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Nonlinear responses in condensed matter are intensively studied because they provide rich infor-
mation about the materials and hold the possibility of being applied in diodes or high-frequency
optical devices. While nonlinear responses in noninteracting models have been explored widely, the
effect of strong correlations on the nonlinear response is still poorly understood, even though it has
been suggested that correlations can enhance the nonlinear response. In this work, we first give an
analytical derivation of nonlinear responses using Green’s function methods at finite temperature.
Then, we discuss the difficulties of considering dissipation using conventional methods, such as the
reduced density matrix method. We reveal that the relaxation time approximation leads to severe
limitations when considering optical responses. Finally, we demonstrate that correlation effects,
such as the renormalization of the band structure and different lifetimes in orbitals or sublattices,
can significantly enhance nonlinear responses and even change the sign of the nonlinear conductivity.

I. INTRODUCTION

Nonlinear responses in condensed matter theory have
attained great interest because of their rich infor-
mation about the symmetries of materials and their
various functionalities. For example, the breaking
of the inversion symmetry in a material can be de-
tected by measuring the second harmonic generation
of the electric susceptibility[1–3]. Moreover, in non-
centrosymmetric materials, the shift current and non-
reciprocal(rectification) current can occur in nonlinear
responses[4, 5]. It was extensively studied due to its
application in solar cells, photodetectors, and high-
frequency rectification devices[6–10].

Although nonlinear responses in condensed matter
systems have many possible applications, the magni-
tude of the nonlinear response, which is usually small,
poses a significant obstacle for most applications. Thus,
much effort has been put into enhancing the ampli-
tude of the nonlinear response. It has been pro-
posed that the shift current can be magnified in Dirac
systems[4, 7, 11, 12] and that superconducting fluctu-
ations can enhance the nonreciprocity[13–15]. Another
possibility to enhance nonlinear responses might be cor-
relation effects. A strong high-harmonic generation was
revealed in strongly-correlated electron systems both
in experiments[16, 17] and numerical calculations[18–
22]. A nonlinear Hall effect, which is almost 103

times as large as the ab initio calculation result, has
been measured in the Weyl-Kondo semimetal candidate
Ce3Bi4Pd3[23]. Moreover, it has been suggested from
a Hartree-analysis that the strong Coulomb interaction
may enhance nonreciprocity[24]. Although these works
show that correlation effects give large nonlinear re-
sponses, a systematic analysis of strong correlation effects
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on nonlinear responses is still missing.

In this paper, we first derive a formalism based on
Green’s functions for calculating the nonlinear response
at finite temperature and formulate a diagrammatic
method to use them. We note that Parker et al.[25] de-
rived a similar diagrammatic method for nonlinear re-
sponses focusing on the zero dissipation limit and João
et al.[26] introduced a diagrammatic method based on
Keldysh Green’s functions. Neglecting vertex correc-
tions, we can derive equations based on the single-particle
Green’s function, including correlation effects via the
self-energy. Because there are many methods available
to calculate the self-energy of correlated materials, the
here derived formalism makes it easy to analyze cor-
relation effects on nonlinear responses. Next, we dis-
cuss difficulties of including the dissipation effect in con-
ventional methods, such as the reduced density ma-
trix(RDM) method[27–31]. In these methods, dissipa-
tion is often introduced phenomenologically by using the
relaxation time approximation(RTA). We reveal that the
RTA breaks the gauge invariance and is only justified
in the DC limit, the high-frequency limit, and at high-
temperatures, while dissipation is appropriately included
in the Green’s function method.

Furthermore, while the RDM method for nonlinear re-
sponses mainly focuses on noninteracting systems, we
demonstrate that it is possible to include correlation ef-
fects into the RDM using Green’s functions. By including
correlation effects into the RDM, we are able to retrieve
the equations of the Green’s function method in the DC
limit. Finally, we use our Green’s function formalism to
analyze correlation effects on nonlinear responses. No-
tably, we look at the impact of the renormalization of
the band structure and the effect of different lifetimes on
the nonlinear response functions. We show that renor-
malization effects can enormously enhance the nonlinear
response. Considering a renormalization uniform in all
orbitals, the renormalization factor z(< 1) enhances the
n-th order response by a factor of z−(n−1). Furthermore,
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we study the effect of different lifetimes in different or-
bitals using the non-Hermitian band-index of the effective
non-Hermitian Hamiltonian describing the single-particle
Green’s function. We show that the occurrence of differ-
ent lifetimes can not only enhance terms already exist-
ing in the Hermitian case, but also creates novel non-
Hermitian terms in the nonlinear response function orig-
inating in the coalescence of several bands. Our frame-
work can be applied to most correlated electron systems,
such as heavy fermions, magnetic systems, Mott insu-
lators, and so on. However, we note that it cannot be
directly used for systems with strong spatial fluctuations
because we ignore vertex corrections and the momen-
tum dependence of the self-energy. On the other hand,
by using the Nambu formalism, we can also expand our
framework to superconducting systems.

The rest of the paper is organized as follows: In Sec. II,
we derive the Green’s function formalism for the non-
linear response at finite temperature. Next, we discuss
the difficulties of including the dissipation in the RDM
method in Sec. III. We reveal that the RTA under an
AC electric field is a severe approximation, although it is
often used in previous works. In Sec. IV, we extend the
RDM method to interacting systems by using Green’s
functions. Finally, we analyze correlation effects, such
as the renormalization of the band structure and the oc-
currence of different lifetimes in different orbitals, on the
nonlinear response in Sec. V.

II. NONLINEAR RESPONSE USING THE
GREEN’S FUNCTION METHOD

In this section, we introduce the Matsubara formal-
ism to express nonlinear response functions by Green’s
functions, which are common and easy to handle in
the context of correlated systems at finite temperature.
Throughout this paper, we set the Planck constant and
the lattice constant to unity, h̄ = a = 1. We also set the
electron charge e = 1 in the numerical calculations.

We here use the velocity gauge, in which the effect of
electric fields is described in the Hamiltonian as

H(k)→ H(k−qA(t))

= H(k)+

∞∑
n=1

1

n!

n∏
i=1

(
−qAαi(t)∂αi

)
H(k), (1)

where q is the charge of the electron and αi is a direction
in the momentum space. In this paper, we suppose that
there is no magnetic field and we use the Coulomb gauge
A(x, t) = A(t). We note that there is another choice of
gauge, namely the length gauge. Under the length gauge,
electric fields can be described by the dipole Hamiltonian,
and it is often used in the semi-classical Boltzmann equa-
tion and the RDM. It is known that both gauges give the
same results for noninteracting systems when calculating
exactly[29].

The action of the system in the imaginary time is given
as

S[A]

=

∫ β

0

dτ
[∑
k,a

{
ψ̄a,k∂τψa,k +H(k−qA(−iτ))

}
+Hint

]
(2)

=

∫ β

0

dτ
[∑
k,a

{
ψ̄a,k∂τψa,k +H(k)

+

∞∑
n=1

(−1)n

n!

n∏
i=1

(
Aαi(−iτ)

)
Ĵα1...αn(k)

}
+Hint

]
(3)

Ĵα1...αn(k) = qn∂α1
. . . ∂αnH(k) (4)

where ψ̄a, ψa are fermionic creation and annihilation op-
erators which construct the Hamiltonian H, a is the or-
bital index, A(t) is the vector potential, Ĵα1...αn(k) =
qn∂α1

. . . ∂αnH(k) and Hint is the interaction part of the
Hamiltonian. In this paper, we suppose that there is only
a local interaction. We note that for general nonlocal in-
teractions, the interaction part of the Hamiltonian also
depends on the vector potential.

The partition function with applied electric field is
written in the path integral formalism as

Z[A] =

∫
Dψ̄Dψ exp

[
−S[A]

]
. (5)

The expectation value of the current is

〈Jα(τ)〉 =
δ

Z[A]δAα(−iτ)
Z[A], (6)

which can be written using response functions as

〈Jα(τ)〉 =

∫
dτ ′K1

αβ(τ, τ ′)Aβ(−iτ ′)

+

∫
dτ ′
∫
dτ ′′K2

αβγ(τ τ ′, τ ′′)Aβ(−iτ ′)Aγ(−iτ ′′)

+ . . . , (7)

where

Knαα1...αn(τ1, . . . , τn)

=
1

Z[A]

( n∏
i=1

δ

δAαi(−iτi)

) δ

δAα(−iτ)
Z[A]

∣∣∣
A=0

. (8)

The results for the response functions in imaginary time
are explicitly written in the Appendix A.

After Fourier transformation to Matsubara frequen-
cies, the current is given as

〈Jα(iωn)〉

= K
(1)
αβ(iωn; iωn)Aβ(iωn)

+
∑
ωm,ωl

K
(2)
αβγ(iωn; iωm, iωl)A

β(ωm)Aγ(ωl)δ(ωn−ωm−ωl)

+ . . . (9)
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The frequency before the semicolon in the response func-

tion K
(n)
αβ (iωn; iωn, . . .) represents the frequency of the

output response, and the frequencies after the semicolon
represent the frequencies of the input forces, i.e. of the
vector potentials.

