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We study a two-dimensional single band Hubbard Hamiltonian with antisymmetric spin-orbit coupling. We
argue that this is the minimal model to understand the electronic properties of locally non-centrosymmetric
transition-metal (TM) oxides such as Sr2IrO4. Based on exact diagonalizations of small clusters and the random
phase approximation, we investigate the correlation effects on charge and magnetic order as a function of doping
and of the TM-oxygen-TM bond angle θ. For small doping and θ . 15◦ we find dominant commensurate in-
plane antiferromagnetic fluctuations while ferromagnetic fluctuations dominate for θ & 25◦. Moderately strong
nearest-neighbor Hubbard interactions can also stabilize a charge density wave order. Furthermore, we compare
the dispersion of magnetic excitations for the hole-doped case to resonant inelastic X-ray scattering data and
find good qualitative agreement.

I. INTRODUCTION

Solid state systems with strong electron correlations
show an intriguing number of quantum many-body phe-
nomena including high-temperature superconductivity, spin-
liquid phases, colossal magnetoresistance, and multiferroic
behavior. They can also host exotic quasiparticles such
as Majorana and Weyl fermions [1–11]. Another recur-
ring theme in contemporary condensed matter physics is
the emergence of various types of charge and spin order in
strongly interacting systems [12, 13]. Interesting ordering
phenomena were experimentally observed in many rare-earth
and transition metal oxide (TMO) compounds, for exam-
ple, La1.6Nd0.4SrxCuO4, YBa2Cu3O6+x, Bi2Sr2Cu2O8+x,
La1.5Sr0.5NiO4, NaxCoO2, and Sr2IrO4 some of which also
exhibit high temperature superconductivity [14–18]. Strong
electron interactions make TMOs a particularly promising
class of materials to find novel exotic phases [3, 6].

In 5d TMOs, the presence of crystal fields, spin-orbit cou-
plings (SOC), and strong Coulomb interactions leads to en-
hanced quantum fluctuations and a competition between a va-
riety of often exotic ground states [19–21]. Among these
materials, the iridates and especially the layered perovskite
Sr2IrO4 has attracted a lot of attention due to its similari-
ties with the cuprate superconductors [22–29]. For example,
Sr2IrO4 (La2CuO4) has one hole per Ir (Cu) ion, and shows
a pseudospin- 1

2 antiferromagnetic order. Moreover, recent ex-
periments on electron-doped Sr2IrO4 indicate the emergence
of a pseudogap and, at low temperatures, of a d-wave gap
which strengthens the analogy with the cuprates [8]. On the
other hand, there are also distinct differences. Sr2IrO4 has, in
particular, large spin-orbit couplings and a non-symmorphic
crystal structure.
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Triggered by the discovery of superconductivity in the
non-centrosymmetric (NCS) superconductor CePt3Si, the role
played by antisymmetric spin-orbit coupling (ASOC) for the
electronic and topological properties of a band structure has
come into focus [30–40]. One of the most intriguing fea-
tures of topological non-centrosymmetric superconductors is
that they can host Majorana fermions [41, 42]. Locally
NCS superconductors belong globally to a centrosymmetric
space group (global inversion symmetry) [43], however, as
a result of randomly distributed stacking faults the inversion
symmetry is locally broken [44, 45]. Compounds belong-
ing to this class are, for example, Sr3Ru2O7, Sr2RhO4, and
Sr2IrO4 [46, 47]. Here distortions in the TMO-oxygen-TMO
bonds break inversion symmetry locally and lead to staggered
ASOCs.

The crystal structure of Sr2IrO4 has been investigated ex-
perimentally in a number of studies. Early neutron pow-
der diffraction measurements indicated that the crystal struc-
ture of Sr2IrO4 belongs to the centrosymmetric space group
I41/acd [48, 49]. More recent studies by single-crystal
neutron diffraction revealed, however, a I41/a space group
[50, 51]. In both cases, the crystal structure is globally cen-
trosymmetric and non-symmorphic. Since local inversion
symmetry at the Ir sites is missing, ASOC and the entan-
glement of various internal degrees of freedom are expected
to occur in this locally NCS system [44, 45]. Moreover,
the results of resonant inelastic X-ray scattering (RIXS) on
electron-doped Sr2IrO4 show that magnetic correlations per-
sist well into the metallic regime while the long-range mag-
netic order is lost [52–54]. This property is another similar-
ity to the case of hole-doped cuprates. I.e., there is a type
of electron-hole conjugation between the properties of the iri-
dates and those of the cuprates [23].

