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Abstract. We investigate the ground states of spin models defined on networks

that we imprint (e.g., non-complex random networks like Erdos-Renyi, or complex

networks like Watts-Strogatz, and Barabasi-Albert), and their response to decohering

processes which we model with network attacks. We quantify the complexity of

these ground states, and their response to the attacks, by calculating distributions

of network measures of an emergent network whose link weights are the pairwise

mutual information between spins. We focus on attacks which projectively measure

spins. We find that the emergent networks in the ground state do not satisfy the

usual criteria for complexity, and their average properties are captured well by a single

dimensionless parameter in the Hamiltonian. While the response of classical networks

to attacks is well-studied, where classical complex networks are known to be more

robust to random attacks than random networks, we find counter-intuitive results for

our quantum networks. We find that the ground states for Hamiltonians defined on

different classes of imprinted networks respond similarly to all our attacks, and the

attacks rescale the average properties of the emergent network by a constant factor.

Mean field theory explains these results for relatively dense networks, but we also find

the simple rescaling behavior away from the regime of validity of mean field theory.

Our calculations indicate that complex spin networks are not more robust to projective

measurement attacks, and presumably also other quantum attacks, than non-complex

spin networks, in contrast to the classical case. Understanding the response of the

spin networks to decoherence and attacks will have applications in understanding the

physics of open quantum systems, and in designing robust complex quantum systems –

possibly even a robust quantum Internet in the long run – that is maximally resistant

to decoherence.

1. Introduction

The textbook example of a quantum wave function is that of an isolated quantum system

in the ground state of a Hamiltonian. Experimental advances in quantum technology
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have led researchers to reliably realize this textbook example in labs. Nowadays,

experimentalists routinely create strongly correlated quantum states with tens to

hundreds of spins or qubits in the ground state of interacting quantum Hamiltonians,

for applications in quantum simulation, computation and communication [1–3].

A significant challenge in these experiments, after creating the desired quantum

state, is preserving the state against decoherence. Decoherence occurs because the

quantum system is not completely isolated, but interacts with the environment in several

ways. Examples of decoherence include motional heating, atom losses, spin dephasing,

depolarizing, and spontaneous emissions. We investigate the effects of dephasing on

ground states of quantum spin models defined on imprinted spin networks.

We use a network-science approach to represent the quantum spin system and to

capture dephasing effects on network properties. Classical network science is a well-

developed field which studies complex networks such as telecommunication networks,

computer networks, biological networks, social networks, and cognitive and semantic

networks [4]. Complex networks have been shown to be more vulnerable to some network

attacks than others, and more robust to certain attacks than random and other non-

complex networks. These phenomena have been studied in the classical context, i.e.,

classical attacks occurring on classical networks. Often, such attacks involve nodes being

removed from the network.

Quantum complex networks is a much younger field with many basic open questions

to be resolved [5–10]. Quantum complex networks can be either imprinted in the

Hamiltonian, quantum circuit, or quantum architecture [5–8]; or they can be emergent

in the quantum state [10–13]. Attacks may take a variety of forms, from node removal

to weak or strong measurement, either randomly or preferentially. Among these many

unanswered questions in quantum complex networks, we consider the most pressing one,

namely the effects of decoherence modeled via projective measurement, construed as a

quantum analogy of classical network attacks.

We consider the system to have spins arranged on the nodes of a complex network

(also called a graph), with the interactions between the spins determined by their

arrangement on the network. We calculate emergent properties in the ground state

of a Hamiltonian defined on this network. We argue that the emergent properties give

rise to an emergent network. Specifically, we construct the emergent network with spins

as nodes and link weights given by the pairwise mutual information (MI). This approach

has had success in past contexts from quantum phase transitions [11] to quantum cellular

automata [14]. We calculate the MI across a range of Hamiltonian parameters. Then,

we attack the networks as we describe below.

A common model of decoherence in quantum computing is probabilistic projective

attacks in a quantum trajectories approach, also used for quantum simulations with

many-body systems [15] such as the spin network considered here. This kind of network

attack can be expected to cause pair-wise entanglement to rapidly decay, as in Google’s

quantum supremacy experiment on random states [16]. Thus, we focus on the case

that attacks projectively measure the spins, and vary the strength and direction of
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these measurements, as well as different strategies for choosing the attacked spins –

randomly or preferentially – analogous to classical attacks on classical networks. We

quantify the effect of these attacks on the ground state by calculating network measures

of the emergent MI network before and after the attacks. These attacks are not normally

treated in decoherence models, but are of interest to the fundamental theory of quantum

complex networks as compared to classical ones.

Previous works have studied quantum systems with a complex network structure

imprinted on them [5,6,17–21], while others have shown that the emergent MI network in

the state is complex [11,12,22]. But these works did not investigate the consequences of

complexity in these quantum systems. By considering the effects of attacks on quantum

networks, we address the important question of the vulnerability of imprinted complex

networks to attacks, and more broadly, to decoherence. Understanding this vulnerability

has implications in designing robust quantum systems, and ultimately, both a robust

quantum internet and a robust networking choice for separate NISQ-era computers [2].

1.1. Overview of the Article

In Sec. 2, we overview the wide variety of quantum complex networks in contrast to

classical ones; describe our choice of imprinted networks in Hamiltonians; and explain

the emergent MI network in the resulting quantum many-body ground states. In Sec. 3,

we describe the specific Hamiltonian we consider, and the numerical and analytical

tools we use to study the system. In Sec. 4, we apply complex network analysis to the

emergent MI network in the ground state. In Sec. 5, we overview attacks on quantum

complex networks in general and describe in detail the attacks we consider here. In

Sec. 6, we determine the response of the MI networks to attack, and show how mean-

field (MF) theory captures many of the results, independent of imprinted network choice.

We summarize in Sec. 7.

Our main results are summarised below:

(i) The emergent MI networks in the ground state do not satisfy the usual criteria for

complexity, such as a power-law degree distribution or high clustering. Instead,

for relatively dense imprinted networks, the average properties of the emergent

networks are captured well by mean-field (MF) theory which predicts fully-

connected emergent networks. MF theory does not capture the higher moments

of these properties, and also fails to capture the emergent network properties for

sparse imprinted networks.

(ii) The lowest order moment of properties of the emergent MI network, for different

dense imprinted networks, overlap with each other when plotted versus a

dimensionless parameter in the problem.

