Weyl
points in the minimal model Eq. [I] are always pinned to
zero energy, completely independent of the magnetiza-
tion, we supplement this model with a term Ha that also
tunes the energy of the Weyl points in the right domain
relative to those in the left domain.

HA—AZ@% fo, (6)

where O(i;) is the lattice Heavyside step function,
namely O(i,) =0 for i, <0 and 1 otherwise, and i, is
the x-coordinate of the site i. The reason for including
this term is that we envision that in a realistic setting
and in material-specific models, there will be a relative
energy shift of the Weyl points between the two domains.
For instance, when domains are nucleated as we traverse
the hysteresis loop in a field-sweep experiment, this en-
ergy shift A could reflect a difference in the magnitude
of the magnetization between majority and minority do-
mains in the presence of the external field, or it could
reflect a local difference in the environment as minority
magnetic domains are nucleated in regions with distinct
strain fields or doping or site vacancies [30]. We note that
such disorder effects by themselves, even in the absence
of DWs, have been shown to have a dramatic impact for
energies very close to the Weyl nodes [37H39]. Since our
results below focuses on Weyl metals where the Fermi en-
ergy is not extremely close to the Weyl nodes, we expect
our results on DW scattering contribution to be robust.

We compute the AHE of the above domain configura-
tion using the Kubo formula [40] 4] (see also Appendix
[A]) This full result contains contributions from bulk in-
trinsic Berry curvature as well as DW scattering effects.
To study this, we consider a system with open boundary
conditions in the z-direction and periodic boundary con-
ditions along y- and z-directions. We choose the mag-
netizations to be M = M2 and Mg = —M2Z. Later,
in Section [[VE] we will discuss the effect of tilting the
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FIG. 3. Energy shift A dependence of the Hall conductivity
obtained from Kubo formula in the presence of a DW. As
discussed in the text, oy, here can be regarded as purely the
DW scattering contribution, which are significant and can be
of the same order of magnitude as the uniform Hall conduc-
tivity 0.35¢%/hao in Figl2(b).

magnetization vector. To obtain the AHE, which is time-
reversal odd, we compute the transverse response for a
magnetic configuration and its time-reversed counterpart
and subtract one from the other in order to antisym-
metrize.

Fig. [3| shows the anomalous Hall conductivity oy, as a
function of A. Here, we have fixed the Hamiltonian pa-
rameters M =1, J=1 and r=0.8t. We chose Fr =0.4¢,
and used a system size (L, Ly, L.) = (150,300, 300)ay,
with the DW in the center at = L;/2. As we vary A
within the window shown in Fig. 3] the bulk contribu-
tion agg;R from deep within the interior of each domain
stay roughly constant due to the plateau feature dis-
cussed in section [[I} and they are opposite to each other

L ~ R We thus expect the bulk contributions to

Oy R =0y
nearly cancel, leaving a DW contribution oy%W to dom-
inate the Hall response. Interestingly, we observe a sig-
nificant contribution from the DW scattering in the limit
when the left domain is electron-like and the right do-
main is hole-like, i.e. A > Er = 0.4t. It can even have a
similar order of magnitude as the bulk value 0.35¢2/hay,
e.g. at A = 0.9¢. This implies a non-negligible DW scat-
tering contribution to the AHE in the Weyl metal. We
now turn to study the impact of DW scattering using
Landauer theory and show that it indeed accounts for
the A-dependence of the Hall response.

IV. DOMAIN WALL SCATTERING

In this section, we focus on the DW scattering of bulk
Bloch eigenstates, which will be used to later extract the
Hall response using the Landauer formula [42] 43]. We
show that the transmission and the reflection at the DW
exhibit a skewness, similar to the impurity-induced skew
scattering in a spin-orbit coupled ferromagnet. A notable

feature is that the skewness is very pronounced when
there are Weyl points near the Fermi level, which results
in a significant Hall effect contribution. We later compare
the DW scattering contribution to the bulk contribution.
Finally, we will discuss the impact of tilting Mg relative
to M, on the Hall effect.