The problem of the interplay between spin-orbit interac-
tions, magnetic and charge fluctuations has been considered
for a broad range of strongly correlated electron materials,
such as cuprate high-Tc superconductors, heavy fermion com-
pounds, and TMOs [55]. In the particular case of the cuprates,
the role of charge and antiferromagnetic spin fluctuations and
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FIG. 1. The unit cell of the layered perovskite Sr2IrO4. The red and
blue circles denote Ir atoms at different sublattices with the letters A
and B. The red and purple arrows indicate the magnetic moments on
Ir sites. The green circles are oxygen atoms. The deviation of Ir-O-Ir
bonds from 180◦ breaks the local inversion symmetry and generates
a non-colinear antiferromagnetic order along with a partially ferro-
magnetic moment.

their relation to superconductivity remains controversial. In
this paper, we will investigate the charge and magnetic prop-
erties of a two-dimensional single band Hubbard model with
antisymmetric spin-orbit coupling describing materials such
as the 5d layered TMO Sr2IrO4. Our model is taking into
account a next-nearest neighbor hopping, which leads to an
asymmetry of hole and electron doping, as well as nearest-
neighbor Hubbard interactions which can lead to charge or-
der. In addition, the effects of the rotation of the IrO6 octahe-
dra are included. Our main goal is to investigate the dominant
spin and charge fluctuations across the phase diagram of this
model. Apart from being of interest in their own right, this
study will also set the stage to discuss the mechanisms for su-
perconductivity in future studies.

The paper is organized as follows: In Sec. II we introduce
the model and consider its fundamental properties in the non-
interacting case. In Sec. III we then use exact diagonaliza-
tions of small clusters to develop some understanding of the
dominant short-range magnetic fluctuations in the interacting
case. Next, we derive in Sec. IV the dynamical charge and
spin susceptibilities as well as the magnon dispersions using
the random-phase approximation (RPA). The last section is
devoted to a short summary and conclusion.

II. DESCRIPTION OF THE MODEL

Sr2IrO4 is a layered material based on the stacking of
two-dimensional IrO2 sheets, in which Ir4+ ions form a
square lattice with two sublattices. At each lattice point,
the IrO6 octahedron is elongated along the c-axis and ro-
tated around it by an angle of θ ≈ 11◦, leading to a locally
broken inversion symmetry at each sublattice. X-ray scat-
tering and neutron diffraction experiments detected this local
non-centrosymmetricity as a canted antiferromagnetic order
[56, 57]. Besides, measurements of the magnetic suscepti-

bility revealed a weak ferromagnetic moment [58]. The unit
cell of Sr2IrO4 and the magnetic order is shown schematically
in Fig. 1.

A sufficiently large crystal field in a 5d TMO splits the 5d
orbitals into a t2g triplet and an eg doublet. The t2g states are
the low-spin ground states of the system [59, 60]. For strong
SOC, the t2g orbitals—an effective L = 1 systems— is split
further into fully filled Jeff = 3/2 and half-filled Jeff = 1/2
(upper) states [59, 60]. The reduction of the bandwidth due to
SOC causes the formation of a Mott-insulating ground state in
the presence of an intermediate amount of correlation between
the electrons [61]. The single-band Mott-insulating picture for
the low-energy physics of Ir oxides with Jeff = 1/2 appears
to be consistent with a number of experimental and theoretical
investigations. Based on this simplified single band picture,
the Hubbard-type model which we want to investigate is given
by

H = H0 +HInt, (1)

where H0 and HInt are the non-interacting and interacting
parts of the Hamiltonian, respectively. The non-interacting
part in real space can be written as

H0 = −µ−
∑
〈ij〉,σ

{
t1[a†iσbjσ + b†iσajσ] (2)

+
∑
σ′

it′1σ̂
z
σσ′ [a

†
iσbjσ′ − b†iσajσ′ ]

}
−

∑
〈〈ij〉〉,σ

{
t2[a†iσajσ + b†iσbjσ]

+
∑
σ′

it′2(σ̂× r̂ij)
z
σσ′ [a

†
iσajσ′ − b†iσbjσ′ ]

}
,

where σ̂ = (σx, σy, σz) denotes the 2 × 2 Pauli matri-
ces in the pseudospin basis, µ is the chemical potential,
and a†iσ (b†iσ) creates an electron at site i in sublattice A
(B) with pseudospin σ. The parameter t2 denotes the sec-
ond neighbor spin-independent (intra-sublattice) hopping in-
tegral and t1 = t1(θ) = 2t0