(iii) The above results hold both for the ground state and the attacked system.

(iv) The average properties of the emergent MI network before and after the attack

also collapse onto each other after an appropriate rescaling. Thus, the emergent

MI network in the ground state of an imprinted complex network shows the same
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amount of robustness to projective measurement attacks as does that in the ground

state of an imprinted random non-complex network.

(v) For sparse imprinted networks, the lowest order moment of emergent MI network’s

properties do not overlap with each other for different classes of networks. However,

the average properties of the emergent MI network before and after the attack again

collapse onto each other after an appropriate rescaling.

All these behaviors are unexpected, and completely different from the case of classical

attacks on networks, which are known to depend strongly on the kind of network:

random networks quickly fall apart, while complex networks maintain their properties

and are therefore robust. We show that emergent quantum complex networks do not

share these robustness properties: (1) the choice of network structure does not help with

decoherence; and (2) targeted decoherence is no more effective than random decoherence.

We explain these phenomena with MF theory.

2. Background

In this section, we first give an overview of quantum complex networks in Sec. 2.1, and

highlight how they can differ from classical complex networks. Then, in Sec. 2.2, we

describe the networks we imprint on the Hamiltonian. In Sec. 2.3, we describe the

network we study, which is the network that emerges in the ground state. In Sec. 2.4,

we describe the complex network measures, which are the tools we use to study the

emergent network.

2.1. Quantum vs classical complex networks

A network is an abstract representation of connections (links) between agents (nodes).

Networks are nearly everywhere around us, and have a variety of structures. Complex

networks are a subset of networks with an emergent property, such as a non-trivial

degree distribution or a short path length. Complex networks occur in many classical

scenarios, ranging from telecommunication networks to computer networks, biological

networks, social networks, and cognitive and semantic networks [4]. There are many

models to generate networks, both complex and non-complex, that reproduce different

properties of real-world networks such as those mentioned above. We will consider three

of these models in Sec. 2.2.

We now turn our attention to quantum networks. Quantum networks have been

considered in at least three different settings. The first and most popular setting for

quantum networks is the case where the links are physical, i.e., spins or qubits interact

across either naturally occurring or engineered links [23–28]. In this work, we refer to this

kind of network as the imprinted network. The second scenario where quantum networks

have been studied is the case of networks whose links are represented by entangled

states [6, 20, 21]. Loosely speaking, this network is defined on the quantum many-body

state. In this work, we refer to this kind of network as the emergent network. A third
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setting is the case where the network is defined on only one part of the Hamiltonian, e.g.

via perturbation theory. This third scenario has already been explored in experiments

on electronic transport through quantum antidots [29]; and in an open quantum system

the system can be simple with a complex environment, or vice-versa [30].

In this work, we study the complex network measures of the emergent network

that exists in the quantum many-body ground state of a Hamiltonian defined on an

imprinted network. We will describe the imprinted and emergent networks in detail

in the following sections. We emphasize that the emergent network can have a very

different structure from the imprinted network: complexity in the Hamiltonian may or

may not give rise to complexity in the state, just as complexity can also arise out of

non-complex simple systems. This is a non-trivial question that has to be addressed on a

case-by-case basis, as we have separately considered for continuous-variable multimode

quantum networks [31]. The general question of the relationship between complexity

and emergence remains an open one [32].

While previous studies have focused on using quantum networks to, for example,

establish quantum communication over long distances, we focus on the complex networks

properties of the emergent network in the quantum many-body ground state defined on

imprinted networks. Our work thus opens a new avenue for using network science to

study quantum systems.

2.2. Imprinted Spin Networks

Hamiltonians are usually defined on regular lattices with regular links in condensed

matter and statistical physics, and have random links in random matrix theory, e.g.

in nuclear physics or spin glasses in condensed matter physics. Our novelty is that

we generalize these Hamiltonians to complex networks. Specifically, we define the

Hamiltonian as Ĥ =
∑
〈ij〉 Ĥij, where the sum runs over the links in the network. We

call the network with these links Ĥij as the imprinted network. Hamiltonians defined

on such non-regular imprinted networks have much more complex phases such as spin

glasses already at the classical level, and also form the basis of Hopfield networks for

artificial neural nets. The phase diagram of Hamiltonians defined on networks which

are neither regular nor random is an unexplored frontier of research.

We consider imprinted networks generated from three different models – the Erdos-

Renyi (ER) model, the Watts-Strogatz (WS) model, and the Barabasi-Albert (BA)

model. The structure of the networks generated from these models differ significantly

from the case of regular lattices. The ER model is random. The WS model is a

small-world network, while the BA model shows power-law scaling and is thus called

scale-free. The WS and BA models are therefore referred to as complex, in contrast to

the ER model or regular lattices.

Networks in each of the above models are constructed and parameterised differently,

as detailed below. In this paper, we will find that an important parameter describing

the universal physics of the ground state of Ĥ is the average degree of each node in the
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imprinted network, Z =
∑

i k̃i/n, also called the coordination number, where k̃i is the

degree of node i.

Networks generated by the ER model are parameterized by a number 0 ≤ p ≤ 1,

which specifies the probability that any pair of nodes are connected by a link. The

distribution of the degree k̃i of node i is binomial, and the average degree is peaked

around Z = (n− 1)p.

Networks generated by the WS model are parameterized by two numbers, an even

integer K which specifies the mean degree, and 0 ≤ p ≤ 1. Here, K is the mean degree

of a node, and p is the probability that a link between two nodes (i, j) is removed and

rewired to connect i to another node j′. When p = 0, WS networks are regular, and

when p = 1, they are random and have a structure close to ER networks ‡.
Networks generated by the BA model are parameterized by an integer m. The BA

model is a preferential attachment model in which every new node is attached to m

existing nodes of the network, with probability of the new node attaching to an existing

node i given by pi = k̃i/
∑

j k̃j. The BA model is scale-free, because upon adding nodes,

it quickly generates a power-law degree distribution of P (k) ≈ k−3. The average degree

of a BA network is fixed, Z = 2m(n−m)/n.

Figures 1(a-c) show examples of networks generated from the ER, WS, and BA

models.

2.3. Emergent networks

Central to our work is the emergent network that we define in the ground state of Ĥ.

