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Abstract

The group properties of the shallow-water equations with the complete Coriolis force is the subject of

this study. In particular we apply the Lie theory to classify the system of three nonlinear partial differential

equations according to the admitted Lie point symmetries. For each case of the classification problem the

one-dimensional optimal system is determined. The results are applied for the derivation of new similarity

solutions.
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1 Introduction

Shallow-water equations are a set of hyperbolic nonlinear partial differential equations, known also as the

Saint-Venant equations, which describe a thin layer of inviscid fluid with a free surface. There are various

applications of the Shallow-water equations in physical science, for some recent results we refer the reader

to [1–6] and references therein. In general hyperbolic equations are of special interest for the study of flows.

Two-phase flow is of special interest because it is described by a set of hyperbolic equations with non-equilibrium

phenomena between different phases. There are various real world applications for these models, hence there

are various studies in the literature [7–14].

In this piece of work we are interested in the group properties of the rotating two-dimensional shallow-water

equations. The shallow-water equations with the complete Coriolis force term and topography were derived

in [15].

In the case of a linear plane the shallow-water equations are

ht + (hu)x + (hv)y = 0, (1)

∗Email: anpaliat@phys.uoa.gr
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ut + uux + vux − (2Ωz − Ωyhy) v +
(

gh− h2Ωyu
)

x
− Ωy

(

(hu)x + (hv)y

)

= 0, (2)

vt + uvx + vvy + (2Ωz − Ωyhy) u+
(

gh− h2Ωyu
)

y
= 0, (3)

where the axes have been selected to be tangent to a sphere at a specific latitude φ0 such that the Coriolis term

Ω = (Ωx,Ωy,Ωz) has components Ωx = 0, Ωy = Ωcosφ0 , Ωz = Ωsinφ0.

We study the one-parameter point transformations which leave invariant the set of the three equations, (1),

(2) and (3). Specifically, the theory of Lie point symmetries is applied in order to determine the admitted Lie

point symmetries and the one-dimensional optimal system.

Lie theory is a powerful mathematical treatment for the study of nonlinear differential equations. The

existence of a transformation which leaves invariant a set of differential equations indicates the existence of

invariant functions, known also as Lie invariants, which can be used to simplify the set of differential equations

by reduction of the differential equations. There are various applications of the Lie point symmetries in physical

theories [16–23] as also in fluid dynamics and in shallow-water equations. The Lie point symmetries of the

non-rotating shallow-water equations were studied in [24], while a similar analysis with specific Coriolis term

was performed in [25]. In the latter case it was found that the special Coriolis term can be neglected by the

field equations with the use of point transformations. Rotating shallow-water equations with more general fluids

were studied in [26] while other studies of shallow-water equations can be found in [24,27–34] and in some recent

works in [35–39]. In addition, for the hyperbolic equations which describe the two-phase flow Lie symmetries

were applied in [40, 41].

Ovsiannikov [42] in 1982 demonstrated the construction of the one-dimensional optimal system for the Lie

algebra, using a global matrix for the adjoint transformation. Since then the classification of the one-dimensional

optimal system has become a main tool for the study of nonlinear differential equations [43–45]. Such analysis

for the shallow-water system has been presented before in [25, 26, 46, 47]. However, in this study we present

for the first time the complete symmetry classification for the shallow-water equations with a complete Coriolis

term. The structure of the paper is as follows.

In Section 2 we present the basic properties and definitions of Lie’s theory. The classification of the Lie

point symmetries for the system of our study is presented in Section 3. We find that in the extreme values

of the latitude φ0 the shallow-water equations admit additional Lie point symmetries, while when φ0 = π
2 we

recover previous results of the literature. For all the different cases, we classify the one-dimensional optimal

system which is essential to perform reductions and calculate similarity solutions. In Section 4 we apply the Lie

invariants to reduce the dependent variables of the shallow-water equations and we present the cases for which

similarity solutions can be expressed in terms of closed-form function. Finally in Section 5 we summarize our

results and we draw our conclusions.

2 Preliminaries

We present the basic definitions and properties for the mathematical tools which we apply in this work. Precisely

we give the main definition of point symmetries and of a Lie symmetry vector. Consider now the system HA of

partial differential equations with independent variables yi and dependent variables uA = uA
(

yi
)

, that is

HA
(

yi, uA, uA
i , ...