3 cos θ(2 cos4 θ − 1) and t′1 =

t′1(θ) = 2t0
3 sin θ(2 sin4 θ−1) are spin-independent and spin-

dependent (inter-sublattice) nearest-neighbor hopping ampli-
tudes, respectively [61]. Here, the angle θ describes the rota-
tion of the IrO6 octahedra along the c-axis. The last term in
the non-interacting Hamiltonian stems from the second neigh-
bor spin-dependent (intra-sublattice) hopping with amplitude
t′2, and is a staggered ASOC that violates parity. The combi-
nation of the IrO6 rotation with the stacking structure of the
2D layers along the c-axis breaks the mirror symmetry with
regard to the ab-plane and results in the spin-dependent intra-
sublattice term [44]. Moreover, the crinkling of the lattice
by displacing the A (B) sublattice in the ẑ (−ẑ) direction al-
lows for a second-neighbor (intra-sublattice) spin-dependent
hopping [62]. To obtain the previously reported electronic
band structure [27, 61, 63, 64], we set the hopping parame-
ters t2 = t21 and t′2 = t′21 , respectively. Furthermore, all of
the physical parameters are scaled in units of t0 = 0.35 eV
to obtain a band structure in good agreement with LDA+SOC
calculations [27, 61, 63].
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FIG. 2. Evolution of the non-interacting band structure (main plots)
and the Fermi surface (insets) of the Jeff = 1/2 model (2) with
respect to changes in the canting angle for the electron-doped case
with 〈n〉 = 2.4. The first BZ with the A and B sublattices is de-
picted as dashed lines. Increasing the distortion of the Ir-O-Ir bonds
will reduce the second neighbor hopping and ultimately restore the
particle-hole symmetry of the band structure.

The repulsive interactions in Eq. (1) are taken as a combi-
nation of both on-site and extended Hubbard terms

HInt =
U

2

∑
i,σ

niσniσ̄ +
V

2

∑
〈ij〉,σσ′

niσnjσ′ , (3)

where U and V are the strengths of the on-site and the first-
neighbor Hubbard interaction, respectively, niσ is the pseu-
dospin dependent electron occupation number operator, and
we set σ̄ = −σ.

Next, we perform a Fourier transformation of the fermionic
operators a†kσ = 1

N

∑
i e

ik·Ria†iσ , and b†kσ = 1
N

∑
i e

ik·Rib†iσ
for the sublattices A and B, respectively, with the number of
points in momentum space denoted by N . This leads to the
Hamiltonian in reciprocal space, which can be written as

H0 =
∑
k

Ψ†k

[
ε2k + g2k·σ ε1k + ig1k·σ
ε1k − ig1k·σ ε2k − g2k·σ

]
Ψk, (4)

where Ψ†k = (a†k↑, a
†
k↓, b

†
k↑, b

†
k↓), and

ε1k = −4t1

[
cos kx + cos ky

]
,

ε2k = −4t2 cos kx cos ky − µ,
(5)

are the dispersions originating from the nearest-neighbor
(inter-sublattice) and next-nearest neighbor (intra-sublattice)
spin-independent hopping, respectively. Furthermore,

g1k = −4t′1

[
cos kx + cos ky

]
ẑ, (6)

corresponds to the nearest-neighbor (inter-sublattice) spin-
dependent hopping. This term is a consequence of a devia-
tion of the Ir-O-Ir bond angle from 180◦ which generates a

quasi-SOC described by an even vector g1k. Moreover,

g2k = −4t′2

[
sin kx cos kyx̂− sin ky cos kxŷ

]
, (7)

describes the ASOC g-vector. Eqs. (6) and (7) show that only
the ASOC results in a violation of parity. The energy disper-
sion of the non-interacting normal system is therefore given
by

Ek,s =−µ+ ε2k + ξ
√
ε2

1k + (g1k + ξ′ |g2k|)2, (8)

where s = {1, 2, 3, 4} denotes the band number correspond-
ing to (ξ, ξ′) = {(−1,−1), (−1,+1), (+1,−1), (+1,+1)},
respectively. The band filling is defined as the number of elec-
trons per unit cell and expressed as 〈n〉 = 2 + 2ρ, in which ρ
corresponds to the doping level, e.g. 〈n〉 = 2 for half-filling.
It is worth mentioning that at every specific level of doping,
the value of the chemical potential can be calculated from

ρ =
1

N

∑
k,s

f(Ek,s)− 2, (9)

where f(. . .) the Fermi-Dirac distribution function at temper-
ature T . We are interested here in the limit T → 0.