This emergent network is a fully connected network, whose nodes are the same as those

of the imprinted network, and links are given by the quantum mutual information Iij
between spins i and j. Our main focus in this work is analyzing the emergent network,

before and after network attacks, and quantifying the complexity of Iij via complex

network measures defined in Sec. 2.4

The quantum mutual information Iij between spins i and j is constructed from

the one- and two-point von Neumann entropies Si = −Tr(ρi log ρi) and Sij =

−Tr(ρij log ρij) as

Iij =
1

2
(Si + Sj − Sij) , (1)

where ρi = Trk 6=i(ρ) and ρj = Trk 6=j(ρ) are the reduced density matrices for the spins

labeled i and j in the quantum many-body ground state, and ρij = Trk 6=i,j(ρ) is the

reduced density matrix for the subsystem containing only the two spins i and j. We

define Iii = 0 ∀i.
While the quantum mutual information does not fully describe the system (a full

description is given by the density matrix), there are still several motivations for using

‡ An ensemble of WS networks at p = 1 still has some differences with an ensemble of ER networks.

For example, the minimum possible degree of any node in any WS network is K/2, and the total

number of links is n ∗ K/2. Whereas, the minimum possible degree of any node in a connected ER

network is 1, and the total number of links is binomially distributed.
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(b)

Figure 1. Examples of networks with n = 20 nodes drawn from (a) the ER model

with p = 0.26, (b) the WS model with K = 4 and p = 0.5, and (c) the BA model with

m = 2. (d-f) Distributions of the degree k̃i, clustering C̃i, and path lengths d̃ij for an

ensemble of 1000 imprinted networks with parameters as in (a-c). Yellow bars show

the distributions for ER networks, blue bars for WS, and red bars for BA networks.

quantum mutual information. First, the pairwise MI is an upper bound to the squares

of all two-body correlations along any direction [33]. This can be important since one is

often only interested in knowing two-body correlations. Second, the MI network captures

a lot of the richness of the system’s quantum wave function, including long-range

correlations and entanglement. Notably, previous works have shown that the variation of

MI across the phase diagram mirrors the system’s underlying phases [11–13,22]. Third,

the MI is a direct quantum analog of the most common complex network measures

used in classical networks for EEG and fMRI [34], and is therefore an established choice

from classical complex network theory and well understood. Finally, the MI taken as a

complex network has proven useful in a number of quantum contexts, including complex

dynamics [14].

2.4. Complex Network Measures

Visualizing the full emergent MI network is cumbersome, and even more so when we

consider an ensemble of imprinted networks. Therefore, we distill the MI in the emergent

network by a few network measures. These are the degree ki and clustering coefficient
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Ci on a node i, and shortest path length dij between i and j, generalized to analyze

weighted networks as follows:

ki =
∑

j Iij,
Ci =

(∑
j 6=k IijIjkIki

)
/
(∑

j 6=k IijIik
)
,

dij = mini1,i2,···inP (i→ i1 → i2 → · · · → j),

(2)

where P (i → i1 → i2 → · · · → j) = 1/Iii1 + 1/Ii1i2 + · · · + Iinj is the length of the

path from i to j via the nodes (i1, i2, · · · in). Here, we have defined 1/Iij as the distance

between two nodes i and j on the MI network via a direct link connecting them. Other

network measures, such as disparity, geodesic distances, and various centrality measures

can also yield useful information about the network [12]. Here we focus on ki, Ci, and

dij. We denote the corresponding measures for the imprinted networks as ki, Ci, and

dij, without the tilde.

The complex network measures also help us in classifying a network as complex or

not. Complexity is not uniquely defined, and a working definition is often assumed to

be a non-trivial topological feature such as a power-law degree distribution, or a higher

clustering and shorter path length than random networks with the same average degree.

In the following sections, we will use these working definitions to classify our emergent

networks as complex or otherwise.

To illustrate the usefulness of these complex network measures, we briefly return

to the imprinted networks. Figures 1(d-f) show the distributions of k̃i, C̃i, and d̃ij for

an ensemble of imprinted ER, WS and BA networks. We clearly see that BA networks

have a longer tail for k̃i than ER and WS networks, showing a hint of the power law

decay already for n = 20. The BA networks also have a shorter path length on average

than WS and ER networks.

3. Setup

The specific Hamiltonian we consider on the imprinted network is one where spins across

links have a z-z interaction, and each spin experiences a transverse magnetic field along

the x direction. The Hamiltonian for the system is

Ĥ = −
∑
〈ij〉

Jσ̂zi σ̂
z
j + h

∑
i

σ̂xi . (3)

This Hamiltonian is well-studied in the context of regular lattices. In this case,

the Hamiltonian is called the transverse Ising model (TIM). It is one of the simplest

exactly solvable quantum models in one dimension (1D), and has a well-understood

phase diagram. In 1D chains, the TIM has a ferromagnetic ground state for |h| < J

and a paramagnetic ground state for |h| > J > 0. Despite its simplicity, recent studies

have shown that thermal states in the 1D TIM show complexity in emergent weighted

networks whose edge weights are the von Neumann MI between particles [12]. The

phase diagram of Eq. (3) on ER, WS and BA networks is not known.
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3.1. Analytical and numerical tools

We exactly diagonalize Ĥ [Eq. (3)] to find its ground state, and calculate Iij and the

measures defined on the MI network. For each imprinted network model, we consider an

ensemble of 100 imprinted networks, and find moments of the network measures in this

ensemble. We are limited to imprinted networks with 20 nodes, since the computations

become exponentially harder for larger networks.

To support and understand our exact diagonalization results, we also calculate the

ground state of Eq. (3) within MF theory. This theory, widely applied in condensed

matter and statistical physics, works by assuming that each particle feels its immediate

neighborhood in the system as a mean field. In practice, this is done by approximating

terms in the Hamiltonian by complex scalars, and self-consistently or variationally

finding these scalars. It typically works well in systems with a large dimension D,

i.e., particles arranged in a regular lattice with Z = 2D. We find that it is sufficient

to have large Z for MF theory to be valid, and the regular lattice is not necessary. We

show that MF theory accurately predicts the average properties of the MI network for

dense imprinted random and complex networks, i.e. those with Z & 4.