A. Scattering states

In the presence of a DW in the yz-plane, the eigen-
states of the inhomogeneous problem H+ Ha consist of
bound states and scattering states. Boundary states such
as Fermi arc modes, originating from a change in topol-
ogy across the DW when the magnetizations are oppo-
site, exist as bound states at the DW [36] [44] 45]. Scat-
tering states, on the other hand, are propagating waves
and extend over the system. We will focus on the scat-
tering states which are important for studying transport
across the DW. The scattering states are divided into
two groups: left-incident and right-incident, denoted by
’\IJD;EkHa> :\IIJB;Ek”a |0), where D=L, R are the label of

left- or right-incident respectively. The energy E and the
parallel momentum kj = (k,, k.) are conserved quantities
for elastic scattering. « is an additional label for multi-
ple left(right)-incident channels. In the case that we will
consider, there is a single incident channel once D, E, k|,
are fixed but we retain this label « for generality.

We focus on states at the Fermi level £ = Er. The
creation operators \I’h Erkja CALl be expressed in terms

of the basis C;ra as the following.
\I}-‘—D;EFkH()z = Zz/]D;EFk”OL(ia)CJa? (7)

where @/}D;EFk”a(ia) is the amplitude of the scattering
state at site ¢ and combined orbital-spin label a. Similar
to a continuum inhomogeneous problem, e.g. a potential-
step problem, the amplitude can be expressed as a linear
combination of the amplitudes of Bloch states of the ho-
mogeneous systems H(k,Mp r). The coefficients of the
linear combination relation can be identified with the RC
and TC of the incident mode upon scattering at the DW.
For instance, the amplitude of the left-incident scattering
state can be written as

@aku(ia)-kzﬁ: T%;f‘ﬁﬁk”(ia) (ip <0),

(8)

wL;EFk”a(ia): (i >0),

> 130 B (1)
B

where ok, (ia) and pgy, (ia) are the amplitudes of the
incident and reflected Bloch waves respectively, which
are eigenstates of H(k,Mp). Phx, (ia) is the amplitude
of a transmitted Bloch wave, which is an eigenstate of
H(k,Mpg). These are the states at the Fermi surfaces
surrounding Weyl points as shown schematically in Fig.
a). The 8 summation is performed over all the reflected



FIG. 4. Scattering between domains separated by a yz DW
as shown in Fig. The magnetizations in the two domains
are chosen to be =M 2, for which we schematically illustrate
the momentum space picture of Fermi surfaces in the left
and right domains in (a). These Fermi surfaces surround the
Weyl points which are separated along the k-direction due to
having the magnetizations in the z-direction. Contours depict
Fermi surface slices at a fixed k. which are used in panels (b)
and (c). (b)-(c) Schematic illustrations of the transmission
coefficients T’s and reflection coefficients R’s, which connect
eigenstates of H(k, My, r), for left-incident scattering states
(panel (b)) and right-incident scattering states (panel (c)) at
the Fermi energy and for a fixed k..

channels, whereas the B summation is carried over all
the transmitted channels. These also include evanescent
waves which are eigenstates of H(k, M, g) corresponding
to complex-valued k, and decay exponential away from
the DW. RC for the incident mode « going into a reflected
mode S is given by R(z_k’f = |rg;:f|2|v,;,5/vw,a| where
Uz, and v, g are their group velocities in the x-direction.
Similarly, TC is defined by TE‘;:HB = |t%;f|2|vw,3/vx,a|.
Figure[d|(b) illustrates how the eigenstates of the homoge-
neous problems H(k,Mp, g) on their Fermi surfaces are
connected by RCs and TCs in the left-incident scattering
states.

Similarly, the right-incident scattering states can be
constructed from the eigenstates of the homogeneous
problems as the following.