Analytical continuation and using E(ωi) = iωiA(ωi)

finally yields

〈Jα(ω)〉

= K
(1)
αβ (ω;ω)Aβ(ω)

+

∫
dω1

∫
dω2K

(2)
αβγ(ω;ω1, ω2)Aβ(ω1)Aγ(ω2)δ(ω−ω12)

+ . . . (10)

= σ
(1)
αβ (ω)Eβ(ω)

+

∫
dω1σ

(2)
αβγ(ω;ω1, ω2)Eβ(ω1)Eγ(ω2)δ(ω−ω12)

+ . . . (11)

σ
(n)
αβ...(ω; {ωs}) = K

(n)
αβ...(ω; {ωi})/

( n∏
s=1

iωi
)
, (12)

where ω12 = ω1 + ω2. The first- and second-order con-
ductivities can be expressed via single-particle Green’s
functions as

σ
(1)
αβ (ω1;ω1)

= − 1

ω1

∫ ∞
−∞

dω

2π
f(ω)

∑
k

{
Tr
[
Jαβ(k)

(
GR(ω,k)−GA(ω,k)

)]
+ Tr

[
Jα(k)GR(ω+ω1,k)Jβ(k)

(
GR(ω,k)−GA(ω,k)

)
+Jα(k)

(
GR(ω,k)−GA(ω,k)

)
Jβ(k)GA(ω−ω1,k)

]}
(13)

σ
(2)
αβγ(ω1 + ω2;ω1, ω2)

=
1

ω1ω2

∫ ∞
−∞

dω

2πi
f(ω)

∑
k

{
1

2
Tr
[
Jαβγ

(
GR(ω)−GA(ω)

)]
+ Tr

[
JαβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

]
+

1

2
Tr
[
JαGR(ω+ω12)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−ω12)

]
+ Tr

[
JαGR(ω+ω12)JβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

+ Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)JγGA(ω−ω12)

]
+
[
(β, ω1)↔ (γ, ω2)

]}
, (14)

where Jαβ... is the matrix representation of Ĵαβ...,
GR/A(ω, k) is the retarded/advanced Green’s function,
and f(ω) is the Fermi distribution function. [(β, ω1) ↔
(γ, ω2)] means a term in which the index and the variable
have been replaced by the other set. Further details of the

derivation are given in the Appendix A and B. Through-
out this paper, we omit the k-index of the Green’s func-
tion and the velocity operator, Jαβ.... Furthermore, we
ignore vertex corrections in the many-particle Green’s
functions, which allows us to express the conductivity as



4

a product of single-particle Green’s functions. This ap-
proximation is also commonly used in the semi-classical
Boltzmann equation and the RDM formalism. The re-
sults above are consistent with the results in [25], and
[26]. Specifically, in the dissipationless limit, the results
are consistent with[32] Eqs.(26) and (43) in [25]. The
detail is written in Appendix E. The here presented pro-

cedure to derive the nonlinear optical conductivity can be
summarized into a diagrammatic method, which is given
in Appendix D. We note that this diagrammatic method
is a generalization of the diagrammatic method at zero
temperature in Parker et al. [25] to nonlinear response
functions using real-frequencies at finite temperature.

If we take the DC limit ω1, ω2 → 0, the first- and
second-order conductivities become

σ
(1)
DC;αβ =

∫ ∞
−∞

dω

2π

{(
−∂f(ω)

∂ω

)
ReTr

[
JαGR(ω)JβGA(ω)

]
− 2f(ω)ReTr

[
Jα

∂GR(ω)

∂ω
JβGR(ω)

]}
(15)

σ
(2)
DC;αβγ = −2

∫ ∞
−∞

dω

2π

{(
−∂f(ω)

∂ω

)
Im
(

Tr
[
Jα

∂GR(ω)

∂ω
JβGR(ω)JγGA(ω)

]
+

1

2
Tr
[
Jα

∂GR(ω)

∂ω
JβγGA(ω)

])
−f(ω)Im

(
Tr
[
Jα

∂

∂ω

(∂GR(ω)

∂ω
JβGR(ω)

)
JγGR(ω)

]
+

1

2
Tr
[
Jα

∂2GR(ω)

∂ω2
JβγGR(ω)

])}
+(β ↔ γ) (16)

Interaction effects can be taken into account by in-
cluding the retarded/advanced self-energy ΣR/A(ω) into
the Green’s function, GR(ω) = 1/[ω − H − ΣR/A(ω)].
Throughout this paper, we ignore the momentum depen-
dence of the self-energy. Including the momentum depen-
dence of the self-energy, we should also consider vertex
corrections to satisfy the Ward-Takahashi identities. We
note that the momentum dependence of the self-energy
can become significant for certain phenomena in strongly
correlated materials and, in these cases, must be included
in the considerations about nonlinear responses. We also
note that we can recover the physical unit by substitut-
ing ω → h̄ω and multiply an for n-th order nonlinear
conductivity.

Finally, setting Σ(ω) = iγ/2 and taking the limit γ →
0, we can perform the frequency integrals and further
simplify the results which are summarized in Appendix E
.

III. DIFFICULTIES DESCRIBING
DISSIPATION EFFECTS IN THE REDUCED

DENSITY MATRIX FORMALISM

Having introduced the Green’s function technique
based on a path integral derivation to calculate nonlin-
ear transport, we can compare with different approaches
and approximations made to calculate the nonlinear re-
sponse. The semi-classical Boltzmann equation and the
RDM method are often used to calculate nonlinear re-
sponses. In these methods, the dissipation is usually in-
troduced by the relaxation time approximation(RTA). In
this section, we briefly introduce the RDM method. Be-
ing able to compare it with the Green’s function method,
we can pinpoint the problems accompanying the RTA

and explain in what situation RTA is justified. We note
that the results by the semi-classical Boltzmann equa-
tion can also be obtained by the RDM results[25] so that
we here consider only the RDM method. We briefly in-
troduce the Boltzmann equation approach to nonlinear
transport in Appendix F.

A. Reduced Density Matrix Formalism

When ignoring two-body correlations, we can write the
total density matrix of the lattice system as the ten-
sor product of the reduced density matrices ρtot(t) =∏

k⊗ρk(t). We can now describe the dynamics of the
density matrix for each momentum k under the electric
field by using the von Neumann equation, which reads

d

dt
ρk(t) = −i

[
H, ρk(t)

]
− (ρ(t)− ρ(0))/τ (17)

H = H0 +HE (18)

HE = −qE · r, r = −i∇k, (19)

where we introduce the effect of dissipation by using the
RTA, −(ρ(t) − ρ(0))/τ , and ρ(0) describes the equilib-
rium state without the electric field. In the RDM for-
malism, we use the length gauge and describe the dy-
namics with the dipole Hamiltonian in Eq. (19). The
density matrix under the velocity gauge can be ob-
tained by using the transformation ρE = UρAU

†, U =
exp[−iqA(t) · r], where ρE/A is the density matrix under
the length/velocity gauge. We note again that results
obtained by the length gauge are equivalent to those ob-
tained under the velocity gauge without dissipation[29].
The recurrence equation of the n-th order density matrix
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ρ(n)(t) about the electric field can be written as

dρ(n)(t)

dt
= −i[H0, ρ

(n)(t)]− i[HE , ρ(n−1)(t)]− γρ(n)(t)

= −iLρ(n)(t) + qE(t) ·∇ρ(n−1)(t)− γρ(n)(t) (20)

F.T.⇔ ρ
(n)
k (ω) =

iqEµ(ωn)

ω − L+ iγ
∇µρ(n−1)

k (ω − ωn), (21)

where −iLρ = −i[H0, ρ], γ = 1/τ , ωn describes the fre-
quency of the electric field which leads to the n-th or-
der density matrix ρ(n), E(ωn) is the Fourier component
of E(t) and F.T. means Fourier transformation. In the
length gauge, the current operator J can be written as,

J = qṙ = −iq[r,H] = q∇kH, (22)

and, therefore, the n-th order conductivity can be calcu-
lated by

σ
(n)
α;{αi}(ω; {ωi}) =

∑
k

Tr
[
Jαρ(n)

k (ω)/(
∏
i

Eαi(ωi))
]
.

(23)

Detailed expressions can be found in [28, 33]. We note
that the equations of the RDM method using RTA can
be derived from the Green’s function technique in the
DC-limit and in the dissipation-free limit for ωi �
εnm, γ. Details about this correspondence are given in
Appendix E. The RDM method introduced here is exact
except for the RTA, and therefore, the necessary condi-
tions we listed above are caused by the RTA.

B. Velocity gauge vs Length gauge under the
relaxation time approximation

In an isolated system without dissipation, physical
quantities calculated by the velocity and length gauge are
the same, which was shown in [29]. In this subsection,
we show that this correspondence between both gauges
breaks down when using the RTA. The density matrix in
each gauge can be written as [29]

ρE(t) = UρA(t)U†, U = exp[−iA(t) · r], (24)

ρ
(n)
E (t) = ρ

(n)
A (t)

+

n∑
l=1

(

l∏
m=1

−iAαm(t))[rαl , [rαl−1
, . . . [rα1

, ρ(n−l)]]]

= ρ
(n)
A (t)− iA(t) · [r, ρ(n−1)

A (t)]− . . . , (25)

where ρE(t) is the density matrix under the length gauge,
ρA(t) is the density matrix under the velocity gauge, and
ρ(n)(t) represent the density matrix with the n-th or-
der perturbation by the electric fields. By applying the
RTA, the density matrices under both gauges change as

ρ
(n)
E/A(t) → ρ

(n)
E/A(t)e−γt when n ≥ 1. The equality in

Eq. (25) for the n = 1-order density matrix using the
RTA becomes

ρ1
E(t)e−γt

?
= ρ

(1)
A (t)e−γt − iA(t) · [r, ρ(0)

A ] (26)

However, because ρ
(0)
A does not include dissipation, the

equality in Eq. (26) has to break down.
One possible strategy to avoid this breakdown is to ig-

nore the dissipation in the system and instead include
photon dissipation or adiabatic switching as A(t) →
A(t)e−γt. In this case, the equality in Eq. (25) holds
true. However, it gives different results from the RTA,
especially in the regime ωi � γ [30]. When substitut-
ing A(t) → A(t)e−γt, we do not consider the dissipa-
tion and scattering of electrons in the system. Thus, a
current must not occur because there is no mechanism
to change the momentum of electrons, k → k′, and to
induce a non-equilibrium steady-state state. Therefore,
when including dissipation of electrons by applying the
RTA, a breakdown of the equality between the veloc-
ity gauge and the length gauge is inevitable. We note
that, in the Green’s function method, this breakdown
does not occur when we use GR(ω) = 1/(ω −H + iγ/2)
and GA(ω) = 1/(ω −H− iγ/2) because it just supposes
that the dissipation is constant in the absence of an elec-
tric field.

C. Problems of the relaxation time approximation
in an AC electric field

In this part, we introduce the dissipation into the RDM
method without using the RTA and show under which
conditions the RTA is a good approximation. This anal-
ysis reveals the problems of using the RTA in an AC
electric field. Finally, we compare the RDM using the
RTA with the Green’s function formalism numerically.