To derive the MI, we make the MF approximation that each spin lies in the x–z

plane, and points at an angle θ to the z-axis. For simplicity, we first consider the case

that all spins have the same Z. Then, the expectation value of Eq. (3) is

〈Ĥ〉 = −JZN
(

1

2
cos2 θ + λ sin θ

)
, (4)

where λ = h/(ZJ). We solve for θ by minimizing Eq. (4). We obtain two solutions for

λ < 1, θ = sin−1 λ and θ = π − sin−1 λ, and one solution for λ > 1, θ = π/2. Then the

MF ground state is

|ψ〉 =
|mm · · ·〉+ |−m−m · · ·〉√

2(1 + sinn θ)
for λ < 1,

|ψ〉 = |→→ · · ·〉 for λ > 1, (5)

where m =
√

1− λ2Θ(1−λ), |m〉 = cos θ
2
|↑〉+ sin θ

2
|↓〉, and |−m〉 = sin θ

2
|↑〉+ cos θ

2
|↓〉.

Note that |m〉 and |−m〉 are not orthogonal, and 〈m| −m〉 = sin θ, which explains the

denominator on the first line of Eq. (5). For simplicity, we will assume that n is large,

and therefore sinn θ � 1 for λ < 1.

The single-particle density matrix in the MF ground state is

ρi =
1

2

(
1 + 〈σ̂z〉 〈σ̂x + iσ̂y〉
〈σ̂x − iσ̂y〉 1− 〈σ̂z〉

)
=

1

2

(
1

√
1−m2

√
1−m2 1

)
. (6)

Similarly, the two-particle density matrix can be calculated to be

ρij =
1

4


1 +m2

√
1−m2

√
1−m2 1−m2

√
1−m2 1−m2 1−m2

√
1−m2

√
1−m2 1−m2 1−m2

√
1−m2

1−m2
√

1−m2
√

1−m2 1 +m2

 . (7)
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Using Eq. (1), the MI between two nodes is

IMF =
1

2

(
1−
√

1−m2 log2

1 +
√

1−m2

1−
√

1−m2
+

2−m2

2
log2

2−m2

m2

)
. (8)

In this case, the MI network is a fully connected weighted network where all links have

equal weights. The values of the network measures are ki/(n − 1) = Ci = IMF and

dij = 1/IMF for n� 1.

The above analysis assumed for simplicity that all spins have the same Z. The

systems we consider do not satisfy this condition. Then, our MF ansatz is modified

to |ψ〉 = (|m1m2 · · ·〉 + |−m1 −m2 · · ·〉)/
√

2 (up to a normalization constant). The

self-consistent equation for mi in this case is

mi√
1−m2

i

=
J

h

∑
j∈N (i)

mj, (9)

where N (i) is the set of neighbors of i. The solution to Eq. (9) is obtained from a set

of coupled equations,

mi =

1 +

J
h

∑
j∈N (i)

mj

−2−1/2 , (10)

which we solve by iterating Eq. (10) starting from an initial seed for {mi}. The MF

results in Eqs. (6) and (7) are modified to

ρi = 1
2

(
1

√
1−m2

i√
1−m2

i 1

)
,

ρij = 1
4


1 +mimj

√
1−m2

i

√
1−m2

j

√
1−m2

i

√
1−m2

j√
1−m2

i 1−mimj

√
1−m2

i

√
1−m2

j

√
1−m2

j√
1−m2

j

√
1−m2

i

√
1−m2

j 1−mimj

√
1−m2

i√
1−m2

i

√
1−m2

j

√
1−m2

j

√
1−m2

i 1 +mimj

 .

(11)

We will show that even though our assumption of uniform Z is invalid, the values

of ki, Ci, and dij are captured well by the solution in Eq. (8). We also capture the

higher moments of ki, Ci, and dij, such as the width of their distributions, using the

generalized solution in Eq. (10).

4. Emergent Networks in Ground States

An important, and as yet unanswered, question is whether complex networks emerge

in ground states of Hamiltonians defined on an imprinted complex network, and if

so, what are the resulting properties? Thus, we first calculate the network measures

defined in Sec. 2.4 for emergent networks arising from the ground states of Hamiltonians

on the three imprinted networks we consider in Eq. (3), ER, WS, and BA. Will the
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h/J=1
h/J=3
h/J=6

ki/(n � 1) Ci dij

ki/(n � 1) Ci dij

Figure 2. Distributions of complex network measures, the degree ki, clustering Ci,

and shortest path length dij in the emergent networks, for an ensemble of imprinted

networks generated by random (ER) and complex (WS and BA) network models. (a)

Distributions of ki, (b) Ci, and (c) dij for the three different values of h/J (indicated

above the histograms), when the imprinted networks are generated by ER and complex

model with n = 20 and p = 0.26. (d-f) Same as (a-c) for imprinted WS networks with

K = 4 and p = 0.5. (g-i) Same as (a-c) for imprinted BA networks with m = 3. The

degree and clustering shift to smaller values, and the path lengths to larger values,

as h/J increases. The distributions resemble those of random networks: the degree

distributions do not have long tails, and Ci and ki/(n− 1) are of the same order.

emergent networks be complex themselves? Does imprinted complexity beget emergent

complexity?

In Figs. 2-4, we consider an ensemble of 100 imprinted networks with n = 20

generated from all three network models, ER, WS and BA. The ER networks have

p = 0.26 and on average, Z = (n − 1)p = 4.94. The value of p was optimally chosen

to yield connected ER networks; p < 0.26 yields mostly disconnected ER networks for

n = 20. The WS networks have K = 4, p = 0.5 and Z = K = 4. The BA networks have

m = 3 and Z = 2m(n − m)/n = 5.1. We note that due to finite n and since K and

m are integers, we are restricted to consider networks with different Z. However, this

is not a limitation, since our goal is not comparing the network measures for different

ensembles of imprinted networks with different structures and different Z. Instead, our

goals are quantifying the complexity of the emergent networks, and investigating their

response to network attacks. To mitigate the effects of different Z, we will plot the

moments of the distributions of network measures versus λ = h/(ZJ).

Figure 2 plots the distribution of ki/(n − 1), Ci and dij obtained from an exact

calculation for ER networks in (a-c), for WS networks in (d-f), and BA networks in
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Figure 3. Mean field distributions of the degree ki, clustering Ci, and shortest path

length dij in the emergent networks, for an ensemble of imprinted networks generated

by random (ER) and complex network (WS and BA) models. The imprinted networks

are generated with the same parameters as Fig. 2. The mean field distributions

qualitatively capture the features obtained from exact diagonalization in Fig. 2.