(i,<0),
(9)

zﬁ: t;?l:f@ﬁ,ku(ia)

’(/JR:,EFkH alia)= a—f ~

Priae (10) 32 T P e (i0) (122 0).
B

TCs and RCs for the right-incident scattering states are
illustrated schematically in Figc). TCs and RCs for
the inhomogeneous lattice model are computed using a
method described in great detail in Ref. [46l

(a) Reflection

(b) Transmission
coefficient
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FIG. 5. (a) Reflection coeflicient and (b) transmission coeffi-
cient for left-incident scattering states as a function of their
labels k|, featuring a pronounced skewness between any pair
of state with the same k. and opposite k,. This implies that
a pair of incident Bloch waves moving opposite to each other
in the y-direction get transmitted asymmetrically at the DW,
as illustrated in (c). This results in a transverse Hall current
in the presence of a bias voltage between the two domains.

B. Skew reflection and skew transmission

Figure [5|shows RCs and TCs for the left-incident scat-
tering states as a function of k| = (ky, k.) for A = 0.1¢,
which is one of the cases studied in Section [Tl At this
Fermi energy, there are at most one incident, one re-
flected and one transmitted channels (excluding evanes-
cent channels which do not participate in transport.)
Therefore, there are only one TC and one RC for each
scattering state. We have checked that the RC and TC
sum to unity for every kj. The dark regions in (a),
where both RC and TC are zero, correspond to the re-
gions where there are no incident modes. We observe
that TCs are highly skew between every pair of scatter-
ing states whose k, momenta are opposite. Namely, at
a fixed k., TC for a positive k,, is large, while that for
—k, is extremely small. This feature is observed for the
entire range of A studied in Section

Such highly skew features result in a large Hall effect,
which can be seen by considering any pair of left-incident
scattering states whose k, momenta are opposite, i.e.
(ky,k.) and (—ky,k.). The two incident Bloch states
move with the opposite group velocities in the y-direction



and get transmitted asymmetrically at the DW| as illus-
trated in Figc). This produces a transverse Hall cur-
rent when a bias voltage between the two domains is ap-
plied. This will be studied quantitatively in the next sub-
section by computing Hall conductance using Landauer
formula. Such skewness is, in fact, expected in systems
with strong spin-orbit couplings [47), [48]. However, our
new result here is that the skewness is very pronounced
when the Fermi level resides near the Weyl points. We
have checked that when Ep is far away from the Weyl
points, such skewness is weaker, and TCs are many order
of magnitude smaller (see Appendix , which leads to
a very small Hall contribution. Thus, DW scattering is
significant when there are Weyl points near Ep.

C. Landauer theory of domain wall Hall
conductance

Hall conductance arising from DW scattering and lon-
gitudinal conductance across the DW can be computed
within the Landauer formalism [42] [43] using TCs and
RCs obtained above. In the presence of an applied bias
voltage AV, a current density along x-direction j, and
y-direction j, are produced. These can be computed us-
ing the scattering states as derived in Appendix |C] (see
also Ref. A7 and Ref. [48l) From these, we obtain the ex-
pressions for the conductance per unit cross section area
Jzz = Jo/ AV, and gy, = j,/AV, as shown below

62 dk” 3
I T‘“ﬁﬁ} : 10
g h/(?ﬂ')2 { Lk | p_g. (10)
e dkj | vy Vyp - B
_e oY Ra y TOC—>5 11
ye 2h/(27r)2 [Vzal + [vgg| ™ LI Tl v, 5] Lk (1)
E=Ep

Summations over the incident channel o, reflected chan-
nel B, and transmitted channel § are implicit. These ex-
pressions are valid at zero temperature where only states
at E'r are important. To obtain anomalous Hall response
which is time-reversal odd, we antisymmetrize g, as de-
scribed in Section [[TI) for the Kubo Hall conductivity; we
will continue to refer to the antisymmetrized version as
gya in the rest of the paper.