)

≡ 0, (4)

where uA
i = ∂uA

∂yi .
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We define the infinitesimal one-parameter point transformation

ȳi = yi
(

yj , uB; ε
)

, (5)

ūA = uA
(

yj , uB; ε
)

, (6)

defined in the space of variables
{

yi, uA
}

in ε is an infinitesimal parameter. From (5), (6) the infinitesimal

transformation is defined

ȳi = y + εξi
(

yj , uB
)

(7)

ūA = uA + εηA
(

yj, uB
)

(8)

with extension in the jet space
{

yi, uA, uA
,i , ...

}

as

ūA
i = uA

i + εη
A[1]
i

...

ūA
i1i2...in

= uA
i1i2...in

+ εDiη
A − uA

i1i2...in−1
Di

(

ξj
)

,

where

η
A[1]
i = Diη

A − ui1i2...in−1
Di

(

ξj
)

(9)

and

ηA[n] = Diη
A[n−1] − ui1i2...in−1

Di

(

ξj
)

. (10)

Under the action of the one-parameter point transformation (5), (6) the system of differential equations

becomes H̄A
(

ȳi, ūA, ūA
i , ..., ε

)

. We say that the system HA remains invariant under the action of the one-

parameter point transformation (5), (6) if and only if H̄A
(

ȳi, ūA, ūA
i , ..., ε

)

≡ 0, or equivalently [48–50]

lim
ε→0

H̄A
(

ȳi, ūA, ...; ε
)

−HA
(

yi, uA, ...
)

ε
= 0, (11)

that is,

LX

(

HA
)

= 0, (12)

where L denotes the Lie derivative with respect the generator X of the infinitesimal transformation (5), (6),

that is,

X = ξi
(

yj , uB
)

∂i + ηA
(

yj, uB
)

∂A.

The latter vector field is set in the jet space,
{

yi, uA, uA
,i , ...

}

,

X [n] = X + η[1]∂uA
i
+ ...+ η[n]∂uA

iiij ...in
. (13)

When (12) is true for a specific vector field X , then the vector field X is a Lie symmetry for the system of

partial differential equations HA.

The admitted symmetry vectors of a given set of differential equations constitute a closed-group known

as a Lie group. A Lie group defines the main properties for the set of the differential equations. The main

application of the Lie symmetries is the determination of solutions known as similarity solutions and follow from

the application of the Lie invariants in the differential equations. However, in order to classify all the possible

similarity transformations and solutions the one-dimensional optimal system should be calculated [48].
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Table 1: Commutator table for the Lie point symmetries of the Shallow-Water system

[XI , XJ ] X1 X2 X3

X1 0 0 0

X2 0 0 0

X3 0 0 0

Table 2: Adjoint representation for the Lie point symmetries of the Shallow-Water System

Ad
(

e(εXi)
)

Xj X1 X2 X3

X1 X1 X2 X3

X2 X1 X2 X3

X3 X1 X2 X3

3 Lie symmetry analysis

We apply the theory for the system of the three-dimensional partial differential equations, (1), (2) and (3). It

follows that the admitted Lie point symmetries for arbitrary latitude φ0 are

X1 = ∂t , X2 = ∂x , X3 = ∂y,

In Table 1 we present the commutators for the three-dimensional Lie algebra, {X1, X2, X3}. The adjoint

representation of the latter Lie algebra is presented in Table 2. From Table 1 we infer that the admitted Lie

algebra is the 3A1 according to the classification scheme of Patera et al. [51, 52]

From tables 1 and 2 we conclude that the one-dimensional optimal system [48] of the four-dimensional Lie

algebra consists of the vector fields

{X1} , {X2} , {X3} , {X1 + αX2} ,

{X1 + αX3} , {X2 + αX3} , {X1 + αX2 + βX3} .

For special values of the parameters Ωz or Ωy the resulting Shallow-water system is invariant under a different

Lie algebra. We find that the two limits are for the latitudes (i) φ0 = 0 and (ii) φ0 = π
2 , which correspond to

values (i) Ωy = Ω , Ωz = 0 , and (ii) Ωy = 0, Ωz = Ω.