(g-i). The purple, blue and pink histograms show the distributions for normalized

transverse field h/J = 1, 3 and 6 respectively. The transverse field drives a quantum

phase transition in the much simpler transverse Ising model and has been shown to give

rise to complexity in the emergent network even for a simple nearest-neighbor spin chain

near the quantum critical point [11,12,35].

A few features stand out. The distribution of ki (Ci) is a Dirac delta function at

k = (n − 1)/2 (C = 1/2) for h = 0 (not shown), and the distribution of dij is a Dirac

delta at d = 2. This is because at h = 0, the ground state is the GHZ state, where all

the spins point along ±ẑ. As h is increased, the distributions of ki and Ci get wider

first and then narrower, and the centre shifts towards 0. The distribution of dij gets

wider and shifts towards larger values. At h/J =∞ (not shown), all spins point along

x̂, ki = 0, Ci = 0 and dij =∞.

The distribution of ki for the emergent networks does not have a long tail or a

power law, and is strikingly different from the distributions for the imprinted networks

in Fig. 1. Moreover, the distribution of Ci is of the same order as ki/(n − 1), which

is typical for random networks. Therefore, we arrive at the important conclusion from

Fig. 2 that the emergent MI networks do not show complexity.

Figure 3 plots the MF distribution of ki/(n − 1), Ci and dij obtained by applying

Eq. (10) for an ensemble of ER networks in (a-c), WS networks in (d-f), and BA networks

in (g-i). The blue and pink histograms show the distributions for normalized transverse
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field h/J = 3 and 6 respectively, the same color scheme as Fig. 2. Comparing the

two figures, the MF distributions are qualitatively similar to the distributions obtained

from the exact calculation in Fig. 2. Thus, we observe that MF theory is qualitatively

adequate to capture the emergent network features.

Figure 4 plots the moments of the distributions of ki/(n−1), Ci and dij. It confirms

our claim above that Ci is of the same order as ki/(n− 1). Moreover, we also find that

the curves overlap each other when plotted as a function of λ, although the networks

have different Z. The solid blue/red/green curves are obtained numerically from exact

diagonalization, while the dashed curves are obtained from the MF theory used in

Eq. (10) and Fig. 3. The mean values (panels (a-c)) in MF theory and the exact

calculation agree well, while the disagreement in the higher moments is larger.

The solid black curve in Figs. 4(a-c) is the MF prediction for the moments for

ki/(n − 1), Ci, and dij, assuming a uniform degree for all the nodes [Eq. (8)], and

captures the trend in the exact calculations. For simplicity, we will use Eq. (8) in the

rest of the paper to calculate the MF values for the average ki/(n− 1), Ci, and dij, and

we will denote this MF0. We note that MF0 correctly captures the mean values, while
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Figure 4. Moments of the distributions of network measures from Fig. 2. (a) Mean

value of ki/(n−1) versus λ = h/(ZJ) in the emergent networks, for imprinted networks

drawn from ER, WS, and BA models with the same parameters as in Fig. 2. (b) Mean

value of Ci versus λ, and (c) of dij versus λ, in the emergent networks. (d-f) plot the

width of the distributions of ki, Ci, and dij , and (g-i) plot the distributions’ skewness.

The solid curves plot the result of an exact calculation, the dashed curves plot the

generalized mean field prediction obtained from Eq.( 10), and the black curves in (a-c)

plot the uniform mean prediction, MF0, from Eq. (8). The mean field curves accurately

capture the mean values of the measures in (a-c), but have differences in the higher

moments (d-i).
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Fig. ?: Illustration of projective measurement
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Figure 5. Projective measurement attack on a spin. (a) A complete projective

measurement projects the spin’s Bloch vector onto the axis of measurement (here, x̂),

reducing its component on the plane orthogonal to measurement (here, the y–z plane),

from an initial value of r to a final value of 0. (b) A partial projective measurement

reduces its component on this plane to (1− q)r.

the more general MF captures the higher moments too.

5. Attacks unique to quantum networks: Decoherence as modeled by

projective spin measurement

Network scientists consider various kinds of attacks on networks. Common kinds

of attacks are adding or removing nodes or links, where the nodes or links are

chosen randomly or preferentially based on the degree or centrality measures of the

attacked node. They find that the response of the network depends on the kind of

network – complex or random – and how the attacked nodes are chosen – random or

preferential [36–41]. We briefly study the response of the imprinted networks to classical

attacks in Appendix A.

Quantum networks allow a richer set of attacks than attacks on classical networks.

This is essentially because quantum systems have more degrees of freedom. In the

systems we consider, each node has a spin whose local Hilbert space dimension is 2. The

initial state is a pure state in a Hilbert space with 2n dimensions, the usual exponentially

growing state space of quantum many-body systems, described by a wave function |ψ〉.
The attacks we consider here project the pure state wave function into a mixed state,

which can be described by a density matrix ρ. For a pure state, ρ = |ψ〉 〈ψ|.
Specifically, we consider projective measurement of spins. This attack does not

have a classical counterpart. A projective measurement is a probabilistic process which

collapses a spin onto the direction along which it is measured, and is represented on

the Bloch sphere as projecting the spin’s Bloch vector onto the axis of measurement.

Projection can happen along any direction. Figure 5(a) illustrates projection onto x̂.

In the density matrix picture, when ρ for a single spin is written in the basis set by the
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Figure 6. Moments of the distributions of the measures ki, Ci, and dij in the emergent

network, after 20% of the nodes in the ground state of each imprinted network are

randomly picked and projectively measured along x̂. (a-c) Solid curves plot the mean

values of the measures for complete projective measurements (q = 1), and dashed

curves plot the same for partial projective measurements (q = 0.5). Black curves plot

the uniform mean field (MF0) prediction. (d-f) plot the width of the distributions of

the measures, and (g-i) plot the distributions’ skewness. The imprinted networks used

here are the same as those in Fig. 2. The moments of the measures are similar for both

measurement strengths, and the mean values are captured well by MF0.

direction of measurement (which is x̂ here), a complete projective measurements sets

its off-diagonal elements to zero,

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
→
(
ρ11 0

0 ρ22

)
.

We consider a generalized version where the projective measurement only partially

suppresses the off-diagonal elements,

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
→
(

ρ11 (1− q)ρ12
(1− q)ρ21 ρ22

)
,

where we denote q as the strength of the projective measurement. This is illustrated in

Fig. 5(b).