Figure [6(a) and (b) show the A dependence of gy,
and gy, for the model parameters as in Section m The
ratio gyq/gze shown in Flg@ is rather large and is
of the order of 10~!, which is a consequence of having
highly skew TCs. We will show that the largeness of this
ratio leads to an observable DW scattering contribution.
Before that we first compare gy, to the Hall conductivity
obtained from Kubo formula in Section [IIl

We observe that the A dependence of g, in Figl6|(b)
and that of o, in Flgl 3| bear a strong resemblance. More
importantly, they have the same sign at each A. These
suggest that oy, in Fig indeed tracks the DW scatter-
ing contribution which arises from skew scatterings at
the DW. The connection between gy, and O'D W may be
established by the following argument.
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FIG. 6. (a) Longitudinal conductance per unit cross section
area gz (b) Hall conductance per unit cross section area gys
and (c) their ratio gyz/gzo as function of the energy shift A.

In the Kubo approach, we suppose that the Bloch
electrons have a lifetime 7/, where 7 is an energy
broadening used in the single-particle Green’s function.
This translates to a mean free path ¢y = vph/~v, where
vp = 0F/hOk is the Fermi velocity. Ounly electrons at a
distance less than ¢y from the DW can experience DW
scattering, and they see a potential drop AV, ~ {yFE
across the DW, where F, is the electric field. We thus
infer from the Kubo calculation, a transverse current
density due to DW scattering in this region given by
gy = oW (AV, /o) = gBV AV, Thus, g[)! W /t,
which can be compared with g,, in the Landauer for-
malism. Now, we have earlier argued that the Kubo re-
sponse for our specific domain configuration is expected
to have cancelling bulk contribution, so the entire result
is expected to be dominated by aﬁcw We will thus use
the computed curve in Fig. as our estimate for oW,
Our choice of v = 0.01¢ used in the Kubo calculatlon
with vF &~ agt/h from the band structure, where ¢ is the
hopping parameter and ag is the lattice constant, then
leads to ¢y = 100ag. We thus expect gﬁw W /100a.
This is in reasonable agreement (within a factor of two)
with the Landauer result shown in Fig. |§|(b We have
also checked that 1ncreas1ng v, which reduces ¢, leaves
our estimated g2" to be nearly unchanged, so that this
agreement between the Kubo and Landauer results is not
sensitive to the choice of v so long as it is not too small.
The finite lifetime of Bloch electron can arise from dis-
order in the lattice. It has been shown that disorder can
have pronounced effects on Weyl semimetals when the
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FIG. 7. The dependence of the volume-averaged bulk Hall
resistivity py Bulk from Eq on the volume fraction r4+ of
the magnetic domains My = M2, with ry +r_ =1. The
displayed result corresponds to M =1, A=0.1t and Er =0.4¢.

Fermi level is very close to the Weyl points, e.g. driving
a phase transition into a diffusive metallic phase [37H39].
However, our above results for domain wall skew scatter-
ing thus remain valid as long as the Fermi energy is not
too close to the Weyl points.

D. Multidomain configurations: comparing bulk
versus DW scattering contribution

The DW scattering contribution in a transport exper-
iment will clearly be sensitive to the number of minority
domains and their domain sizes. For few and small mi-
nority domains, the measured Hall response will be dom-
inated by the intrinsic bulk contribution. As we increase
the number of minority domains, the DW contribution
will increase, while the net bulk contribution will de-
crease due to partial cancellation between majority and
minority domains. To gain a perspective on when the
DW scattering contribution becomes significant relative
to the bulk intrinsic contribution, we consider a simple
multi-domain setting with a series of parallel yz-DWs.
For simplicity, let us assume two types of domains with
collinear magnetizations, M, = M2 and M_ = —M 2,
pointing along the z-direction, and Npy DWs over the
sample length L., so that the average distance between
two neighbouring DWs is L, /Npw . Such a configuration
has a z-mirror symmetry, under which (x,y) — (-, —y)
but the magnetizations are left invariant. This enforces
the conductances Gy, = G,. = 0, thus simplifying the
conductance tensor.