The easiest way to introduce the dissipation microscop-
ically is to couple the system with a dissipative bath. For
the sake of simplicity, we consider the single-band case

and the coupling HamiltonianHc = λ(ψ†kB+H.c.), where

B(†) is the annihilation(creation) operator in the dissipa-
tive bath. In that case, the dynamics of the system can be
described by the quantum master equation, which reads

d

dt
ρIk(t) =−

∫ t

t0

dsTrB

([
HIc(t), [HIc(s), ρIk(s)⊗ ρB ]

])
,

(27)

where ρB is the density matrix of the bath and TrB
corresponds to the trace over the bath degrees of free-
dom. The operators are in the interaction representation,

OI(t) = T← exp[i
∫ t
t0
dt′H(t′)]OT→ exp[−i

∫ t
t0
dt′H(t′)],

where H(t) = HS(t) ⊗ HB , HS(t) = H0 − qE(t) · r is
the system Hamiltonian, HB is the bath Hamiltonian,
T→(←) represents the (anti-)time ordering operator. Al-
though we take here the length gauge, the correspondence
between the length and the velocity gauge holds exactly
in this formulation. The proof is written in Appendix G.
Equation (27) includes the dissipation term, the energy
shift term, and the gain and loss terms which describe
the dynamics of a particle leaving or entering the sys-
tem. Here, we suppose that a particle that leaves the
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system loses the information about the acceleration due
to the electric fields, and the electric fields do not accel-
erate the particles in the bath. Under this assumption,
the gain and loss terms do not affect the dynamics of

ρ(n) (n 6= 0), and therefore, they do not affect the conduc-
tivity. Now, we focus on the dissipation term and ignore
the energy shift term. Then, Eq. (27) can be rewritten
as

d

dt

(
ρIk(t)

)(n)

= −λ2

∫ t

t0

dsRe
[{
iGlB(t− s)ψ†Ik (t)ψIk(s), ρIk(s)

}](n)

, (28)

where GlB(t− s) = −iTrB
[
BI(t)B†I(s)ρB

]
and {O, ρ} =

Oρ+ ρO†.

Now, we use the Markov approximation to simplify

Eq. (28), in which we take the limit t0 → −∞ and ap-
proximate ρIk(s) ' ρIk(t). The Markov approximation is
justified when λτB � 1, where τB is the relaxation time
of the bath and GB(t−s) ∝ exp[−(t−s)/τB ]. Under the
Markov approximation, Eq. (28) can be rewritten as

d

dt
ρk(t) = −i[H, ρk(t)]− λ2

(∫ ∞
0

d(t− s)Re
[{
iGlB(t− s)ψ†kU

′(t, s)ψkU
′†(t, s), ρk(t)

}])
(29)

U ′(t, s) = T→ exp
[
−i
∫ t

s

dt′(H0 − qEeiω0t
′
· r)
]
. (30)

Finally, we consider in what situation we can derive the
RTA from Eq. (29). RTA should be a good approxima-
tion to describe transport when the integral in Eq. (29)
becomes time-independent, thus, when U ′(t, s) becomes
a function of (t − s) or is constant. We see that in the
DC limit ω0 → 0 or when the temperature of the bath
is infinite and GB(t − s) ∝ δ(t − s), or when ω0 is large
enough so that qE · r/ω0 can be ignored, the integral(∫
d(t − s) ∼

)
becomes a constant and Eq. (17) can be

derived from Eq. (29).

After having analyzed the validness of the RTA,
we will now directly compare the linear and nonlin-
ear(photogalvanic) optical conductivity calculated by the
Green’s function method with the RDM using the RTA
for a simple model. For this purpose, we use a model
describing two-dimensional transition metal dichalco-
genides(TMD) in which nonlinear optical response was
discussed in the literature [10, 34, 35]. Details about the
model are given in Appendix H and the details about
how to perform the numerical calculations is given in
Appendix I.

The numerical results of the optical conductivity by
the RDM method using the RTA and by the Green’s
function method are shown in Fig. 1. For the linear opti-
cal conductivity, the results of both methods agree with
each other over the full frequency range. On the other
hand, for the nonlinear optical conductivity, the results
only match in the DC limit, and for large frequencies,
ωi � γ, as has been discussed above. We thus find that
while RTA is a good approximation for the linear optical
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FIG. 1. Comparison between the RDM method using RTA
(blue) and the Green’s function method (red) for the linear
(left panel) and nonlinear (right panel) optical conductivities,
which is the photogalvanic effect. The parameters for the
monolayer TMD model are t = 0.5, µ = 0.7, p = 0.7, α1 =
0.08, α2 = 0.06, δ = 0.7, γ = 0.05, T = 0.02.

conductivity, it leads to severe problems for the nonlin-
ear optical conductivity except in the DC limit and for
ωi � γ. Again, we note that the RTA supposes that all
non-equilibrium states decay equally by γ. On the other
hand, the Green’s function method only assumes that the
dissipation is constant in the absence of an electric field.
The RTA is a more severe approximation, which affects
nonlinear responses. We note that the relaxation time in
most materials is usually about 1 ∼ 100[ps][36]. Thus,
when analyzing a Terahertz laser as input force, ωiτ ∼ 1,
and the error of the RTA becomes large.
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IV. EXTENSION OF THE REDUCED DENSITY
MATRIX FORMALISM TO INTERACTING

SYSTEM

Having derived the Green’s function method for non-
linear responses, we are able to extend the RDM method
to interacting systems, mainly in the DC limit, and re-
produce the results of the Green’s function method. For

free electron systems, we use ρ
(0)
k =

∑
n f(εn(k)) |n〉 〈n|.

However, when we consider interacting systems, the pole
of the Green’s function includes the information of the
quasi-particle’s energy level, and therefore, the density
matrix can be written as

ρ
(0)
k =

∫
dω

2πi

∑
n

|n〉 〈n|
(
GAn (ω)−GRn (ω)

)
f(ω) (31)

=

∫
dω

2πi

∑
αβ

|α〉 〈β|
(
GA(ω)−GR(ω)

)
αβ
f(ω),

(32)

where |α〉 , 〈β| are states of an arbitrary basis, and ()αβ
represent the elements of the Green’s function in this
basis. We note that we again omit the momentum-
dependence of the Green’s function. Here, we can choose
a momentum-independent basis, ∂α |α〉 = 0. In this case,
the correction of the density matrix by the electric fields
only affects the Green’s function matrices because f(ω)
does not depend on k. Therefore, the density matrix
corrected by n-th order electric fields can be written as

(
ρ

(n)
k

)
αβ

=

∫
dω

2πi

n∑
l=0

(
GR(l)(ω)

((
GR(0)(ω)

)−1−
(
GA(0)(ω)

)−1
)

× f(ω)GA(n−l)(ω)
)
αβ
. (33)

Although we need the Green’s function corrected by the
n-th order of the electric field, we can easily derive an
equation for this using the RDM method. Here, we note
that in our previous work[37], we showed that the dy-
namics of the matrix elements ρGk,α(0) = |k, α〉 〈0| cor-

responds to the retarded Green’s function GR(k), which
reads

GRαβ(t) = −iθ(t)Tr
[(
ψα(t)ψ†β + ψ†βψα(t)

)
ρ

(0)
k

]
(34)

= −iTr
[
ψαρ

G
β (t)

]
, (35)

where ρGkβ(0) = ψ†βρ
(0)
k + ρ

(0)
k ψ†β = |k, β〉 〈0| and the dy-

namics of ρG can be described[37] as

d

dt
ρGIk (t) = −

∫ t

t0

dsiΣRI(t− s)ρGIk (s) (36)

d

dt
ρGk (t) = −i[H0 +HE , ρGk (t)]

−
∫ t

t0

dsiΣR(t−s)
( ∞∑
n=0

(
iq(t−s)E · r

)n
n!

)
ρGk (s)

(37)

ρ
G(n)
k (ω) =

iqE

ω − (H0 + ΣR(ω))

{(
1− ∂ΣR

∂ω

)
∇ρ

G(n−1)
k (ω)

+

∞∑
m=2

1

m!

∂mΣR

∂ωm
(−iqE ·∇)mρ

G(n−m)
k (ω)

}
.(38)

To derive Eq. (37), we approximate U ′(t, s) '
exp[−iH0(t − s)] exp[−iqE · r(t − s)] in the dissipation
term, which should correspond to ignoring the vertex cor-
rection. By using this equation, GR(1)(ω) (the first-order
correction of an electric field to the single-particle Green’s
function) can be derived as(

GR(1)(ω)
)
αβ

= iEµ
(
GR(0)(ω)

(
1− ∂ΣR

∂ω

)
GR(0)(ω)JµGR(0)(ω)

)
αβ

= −iEµ
(∂GR(0)

∂ω
JµGR(0)(ω)

)
αβ
, (39)

By inserting Eq. (39) into Eq. (33), we can derive the
equation for the linear conductivity as given by the path
integral method in Eq. (15). We can also calculate the
higher-order DC conductivity in the same way. We note
that using the RDM methods might be easier than the
path integral methods for higher-order DC conductivi-
ties. However, in the AC case, it is hard to derive an
equation equivalent to Eq. (38) so that the path integral
method should be used.

V. CORRELATION EFFECTS ON THE
NONLINEAR RESPONSE

Finally, we use the Green’s function formalism and an-
alyze the effect of renormalization and different lifetimes
in different orbitals, which were not considered in previ-
ous studies. We reveal that both effects can enhance the
nonlinear conductivity.

A. Renormalization effect

Intuitively, the renormalization effect seems to be a
disadvantage for obtaining a large conductivity because
it decreases the Fermi velocity. However, as the density
of states might be enhanced by the renormalization at
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the Fermi surface, one should properly analyze how the
renormalization affects the linear and the nonlinear con-
ductivities.