6. Response to attacks

We choose a fraction of the nodes in the network. These nodes will be either picked

randomly, or preferentially by the degree of Iij. In Sec. 6.1, we then projectively measure
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Fig. 8 + MF: Projective measurement along X on targeted node
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Figure 7. Moments of the distributions of the measures ki, Ci, and dij in the

emergent network, after 20% of the nodes in the ground state of each imprinted network

are preferentially picked and projected onto x̂. The different panels plot the same

quantities as Fig. B2 with the same color coding. There is almost no difference between

the results for targeted attacks (this figure) and random attacks [Fig. 6].

the spins on these nodes, with a strength q along x̂. This is the main focus of our work.

We discuss projections along ẑ in Appendix B. In Sec. 6.2, we also briefly discuss other

possible attacks that may occur on quantum complex networks, which may peak the

reader’s interest to perform future robustness studies.

6.1. Projective attacks

We consider networks with n = 20 spins, and projectively measure 20% of the spins. We

vary the measurement strength q, and the strategy used to choose the projected spins.

We perform these attacks on the ground states of an ensemble of ER, WS, and BA

networks, and calculate the complex network of the emergent MI network in all three

cases. In addition to averaging over the ensemble of 100 networks for each network

model, we also average over 50 realizations of the attack, i.e. 50 different combinations

of the spins that we project, for the ground state on each imprinted network.

In Fig. 6, we consider the case that the networks are attacked by a projective

measurement along x̂, where the attacked spins are chosen randomly. Figure 6 plots the

moments of the distributions of ki/(n − 1), Ci, and dij after this attack. As in Fig. 4,

panels (a-c) plot the average of ki/(n − 1), Ci, and dij, panels (d-f) plot the width of

their distributions, and panels (g-i) plot the skew. Panels (a-c) have eight curves each.

The solid blue/red/green curves correspond to the case that the attacked nodes in each
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ER/WS/BA network are completely projected (q = 1) to the x̂ direction. The dotted

curves correspond to partially projecting the attacked spins to x̂ with strength q = 0.5.

Remarkably, we find that the three solid curves for exact results in Figs. 6(a-c)

again overlap with each other when plotted versus λ, and the three dotted curves also

overlap with each other. This occurs even though the imprinted networks have very

different structures and different Z. Our calculations indicate that imprinted complex

networks (such as WS and BA networks) do not show a more robust response to

projective measurement along x̂, as compared to non-complex (i.e ER) networks. This

is completely different from the case of classical network attacks, where the response of

the system is highly dependent on whether the network is complex.

We also compare the exact results obtained from exact diagonalization with

predictions from MF0, shown as solid and dashed black curves in Figs. 6(a-b). When a

node i is attacked with a projective measurement along x̂, its magnetization 〈σ̂zi 〉 and

all correlations 〈σ̂zi σ̂zj 〉 get shrunk by (1 − q). Since 〈σ̂zi 〉 = 0 due to Z2 symmetry, the

node’s single-particle density matrix after projection is left unchanged. The two-particle

density matrix ρij after an attack on node i becomes

ρij =
1

4


1 +m2(1− q)

√
1−m2

√
1−m2 (1− q)(1−m2)√

1−m2 1−m2(1− q) (1−m2)
√

1−m2
√

1−m2 (1−m2) 1−m2(1− q)
√

1−m2

(1− q)(1−m2)
√

1−m2
√

1−m2 1 +m2(1− q)

 . (12)

If both nodes i and j are attacked, then ρij has a similar form to Eq. (12), with (1− q)
replaced by (1− q)2. The MI can then be calculated using Eqs. (1) and (12).

The black curves in Figs. 6(a-c) plot the MF0 prediction for the mean value

of ki/(n − 1), Ci, and dij. These quantitatively differ from the exact results, but

are qualitatively similar. MF0 does not correctly predict any higher moments of the

distributions.

In Fig. 7, we pick the nodes to be attacked preferentially, with the probability of a

node i to be attacked given by ki/
∑

j kj. The attacks are again projective measurements

along x̂ with q = 0.5 (dotted) or q = 1 (solid). We find almost no difference to the case of

random attacks. This is a surprising finding, since the response of complex networks to

classical network attacks is known to depend on whether the attacked nodes are picked

randomly or preferentially.

Our calculations highlight two striking aspects. First, they indicate that

(imprinted) complex networks respond similarly to projective measurement attacks

as non-complex networks, and respond similarly when the attacks are random or

preferential. This is evident from the overlapping curves for the three imprinted networks

in Figs. 6-7, and is completely different from the case of classical network attacks

– network attacks with a classical counterpart, such as deleting nodes – where the

response to the attacks depend heavily on the structure of the imprinted networks. The

main reason for this is that the attacks are made on the emergent networks, and these

networks do not seem to be complex. Moreover, MF0 as well as the general MF theory
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Figure 8. Collapse of Mean[ki]/Mean[ki(h = 0)], before and after projective

measurement attacks. The three panels consider imprinted ER, WS, and BA networks

respectively. Each panel has five (nearly overlapping) curves for Mean[ki]/Mean[ki(h =

0)] versus λ = h/(ZJ), for the case before attacks, and for the cases of random or

preferential projective measurements along ẑ or x̂ with q = 1.

qualitatively capture the mean values of ki/(n− 1), Ci, and dij, although MF0 does not

capture any higher moments, and the general MF theory has quantitative disagreements

for all higher moments of the distributions. The accuracy of MF and MF0 is likely due

to the large degree of nodes in the imprinted networks, consistent with its accuracy in

regular lattices with a large Z in condensed matter systems. As we show later, the

results might deviate from MF theory when the degree is made smaller.

The second striking aspect of our calculation, illustrated in Fig. 8, is that we also

observe a collapse of the curves for average ki when it is normalized by the average

ki(h = 0), for the cases before attacks and after attacks (for all the four kinds of attacks

considered in Figs. 6-B3 and B2-7). This indicates that projective measurement attacks

only rescale the average value of ki before the attack by a constant factor, irrespective

of the Hamiltonian parameters or the imprinted network’s structure.

Finally, we consider an ensemble of imprinted networks that are expected to lie

outside the validity of MF theory. To this end, we consider ER networks with p = 0.1,

WS networks with K = 2 and p = 0.5, and BA networks with m = 1, all of which have a

smaller Z than before. We only consider connected networks, and discard disconnected

networks. Figure 9(a,d,g) plots the moments of the density ki/(n−1) for these networks.