3.1 Lie symmetries at the equator

For latitude φ0 = 0, that is, for the equator, the resulting Shallow-water equations, (1), (2) and (3), are written

as

ht + (hu)x + (hv)y = 0, (14)

ut + uux + vux + (Ωyhy) v +
(

gh− h2Ωyu
)

x
− Ωy

(

(hu)x + (hv)y

)

= 0, (15)

vt + uvx + vvy − (Ωyhy) u+
(

gh− h2Ωyu
)

y
= 0 (16)
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Table 3: Commutator table for the Lie point symmetries of the Shallow-Water System for φ0 = 0

[YI ,YJ ] Y1 Y2 Y3 Y4 Y5

Y1 0 0 0 Y1 Y3

Y2 0 0 0 Y2 0

Y3 0 0 0 Y3 0

Y4 −Y1 −Y2 −Y3 0 0

Y5 −Y3 0 0 0 0

Table 4: Adjoint representation for the Lie point symmetries of the Shallow-water System for φ0 = 0

Ad
(

e(εYi)
)

Yj Y1 Y2 Y3 Y4 Y5

Y1 Y1 Y2 Y3 Y4 − εX1 Y5 − εX3

Y2 Y1 Y2 Y3 Y4 − εX2 Y5

Y3 Y1 Y2 Y3 Y4 − εX3 Y5

Y4 eεY1 eεY2 eεY3 Y4 Y5

Y5 Y1 + εX3 Y2 Y3 Y4 Y5

and admit the following Lie point symmetries

Y1 = ∂t , Y2 = ∂x , Y3 = ∂y, Y4 = t∂t + x∂x + y∂y , Y5 = t∂y + ∂V

with commutators and adjoint representation as given in Tables 3 and 4. The Lie symmetries form the

{3A1 ⊗s 2A1} Lie algebra.

With the use of the adjoint representation from Table 4 we can determine the one-dimensional optimal

system, that is,

{Y1} , {Y2} , {Y3} , {Y4} , {Y5} ,

{Y1 + a2Y2} , {Y1 + a3Y3} , {Y1 + a4Y4} ,

{Y1 + a5Y5} , {Y2 + a3Y3} , {Y1 + a5Y5} ,

{Y1 + a2Y2 + a3Y3} , {a1Y1 + a4Y4 + a5Y5} .

3.2 Lie symmetries at the pole

For latitudes near to the pole, i.e. φ = π
2 , the Shallow-water equations (1), (2) and (3) can be written in the

simple form

ht + (hu)x + (hv)y = 0, (17)

ut + uux + vux + ghx − 2Ωzv = 0, (18)

vt + uvx + vvy + ghy + 2Ωzu = 0. (19)

The group properties of the latter system were studied before in [25], where in comparison with [25] f = 2Ωz.
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Equations (17), (18) and (19) are invariant under the action of a nine-dimensional Lie algebra with elements

Z1 = ∂t , Z2 = ∂x , Z3 = ∂y ,

Z4 = x∂x + y∂y + u∂u + v∂v + 2h∂h

Z5 = y∂x − x∂y + v∂u − u∂v ,

Z6 = sin (2Ωt)∂x + cos (2Ωt) ∂y + 2Ω (cos (2Ωt) ∂u − sin (2Ωt)∂v) ,

Z7 = − cos (2Ωt) ∂x + sin (2Ωt) ∂y + 2Ω (sin (2Ωt) ∂u + cos (2Ωt)∂v) ,

Z8 = sin (2Ωt)∂t +Ω(x cos (2Ωt) + y sin (2Ωt)) ∂x − Ω (x sin (2Ωt)− y cos (2Ωt)) ∂y +

−Ω (u cos (2Ωt)− v sin (2Ωt)− 2Ω (y cos (2Ωt)− x sin (2Ωt))) ∂u +

−Ω (u sin (2Ωt) + u cos (2Ωt) + 2Ω (y sin (2Ωt) + x cos (2Ωt))) ∂v − 2Ωh cos (2Ωt) ∂h,

Z9 = cos (2Ωt)∂t +Ω(y cos (2Ωt)− x sin (2Ωt)) ∂x − Ω (x cos (2Ωt) + y sin (2Ωt)) ∂y +

+Ω(u sin (2Ωt) + v cos (2Ωt)− 2Ω (x cos (2Ωt) + y sin (2Ωt))) ∂u +

+Ω(−u cos (2Ωt) + v sin (2Ωt) + Ω (x sin (2Ωt)− y cos (2Ωt))) ∂v + 2Ω sin (2Ωt) ∂h.