In the limit where the electron mean free path oy <
L. /Npw, we consider an z-interval (zpw —£o/2, zpw +
¢p/2), centered around a DW at xpw, where the Hall
effect may be dominated by DW scattering. In the pres-
ence of a current density j,, the Hall voltage in this
DW region is given by Vi pw =—(o LV /oEV 5,,)ju Ly,
where the diagonal conductivity along y in the inter-
val (zpw —¥€o/2,zpw +£o/2) may be approximated as

the average 7y, ~ (U@(,;;) —1—03(,;))/2. We thus obtain

Vi, pw = —(9yz/9za0yy)juLy, where gy, and g, are the
DW scattering contributions. Away from the DWs, the
bulk Hall voltages are Vg, = p(yl;) JeLy, where b =
Using the relation py, = —0ys/0z20yy, the Hall volt-
age averaged over the r-axis is given by the expression
Vitav = (Pys Bulk 4 ,0 WYjuLy, where

[ U f”
- Son a2
Oza Oyy
gyz 1 Npwlo
pll/)ocW: — ) (13)

9z Uyy Lx

where 74 are the volume fraction of domain b = £. We
have used the fact that the Hall voltage at the DW be-
tween (M |M_) is identical to that between (M_|M_ ),
which is due to the fact that these two DW configura-
tions are related by a local inversion operation. This
allows their contributions to add up instead of cancelling
each other. The bulk contribution in Eq[T2] depends on
b, as illustrated in Fig[7] Since the bulk contributions
from the M, and the M_ domains are opposite in sign,
their sum becomes zero at a nonzero r4, leaving the DW
contribution to dominate the Hall effect. Near this r,
we can see from Eq[I3|that the DW scattering contribu-
tion to the bulk value DW scattering contribution con-
tinues to dominate over the bulk contribution as long as
the spacing between DWs falls below a threshold value
~ €0|(gyz/gxa:0'yy)/p3um| From Fig. @7 gym/gzz ~0.5 for
A = 0.1t, and Fig. [7| shows pJu'¥ ~ 1072 over a range

of r4. Using &y, ~ 5e?/hag from the Kubo calculation
with the corresponding £y ~ 100ag, we expect the DW
Hall effect, and the corresponding anomalies in the Hall
transport, to be detectable even for large DW separa-
tion ~ 10¢y. Finally, we note that the A dependence
of TCs and the conductance densities in the case when
the domain magnetizations are unequal in magnitude is
qualitatively similar to the case discussed here, as long
as their magnitudes are not too different.

E. Impact of tilting the magnetization vectors

In a realistic system, there can be an easy-axis
anisotropy along a certain low-symmetry direction. Dur-
ing a magnetization reversal process where magnetic do-
mains proliferate and under an applied magnetic field
in the z-direction, the magnetizations in the majority
and the minority domains can become non-collinear. We
study the impact of such non-collinearity on the DW
Hall effect here. Setting A to zero and setting the
norm of magnetization to unity, we consider two tilting
cases: (1) My = 2 and a tilting parallel to the yz DW
Mpr = —(0,sin 6, cos ) and (2) M = 2 and a tilting out
of the yz DW Mg = —(sin6, 0, cos 9).

Figure [§|a) and (b) show the impact of tilting in case
(1) on the conductance per unit cross section area. gy,
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FIG. 8. (a) Longitudinal conductance per unit cross section
area gz» and (b) Hall conductance per unit cross section area
gy= as a function of the in-plane tilting angle 6. (c) Reflection
coeflicients and (d) transmission coefficients corresponding to
the negative 6 where the magnitude of gy, is the largest.

is nonzero due to the combination of (i) asymmetry of
TCs as shown in Fig[§|d) and (ii) the asymmetry of the
magnitude of the group velocity |v,| which was absent
in previous discussions and is now expected when the
magnetization has a non-vanishing y-component. g, is
an even function of #, which can be understood by how
the Hall conductivity transforms under the mirror M,
followed by time reversal 7. The magnitudes of both
9zz and gy, are smaller than those in Fig@ However,
the gyu/gze ratio remains large and of the same order
~ 1071, so the DW scattering contribution to Hall effect
is expected to be noticeable in experiment as inferred

from Eq[13] [49].