We clearly see that the mean density is not captured by MF0. Unlike the case of dense

imprinted networks, we also see here a difference between the mean value of ki in the

three classes of networks.

Performing projective attacks on these networks, we find that MF0 theory again

does not capture the mean density. Figure 9(b,e,h) plot the moments of the density

ki/(n − 1) after 20% of the nodes are randomly picked and projected along x̂., and

Fig. 9(c,f,i) plot the moments of ki/(n − 1) after 20% of the nodes are preferentially

picked and projected along x̂.

Nevertheless, as shown in Fig. 10, we again find that when the average ki is rescaled

by the average ki(h = 0), the curves before and after projective attacks collapse onto

each other. This indicates that even when MF does not capture the distributions of ki
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Figure 9. Moments of the distributions of ki/(n − 1) versus λ = h/(ZJ), before

and after projective attacks. We consider imprinted ER networks with p = 0.1, WS

networks with K = 2 and p = 0.5, and BA networks with m = 1. Panels (a,d,g)

consider networks before projective attacks, (b,e,h) consider 20% of the nodes in the

ground state of each imprinted network to be randomly picked and projected onto x̂,

and (c,f,i) pick the projected nodes preferentially. The color coding is the same as in

Fig. B2. The mean degree in the imprinted networks is smaller than those in Figs. 4

and B2 and outside the validity of MF theory, therefore the distributions do not agree

with MF theory (black curves).
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Figure 10. Collapse of Mean[ki]/Mean[ki(h = 0)], before and after projective

measurement attacks. The three panels respectively consider the imprinted ER, WS,

and BA networks in Fig. 9. Each panel has five (nearly overlapping) curves for

Mean[ki]/Mean[ki(h = 0)] versus λ = h/(ZJ), for the case before attacks, and for

the cases of random or preferential projective measurements along x̂ with q = 1 or

q = 0.5.

(and possibly other network measures too), the dominant effect of projective attacks on

the average measure is only a simple rescaling.

The small network size that we consider is a potential concern in comparing the
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robustness of complex and random networks to random versus targeted attacks. We are

limited to n = 20 for calculating the ground state with exact diagonalization. Larger

networks can be studied using more sophisticated numerical techniques, or realized in

experiment. Network size is, however, much less of a concern for calculating measures

of classical networks. Exploiting this, we investigate the robustness of complex and

random networks to classical attacks at n = 20 and n = 54 in Appendix A, as well

as consider a larger ensemble of classical networks. For the classical attack, we delete

nodes, since this resembles projectively measuring a node with q = 1, which sets the MI

between the measured node and all other nodes as 0. We find that BA networks with

n = 54 are more robust to random deletions than targeted deletions, as expected, and

this robustness is less prominent for networks with n = 20. An experimental realization

of the quantum networks considered in this paper will conclusively demonstrate whether

the robustness to random classical attack, i.e. node deletions, is also extended to

projective measurement attacks.

6.2. Non-projective quantum network attacks

Quantum networks are subject to many kinds of attacks. In the following, we briefly

sketch some forms of attack for future study.

Decoherence effects can be modeled by a quantum trajectories approach or by a

master equation, for example the Lindblad master equation. There are many sources

of possible decoherence. For the master equation approach, each form of decoherence is

identified by Lindblad operators. We list a couple below.

Single-qubit dephasing along x̂ is modeled by the master equation

∂tρ = −i[Ĥ, ρ] + γ
∑
i

σ̂xi ρσ̂
x
i − ρ (13)

Collective dephasing is modeled by the master equation

∂tρ = −i[Ĥ, ρ] + γ

(
σ̂xtotρσ̂

x
tot −

1

2
(σ̂xtot)

2ρ− 1

2
ρ(σ̂xtot)

2

)
. (14)

Both these forms of dephasing suppress density matrix elements that are off-diagonal

in the x̂ basis. We expect these to have the same effect as the projective measurements

we consider, which also suppress off-diagonal elements.

Depolarizing is modeled by the master equation

∂tρ = −i[Ĥ, ρ] + γ
(
2−n − ρ

)
. (15)

The solution to this equation is ρ(t) = e−γte−iĤtρeiĤt + (1− e−γt)/2n. The two-particle

density matrices, which are used to define Iij, also have the same form. Insofar as MF

theory qualitatively captures the mean value of ki/(n−1), Ci, and dij before the attack,

we expect it to capture them after depolarizing attack as well.

Recently, it has been shown for the transverse Ising model that a multichannel

Lindblad approach is needed to correctly predict equilibration times, which provide a

bound on decoherence times [42]. Thus attacks due to a reservoir may address global
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eigenstates, i.e., the entire wave function – not just local qubits. We expect the same

issues to arise for quantum complex networks based on spins with an Ising coupling.

Other attack scenarios include the usual removal of nodes one finds in classical

complex network robustness studies, probes of reduced Hilbert spaces on a subset of

qubits, and using a single immersed qubit as a probe of complex network structure [30].

7. Conclusions

We used a network-science approach to study ground states of spin models on complex

networks, and the effects of decoherence on the ground states. The main questions

we asked were (1) whether complexity in the Hamiltonian (the imprinted network)

leads to complexity in the emergent network defined in the state, and (2) what are

the consequences of this emergence to the robustness of the state to decoherence. We

quantified the complexity of the state’s emergent mutual information network, which

is a weighted network with link weights given by the pairwise mutual information

between spins, by calculating complex network measures for this network. We simulated

decoherence by performing a series of projective measurement attacks on the networks.

Answering the first question, we found that emergent networks differ significantly

from the imprinted networks, and do not show signs of complexity, even if the imprinted

networks are complex. The curves of average values of the emergent networks’ measures

versus a dimensionless parameter nearly overlapped with each other for different

imprinted networks with a large average degree (Z & 4), in the ground state before the

attacks, and in the state after the attacks. We find that mean field theory accurately

captures the average values of the emergent network measures, for all three classes

of imprinted networks, but had quantitative differences with the exact results in the

distributions’ higher moments. Thus, while the mean of the distributions is mean-field,

the width, skew, and kurtosis show quantum many-body effects. Importantly, it is

not necessary to have a regular lattice for mean field theory to be valid, and having a

relatively large average degree in the imprinted networks is sufficient.