First, we analyze the simple case where ΣR(ω) ' ΣR0 +
αω1. Under this approximation, the Green’s function
can be written as

GR
−1

(ω) = ω −H0 − ΣR(ω) ' (1− α)ω −H′0
≡ G′R−1

(Z−1ω), (40)

where Z−1 = 1−α, H′0 = H0 +ΣR0 , and G′R
−1

(ω) = ω−
H′0. We can now analyze the effect of the renormalization
on the conductivities calculated by the Green’s function
method. By the variable transformation Z−1ω → ω′ and
Z−1ωi → ω′i, the functions which appear in the linear
and nonlinear conductivities change as follows:

GR/A(ω) = G′R/A(ω′), (41)

f(ω) ' θ(−ω) = θ(−ω′) ' f(ω′), (42)

∂f(ω)

∂ω
' δ(ω) = Z−1δ(ω′) =

∂f(ω′)

∂ω′
, (43)

∂GR(ω)

∂ω
= Z−1 ∂G

R(ω′)

∂ω′
, (44)

dω = Zdω′,
1

ωi
=
Z−1

ω′i
, (45)

where the equality in Eqs. (42) and (43) are justified
at zero temperature. By inserting the above equations
into Eqs. (14) and (16), we can derive σ(2) = Z−1σ′(2)

in both the AC and the DC case, where σ′ is the con-
ductivity described by ω′, ω′i, G

′R/A(ω′), which includes
the energy shift by ΣR0 . We note that we should com-
pare the renormalized conductivity σ(n)(ω; {ωi}) with
σ′(n)(ω′; {ω′i}) = σ′(n)(Z−1ω; {Z−1ωi}) in the AC case.
In the optical conductivity, the interband contribution
becomes large when ωi ' εnm. To focus on the same
interband transition, we set the frequency Z−1ω for the
renormalized band. We can generalize this analysis for
higher order conductivities and find

σ(n)(ω; {ωi}) ' Z−(n−1)σ′(n)(ω′; {ω′i}). (46)

By remembering that Z−1 > 1 holds for correlated sys-
tems around the Fermi energy, we conclude that the
renormalization effect enhances the higher-order nonlin-
ear conductivity more strongly, while it does not affect
the linear conductivity.

Using the Green’s function technique, we can eas-
ily confirm our general discussion above by calculating
the linear and the nonlinear optical conductivity for the
monolayer TMD model. The results for these calcula-
tions using an unrenormalized band (Z = 1) and a renor-
malized band (Z = 0.2) are shown in Fig. 2. As we de-
rived analytically, the numerical results confirm that the
nonlinear optical response is strongly enhanced by the
renormalization effect, while the linear optical response
is not enhanced. We note that the renormalized non-
linear optical conductivity is not as strongly enhanced
as predicted (Z−1σ′(2)(0;−ω, ω)) in Fig. 2, which can be
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FIG. 2. Renormalization effect on the linear and nonlinear
optical conductivity for the monolayer TMD model.
The upper figures show the linear optical conductivity, and
the lower figures show the second-order nonlinear optical con-
ductivity(photogalvanic effect) using an unrenormalized (blue
lines) and a renormalized (red lines) band. In the right figures,
we use input frequencies normalized by the renormalizion fac-
tor. The parameters are t = 0.5, µ = 0.7, p = 0.7, α1 = 0.08,
α2 = 0.06, δ = 0.7, γ = 0.05, T = 0.02, Z = 1 or 0.2. The
details about how to perform the numerical calculations are
written in Appendix I.

attributed to a finite temperature, T = 0.02, where the
Fermi-function does not correspond to the step-function.

B. Different lifetimes in different orbitals

In this section, we analyze the effect of different life-
times in different orbitals, which is not considered within
the RTA. We note that there is the study by Kaplan et al.
[38, 39], where the authors analyzed the effect of differ-
ent lifetimes on the nonlinear response, assuming that
the conventional band-index representation is justified.

When using the RTA, the non-Hermitian (dissipation)
term is described by the identity matrix. Therefore, the
eigenvectors are the same as that of the Hermitian Hamil-
tonian. However, when different lifetimes are present in
different orbitals, as in a material consisting of strongly-
correlated electrons coupled to weakly-correlated elec-
trons, the eigenvectors are distinct from the Hermitian
case. The eigenvectors are then determined by the ef-
fective non-Hermitian Hamiltonian, which describes the
single-particle Green’s function. In that case, the conven-
tional band index representation breaks down, and one
should use a non-Hermitian band index. In this section,
we first derive the non-Hermitian band index and then
analyze its effect.
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1. Band index representation using an effective
non-Hermitian Hamiltonian

In this paper, we suppose that the effective non-
Hermitian Hamiltonian can be diagonalized. We note
that, in general, there are situations when a non-
Hermitian Hamiltonian cannot be diagonalized, which
generates novel and interesting phenomena[40–45]. For
a non-Hermitian Hamiltonian, its left eigenstates are dif-
ferent from its right eigenstates, while in the Hermitian
case they correspond to each other by Hermitian conju-
gation. By describing the left and right eigenstates as
〈nL|H = εn 〈nL| , H |nR〉 = εn |nR〉, the following equa-
tions are satisfied:

〈nL|mR〉 = 〈nR|mL〉 = δnm, (47)

1 =
∑
n

|nR〉 〈nL| =
∑
n

|nL〉 〈nR| , (48)

where 〈nR| = (|nR〉)† and |mL〉 = (〈mL|)†. We note that
〈nR| 6= 〈nL| and 〈nR|mR〉 6= δnm. In Eq. (47) and (48),
we can construct the orthonormal basis by the left and
right eigenstate, and we represent the Green’s functions
by the band index as

Hnm(k) ≡ 〈nL|H(k) |mR〉 = δnmεm, (49)

GRnm(ω,k) ≡ 〈nL|GR(ω,k) |mR〉 =
δnm

(ω − εm)
, (50)

GAnm(ω,k) ≡ 〈nR|GR(ω,k) |mL〉 =
δnm

(ω − ε∗m)
, (51)

where H = H0 + ΣR includes the lifetime of the particles
and is thus a non-Hermitian operator. In the following,
we consider the effect of non-Hermiticity on the conduc-
tivity through the non-Hermitian band-index representa-
tion.

2. Non-Hermitian effect on the conductivity

First, we consider the linear conductivity using the
non-Hermitian band-index representation, which reads,

K(1)
αβ(ω1)=

∑
n,m

{∫ ∞
−∞

dω

2π
Im
[
J nnLR;αβG

R
n (ω)

]
f(ω)

+

∫ ∞
−∞

dω

2πi

[
J nmLR;αG

R
m(ω + ω1)JmnLR;βG

R
n (ω)

−J nmRR;αG
R
m(ω + ω1)JmnLL;βG

A
n (ω)

+J nmRR;αG
R
m(ω)JmnLL;βG

A
n (ω − ω1)

−J nmRL;αG
A
m(ω)JmnRL;βG

A
n (ω − ω1)

]
f(ω)

}
,

(52)

where JmnAB;i = 〈mA| Ji |nB〉. In the DC limit, this be-
comes

σ
(1)
DC;αβ

= 2

∫ ∞
−∞

dω

2π

(
−∂f(ω)

∂ω

)
Re
[
J nmRR;αG

R
m(ω)JmnLL;βG

A
n (ω)

]
− f(ω)Re

[
J nmLR;α

∂GRm(ω)

∂ω
JmnLR;βG

R
n (ω)

]
. (53)

In the non-Hermitian band-index representation, four
different types of velocity operators appear, which are
JLL,JLR,JRL,JRR. We note that the conventional ve-
locity operator in the Hermitian case corresponds to JLR
and JRL. JLL and JRR are unique in the Fermi sur-
face contribution to transport in a non-Hermitian sys-
tem. To compare to the conventional results, we can
write JLL/RR by JLR as

J nmLL =
∑
l

J nlLR 〈lL|mL〉 (54)

J nmRR =
∑
l

J lmLR 〈nR|lR〉 (55)

By using this relation, the Fermi surface term in Eq. (53)
can be rewritten as

Re
[
J nmRR;αG

R
m(ω)JmnLL;βG

A
n (ω)

]
= Re

[
〈nL|nL〉 〈nR|nR〉 J nmLR;αG

R
m(ω)JmnLR;βG

A
n (ω)

]
+Re

[
〈lL|nL〉 〈nR|l′R〉 J lmLR;αG

R
m(ω)Jml

′

LR;βG
A
n (ω)

]
.(56)

We note that the term includes ∂f(ω)/∂ω is said as “the
Fermi surface term.” The first term is the conventional
term multiplied by the factor γNH;n ≡ 〈nL|nL〉 〈nR|nR〉.
We can easily show that γNH;n ≥ 1 is always satisfied.
(See Appendix J.) Therefore, we reveal that, when the
system is described by a non-Hermitian Hamiltonian,
with different lifetimes in different orbitals, the conven-
tional Fermi surface term can be enhanced by the factor
γNH;n. The second term is unique in the non-Hermitian
band-index representation, which describes the mixture
of eigenstates in the decay dynamics. We call this term
the “band-coalescent term” in this paper. For the second-
order conductivity, we perform the same analysis and find∑

l,m,n

γNH;nJ nlLR;α

∂GRl (ω)

∂ω
J lmLR;βG

R
m(ω)JmnLR;γG

A
n (ω)

+
∑
l,m,n

∑
k,k′(6=n)

〈k′L|nL〉 〈nR|kR〉

×J klLR;α

∂GRl (ω)

∂ω
J lmLR;βG

R
m(ω)Jmk

′

LR;γG
A
n (ω), (57)

where the first term is the conventional term with non-
Hermitian factor and the second term describes the
band-coalescent term for nonlinear conductivity. Fi-
nally, we numerically check these results and how the
non-Hermiticity changes the conventional terms and the
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band-coalescent terms by explicitly calculating the linear
and nonlinear conductivity for two different models, in-
cluding orbital(sublattice) dependent lifetimes. First, we
show the results for the one-dimensional non-Hermitian
Rice-Mele model, in which the dissipation depends on the
sub-lattice. A detailed explanation of the model is given
in Appendix H. Here, we note that Γ denotes the differ-
ence of the dissipation strength at each sublattice. The
upper panels in Fig. 3 show the Γ-dependence of the lin-
ear and nonlinear DC-conductivity in the non-Hermitian
Rice-Mele model. We see that the conventional con-
ductivity with the non-Hermitian factor is dominant for
the linear conductivity, while the band-coalescent term
is dominant for the nonlinear conductivity. We note that
the band-coalescent term can be determined by subtract-
ing the conventional term from the total conductivity.

Next, we analyze the monolayer TMD model with uni-
axial strain and spin-dependent scattering rates, where
Γ↑/↓ = ±Γ. The lower panels in Fig. 3 show that the
conventional conductivity with the non-Hermitian factor
is dominant for the linear conductivity, while the band-
coalescent term prevails for the nonlinear conductivity.
Notably, the sign of the nonlinear conductivity changes
due to the non-Hermitian effect, and the absolute value
is strongly enhanced. We note that the small spike in
the conventional term of the nonlinear Hall conductiv-
ity originates from numerical errors due to exceptional
points. The non-Hermitian band-index is very sensitive
in parameter regions, including exceptional points, where
the non-Hermitian Hamiltonian cannot be diagonalized.