The commutators are presented in Table 5.

The symmetry vectors form a nine-dimensional Lie algebra. Furthermore, the adjoint representation of the

nine-dimensional Lie algebra is given in Tables 6 and 7.

The shallow-water equations without a Coriolis term admit also nine Lie point symmetries with the same

commutators. Hence, the same Lie algebra with that of the Coriolis term at the pole but in a different

representation. That common property has been observed before in [25]. The coordinate transformation which

relates the two different representations of the Lie algebra can be use to remove the Coriolis term from the

system (17), (18) and (19).

We do not continue with the determination of the one-dimensional optimal system for the system (17), (18)

and (19), because it can be find in [25].
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Table 5: Commutator table for the Lie point symmetries of the Shallow-water system for φ0 = π/2

[ZI ,ZJ ] Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Z1 0 0 0 0 0 −2ΩZ7 2ΩZ8 2ΩZ9 −2ΩZ8

Z2 0 0 0 Z2 −Z3 0 0 −2ΩZ7 −2ΩZ6

Z3 0 0 0 Z3 Z2 0 0 −2ΩZ6 −2ΩZ7

Z4 0 −Z2 −Z3 0 0 −Z6 −Z7 0 0

Z5 0 Z3 −Z2 0 0 (1− 2Ω)Z7 (1− 2Ω)Z6 −2ΩZ8 2ΩZ8

Z6 2ΩZ7 0 0 Z6 − (1− 2Ω)Z7 0 0 2ΩZ3 2ΩZ2

Z7 −2ΩZ8 0 0 Z7 − (1− 2Ω)Z6 0 0 −2ΩZ2 −2ΩZ3

Z8 −2ΩZ9 2ΩZ7 2ΩZ6 0 2ΩZ8 −2ΩZ3 2ΩZ2 0 2Ω (Z1 + 2ΩZ5)

Z9 2ΩZ8 2ΩZ6 2ΩZ7 0 −2ΩZ8 −2ΩZ2 2ΩZ3 −2Ω (Z1 + 2ΩZ5) 0

7



Table 6: Adjoint representation for the Lie point symmetries of the Shallow-water system for φ0 = π/2, sh indicates sinh while ch means cosh (1/2)

Ad
(

e(εZi)
)

Zj Z1 Z2 Z3 Z4 Z5

Z1 Z1 Z2 Z3 Z4 Z5

Z2 Z1 Z2 Z3 Z4−εZ2 Z5−εZ3

Z3 Z1 Z2 Z3 Z4−εZ3 Z5+εZ2

Z4 Z1 eεZ2 eεZ3 Z4 Z5

Z5 Z1 cos (ε)Z2+sin (ε)Z3 − sin (ε)Z2+cos (ε)Z3 Z4 Z5

Z6 Z1−2ΩεZ7 Z2 Z3 Z4−εZ6 Z5

Z7 Z1+2ΩεZ6 Z2 Z3 Z4−εZ7 Z5

Z8 ch2 (2Ωε)Z1−sh2 (2Ωε)Z5+
1
2sh (4Ωε)Z9 ch (2Ωε)Z2+sh (2Ωε)Z7 ch (2Ωε)Z3+sh (2Ωε)Z6 Z4 − sh2(2Ωε)

2Ω Z1+ch2 (2Ωε)Z5−
sh(4Ωε)

4Ω Z9

Z9 ch22 (2Ωε)Z1−sh2 (2Ωε)Z5+
1
2sh (4Ωε)Z8 ch (2Ωε)Z2+sh (2Ωε)Z6 ch (2Ωε)Z3+sh (2Ωε)Z7 Z4 − sh2(2Ωε)

2Ω Z1+ch2 (2Ωε)Z5+
sh(4Ωε)

4Ω Z8
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Table 7: Adjoint representation for the Lie point symmetries of the Shallow-water system for φ0 = π/2, sh indicates sinh while ch means cosh (2/2)