Let us now discuss the evolution of the non-interacting band
structure and the Fermi surface with respect to the rotation
of the IrO6 octahedra around the z axis at a specific filling
of 〈n〉 = 2.4. Fig. 2(a) shows the case of canting angle
θ = 0◦. In this case, the band structure and Fermi surface
is two-fold degenerate due to the absence of both first- and
second-neighbor spin-dependent hopping. Figs. 2(b-d) show
the effect of an increase in the canting angle on the band
structure and Fermi surface. In particular, the splitting be-
tween the bands increases with increasing angle θ. Moreover,
an increasing canting angle also reduces the amplitude of the
next-nearest neighbor spin-independent hopping. This leads
to almost particle-hole symmetric bands at the largest canting
angle θ = 30◦ shown in Fig. 2(d). At the same time, semi-
flat bands and line nodes are formed along the Brillouin zone
(BZ) boundary from the M to the X high-symmetry points.
The corresponding evolution of the Fermi surface is shown in
the insets of Fig. 2.

FIG. 3. The basic building block of our model is a two-leg lad-
der with intra-sublattice hopping amplitudes t1 and t′1 and inter-
sublattice hopping amplitudes t2 and t′2. We consider an onsite Hub-
bard interaction U and a nearest-neighbor interaction V .
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FIG. 4. Magnetic structure as obtained from exact diagonalizations of small clusters. In all cases U = 4 and V = 0.4. Upper row, left to right:
static longitudinal spin structure factors for a 2× 4 cluster with 〈n〉 = 2 and θ = 0◦, 20◦, 30◦ followed by the results for a 2× 5 cluster with
θ = 20◦ and 〈n〉 = 2.8 and finally 〈n〉 = 1.2. The lower row shows the corresponding transverse structure factors.

III. EXACT RESULTS FOR SMALL CLUSTERS

In order to gain some insights into the interplay of the vari-
ous terms in Eq. (2) and the Coulomb interactions (3), we start
by considering small clusters using exact diagonalizations. As
the central building block, we consider a two-leg ladder of al-
ternating A and B sublattice sites which constitutes ‘two rows’
in the lattice shown in Fig. 1. This two-leg ladder—including
the various hopping terms—is also shown more schematically
in Fig. 3. Because spin is not a good quantum number due
to the t′2 term, we only have particle number conservation to
limit the size of the Hilbert space thus restricting our exact di-
agonalizations to relatively small cluster sizes. Nevertheless,
as we show below, these cluster sizes are sufficient to gain
some valuable insights.

We concentrate on intermediate interaction strengthsU = 4
and V = 0.4 and checked that the results are qualitatively very
similar for U = 2 to U = 8 with V = U/10. Furthermore, for
V � U , as is expected for Sr2IrO4, there will be no charge
order. We thus focus entirely on the magnetic order as a func-
tion of canting angle θ and doping level 〈n〉. We consider a
two-leg ladder with open boundary conditions and calculate
the correlation functions 〈Sz0Szr 〉 and 〈S+

0 S
−
r 〉 where the sites

are numerated as shown in Fig. 3. A Fourier transform then
leads to the static spin structure factors Szz(k) and S+−(k)
which we use as our main observables to discuss the possible
magnetic orderings. While dynamical structure factors can be
calculated as well, we find that the accessible cluster sizes are
too small to learn much about the dispersion of the magnetic
excitations.

In Fig. 4, results for the static spin structure factors are
shown for different canting angles and filling fractions. We
start by considering the half-filled case, 〈n〉 = 2. For θ = 0◦,
the model has SU(2) spin rotational symmetry and the lon-
gitudinal and transverse spin correlations are identical. For
this case we find strong antiferromagnetic correlations, see
the leftmost column in Fig. 4. There is a peak in the struc-
ture factor centered at (π, π). Increasing the canting angle in

the half-filled case, the magnetic structure remains largely un-
changed up to θ . 20◦ although transverse and longitudinal
spin correlators are, of course, no longer exactly equal. For the
case θ = 20◦, shown in the second column of Fig. 4, S+−(k)
shows a splitting of the antiferromagnetic peak into two in-
commensurate peaks. For θ = 30◦, shown in the third column
of Fig. 4, most of the spectral weight in S+−(k) has moved
to k = (0, 0) (and points equivalent by a reciprocal lattice
vector), i.e., the in-plane magnetic correlations are now fer-
romagnetic. In the longitudinal direction, on the other hand,
the correlations remain weakly antiferromagnetic. The peak
at (π, π), however, is now slightly split indicating incommen-
surate correlations.

This transition at half-filling from fully antiferromagnetic
correlations to ferromagnetic in-plane and antiferromagnetic
out-of-plane correlations with increasing canting angle can be
understood as follows: The t′2 term in the Hamiltonian (2) de-
scribes spin-flip hopping and therefore kinematically favors a
ferromagnetic alignment of spins. At the same time, the other
hopping terms still prefer an antiferromagnetic alignment. As
the importance of the t′2 term increases with increasing cant-
ing angle, the system compromises by developing in-plane
ferromagnetic correlations whereas the out-of-plane correla-
tions, while weakened, remain antiferromagnetic.