In case (2), gy, is zero for all the tilting angle 6 (not
shown). TCs are found to be symmetric (|v,| is also
symmetric since the y-component of the magnetization
vanishes.) It is unclear what protects TCs from being
asymmetric. The net Hall conductivity (intrinsic + ex-
trinsic) is non-zero in this case as allowed by symmetry,
namely the broken M, and the broken 7 are sufficient

to allow a non-zero Hall effect in the xy-plane. However,
the Hall contribution from the DW scattering vanishes.
gyx becomes non-zero when A is set to non-zero. It is
possible that a combination of particle-hole symmetry
broken by a non-zero A and M, T broken by a non-zero
y-component of the magnetization are responsible for the
symmetric TCs. We have not done a full symmetry anal-
ysis of the TCs; we defer this to future work.

V. CONTINUUM MODEL OF WEYL METAL

In this section, we discuss the DW scattering within
a continuum model obtained from Taylor expanding the
lattice model dispersion around the Weyl points. We
find that at linear order in momentum, the continuum
model can lead to an incorrect result, while a qualitative
agreement with the lattice model is obtained when we
keep quadratic terms. This suggests that the higher order
terms are important for studying DW scattering in Weyl
metals.

For My, = Mpg = 1 corresponding to the magne-
tizations in the z-direction, the Weyl points reside at
the same momentum positions for both domains k,,, =
(0,0, +k}) where k} is given in Eq. 4] Let q = k — k).
The linearized continuum model is given by

H(A)r/r = tqe0e+tq oy FJo. +0.[t(sin k] +cos klq.)T.
+r(l—coskl+sinklq, )], (14)

where we have performed a unitary transformation U =
diag(1,1,1, —1) on Eq[l] before the linearization. Here ¢,
is viewed as an operator ¢, = —i0,, since the translational
invariance along the x-direction is broken. ¢, and g,
are still good quantum numbers and can be treated as
numbers. We can diagonalize the term in the square
bracket for a given k.. As a result, the two domains can
be simultaneously block diagonalized into the following
form.

ZLFJ 0
,H(q)L/R:tq:ro'm+toO—y+Uz ( +0 Z_:FJ> 5(15)

where Z are the eigenvalues of the matrix in the square
bracket in EqI4 Let Z, > 0 and Z_ < 0. In the
left domain with —J, all propagating-wave solutions at a
small, positive Fermi level reside on the bands associated
with the Weyl points and thus correspond to the upper
block where the mass term Z; —.J can become zero. This
means that the propagating-wave solutions in the left do-
main have zero weight in the lower-block entry. For the
right domain, the mass term Z_ + J in the lower block
can instead become zero. Therefore, the propagating-
wave solutions in the right domain have zero weight in
the upper block. These result in a zero transmission for
all (gy, g») since the incident modes from the left domain
are orthogonal to the transmitted modes in the right do-
main. This result is robust against adding the energy
shift term Ha. Therefore, at linear order, the continuum
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FIG. 9. Reflection and transmission coeflicients obtained from
the lattice model (left two panels) and the quadratic model
(right two panels), featuring their qualitative agreement in
terms of their asymmetry in k,. Without the quadratic terms,
the continuum model yields zero transmission (perfect reflec-
tion), as explained in the text, which would correspond to a
completely dark color plot (not shown here). All these sug-
gest that higher-order terms in momentum are responsible for
the skew transmission observed in the lattice model.

model predicts a zero transmission and suggests an infi-
nite DW resistance. This is obviously incorrect, for we
have seen nonzero transmission and a rich A dependence
of TC in the full lattice model. The orthogonality and the
existence of a basis where Hp, g can be simultaneously
block diagonalized are an artefact of the linearized model
and can be removed by keeping higher order terms.