Ad
(

e(εZi)
)

Zj Z6 Z7 Z8 Z9

Z1 cos (2Ωε)Z6+sin (2Ωε)Z7 − sin (2Ωε)Z6+cos (2Ωε)Z7 cos (2Ωε)Z8− sin (2Ωε)Z9 sin (2Ωε)Z8+cos (2Ωε)Z9

Z2 Z6 Z7 Z8+2ΩεZ7 Z9+2ΩεZ6

Z3 Z6 Z7 Z8−2ΩεZ6 Z9+2ΩεZ7

Z4 eεZ6 eεZ7 Z8 Z9

Z5 Z6 Z7 cos (ε)Z8+sin (ε)Z9 − sin (ε)Z8+cos (ε)Z9

Z6 Z6 Z7 Z8−2ΩεZ3 Z9+2ΩεZ2

Z7 Z6 Z7 Z8+2ΩεZ2 Z9+2ΩεZ3

Z8 sh (2Ωε)Z3+ch (2Ωε)Z6 ch (2Ωε)Z7−sh (2Ωε)Z2 Z8 ch (4Ωε)Z9+sh (4Ωε) (Z1 − 2ΩZ5)

Z9 −sh (2Ωε)Z2+ch (2Ωε)Z6 ch (2Ωε)Z7−sh (2Ωε)Z3 ch (4Ωε)Z8+sh (4Ωε) (Z1 − 2ΩZ5) Z9
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4 Similarity solutions

In this Section we apply the Lie point symmetries to determine similarity solutions for the Shallow-water system,

(1), (2) and (3). For arbitrary latitude the admitted Lie point symmetries provide only travelling-wave solutions.

Therefore we focus on the case with φ0 = 0, where there are additional Lie point symmetries which can provide

alternate reductions.

In order to determine exact similarity solutions for the original system we need the application of at least

two Lie point symmetries. Thus in the following lines we continue with the investigation of exact similarity

solutions by using the Lie invariants of the following set of Lie point symmetries {X1 +X2 +X3, X2 −X3} , and

in the limit at the equator we study similarity solutions from the Lie symmetries {Y2, Y5} , {Y2, Y5} , {Y4, Y5}.

The reduced equations are ordinary differential equations and lead to closed-form solutions.

4.1 Reduction with {X1 +X2 +X3, X2 −X3}

Consider the similarity transformation provided by the set of the symmetry vectors {X1 +X2 +X3, X2 −X3},

h (t, x, y) = H (w) , u (t, x, y) = U (w) , v (t, x, y) = V (w) with w = (x+ y)− 2t, (20)

while the reduced system is

G (w)

2Ωz

Hw

H
= V 2 − 2V − U2 + 2U +ΩyH

2
U +Ωy H

2V, (21)

−
G (w)

2Ωz

Uw = 2HUΩy (HV +HU + 1)− V Hg − UHg + U2V + 2UV 2 − 4UV + 4V + V 3 − 4V 2, (22)

−
G (w)

2Ωz

Vw = V Hg + UHg − 2U2V − UV 2 + 4UV − 4U + 4U2 − U3 + (23)

−HΩy

(

U2H + 2U (1 +H) + V H (2− V )
)

,

where

G (w) = 6U2 + 6V 2 − 12V − 4Hg + 12UV + 8− 3U2V − 3UV 2

+2UHg − V 3 − U3 + 2VHg − 12U +

−HΩy (U + V − 2) (U + 3HU +H (2− V −HΩz) + 2− V ) . (24)

In Fig. 1 we present the numerical solution of the travelling-wave solution as it is given by the dynamical

system (21), (22) and (22). The numerical solution is for φ0 = π
4 and Ωz = Ωy.