Although we have analyzed the effect of different life-
times in orbitals(sublattices) in two specific models, it
seems to be clear that the non-Hermitian effect on non-
linear responses is highly model-dependent. Our results,
however, suggest that non-Hermiticity due to a difference
of lifetimes in orbitals(sublattices) can strongly enhance
nonlinear transport. This enhancement of nonlinear re-
sponses should also become important for correlated ma-
terials, where the self-energy depends on the orbital and
atom.

VI. SUMMARY AND DISCUSSION

In this paper, we constructed a formalism based on
Green’s functions to calculate the nonlinear response at
finite temperature and generally analyze the impact of
correlations on nonlinear response. By using a formal-
ism based on Green’s functions, correlations and elec-
tron scattering can be easily included via the self-energy.
Previous studies on nonlinear response mainly focused
on noninteracting systems using the semi-classical Boltz-
mann equation and the reduced density matrix formal-
ism. In these methods, dissipation, which is necessary for
the generation of a current, is introduced phenomenolog-
ically by the RTA. We reveal that the RTA is justified
for nonlinear optical response only in the DC limit and
in the free limit ωi � γ, εnm, while the RTA seems to be
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FIG. 3. Γ-dependence of the linear and non-linear conduc-
tivities in the non-Hermitian Rice-Mele model and the the
monolayer TMD materials under uniaxial strain.
The upper figures show the linear conductivity and the non-
reciprocal conductivity in the 1D Rice-Mele model, and the
lower figures depict the linear conductivity and the non-linear
Hall conductivity in the monolayer TMD model under uniax-
ial strain. The blue lines represent the original terms (also
appearing in the Hermitian model) now modified by the non-
Hermitian factor as in Eq. (57). The red lines describe the
total conductivitywhich is the sum of the conventional term
with non-Hermitian factor and the band-coalescent term..
The parameters are t = 1.0, δt = 0.3, ∆ = 0.3, η = 0.05,
T = 0.02 for the 1D Rice-Mele model, and t = 0.5, µ = 0.7,
p = 0.7, α1 = 0.08, α2 = 0.06, δ = 0.7, η = 0.05, T = 0.02
for the monolayer TMD model. The normalization coefficients

are σ
(1)
xx (Γ = 0) = 0.0801, σ

(2)
xxx(Γ = 0) = −0.0160 in the Rice-

Mele model and σ
(1)
xx (Γ = 0) = 36.21, σ

(2)
yxx(Γ = 0) = 1.417 in

the monolayer TMD model.

a good approximation for the linear optical conductivity.
We note that although Parker et al.[25] also derived a
Green’s function formalism for noninteracting systems,
they considered mostly photon decay ωi → ωi + iγ and
neglect correlations and electron scattering.

After having established the Green’s function formal-
ism, we analyze the renormalization effect and the im-
pact of different lifetimes in a multi-orbital system as
common correlation effects, which are not considered in
previous studies. We demonstrate that the enhancement
generated by the renormalization effect increases with
the order of the nonlinear response. When considering a
single-band model, the renormalization coefficient z(< 1)
enhances the n-th order response by a factor of z−(n−1).
Thus, the nonlinear response is more strongly increased
than linear transport. Finally, we analyzed systems with
different lifetimes, which commonly occur in materials
where strongly correlated electrons couple to weakly in-
teracting. The effect of different lifetimes can be analyzed
by the band index of the non-Hermitian Hamiltonian. It
causes the enhancement of terms that can also be de-
rived in the Hermitian case and the emergence of a new
term in which several bands coalesce. We analyzed these
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non-Hermitian effects on the conductivity in two specific
models. In both models, the conventional term with the
non-Hermitian factor is dominant for the linear conduc-
tivity, while the band-coalescent term is dominant for the
nonlinear conductivity. The non-Hermitian effect can en-
hance the (non)linear conductivity and can even change
the sign, although it depends on the model. Although
the non-Hermitian band index is not well-defined at ex-
ceptional points, where the non-Hermitian factor γNH
diverges, different lifetimes might give rise to novel trans-
port. For example, in photonic crystals, the emergence of
exceptional points induces non-reciprocal transport[46–
49]. It should be possible to observe related phenomena
in correlated materials. However, these questions are left
for future works.
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Appendix A: Derivation of the Matsubara formalism

In this section, we derive the conductivities using
Green’s function in Eqs. (13) and (14) starting from
Eqs. (8) and (12). The first- and second-order response
functions in the imaginary time are written as

K(1)
αβ(τ, τ1)

=
1

Z[A]

δ

δAβ(−iτ1)

δ

δAα(−iτ)
Z[A]|A=0 (A1)

= − < ψ̄µ(τ)J µνα ψν(τ)ψ̄λ(τ1)J ληβ ψη(τ1) >

+ < ψ̄µ(τ)J µναβψν(τ) > δ(τ−τ1) (A2)

= −δ(τ−τ1)Tr
[
JαβG(0)

]
− Tr

[
JαG(τ−τ1)JβG(τ1−τ)

]
,

(A3)

K(2)
αβγ(τ, τ1, τ2)

=
1

Z[A]

δ

δAγ(τ2)

δ

δAβ(τ1)

δ

δAα(τ)
Z[A]|A=0 (A4)

= δ(τ−τ1)δ(τ−τ2)Tr
[
JαβγG(0)

]
+δ(τ−τ1)Tr

[
JαβG(τ − τ2)JγG(τ2 − τ)

]
+δ(τ−τ2)Tr

[
JαγG(τ − τ1)JβG(τ1 − τ)

]
+δ(τ1−τ2)Tr

[
JαG(τ − τ1)JβγG(τ1 − τ)

]
+Tr

[
JαG(τ−τ2)JγG(τ2−τ1)JβG(τ1−τ)

]
+Tr

[
JαG(τ−τ1)JβG(τ1−τ2)JγG(τ2−τ)

]
, (A5)

where we used Wick’s theorem to derive Eqs. (A3) and
(A5) from Eqs. (A2) and (A4). When calculating con-
ductivities for correlated systems, Eqs. (A3) and (A5)
are exact except for vertex corrections. Correlations are
included via the self-energy in the single-particle Green’s
function in imaginary time, G. We note that physi-
cal quantities obtained within the length gauge corre-
spond to those from the velocity gauge when calculating
exactly[29]. Therefore, taking the length gauge, we can
derive the same results.

After Fourier transformation, we can derive the lin-
ear and second-order nonlinear response function in the
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Matsubara frequency as

K(1)
αβ(iωm; iωm)

= − 1

β

∑
ωl

Tr
[
JαβG(iωl) + JαG(iωl+iωm)JβG(iωl)

]
,

(A6)

K(2)
αβγ(iωs(= iωn + iωm); iωn, iωm)

=
1

β

∑
ωl

{
1

2
Tr
[
JαβγG(iωl)

]
+
(

Tr
[
JαβG(iωm+iωl)JγG(iωl)

]
+

1

2
Tr
[
JαG(iωn+iωm+iωl)JβγG(iωl)

]
+Tr

[
JαG(iωn+iωm+iωl)JβG(iωm+iωl)JγG(iωl)

])
+
(

(β, iωn)↔)γ, iωm)
)}

, (A7)

where ωl = (2l+1)π/β are Fermionic Matsubara frequen-
cies and ωm = 2mπ/β, ωn = 2nπ/β are Bosonic Matsub-
ara frequencies, which originate from the photons.

Appendix B: Analytic continuation of the nonlinear
response function

We can calculate the (non-)linear response in real fre-
quency by using analytic continuation. By considering
the paths in the complex frequency plane shown in Fig. 4,
the (non-)linear response functions can be written as

K(1)
αβ(iωm; iωm) = (

∮
up+C1

+

∮
C2+C3

+

∮
C4+low

)
dω

2πi
f(ω)Tr

[
JαβG(ω) + JαG(ω + iωm)JβG(ω)

]
(B1)

=

∫ ∞
−∞

dω

2πi
f(ω)

{
Tr
[
Jαβ

(
GR(ω)−GA(ω)

)]
+ Tr

[
JαGR(ω + iωm)Jβ

(
GR(ω)−GA(ω)

)]
+Tr

[
Jα
(
GR(ω)−GA(ω)

)
JβGA(ω − iωm)

]}
(B2)

⇔ K
(1)
αβ (ω1;ω1) =

∫ ∞
−∞

dω

2πi
f(ω)

{
Tr
[
Jαβ

(
GR(ω)−GA(ω)

)]
+ Tr

[
JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

)]
(B3)

+Tr
[
Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)

]}
, (B4)

K(2)
αβγ(iωn + iωm; iωn, iωm) = −(

∮
up+C1

+

∮
C2+C3

+

∮
C4+c5

+

∮
C6+low

)
dω

2πi
f(ω)

{1

2
Tr
[
JαβγG(iωn)

]
+

1

2
Tr
[
JαG(ω + iωn + iωm)JβγG(ω)

]
+ Tr

[
JαβG(ω + iωm)JγG(ω)

]
+Tr

[
JαG(ω + iωn)JβG(ω + iωn + iωm)JγG(ω) +

(
(iωn, β)↔ (iωm, γ)

)]}
(B5)

= −
∫ ∞
−∞

dω

2πi
f(ω)

∑
k

{
1

2
Tr
[
Jαβγ

(
GR(ω)−GA(ω)

)]
+Tr

[
JαβGR(ω+iωm)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−iωm)

]
+

1

2
Tr
[
JαGR(ω+iωnm)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−iωnm)

]
+Tr

[
JαGR(ω+iωnm)JβGR(ω+iωm)Jγ

(
GR(ω)−GA(ω)

)
+JαGR(ω+iωn)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−iωm)

+Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−iωn)JγGA(ω−iωnm)

]
+
[
(β, ω1)↔ (γ, ω2)

]}
(B6)
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Re(𝜔)
Im(𝜔)

…
…

C1

C3

C2

C4 Im(𝜔) = −𝑖𝜔! ± 𝑖𝛿

The poles of 
Fermi distribution function

The poles of 
The Green functions

Im(𝜔) = ±𝑖𝛿

Re(𝜔)
Im(𝜔)

…
…

…
…

C1

C3

C5

C2

C4

C6

𝜔 = −𝑖𝜔! ± 𝑖𝛿

𝜔 = −𝑖(𝜔"+𝜔!) ± 𝑖𝛿

FIG. 4. Paths in the complex ω-plane for the analytic continuation of the linear and second-order nonlinear response functions.
By constructing the paths, which surround the poles of the Fermi distribution function and avoid the poles of the Green’s
functions, we can derive Eq. (B4) and Eq. (B5) from Eq. (A6) and Eq. (A7).