Next, we investigate the changes to the magnetic structure
when doping the system. Here we keep θ = 20◦ fixed and
consider both the electron and the hole doped case. For the
electron doped case, 〈n〉 = 2.8, shown in the fourth column of
Fig. 4, we find that the longitudinal correlation function now
has a peak at (0, π), i.e., the correlations are ferromagnetic
along the legs but antiferromagnetic between the two legs.
The transverse correlations appear to be largely incommen-
surate. In contrast, the hole doped case 〈n〉 = 1.2 shown in
the last column of Fig. 4 has dominant (π, 0) correlations: an-
tiferromagnetic along the legs and ferromagnetic between the
two legs, both in- and out-of-plane. In both cases the peaks are
less well-defined than in the undoped case and the magnetic
order is much weaker.
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Clearly, all these results are affected by the small cluster
sizes and related boundary effects. Nevertheless, there are
two main conclusions we can draw in the doped case: (1) the
results are strongly particle-hole asymmetric, and (2) doping
does weaken the magnetic correlations and also tends to push
them to become more incommensurate with the lattice.

In conclusion, we have gained important qualitative in-
sights into the model Hamiltonian (2) for intermediate inter-
action strengths. At half-filling, the antiferromagnetic order
is weakened with increasing canting angle, ultimately lead-
ing to a transition to ferromagnetic in-plane correlations for
θ & 20◦. Doping the system further weakens the magnetic
order while making the correlations also more incommensu-
rate. As expected, the cases of hole and electron doping are
not equivalent. Based on the exact diagonalizations of such
small clusters, we cannot make any statements about how
long-range these magnetic structures are and what happens if
such a basic building block is coupled to its surroundings. To
address these questions, we calculate the magnetic response
for the full two-dimensional lattice using the random-phase
approximation next.

IV. RANDOM-PHASE APPROXIMATION

In the single-particle response, the effects of correlations
weaken rapidly with doping, such that one may expect the ran-
dom phase approximation to provide an adequate description
of the two-particle response. However, this is not necessarily
true as has been shown for the case of the cuprates in Ref. [65].
Since we are here interested in a much more moderately corre-
lated regime as compared to the cuprates we might, however,
nevertheless expect that RPA provides a good starting point to
analyze the basic physical properties of this model.

A. Response functions

In the framework of linear response theory and using the
Kubo formula, the physical components of the bare suscepti-
bilities are given by [66]

χuv0 (q, iωn) =

− T

4N

∑
k,iνm

Tr
[
σ̌uǦ0(k, iνm)σ̌vǦ0(k + q, iνm + iωn)

]
,

(10)

in which u, v = 0, and u, v = {x, y, z} are denoting the
charge and spin components of the bare susceptibility. More-
over, the trace is performed over sublattice and spin spaces
and

σ̌u =

{
1 u = 0

τz ⊗ σu u 6= 0
, (11)

where 1 is a 4× 4 unit matrix and τ̂ = (τx, τy, τz) are Pauli
matrices in sublattice space. Besides, the unperturbed electron

Green’s function in the same basis is defined as

Ǧ0(k, iνm) =
[
iνm1−H0(k)

]−1
(12)

where νm are Matsubara frequencies. One can write the un-
perturbed Green’s function matrix as

Ǧ0(k, iνm) =

[
ĜAA

0 (k, iνm) ĜAB
0 (k, iνm)

ĜBA
0 (k, iνm) ĜBB

0 (k, iνm)

]
. (13)

Then, the bare susceptibility within the sublattice-spin basis
can be rewritten as

χuv0 (q, iωn) = − T

4N

∑
k,iνm

∑
pp′p′′

Trσ

[
σ̂uĜpp

′

0 (k, iνm)σ̂vĜp
′p′′

0 (k + q, iνm + iωn)
]
.