Fig. [ shows the comparison between the RCs and
TCs obtained within the lattice model and within the
low energy description when we include leading curva-
ture terms by going to quadratic order in the expansion
around the Weyl points. These results are for the same
model parameters as studied in Section The results
for the quadratic model are obtained by matching both
the wavefunctions and their first derivatives 0y /0x at the
DW. We find reasonable semi-quantitative agreement be-
tween the lattice and continuum descriptions at this or-
der. Such an agreement persists for the whole range of
A. Thus, we find that going beyond the linearized theory
is important for a proper description of transport across
a DW.

Finally, we note that when M}, # Mg, the linear model
predicts nonzero TCs like in the lattice model. However,
they are a few orders of magnitude smaller. All these
suggest that (1) the linear model is insufficient for study-
ing the DW scattering and (2) higher order terms are
responsible for the results discussed in the previous sec-
tions.

VI. CONCLUSION

Using a minimal model of ferromagnetic Weyl metal
containing a pair of Weyl points, we have shown that

DW scattering for states on the Fermi surfaces surround-
ing the Weyl points is highly skew. This can lead to
a large, observable AHE contribution. For Fermi level
away from Weyl points, the effect of DW scattering di-
minishes. Therefore, the DW scattering contribution
must not be neglected when there are Weyl points near
the Fermi level. A continuum model obtained from lin-
earizing the Weyl metal lattice model around the Weyl
points fails to capture this result. We show that cur-
vature terms in momentum are needed to qualitatively
reproduce the results of the lattice model.

Generalization of our results to a more complicated
model of Weyl semimetal or Weyl metal, e.g. with multi-
ple pairs of Weyl points or with parasitic Fermi surfaces
unrelated to any Weyl points, must proceed with care. If
the DW scattering state, Eq[§ or Eq. [0} involves states
from two Fermi surfaces enclosing Weyl points (one from
left domain and one from right domain), our result can
be directly deployed. However, when a parasitic Fermi
surface or more than two Fermi surfaces enclosing Weyl
points are involved in the DW scattering states, one needs
a new computation, as a straightforward generalization
of the calculations presented in this paper.

Our results call for a re-examination of AHE in StRuO3
thin films through a realistic model in the presence of
DWs in order to understand the peculiar bumps features
in the AHE hysteresis loops. Our results may also be
tested in transport experiments on ferromagnetic Weyl
metals CozSnaSe [I1) 12] and CosMnGa [13]. Our re-
sults also suggest that the extra AHE observed in the
antiferromagnetic Weyl metal CeAlGe during a magnetic
domain proliferation process could be attributed to DW
scattering [35]. Another important message of our work
is that a careful account of such DW scattering must be
taken into consideration before one can attribute Hall re-
sistivity anomalies to the topological Hall effect due to
skyrmion spin textures.
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Appendix A: Kubo formula

In linear response, the d.c. conductivity is given by
[40, [41]



i27 €2 f(Byym) —

f(Ek“n)

(}a)mn(jﬁ)nm

where V is the volume, f is the Fermi distribution func-
tion, k| = (ky, k), Ex,m is an energy eigenvalue, m,n
are the band indices , (ja)mn = <ka| Ja ’k”n>, and ~y
is a small broadening. The current operator is obtained
from Peierls substitution in each hopping term tia7jbc;facib
as the following.