⇔ K
(2)
αβγ(ω1 + ω2;ω1, ω2) = −

∫ ∞
−∞

dω

2πi
f(ω)

∑
k

{
1

2
Tr
[
Jαβγ

(
GR(ω)−GA(ω)

)]
+Tr

[
JαβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+ Jαβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

]
+

1

2
Tr
[
JαGR(ω+ω12)Jβγ

(
GR(ω)−GA(ω)

)
+ Jα

(
GR(ω)−GA(ω)

)
JβγGA(ω−ω12)

]
+Tr

[
JαGR(ω+ω12)JβGR(ω+ω2)Jγ

(
GR(ω)−GA(ω)

)
+JαGR(ω+ω1)Jβ

(
GR(ω)−GA(ω)

)
JγGA(ω−ω2)

+Jα
(
GR(ω)−GA(ω)

)
JβGA(ω−ω1)JγGA(ω−ω12)

]
+
[
(β, ω1)↔ (γ, ω2)

]}
, (B7)

where up(low) means the path in the complex plane sur-
rounding the upper(lower) plane, and f(ω) is the Fermi
distribution. We use the relation

∮
C

dω
2πif(ω)A(ω) =

− 1
β

∑
nA(iωn), where

∮
C

corresponds to the path in-

tegral only around the poles of the Fermi distribution
function, while avoiding the poles of A(ω). Using the
definitions of the response functions for real frequencies

σ
(1)
αβ (ω1;ω1) = K

(1)
αβ (ω1;ω1)/iω1 (B8)

σ
(2)
αβγ(ω1 + ω2;ω1, ω2) = −K(2)

αβγ(ω1 + ω2;ω1, ω2)/ω1ω2,

(B9)

we can derive Eq. (13) and (14) in the main text.

Appendix C: DC-limit

In this section, we explicitly perform the DC-limit
(ωi → 0) and derive Eqs. (15) and (16) starting from
Eqs. (13) and (14). We thereby show that performing

the DC-limit under the velocity gauge does not yield any
artificial divergence.

When ωi is small enough, in the sense that βωi �
1 and τωi � 1 [τ is the inverse of the imaginary part

of GR
−1

(ω)], we can expand the single-particle Green’s
function as follows:

Ga(ω+ω1) ' Ga(ω) +
∂Ga

∂ω
ω1, (C1)

Ga(ω+ω1+ω2) ' Ga(ω) +
∂Ga

∂ω
(ω1+ω2) +

∂2Ga

∂ω2
ω1ω2,

(C2)

f(ω + ω1)− f(ω) ' ∂f(ω)

∂ω
(ω1), (C3)

where a = R,A (retarded and advanced Green’s func-
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tion). By using this expansion, Eq. (13) becomes

σ
(1)
αβ (ω1) =

1

ω1

∫
dω

2π

(
A0(ω)+A1(ω)ω1

)
+O(ω2

1), (C4)

A0(ω) =

∫
dk

(2π)d
f(ω)Tr

[
Jαβ

(
GR(ω)−GA(ω)

)
+JαGR(ω)JβGR(ω)− JαGA(ω)JβGA(ω)

]
,

(C5)

A1(ω) =

∫
dk

(2π)d

{∂f(ω)

∂ω
Tr
[
JαGR(ω)JβGA(ω)

]
+f(ω)

(
Tr
[
Jα

∂GR(ω)

∂ω
JβGR(ω)

+JαGA(ω)Jβ
∂GA(ω)

∂ω

]}
. (C6)

We here used

−
∫
dω

2π
f(ω)

(
JαGR(ω+ω1)JβGA(ω)

− JαGR(ω)JβGA(ω−ω1)
)

=

∫
dω

2π

(
f(ω+ω1)−f(ω)

)
JαGR(ω+ω1)JβGA(ω)

(C7)

to derive Eq. (C6). If A0(ω) would be finite after the in-
tegration, the conductivity diverges at ω1 → 0 even when
1/τ > 0. However, by using the identity, ∂αG

R/A(ω) =
GR/A(ω)JαGR/A(ω), Eq. (C5) can be rewritten as

A0(ω) = f(ω)

∫
dk

(2π)d
∂β

{
Jα
(
GR(ω)−GA(ω)

)}
= 0. (C8)

Therefore, A0(ω) becomes zero at ω1 → 0, an artificial
divergence does not occur, and we can derive Eq. (15)
using GA = (GR)∗.

We perform the same procedure for the second-order
conductivity. By using the ωi expansion in Eqs. (C1) to
(C3), Eq. (14) becomes

σ
(2)
αβγ(ω1 + ω2;ω1, ω2)

=
1

ω1ω2

∫
dω

2π

(
A0(ω) + (A1(ω)ω1+A′1(ω)ω2) +A2(ω)ω1ω2

)
+O(ω2

1 , ω
2
2 , ω

3
i ) (C9)

A0(ω) = f(ω)

∫
dk

(2π)d

{1

2
Tr
[
Jαβγ

(
GR(ω)−GA(ω)

)]
+

1

2
Tr
[
JαGR(ω)JβγGR(ω)− JαGA(ω)JβγGA(ω)

]
+
(

Tr
[
JαβGR(ω)JγGR(ω)− JαβGA(ω)JγGA(ω)

]
+Tr

[
JαGR(ω)JβGR(ω)JγGR(ω)

]
−Tr

[
JαGA(ω)JβGA(ω)JγGA(ω)

])
+ (β ↔ γ)

}
= f(ω)

∫
dk

(2π)d
∂γ∂β

{
Jα
(
GR(ω)−GA(ω)

)}
= 0 (C10)

A1(ω) = f(ω)

∫
dk

(2π)d
∂βTr

[
Jα

∂GR(ω)

∂ω
JγGR(ω)

]
+
∂f(ω)

∂ω

∫
dk

(2π)d
∂βTr

[
JαGR(ω)JγGA(ω)

]
+ c.c.

= 0 (C11)

A′1(ω) = A1(ω;β ↔ γ) = 0 (C12)

A2(ω)

=

∫
dk

(2π)d

{(∂f(ω)

∂ω

)(
Tr
[
Jα

∂GR(ω)

∂ω
JβGR(ω)JγGA(ω)

]
+

1

2
Tr
[
Jα

∂GR(ω)

∂ω
JβγGA(ω)

])
−f(ω)Im

(
Tr
[
Jα

∂

∂ω

(∂GR(ω)

∂ω
JβGR(ω)

)
JγGR(ω)

]
+

1

2
Tr
[
Jα

∂2GR(ω)

∂ω2
JβγGR(ω)

])
+(β ↔ γ)

}
(C13)

In the same way as for the linear conductivity,
A0(ω), A1(ω), A′1(ω) can be written in the form of an
integration over a total derivative and thus become zero.
Therefore, we can determine A2(ω) as the second-order
DC-conductivity.

Appendix D: Diagrammatic formalism for nonlinear
response at finite temperature

Parker et al. introduced a diagrammatic method for
nonlinear responses in [25], and João et al.[26] introduced
a diagrammatic method using Keldysh Green’s functions.
In this section, with the results from the previous section
in mind, we construct an extension to this diagrammatic
method for finite temperatures using real frequencies,
which is summarized in Table I. Each diagram for the
N -th order response function includes N incoming pho-
tons and one vertex for an outgoing photon. For each
incoming photon a coefficient (iωi)

−1 is multiplied. The
frequencies of the input vertices need to sum up to the
output frequency. Furthermore, each diagram includes
one object corresponding to the distribution function. Fi-
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Component Diagram Value

(Classical)
Photon

Propagator

(𝜶,𝝎𝟏) 1

Electron
Propagator
(Retarded)

𝝎
GR(ω)

Electron
Propagator
(Advanced) 𝝎

GA(ω)

Distribution
Function

(
GR(ω)−GA(ω)

)
f(ω)

One-Photon
Input Vertex

(𝜶,𝝎𝟏)

𝝎′

𝝎" +𝝎𝟏
1

iω1
Jα

Two-Photon
Input Vertex

(𝜶,𝝎𝟏)
𝝎′

𝝎" +𝝎𝟏 +𝝎𝟐(𝜷,𝝎𝟏)

1
iω1

1
iω2
Jαβ

One-Photon
Output Vertex

𝝎−𝝎𝟏

(𝜶,𝝎𝟏)
𝝎

Jα

TABLE I. Objects to construct Feynman diagrams for nonlin-
ear electromagnetic perturbations in a crystal at finite tem-
perature – A new vertex with N incoming photons will ap-
pear in a diagram of the N -th order response function. The
input vertex can appear with any number of photons with a
coefficient (−iωi)−1 for each photon. The right(left)-handed
arrows represent retarded(advanced) Green’s functions. The
direction of the arrow changes at the distribution function ob-
ject and the output vertex, but not at the input vertices. We
note that the input can occur at the same place as the output,
such as in the first term of Eqs. (D1) and (D2). In that case,
the value for the n-th order vertex becomes

∏n−1
i

1
iωi
Jα1...αn .

nally, retarded and advanced Green’s functions are used
to connect all vertices in a single loop. The difference
of our results to the results by Parker et al.[25] is the
presence of the distribution function and the distinction
between the retarded and advanced Green’s functions.
For calculating the N -th order response, we construct all
distinct diagrams using these rules. We then can easily

evaluate the diagrams tracing the objects anticlockwise
starting from the output vertex.

