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Holographic superconductor model represents various inhomogeneous solutions with homogeneous
sources. In this paper, we study inhomogeneous structures in the presence of the homogeneous
current and the chemical potential. We find single complex kink condensates, multiple complex
kinks condensates and twisted kink crystal condensates in which both the amplitude and the phase
of the order parameter modulate in space. Analyzing the gauge-invariant phase difference in the
single complex kink condensates, we find the non-monotonic behaviour with respect to the current.
We confirm that the multiple complex kinks condensates and the twisted kink crystal condensates are
well described by the analytic solutions obtained from the Gross-Neveu model or the Nambu-Jona-
Lasinio model. We also analyze the thermodynamic stability of the complex kink(s) condensates
by computing the free energy. Our results imply that holographic superconductor model provides
the boundary physics which is effectively represented by the Ginzburg-Landau theory with higher
corrections.

I. INTRODUCTION

Over the past two decades, strongly coupled systems have been investigated in the framework of the Gauge/Gravity
correspondence [1–3]. The correspondence represents the duality between the strong coupling limit of the gauge theory
and the weak coupling limit of the gravity theory. The tractability of calculations in the gravity side enables one to
analyze the non-perturbative properties in the strongly coupled system. The framework has been prompted to deal
with the non-equilibrium system [4, 5].

Later the correspondence was also applied to condensed matter systems. Along the line of such research, holographic
superconductivity has been proposed to describe the superconducting phenomena in the context of the Gauge/Gravity
correspondence [6–8]. It was successful in reproducing well-known properties of superconductivity though the setup is
quite simple: it consists of the complex scalar fields coupled to Maxwell fields in the anti-de Sitte (AdS) background. In
spite of the evidences, it is still unclear how much the holographic superconductor can capture the superconductivity.
In condensed matter physics, there are two major frameworks to analyze the superconducting phenomena. One is the
Bardeen–Cooper–Schrieffer (BCS) model and the similar model, also known as the Nambu–Jona-Lasinio (NJL) model
or the Gross–Neveu (GN) model used in different contexts (see [9] and references therein). The other is the Ginzburg–
Landau (GL) model, which has been proposed as an effective model describing superconductors at the vicinity of the
transition point and has been found to be obtained from the BCS model with proper approximations. Both models
are known to yield the basic properties of superconductivity. Though it has been found that inhomogeneous solutions,
such as a kink solution, exist in both theories, the usual GL model with second order derivatives, the mass term, and
the quartic potential term do not have some solutions appearing in the BCS model. Thus it can be the testbed of the
holographic superconductors to check if the model corresponds to the GL model or the BCS model.

The inhomogeneous solutions naturally appear in the presence of inhomogeneous potentials and those cases have
already been investigated in the context of holographic superconductors [10, 11]. Interestingly, the existence of the
inhomogeneous solutions in the absence of the inhomogeneity of the system has also been shown [12–14]. It is known
that this type of inhomogeneous solutions are realized in terms of the condensed matter physics. For example, the
stabilization of the Larkin–Ovchinnikov–Fulde–Ferrel (LOFF) phase, in which the phase and/or the amplitude of the
order parameter modulates in space, by the homogeneous magnetic fields are shown [15, 16]. The experimental evidence
of the LOFF phase have also been shown in a heavy fermion compound system [17], an organic superconductor [18],
and in the presence of the ultra-cold atomic gases [19].

In our previous work [20], we partially answered to the above question. We have shown that the holographic super-
conductor model reproduces various inhomogeneous solutions for the homogeneous setup. We have also shown that
inhomogeneous solutions, which are not included in the standard GL model, appear in the holographic superconduc-
tors and the qualitative consistency with inhomogeneous solutions in the BCS model has been checked. It implies
that the holographic superconductors describe the superconducting phenomena beyond the GL theory with second
order derivatives, the mass term, and the quartic potential term. However, our previous study is restricted to the
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system without a current. In the presence of a current, it is expected that the order parameter becomes complex and
thus the richer phase structure appears. Thus, a further check of the applicability of the holographic superconductors
should be carried out and it might shed light on the usage of holographic superconductors for nonequilibrium system.

In this paper, we extend the method employed in oure previous paper to analyze the superconducting system with a
current. In the holographic superconductor, the homogeneous condensate with a current was studied in [21, 22] and the
inhomogeneous setup for studying the holographic Josephson junction was presented in [23]. Also, the inhomogeneous
condensate in which a kink structure moves with a constant velocity was studied in [24]. The holographic vortices and
vortex-lattice have been studied in non-perturbative approaches [25–28]. However, the one-dimensional modulated
solutions with a constant current, such as complex kink(s) and twisted kink crystals, are poorly studied. Once the
(metastable) inhomogeneous solutions in the presence of the current are found and shown to be consistent with the
previously known solutions (such as complex kink(s) solutions or twisted kink crystal solutions) it will be more evident
that the holographic superconductors describe the superconducting phenomena. Moreover, if the solutions are not
included in the standard GL with the second-order derivatives, the mass term, and the quartic potential term, it
implies that the holographic superconductors capture the superconductivity beyond the standard GL level. To ensure
this, we analyze the quantitative coincidence with the GL theory using higher corrections.