(14)

The transformation of the free electron Green’s function from
the sublattice-spin into the band pseudospin basis is achieved
by

Gpp
′

0,σσ′(k, iνm) =
∑
s

Λspσ(k)Λ∗sp′σ′(k)Gs0(k, iνm), (15)

where the number of bands in Eq. (8) is represented by s =
1, 2, 3, 4, and Λspσ(k) = 〈k, pσ|k, s〉 denotes the matrix ele-
ments to connect the s-th band to sublattice p (=A or B) and
pseudospin σ. Hence, the spatial components of the bare sus-
ceptibility are given by

χuv0 (q, iωn) =

− T

4N

∑
k,ss′,iνm

ζss
′

uv (k,q)Gs0(k, iνm)Gs
′

0 (k + q, iνm + iωn),

(16)

with

ζss
′

uv(k,q)=

Λ∗s
′

pσ (k + q)σuσσ′Λsp′σ′(k) Λs
′

p′δ(k + q)σvδ′δΛ
∗s
p′′δ′(k),

where a summation is performed over the repeated spin-
indices. If we now sum over the fermionic Matsubara fre-
quency iνm and do an analytical continuation iωn → ω+ i0+

then we obtain the well-known Lindhard function for the re-
tarded bare susceptibility

χuv0 (q, ω) =
1

4N

∑
k,ss′

ζss
′

uv (k,q)
f(Es

′

k+q)− f(Esk)

Esk − Es
′

k+q + ω + i0+
.

(17)

Within RPA, the matrix of susceptibilities is then given by

χ̂RPA(q, ω) =
1

1− Û(q)χ̂0(q, ω)
χ̂0(q, ω), (18)
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where Û(q) denotes the bare interaction matrix with

Û(q) =
∑
uv

δu,v

[
δu,0V (q)− (−1)δu,0

U

8

]
. (19)

In this equation, δu,v is the Kronecker delta and V (q) =
2V (cos qx + cos qy). In the spin (charge) channel at a specific
value of U = Uc (V = Vc), the determinant of the denomina-
tor of Eq. (18) vanishes, |1− Û(q)χ̂0(q, ω)| = 0, generating
an instability towards an ordered spin-density wave (charge-
density wave) state [67].

In addition to the zero-frequency spin and charge suscep-
tibilities, we are also calculating the charge-charge and spin-
spin two-point correlation functions which are obtained by the
Fourier transformation of the charge and spin susceptibility,
respectively. The density-density correlation function is ex-
pressed as

〈n(0)n(r)〉 =
1

4N

∑
q

eiq·r χ00
RPA(q, ω = 0). (20)

Furthermore, the in-plane and out-of-plane components of
spin-spin correlation function are given by

〈S+(0)S−(r)〉 =
1

4N

∑
q

eiq·r χ+−
RPA(q, ω = 0),

〈Sz(0)Sz(r)〉 =
1

4N

∑
q

eiq·r χzzRPA(q, ω = 0),

(21)

where

χ+−
RPA(q, ω) = (22)

χxxRPA(q, ω)+χyyRPA(q, ω)− i
[
χxyRPA(q, ω)−χyxRPA(q, ω)

]
describes the in-plane component of the spin susceptibility
corresponding to spin flipping processes.

We also consider the dynamical structure factor
SuvRPA(q, ω). Technically, we follow earlier studies [68, 69]
for calculating the different branches of spin excitations
within RPA and use the formula

SuvRPA(q, ω) = −2 Im
[
χuvRPA(q, ω)

]
. (23)

B. Results

We start by presenting and discussing our main result, the
magnetic phase diagram as a function of doping and canting
angle, shown in Fig. 5. We note first that in the density of
states (DOS) at the Fermi level there is an asymmetry in the
position of the van-Hove filling 〈n〉vH due to the non-zero
next-nearest neighbor hopping, see Fig. 5(a). By increasing
the canting angle, the van-Hove filling approaches half fill-
ing, 〈n〉 = 2. The position of the van-Hove singularities can
help us to understand the transitions in the nature of the mag-
netic fluctuations [40]. Fig. 5(b) shows the magnetic phase
diagram of the system for U = 1 obtained within RPA. Since
the extended Hubbard term is expected to be small and will
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FIG. 5. (a) Density of states at the Fermi surface (ω = 0) of the
non-interacting model versus filling and canting angle. The lines
denote the position of the van-Hove singularities for specific values
of filling, 〈n〉vH, and distortions of the Ir-O-Ir bonds. (b) Magnetic
phase diagram obtained by RPA as a function of filling and canting
angle for U = 1 and V = 0. The lines denote again the position of
the van-Hove singularities.
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FIG. 6. Momentum dependence of the zero-frequency charge sus-
ceptibility χ00(q, ω = 0) for 〈n〉=2.4 and different values of the
canting angle. The top row shows the bare susceptibilities, and the
bottom the corresponding RPA susceptibilities for U = 2. We set
V = 0. The values of the RPA charge susceptibilities remain posi-
tive, i.e. the system is far from a CDW instability.