4.2 Reduction with {Y2, Y5}

The application of the Lie point symmetries {Y2, Y5} lead to the invariants

h (t, x, y) = H (t) , u (t, x, y) = U (t) , v (t, x, y) =
y

t
+ V (t) , (25)

where the unknown functions, H (t) , U (t) , V (t), satisfy the following system

tHt +H = 0 , tUt − ΩH = 0 , tVt + V = 0, (26)

with exact solution

H (t) =
H0

t
, U (t) = −

H0Ω

t
+ U0 , V (t) =

V0

t
. (27)

10



0 10 20 30 40 50

0.007

0.008

0.009

0.010

0.011

0.012

w

H
(w

)

0 10 20 30 40 50

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

w

U
(w

)

0 10 20 30 40 50

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

w

V
(w

)

Figure 1: Qualitative evolution ofH (w) , U (w) , V (w) as it is given from numerical simulation of the dynamical

system (21), (22) and (22). The plots are for Ωz = Ωy = 1 and g = 10 and for different initial conditions as

they are presented at the plots.
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Figure 2: Qualitative evolution of H (w) , U (w) and V (w) as they are given from the differential equation (??)

for Ω = 1 and for different values for the initial conditions are they are presented in figures.

4.3 Reduction with {Y4, Y5}

Reduction with the Lie point symmetries {Y4, Y5} provides the following system of ordinary differential equations

Hw

H
=

ΩH2 + w − U

L (w)
, (28)

Uw =
H (2UHΩ+ wΩ− g)

L (w)
, (29)

Vw = V (U − w)−1 , (30)

where

h (t, x, y) = H (w) , u (t, x, y) = U (w) , v (t, x, y) =
y

t
+ V (w) and w =

x

t
(31)

and

L (w) = wHΩ (H + 1) + ΩUH2 − gH + (w − U)
2
. (32)

However, that solution is not accepted because it leads to an infinite value of V (w). The qualitative evolution

of U (w) and V (w) for various initial conditions is presented in Fig. 2
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5 Conclusions

In this work we studied the group properties of the shallow-water equations on a linear plane with the complete

Coriolis force. In particular we performed a classification of the admitted Lie point symmetries which are the

generators of one-parameter point transformations which leave invariant shallow-water equations.

The coordinate system has been selected such that two terms of the Coriolis force are involved in the shallow-

water equations. These terms which are the Coriolis components on the axes depend upon the position on the

plane. For an arbitrary position and for the more general form the shallow-water equations admit three Lie

point symmetries which are the time translation and the two space translations. For specific values of the

Coriolis terms new symmetries follow.

When φ0 = 0, that is, at the equator, we found that the resulting system of hyperbolic differential equations

is invariant under the action of a five-dimensional Lie algebra, while, when φ0 = π
2 , that is, at the pole, the

shallow-water equations admit nine Lie point symmetries. In the latter scenario the Lie point symmetries form

the same algebra as the shallow-water equations without the Coriolis term. However, the two algebras are in

different representations. This case has been studied before in the literature so we focused upon the case with

φ0 = 0.

For the latter case we applied the new Lie point symmetries to determine similarity transformations and

to write similarity solutions for the equations by using closed-form functions. We presented reductions which

describe travelling-wave and scaling solutions. When it is possible, we write the closed-form solution of the

shallow-water equations. However, in the remaining cases we solve numerically the reduced system and we

study the qualitative behaviour of the physical variables.

This work contributes to the subject of the group properties of hyperbolic equations with emphasis in fluid

dynamics. We present for the first time new solutions of the shallow-wave equations with a complete Coriolis

term. Such an analysis shows the novelty and the power of the Lie symmetries for the study of nonlinear

phenomena.

In a future work we plan to extend our analysis in the case of nonlinear topographies and with possible

sources.

References

[1] N.D. Mutlubas, A. Geyer and R. Quirchmayr, Nonl. Anal. Theor. Meth. Appl. 197, 111849 (2020)

[2] S.-i. Iga and Y. Matsuda, J. Atmos. Sci. 62, 2514 (2005)

[3] J. Dong and D.F. Li, J. Comp. Appl. Math. 376, 112871 (2020)

[4] J. Jung, J.H. Hwang and A.G.L. Borthwick, KSCE J. Civil Engin. 24, 1959 (2020)

[5] A. Kurganov, Y.L. Liu and V. Zeitlin, Phys. Fluids 32, 7757 (2020)

[6] M. Zhu and Y. Wang, Zeitschrift für angewandte Mathematik und Physik 71, 96 (2020)

[7] G.F. Hewitt, Heat Transfer Engineering, 4, 67 (1983)

[8] E. Goncalves, Y. Hoarau and D. Zeidan, Shock Waves, 29, 221 (2019)

12
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