J

tia,jbc;racjb — tm,jbc:;racjb exp (1/ dr - A) , (A2)
A()+ Ay

~ tia,jbclacjb <1 + iI‘ijM) ,(A3)

where r;; = r; —r;, and A is a vector potential corre-
sponding to an electric field E = —9A/0t. The current
operator at a site ¢ is given by

Soo dH [A]

(A4)

where H [A] is the Hamiltonian after the Peierls substitu-
tion. A real-space expression of the lattice model, Eq[l]
can be found in Refl36l

The current operator in Eq is defined by j’a =
> i Ja(i). Since the system has translational invariance
along y and z, j, can be Fourier transformed partially in
the (y, z) space and becomes block diagonal in k;|. Each
block corresponding to a k| is a 4L, by 4L, matrix,
where 4 is the number of band of the model in the ho-
mogeneous case. This matrix can be used to numerically
evaluate (3a)mn.

Appendix B: Transmission coefficient away from
Weyl points

Figure [10] shows TCs at Er = 5t far away from Weyl
points and for A = 0.1t and My, = Mgr = 1. The
skewness of TCs is weaker than that when Er is near
Weyl points in Fig[s] Meanwhile, TCs here are 4 order
of magnitude smaller than TCs near Weyl points, lead-
ing to a very small gy, compared to that in Fig@ In
contrast, the bulk o, only reduces by 2 order of mag-
nitude from 0.35¢?/hag when Er = 0 to 0.0055¢%/hag
when Er = 5t. These suggest that the impact of DW on
Hall effect is small away from Weyl points and becomes
significant when Er lies near Weyl points.

Ek” n Ek” m

Tw + ny + Ek“m - Ek”n ’

Appendix C: Computation of conductance

In a bias voltage AV, the current density can be com-
puted by using the scattering states. The left-incident
states are associated with a Fermi distribution function

Transmission
coefficient x10~%

0.129
2 -
& 0 0.064
-2 ,
0
-2.5 0.0 2.5

ky

FIG. 10. Transmission coefficient at Er = 5¢, far away from
the Weyl points and for A = 0.1t and My, = Mr = 1. The
transmission coefficients are orders of magnitude small than
those where Er lies near Weyl points.

fL(E) = f(E - (EF - 6AV$))7 while fR(E> = f(E —EF)
for the right-incident states. This is because the left-
incident states are in equilibrium with a reservoir at a
different potential energy due to AV,. The current den-
sity j, for v = x,y is given by

dkdE
Jy = —e/ L[<\I/L;JL;1<H04| by Vi mpa) fL(E)

(2m)3
+ (Y., a| O |YRiEK a) fR(E)], (C1)
where we have identified +Y, = [ (Qdi)g =

dkjdE
f (2m)3 |dE/dkg]|"
rigorous since the denominator dE/dk,, i.e. the group
velocity in the x-direction, is spatially dependent. The
proper way is to have a normalization factor in the scat-
tering states [43] [50], which is done by attaching a pref-

actor —— to Eq. and —— to Eq.(9)). It ensures
Vh|veal a a @

h\vm& ‘
the anticommutators of the creation and annihilation op-

erators, {\I’D;Ekua’\I’TD/;Elk/Ha’} = oppd(E — E")(k) —
kh)(;,m/, where D, D’ = L, R denote the left- or right-
incident states. We have included this normalization fac-

tor in Eq.(C1)). From these, we obtain

The last identification is not strictly
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[
where the sums over «, &, 3, 8 are implicit. We have used by
the condition that the current density is zero at zero bias 9 i
voltage when fr, = fr to arrive at Eq[C2] The factors o= AV, dk; [1 _ RILMZ»B + TLQ-:B} 7
1/2 in the square brackets originate from the expectation 2(2m)h ’” *I JE=Er
value of the velocity operator evaluated from half of the . e2AV, asf
space. The difference f;,(E)— fr(E) = —eAV,6(E—EF) Jz = (27)3h /dkl\ [TL;k” }E:EF : (C5)

is obtained at the zero temperature limit, and Er is the
Fermi level. The longitudinal current density j, is given

This is the familiar Landauer formula which relates con-
ductance to transmission coefficients.
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