thus only affect the charge fluctuations, we set V = 0 for
now and return to the effects of a finite V later. At low levels
of canting angle, near θ = 0◦, there are two distinguishable
van-Hove fillings near 〈n〉vH,1 ≈ 1 and 〈n〉vH,2 ≈ 3. The
interval 〈n〉vH,1 . 〈n〉 . 〈n〉vH,2 includes the area of com-
mensurate antiferromagnetic (AFM) fluctuations in the sys-
tem. Outside of this region, incommensurate AFM (IC-AFM)
fluctuations dominate. Increasing the canting angle reduces
the region in doping with commensurate AFM fluctuations.
This can be explained by the van-Hove singularities moving
towards half filling. Finally, near half filling and for canting
angles θ & 20◦, ferromagnetic fluctuations are established.
Note that these fluctuations are not necessarily long ranged as
we will discuss in detail in the following.

In Fig. 6, the evolution of the zero-frequency charge sus-
ceptibility χ00(q, ω = 0) is shown in the electron doped case
as a function of canting angle. As might be expected, we
find that the on-site Hubbard interaction has little effect; the
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FIG. 7. Momentum dependence of the in-plane component of the
zero-frequency spin susceptibility χ+−(q, ω = 0) for 〈n〉=2.4 and
different values of θ. The panels in the top row show the bare sus-
ceptibilities while the corresponding RPA results are presented in the
bottom row. We have set V = 0.
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data shown in the bottom row of Fig. 6 are representative for
U ≤ 3. Charge fluctuations with q ∼ (π, π) are dominant but
remain always short-ranged—we are far from a CDW insta-
bility.

The momentum structure of the zero-frequency in-plane
spin susceptibility as a function of U and θ is presented in
Fig. 7. The bare susceptibilities χ+−

0 (q, ω = 0), shown
in Figs. 7(a)-(d), display nearly commensurate AFM fluctu-
ations, q ∼ (π, π), for θ = 0◦, 11◦, 20◦ but nearly ferromag-
netic fluctuations for θ = 30◦. These fluctuations are, how-
ever, all short ranged. For U = 2, the RPA susceptibilities for
θ = 0◦, 11◦, 20◦ become negative, indicating that long-range
antiferromagnetic has been established. For θ = 30◦ the RPA
susceptibility is then again very similar to the bare one: the
ferromagnetic fluctuations remain short ranged.

In Fig. 8 we show the corresponding out-of-plane spin sus-
ceptibilities. Here we find that for all canting angles com-
mensurate, short-ranged antiferromagnetic fluctuations are
present. The Hubbard interaction has, in this case, only a
small effect. The RPA susceptibilities are very similar to the
bare ones.

To summarize these findings for the electron-doped case,
we show in Fig. 9 the zero-frequency two-point spin and
charge correlation functions along the crystallographic a-axis.
The out-of-plane spin correlations 〈Sz(0)Sz(r)〉 are always
short-ranged and close to commensurate irrespective of the
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FIG. 9. Charge-charge (red), in-plane spin-spin (blue), and out-
of-plane spin-spin (green) two-point correlation functions along the
crystallographic a-axis for the electron-doped case with 〈n〉 = 2.4.
The left column shows the non-interacting case and the right column
the case with U = 3 for different canting angles θ. We set V = 0.

Hubbard interaction or the canting angle. For the in-plane cor-
relations 〈S+(0)S−(r)〉 we do see, on the other hand, large
changes as a function of the Hubbard interaction U and the
canting angle θ. For θ = 0◦, 11◦, 20◦ the Hubbard interaction
establishes long-range antiferromagnetic correlations in the
system. These correlations are fully commensurate for θ = 0◦

and become slightly incommensurate for θ = 11◦, 20◦. For
all canting angles with and without interactions the charge-
charge correlations remain always commensurate and short
ranged. For pure on-site Hubbard interactions there is no
CDW instability.

This changes, however, if we also allow for a moderate
nearest-neighbor interaction V as is shown in Fig. 10. Here
we have set U = 0 to concentrate on the effects of V . In
contrast to Fig. 6, where even moderately strong Hubbard in-
teractions U had very little effect on the charge susceptibil-
ity, the nearest-neighbor interaction dramatically changes the
charge response even for strengths as small as V = 0.2. For
θ = 0◦, 11◦ the response is strongly enhanced as compared to
the non-interacting case and for θ = 20◦ there is an instabil-
ity towards long-range CDW order. Increasing V further we
find a CDW instability for all θ . 20◦. For even larger cant-
ing angles, on the other hand, there is no charge order as can
be seen from the last column of Fig. 10. We conclude, that
even relatively small nearest-neighbor Coulomb interactions
can lead to CDW instabilities in addition to the magnetic in-
stabilities discussed earlier. For general U and V , we expect
a competition between these different types of orders.
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FIG. 10. Charge susceptibility χ00(q, ω = 0) for the same parame-
ters as shown in Fig. 6 but now we set U = 0 and compare the non-
interacting case with the case of weak nearest-neighbor Coulomb in-
teractions, V = 0.2.