For example, the linear optical conductivity can be de-
scribed using diagrams as

σ
(1)
αβ (ω;ω1)

=

(𝜷,𝝎𝟏)

(𝜶,𝝎𝟏)

+
(𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏

(𝜶,𝝎𝟏) +

(𝜷,𝝎𝟏)

𝝎 − 𝝎𝟏

(𝜶,𝝎𝟏)

= − 1

ω1

∫ ∞
−∞

dω

2π
f(ω)

∑
k

{
Tr
[
Jαβ(k)

(
GR(ω,k)−GA(ω,k)

)]
+ Tr

[
Jα(k)GR(ω+ω1,k)Jβ(k)

(
GR(ω,k)−GA(ω,k)

)
+ Jα(k)

(
GR(ω,k)−GA(ω,k)

)
Jβ(k)GA(ω−ω1,k)

]}
,

(D1)

The diagrams for the second-order optical conductiv-
ity are given as

σ
(2)
αβγ(ω;ω1, ω2)

=
(𝜷,𝝎𝟏)

(𝜸,𝝎𝟐)

(𝜶,𝝎𝟏+𝝎𝟐)

+
(𝜸,𝝎𝟐) 𝝎 + 𝝎𝟐

(𝜷,𝝎𝟏)

(𝜶,𝝎𝟏+𝝎𝟐)
+

𝝎−𝝎𝟐 (𝜷,𝝎𝟏)

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

+ (𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏 +𝝎𝟐

(𝜸,𝝎𝟐)

(𝜶,𝝎𝟏+𝝎𝟐)
+

(𝜷,𝝎𝟏)

𝝎 − 𝝎𝟏 −𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

+ (𝜷,𝝎𝟏) 𝝎 + 𝝎𝟏

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 + 𝝎𝟏 +𝝎𝟐 +

(𝜷,𝝎𝟏)

𝝎 + 𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 − 𝝎𝟏

+
(𝜷,𝝎𝟏)

𝝎 − 𝝎𝟐

(𝜶,𝝎𝟏+𝝎𝟐)

(𝜸,𝝎𝟐)

𝝎 − 𝝎𝟏 −𝝎𝟐

+
(
(β, ω1)↔ (γ, ω2)

)
. (D2)

Appendix E: Weak-scattering limit in the Green’s
function method

When considering the weak-scattering limit where
GR(ω) = 1/(ω − H − iγ/2) and γ � 1/β, ω1, εnm, we
can perform the frequency integration by using∫

dωA(ω, {ωi}{εm})(GRn (ω)−GAn (ω))f(ω)

' −2πiA(εn ± iγ/2, {ωi}{εm})f(εn ± iγ/2)

' −2πiA(εn ± iγ/2, {ωi}{εm})f(εn), (E1)

where A(ω, {ωi}{εm}) is a product of Green’s functions
and velocities, and the sign takes ± when A(ω, {ωi}{εm})
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is an analytical function in the upper/lower plane of
the complex ω-space. The plane is chosen such that
A(ω, {ωi}{εm}) is analytic. Other poles than ω = εn ±

iγ/2 can be ignored because GRn (ε)−GAn (ε) ' 0 at those
due to the assumption γ � 1/β, ω1, εnm. Then we can
derive the linear and nonlinear optical conductivities as

σ
(1)
αβ (ω1;ω1) ' i

ω1

∑
k

{
J nnαβ f(εn) +

J nmα Jmnβ

ω1 − εmn + iγ
fnm

}
(E2)

σ
(2)
αβγ(ω1 + ω2;ω1, ω2) ' − 1

ω1ω2

∑
k

{
1

2

(
J nnαβγfn +

J nmα Jmnβγ

ω12 − εmn + iγ
fnm

)
+

J nmαβ Jmnγ

ω2 − εmn + iγ
fnm

+
J nmα Jmlβ J lnγ

{
(ω1 − εml + iγ)fnl + (ω2 − εln + iγ)fml

}
(ω12 − εmn + iγ)(ω2 − εln + iγ)(ω1 − εml + iγ)

+
(

(β, ω1)↔ (γ, ω2)
)

(E3)

where J nm = 〈n| J |m〉 and GRn (ω) = 〈n|GR(ω) |n〉 =
1/(ω − εn + i/2τ), εnm = εn − εm, and fnm = f(εn) −
f(εm). We also use the approximation (ωi − εnl)/(ωi −
εnl + iγ) ' 1 to derive Eq. (E3). We note that these
equations diverge in the DC limit, where the assumption
γ � ωi is not satisfied. These results correspond to the
results by the RDM method with RTA under the velocity

gauge. Under the assumption γ � ωi, we can regard
(ω1 + iγ)/ω1 ' 1 and derive the same results by the
RDM methods under the length gauge from Eqs. (E2)
and (E3).

Finally, we analyze the DC limit by first taking the
limit ωi → 0 and assuming ω � γ. Then we can derive
the DC conductivity as

σ
(1)
αβ;DC =

∑
k

{
τJ nnα J nnβ

(
−∂f
∂ω

)∣∣∣
εn
−
J nmα Jmnβ

(εnm + iγ)2
fnm

}
(E4)

σ
(2)
αβγ;DC = −

∑
k

{
τ2

2

(
J nnα J nnβ J nnγ

∂2fn
∂ε2n

+J nnα J nnβγ
(
−∂f(εn)

∂εn

))
+
iτJ nmα Jmnβ

(εnm + iγ)2

(
J nnγ

∂f(ω)

∂ω

∣∣∣
εn
−Jmmγ

∂f(ω)

∂ω

∣∣∣
εm

)
+J nmα Jmlβ J lnγ

( fl
(εlm + iγ)2(εnl + iγ)2

+
fn

(εnm + iγ)2(εnl + iγ)2
+

2fn
(εnm + iγ)3(εnl + iγ)

)
+

1

2
J nmα Jmnβγ

fn
(εnm + iγ)2

+
(
β ↔ γ

)}
(E5)

The first terms, which are proportional to τ for σ(1) and
proportional to τ2 for σ(2), represent the Drude term.
The other terms for the second-order conductivity repre-
sent the Berry curvature dipole term and the Fermi sea
terms.

Appendix F: Semi-classical Boltzmann equation

In the semi-classical Boltzmann treatment, transport
phenomena are analyzed by calculating the distribution
function for particles near equilibrium[36, 50, 51]. The
effect of the vector potential is taken into account as

H(p)→ H(k(p, t)) = H(p− qA(x, t)). (F1)

By taking the Coulomb gauge A(x, t) = A(t), the trans-
lational symmetry is preserved, and the following equa-

tions are satisfied:

k̇ = −q ∂A(t)

∂t
= qE (F2)

∂

∂pα
=

∂

∂kα
,

∂

∂t
= k̇ ·∇k = qE ·∇k. (F3)

where p is the wavenumber of the particle without the
electric field, E the electric field described by the vector
potential A, and q is the wavenumber under the electric
field. Considering the change of the eigenstates and the
band velocity induced by the vector potential up to the
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first order of the vector potential, we find

|n(p)〉

→ |ñ(k(t))〉 ' |n(p)〉−i
∑
n′ 6=n

|n′(p)〉 〈n′(p)| ∂∂tn(k(t))〉
εn − εn′

(F4)

vnα(k(t)) = 〈ñ| ∂H
∂kα
|ñ〉

' ∂εn(p)

∂pα

− i
∑
n′ 6=n

( 〈n(p)| ∂H∂qα |n
′(p)〉 〈n′(p)|qE ·∇k|n(p)〉
εn − εn′

− c.c.
)

= v0
nα(p)− q

(
E ×Ωn(p)

)
α
, (F5)

Ωn(k) = ∇k ×An, An = −i 〈unk|∇unk〉 , (F6)

where |n〉 is the eigenstate of the Hamiltonian with-
out the vector potential, εn(p) is the eigenvalue, and
H(p) |n(p)〉 = εn(p) |n(p)〉 holds. By taking into account
the correction of the band velocity, we obtain the semi-
classical equation of motion, which reads,

k̇n = qE(t), ṙn =
∂εn(p)

∂p
− qE(t)×Ωn(p) (F7)

Finally, the distribution function in the Boltzmann for-
malism with applied electric field using the relaxation
time approximation(RTA) is given by the following equa-

tion

dfn(t)

dt
=
∂fn(t)

∂t
+ k̇ ·∇kfn(t) = −fn(t)− f (0)

n

τ
(F8)

which can be solved as

f(t) = f (0)(t) + f (1)(t) + f (2)(t) + . . . (F9)

⇒ τ
∂f

(m)
n (t)

∂t
+ f (m)

n (t) = −qτE(t) ·∇kf
(m−1)
n (t),

where f
(0)
n = 1/(1+exp[βεn(k)]) is the Fermi distribution

function, β is the inverse of the temperature, and f (m)

represent the m-th order non-equilibrium perturbative
distribution function for the electric field.

The first and second order term of the distribution
function become

f (1)
n (ω, α) =

−qτ
1− iωτ

Eα∂αf
(0)
n (F10)

f (2)
n

(
(ω1, β), (ω2, γ)

)
=

−qτEβ∂β
1− i(ω1+ω2)τ

f (1)
n (ω2, γ) +

(
(ω1, β)↔ (ω2, γ)

)
=

(qτ)2EαEβ∂α∂βf
(0)
n

(1− i(ω1+ω2)τ)(1− iω2τ)
+
(

(ω1, β)↔ (ω2, γ)
)

(F11)

By combining the recurrence relation in Eq. (F9) with
the velocity corrected by the electric field in Eq. (F5),
we can derive the second order nonlinear conductivity as

σ
B(2)
αβγ (ω1 + ω2;ω1, ω2) = q3

∑
n,k

{ ∂εn
∂pα

τ2∂β∂γf0

(1− iω12τ)(1− iω2τ)
+

τ

2(1− iω2τ)
εαβµΩnµ∂γf0 +

(
(ω1, β)+↔ (ω2, γ)

)}
(F12)

σ
B(2)
DC;αβγ = q3

∑
n,k

{ ∂εn
∂pα

τ2∂β∂γf0 + τεαβµΩnµ∂γf0 +
(
β ↔ γ

)}
(F13)

Then, we compare our results with the semi-classical
Boltzmann treatment. For the sake of comparison, we
set the self-energy in the Green’s function as GR(ω) =
1/(ω − H + i/2τ) = 1/(ω − H + iγ/2). In this case,
the Green’s function can be diagonalized with the eigen-
value of the free Hamiltonian, and therefore, the nonlin-

ear conductivity calculated by the semi-classical Boltz-
mann treatment can be written using Green’s functions.
First, we focus on the Green’s function representation of

σ
B(2)
DC;αβγ in the DC limit, which reads

σ
B(2)
DC;αβγ = −

∑
n,m(6=n),k

∫
dω

2πi

{1

2
J nnα

(∂GRn (ω)

∂ω

)
J nnβγ GAn (ω)

(
−∂f(ω)

∂ω

)
+ J nnα GRn (ω)J nnβ GRn (ω)J nnγ GAn (ω)

∂2f(ω)

∂ω2

+J nα
∂GRn (ω)

∂ω
J nmβ GRm(ω)Jmnγ GAn (ω)

(
−∂f(ω)

∂ω

)
+J nmα

(∂GRm(ω)

∂ω

)
Jmnβ GRn (ω)J nnγ GAn (ω)

(
−∂f(ω)

∂ω

)
+
(
β ↔ γ

)}
, (F14)
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where J nm = 〈n| J |m〉 and GRn (ω) = 〈n|GR(ω) |n〉 =
1/(ω−εn+ i/2τ). We use q∂αJ nnβ = J nnαβ +(J nmα Jmnβ +

J nmβ Jmnα )/(εnm) to derive Eq. (F14). Here, we suppose

that βγ is small and GRn (ω)GAn (ω) = 1/[(ω − εn)2 +
γ2/4] ' 2πδ(ω − εn)/γ is justified. Then, doing the
frequency integration in Eq. (F14), we can obtain the
original result Eq. (F13).