Answering the second question, we found that the emergent network’s measures

depend only in a simple manner on the strength and direction of projective measurement,

and that this dependence completely went away when we rescaled the curves by a single

scaling factor. Thus, we showed that emergent mutual information networks for the

transverse Ising model, unexpectedly, do not share the robustness properties of classical

complex networks: (1) the choice of network structure does not help with decoherence

(attack); and (2) targeted decoherence (attack) is no more effective than random

decoherence. We found the same conclusion also for imprinted networks with small

Z, even though they lie outside the region of validity of mean-field theory. However, we

cannot exclude the possibility that this lack of robustness is due to the small network

sizes in our calculations. Excitingly, current quantum computing and quantum simulator

experiments can realize the large network sizes required to conclusively demonstrate

whether or not imprinted quantum complex networks are robust to decoherence.
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Our work introduces a new toolkit to represent quantum correlations in strongly

correlated systems with the emergent mutual information network, and to visualize

the effects of decoherence by analyzing the emergent network. Our work also highlights

important and unforeseen differences between classical and quantum networks. A better

understanding of strongly correlated systems and decoherence using novel tools such as

network analysis will help us design robust complex quantum systems, and ultimately,

a robust quantum Internet.
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Appendix A. Node deletions on the imprinted networks

Here, we consider an ensemble of 1000 networks with n = 20 and n = 54. The latter

number is motivated by Google’s Sycamore chip [16]. We delete nodes either randomly

or in a targeted manner, and plot the measures after node deletion.

Figures A1(a-c) shows the measures after 20% of the nodes are randomly deleted

from each network of size n = 20, and Figs. A1(d-f) show the measures after deletion

when the deleted nodes are targeted. The most prominent difference between the two

cases is that when attacks are targeted, nodes with a large degree in the BA networks

are fewer. This is because targeted deletions preferentially removes hubs, which tend to
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Figure A1. Network measures after deletion of nodes. (a-c) randomly remove 20% of

the nodes from each network with size n = 20. (d-f) remove 20% of nodes in a targeted

manner. Targeted deletions in BA networks lead to fewer hubs, visible as slightly fewer

nodes with a large degree. The path lengths are longer compared to the distribution

before attack [see Fig. 1(f)]. The parameters used to construct these networks are the

same as those used in the main text.
Supplementary Fig. 2
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Figure A2. Network measures after deletion of nodes. (a-c) randomly remove 20% of

the nodes from each network with size n = 54. (d-f) remove 20% of nodes in a targeted

manner. Removal of hubs by targeted deletions in BA is much more prominent for

n = 54 than for n = 20. The ER networks have p = 0.04, the WS networks have

K = 4 and p = 0.5, and the BA networks have m = 2.

have a large degree. The distribution of path lengths after attacks has an exponential

tail, and some path lengths are longer compared to Fig. 1. This is because deleting
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r

Figure B1. Projective measurement attack on a spin. (a) A complete projective

measurement projects the spin’s Bloch vector onto the axis of measurement (here, ẑ),

reducing its component on the plane orthogonal to measurement (here, the x-y plane),

from an initial value of r to a final value of 0. (b) A partial projective measurement

reduces its component on this plane to (1− q)r.

nodes removes shortest paths for some node pairs.

Figures A2(a-c) shows the measures after 20% of the nodes are randomly deleted

from each network of size n = 54, and Figs. A2(d-f) show the measures after deletion

when the attacks are targeted. The effect of targeted deletions from BA networks is

more visible here, especially in the number of nodes with a large degree and in the longer

path lengths.

Appendix B. Projective measurements along ẑ

Complementary to Sec. 6.1, here we consider projective measurements along ẑ, as shown

in Fig. B1. In Fig. B2, we choose the attacked spins are chosen randomly, and in Fig. B3,

we choose them in a targeted manner. As in Figs. 6-7, panels (a-c) have eight curves

each, and panels (d-i) six curves each, with the same color scheme.

Remarkably, we find little difference between the moments in Figs. B2 after the

attacks, and the moments in Fig. 4 before the attacks. There is also almost no difference

between the curves for q = 1 and q = 0.5. Moreover, we also find no difference in the

results between the different strategies of choosing the projected nodes in Figs. B2-B3.

Thus, we find the surprising result that measuring along ẑ has no effect on the low order

moments of ki/(n− 1), C − i, and dij, regardless of the strength and strategy of attack.

Mean field theory (MF0) accurately captures the mean values of these measures.

Appendix C. Mean field theory for projective measurements along ẑ

When a node i is attacked with a projective measurement along ẑ, its magnetization

〈σ̂xi 〉 and all correlations 〈σ̂xi σ̂xj 〉 get shrunk by (1−q). The node’s single-particle density
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Figure B2. Moments of the distributions of the measures ki, Ci, and dij in the

emergent network, after 20% of the nodes in the ground state of each imprinted network

are randomly picked and projectively measured along ẑ. The different panels plot the

same quantities as Fig. 6 with the same color coding. The moments of the measures

are similar for both measurement strengths, and the mean values are captured well by

MF0.

matrix in MF theory after projection is

ρi =

(
1
2

(1−q)
√
1−m2

2
(1−q)

√
1−m2

2
1
2

)
. (C.1)

Similarly, the two-particle density matrix after an attack on one node becomes

ρij =
1

4


1 +m2

√
1−m2 (1− q)

√
1−m2 (1− q)(1−m2)√

1−m2 1−m2 (1− q)(1−m2) (1− q)
√

1−m2

(1− q)
√

1−m2 (1− q)(1−m2) 1−m2
√

1−m2

(1− q)(1−m2) (1− q)
√

1−m2
√

1−m2 1 +m2

 .(C.2)

The two-particle density matrix after an attack on both nodes becomes

ρij =
1

4


1 +m2 (1− q)

√
1−m2 (1− q)

√
1−m2 (1− q)2(1−m2)

(1− q)
√

1−m2 1−m2 (1− q)2(1−m2) (1− q)
√

1−m2

(1− q)
√

1−m2 (1− q)2(1−m2) 1−m2 (1− q)
√
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(1− q)2(1−m2) (1− q)
√

1−m2 (1− q)
√

1−m2 1 +m2

 .(C.3)
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Figure B3. Moments of the distributions of the measures ki, Ci, and dij in the

emergent network, after 20% of the nodes in the ground state of each imprinted network

are preferentially picked and projected onto ẑ. The different panels plot the same

quantities as Fig. 6 with the same color coding. There is almost no difference between

the results for targeted attacks (this figure) and random attacks [Fig. B2].
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