So far, we have concentrated on investigating the electron-
doped case because of its similarities to the hole-doped
cuprates. Motivated by a recent resonant inelastic X-ray scat-
tering (RIXS) study of the magnetic excitations in Sr2IrO4 in
the hole-doped regime, we have used Eq. (23) to obtain the
dynamical spin structure factors—both in-plane and out-of-
plane—within RPA. The results are shown in Fig. 11. We find
several branches of magnetic excitations with gapless points at
q = (0, 0) and q = (π, π). The overall structure of the mag-
netic excitations at low energies is in good qualitative agree-
ment with the experimental results reported in Ref. [70]. We
note, however, that we also find other branches of magnetic
excitations between q = (0, 0) and q = (π, π) at much higher
energies which have not been observed experimentally. Since
we have not taken into account the experimental resolution
nor the atomic form factors, our results are meant merely as
a qualitative check. A more detailed analysis would require
to reduce our model to an effective Heisenberg or t-J model.
The experimental results in Ref. [70] also suggest that it might
be important to also include third neighbor hopping to accu-
rately describe the dispersions across the full Brillouin zone,
hopping processes which we have neglected here.

V. CONCLUSIONS

We have studied a two-dimensional single band Hubbard
model with asymmetric spin-orbit couplings which is a mini-
mal model for the 5d layered transition metal oxides such as
Sr2IrO4. Most of our study has been focused on the electron-
doped case which is believed to show similarities to the hole-
doped cuprates. As a first step, we have investigated the elec-
tronic band structure of the non-interacting system as a func-
tion of the Ir-O-Ir bond angle. With increasing bond angle, the
spin-dependent hopping terms become more important lead-
ing to a small splitting of the bands. At the same time, the
second nearest-neighbor hopping amplitude decreases and the
dispersions become almost particle-hole symmetric for large
canting angles θ ∼ 30◦. The almost flat bands which form
in the latter case between high-symmetry points in the Bril-
louin zone are an interesting aspect of this model which we
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FIG. 11. The magnon dispersions along high-symmetry directions
for the hole-doped case with 〈n〉 = 1.6, U = 2, and V = 0 ob-
tained in RPA. Panel (a) shows the in-plane magnetic excitations
while panel (b) shows the out-of-plane contributions.

plan to further explore in future studies of the superconducting
and possibly topological properties of this model. To under-
stand the effects of on-site and nearest-neighbor interactions,
we have used exact diagonalizations of small clusters and
the random-phase approximation. From these calculations a
consistent picture of the magnetic instabilities of the system
emerges: For the electron doped case with 〈n〉 = 2.4, U & 2
and canting angles θ . 15◦ long-range, in-plane antiferro-
magnetic order forms. This order is replaced by dominant fer-
romagnetic fluctuations for larger canting angles. More gen-
erally speaking, we have been able to map out the regions
of the (U, θ) phase diagram where antiferromagnetic or fer-
romagnetic fluctuations dominate. We have found that the
borders of these commensurate magnetic regions around half-
filling are defined by van-Hove singularities with incommen-
surate fluctuations dominating for larger doping levels. Fur-
thermore, we have shown that fairly modest nearest-neighbor
Hubbard interactions can give rise to additional CDW instabil-
ities. The model thus shows an intricate interplay between var-
ious magnetic and charge instabilities as a function of the cant-
ing angle—which controls the strength of the spin-orbit cou-
pling and of the next-nearest neighbor hopping amplitude—
and the on-site and nearest-neighbor Hubbard interactions U
and V .

While most of our study has focussed on the electron-doped
case, we have also studied the magnetic excitations on the
hole-doped side. We find that the spin-structure factor has
gapless points at q = (0, 0) and q = (π, π). The magnon dis-
persions which we obtain in our model calculations are qual-
itatively consistent with recent RIXS experiments on hole-
doped Sr2IrO4. While a more accurate description of the ex-
perimentally observed dispersions might require to also in-
clude third neighbor hopping processes, as has been in sug-
gested in Ref. [70], the minimal model considered here does
already give the right energy scales and overall shape of the
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dispersions.
For the future it would be interesting to see whether the

model does support superconductivity and if so, what the
dominant superconducting channels are. This might help to
further clarify the similarities and differences between the
electron-doped iridates and the hole-doped cuprates.
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