This Green’s function representation of the Boltzmann
equation Eq. (F14) can be directly derived from the orig-
inal Green’s function method shown in the main text,
Eq. (14), by ignoring the Fermi sea terms and the in-
terband transitions Jmn(m 6= n) except for the second
and third term in Eq. (F14), which is justified when
εnmτ � 1.

Next, we consider the AC case. We can recover a finite
frequency ωi from the DC limit in Eq. (F14), which can
be derived from Eq. (14) under the following assump-
tions:

• approximate ωi ' ωi + iγ which is justified in the
limit ωiτ � 1

• approximate f(ω+ωi)− f(ω) ' [∂f(ω)/∂ω]ωi and[
∂f(ω)/∂ω

]
−
[
∂f(ω − ωi)/∂ω

]
' [∂2f(ω)/∂ω2]ωi

which is justified when βωi � 1.

• approximate GR(ω+ω12)−GR(ω+ω2) ' [∂GR(ω+
ω2)/∂ω]ω1 and 1/(ω2 − εnm) ∼ 1/(−εnm) which is
justified when ωi � εnm (εnm = εn − εm).

Therefore, in the case of AC electric fields, there are se-
vere approximations. Thus, the semi-classical Boltzmann
equation is applicable at high temperatures or when the
frequency ωi is very small so that the above conditions
are satisfied. We note that we can also derive Eq. (F12)
from Eq. (14) by supposing γ → 0, which corresponds
to the condition ωi � γ for the RDM method. We note
that taking the DC limit in this situation leads to a di-
verging conductivity. Moreover, the relaxation time in
most materials is usually about 1 ∼ 100[ps][36]. Thus,
when analyzing a Terahertz laser as input force, ωiτ ∼ 1,
the conditions are not fulfilled. On the other hand, for
a DC electric field in which ωi = 0, the only condition
for the semi-classical Boltzmann treatment are εnmτ � 1
and βγ � 1.

We note that, by considering higher-order corrections
of the eigenstates by the electric field in Eq. (F5), we can
derive a more precise semi-classical Boltzmann equation.
In this way, it is possible to get rid of the approximation
εnmτ � 1 and to include the Fermi sea terms in the
Boltzmann equation. The other approximations listed
above, however, remain necessary due to the relaxation
time approximation.

Appendix G: Gauge invariance with the dissipation
in quantum master equation formalism

In this section, we analyze the correspondence between
the length gauge and the velocity gauge in the quantum

master equation in Eq. (29) in the main text. By using
Eq. (24), we can describe Eq. (28) under the velocity
gauge as

d

dt
ρAk(t) + i[qE · r, ρAk(t)]

= −i[H0(k − qA)− qE · r, ρAk(t)]− λ2

∫ t

t0

ds

×
(

Re
[{
iGlB(t−s)ψ†kŨ(t, s)ψk, ρAk(s), Ũ†(t, s)

})(n)

,

(G1)

Ũ(t, s) = T→U
−1(t) exp[−i

∫ t

s

dt′(H0 − qE(t′) · r)]U(s),

(G2)

where {O1, ρ,O†2} = O1ρO†2 + O2ρO†1. If we can show

that T→Ũ(t, s) = exp[−i
∫ t
s
H0(k − qA(t))], the second

term on the right side in Eq. (G1) can be written in the
interaction representation in the velocity gauge Hamil-
tonian and the gauge invariance holds true in the open
system. This can be verified by calculating the s and t
derivatives of Ũ(t, s) as

∂

∂t
Ũ(t, s)

= U−1(t)
{
−iqE(t) · r − i

(
H0(k)− qE(t) · r

)}
× exp[−i

∫ t

s

dt′(H0 − qE(t′) · r)]U(s)

= U−1(t)
(
−iH0(k)

)
exp[−i

∫ t

s

dt′(H0 − qE(t′) · r)]U(s)

= −iH0(k − qA(t))Ũ(t, s) (G3)

∂

∂s
Ũ(t, s) = Ũ(t, s)

(
iH0(k − qA(s))

)
(G4)

Ũ(t, t) = 1. (G5)

We use the relation U−1(t)H0(k)U(t) = H(k − qA(t))
to derive Eqs. (G3) and (G4). From the equality in

Eqs. (G3), (G4), and (G5), we can identify Ũ(t, s) =

T→ exp[−i
∫ t
s
dt′H0(k − qA(t′))]. Therefore, the corre-

spondence between the length gauge and the velocity
gauge holds true in the quantum master equation, while
it is broken when introducing the RTA at finite frequency.

Appendix H: Models used in the main text

In the main text, we use the following two models to
numerically confirm our general results. In this section,
we introduce the effective Hamiltonian Heff = H0 + ΣR,
which includes the dissipation effect.
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1. One-dimensional Rice-Mele model with
sublattice-dependent dissipation

We start from the Hermitian 1D Rice-Mele model, but
assume that the dissipation depends on the sublattice.
Such an effective non-Hermitian Hamiltonian can also
be derived from the non-Hermitian matrix describing
the single-particle Green’s function. The effective non-
Hermitian Hamiltonian reads[24]

Heff(k)

=
∑
a,b

ψ†a

(
τ0iη+τxt cos k+τyδt sin k+τz(∆ + iΓ)

)
ab
ψb,

(H1)

where ψ
(†)
A/B describes the annihilation (creation) opera-

tor in sublattice A/B, τ represents the Pauli matrices,
η is the average of the dissipation strength at each sub-
lattice, t is an intra-lattice hopping, δt is an inter-lattice
hopping, ∆ is the difference of the chemical potential
between the sublattices, and Γ is the difference of the
dissipation strength at each sublattice.

2. Monolayer TMD materials with a
spin-dependent dissipation

This model is commonly used to describe transition
metal dichalcogenide(TMD) monolayers. The effective
non-Hermitian Hamiltonian, which can again be under-
stood as the non-Hermitian matrix describing the single-
particle Green’s function, can be written as[10, 52]

Heff =
∑
k,s

(ε(k)− µ− iη − iΓs) c†k,sck,s

+
∑
k,s,s′

g(k) · σss′c†k,sck,s′ (H2)

ε(k) = 2t
(
p cos(k · a1)+cos(k · a2)+cos(k · (a1+a2))

)
(H3)

gx(k) =
α1

2

[
sin(k · (a1 + a2)) + sin(k · a2)

]
(H4)

gy(k) = − α1√
3

[
sin(k · a1)+

sin(k · (a1+a2))−sin(k · a2)

2

]
(H5)

gz(k) =
2α2

3
√

3

[
sin(k · a1)+sin(k · a2)−sin(k · a1+a2)

]
(H6)

where c
(†)
k,s is the annihilation(creation) operator for a

conduction electron whose momentum is k and spin is
s. µ is the chemical potential, Γ↑/↓ = ±Γ is the spin-
dependent dissipation, p is the effect of the strain[10]
and σ are the Pauli matrices and g represents the spin-
orbit coupling. The lattice vectors are a1 = (1, 0) and

a2 = (−1/2,
√

3/2).

Appendix I: Details of the numerical calculations

In this section, we write in detail how to numerically
calculate the results shown in the figures of the main
text. The codes used for the numerical calculations in
this paper are published in [53].

1. Green’s function method

Here, we describe the procedure of how to perform the
numerical calculation using the Green’s function method.

• A tight-binding Hamiltonian, H(k), describing the
single-electron part of the model, such as Eq. (H1)
or Eq. (H2), must be obtained.

• Starting from this tight-binding Hamiltonian, cur-
rent operators Jαβ... can be calculated by Eq. (4).

• For accounting for correlation effects, self-energies
must be calculated. In this paper, we have used the
dynamical mean-field theory[54].

• Using H(k) and the self-energies, retarded and ad-
vanced Green’s functions can be calculated.

• Having these Green’s functions and current opera-
tors, one can use the Green’s function formalism to
calculate nonlinear response in strongly correlated
systems.

To calculate the effect of renormalization of the band
structure, we set ΣR(ω) = −(1/Z − 1)ω−ΣR0 , where ΣR0
is the real-part of the self-energy at ω = 0. Then, one
can analyze the renormalization effects on the linear re-
sponse and the nonlinear response. We note that, when
calculating the optical conductivity for a small input fre-
quency (ωi), one should do the momentum integration
before the frequency (ω) integration. Furthermore, one
should use Eqs. (C6), (C10), (C11), and (C12).

2. RDM methods using the RTA

When using the RDM for calculating the (non)linear
conductivity, one first needs to diagonalize the free
Hamiltonian H(k). Using the eigenvectors, one calcu-
lates the velocity operators for different bands and cal-
culates the (non)linear conductivity by Eqs. (82) in Ref.
[29].

Appendix J: Proof that γNH ≥ 1

The left and right eigenvectors 〈nL|, |nR〉 can be de-
scribed as |nR〉 = (a1, . . . , al)

T and 〈nL| = (b1, . . . , bl).
Then, the following quantity must be larger than zero.
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Therefore, the non-Hermitian factor γNH must be larger than 1:

〈nR|nR〉 〈nL|nL〉 − 〈nL|nR〉 〈nR|nL〉

=
(∑

s

|as|2
)(∑

s

|bs|2
)
− |
∑
s

(asbs)|2

≥
(∑

s

|as|2
)(∑

s

|bs|2
)
−
(∑
s

|as||bs|
)2

=
∑
s,t

(
|as||bt| − |at||bs|

)2
/2 ≥ 0 (J1)

⇔ γNH;n = 〈nR|nR〉 〈nL|nL〉 / 〈nL|nR〉 〈nR|nL〉 ≥ 1

(J2)
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