This paper is organized as follows. In section II, we review the holographic setup in our study. In order to find
spatially inhomogeneous solutions, we will derive the equations of motion by assuming that each field depends on the
spatial coordinate in addition to the AdS radial coordinate. In section III, we numerically solve these equations and
find solutions which have an inhomogeneous amplitude and phase of the condensate. We show the single complex
kink condensate, the multiple complex kinks condensate, and the twisted kink crystal condensate as inhomogeneous
solutions to the equations. We also study the relation between our solutions and the known analytic solutions derived
from the GN model and the NJL model. In addition, we compute the free energy of those solutions. Section IV is
devoted to conclusion and discussion.

II. HOLOGRAPHIC SETUP

In this section, we present the holographic superconductor model at finite temperature. A key tenet of the holo-
graphic superconductor is mapping the strongly correlated system to the dual theory in which the scalar field is
coupled to the background electromagnetic field in the curved spacetime. In this paper, we consider the Einstein-
Maxwell theory coupled to a charged complex scalar field with a negative cosmological constant in (3+1) dimensional
spacetime [6–8]. In this setup, the dual boundary theory is in (2+1) dimensional spacetime. In our study, we take
the probe approximation in which we ignore the backreaction of the gauge and the scalar fields on the metric. In the
probe approximation, the background geometry is independent of the matter sector. We consider a (3+1) dimensional
planar AdS black hole as the background metric:

ds2 =
L2

z2

[
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

]
, (1)

where

f(z) = 1−
(
z

zH

)3

. (2)

Here, zH is the black hole horizon and the AdS radius is given by L. The Hawking temperature, which corresponds
to the heat-bath temperature of dual field theory, is given by T = 3/(4πzH). We assume that the system consists of
the complex scalar field Ψ interacting with a U(1) gauge field Aµ. The dynamics of the system is determined by the
following action

S =

∫
d4x
√
−g
(
−1

4
FµνF

µν − |DµΨ|2 + V (|Ψ|)
)
, (3)

where the covariant derivative is defined by DµΨ = (∂µ − iAµ) Ψ. Here the field strength is given by Fµν = ∂µAν −
∂νAµ and g = det gµν . We assume that the potential is given by V = −m2 |Ψ|2. In this paper, we will take the scalar
mass to be m2 = −2/L2 which is above the Breitenlohnor-Friedman bound [29]. For simplicity, we set L = 1. The
equation of motion for the complex scalar field is

0 =
1√
−g

Dµ

(√
−gDµΨ

)
−m2Ψ. (4)
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The Maxwell equation is

1√
−g

∂µ
(√
−gFµν

)
= i(Ψ∗∂νΨ−Ψ∂νΨ∗)− 2Aν |Ψ|2 . (5)

In order to study the inhomogeneous solutions in the presence of a current, the ansatz for our fields are given by

Ψ(z, x) = ψ(z, x)eiϕ(z,x), A = At(z, x)dt+Az(z, x)dz +Ax(z, x)dx. (6)

Here, all variables ψ, ϕ, At, Az, and Ax are real functions of z and x. By using the gauge degrees of freedom, we
define the gauge invariant fields by Mµ = Aµ − ∂µϕ. Thus, we have four independent fields:ψ, Mt, Mz, and Mx. For

later convenience, we also define the scalar field ψ = zφ/
√

2. The equations of motion for those fields are given by1

φ′′ +
∂2xφ

f
+
f ′

f
φ′ +

(
M2
t

f2
−M2

z −
M2
x

f
− z

z3Hf

)
φ = 0, (7)

M ′′t +
∂2xMt

f
− Mtφ

2

f
= 0, (8)

∂2xMz − ∂xM ′x −Mzφ
2 = 0, (9)

M ′′x − ∂xM ′z +
f ′

f
(M ′x − ∂xMz)−

Mxφ
2

f
= 0, (10)

M ′z +
∂xMx

f
+

2

φ

(
Mzφ

′ +
Mx∂xφ

f

)
+
f ′

f
Mz = 0, (11)

where the prime denotes the derivative with respect to z. Here, Eq. (11) is obtained from the conservation of the
source in Maxwell equation. Since Eq. (11) is not independent from the other equations, we have four equations of
motion and four variables.

Now we consider the boundary conditions for these fields. By analyzing the above equations of motion near the
AdS boundary z = 0, one can expand these fields as follows:

φ = φ(1) + φ(2)z +O(z2), (12)

Mt = µ+ ρz +O(z2), (13)

Mz = O(z), (14)

Mx = ν + Jz +O(z2). (15)

Here µ, ρ, ν, and J are interpreted as the chemical potential, the charge density, the velocity, and the current in the
boundary field theory, respectively.2 In our study, we assume that φ(1) = 0 and φ(2) = 〈O2〉 (x), which is the order
parameter given as the function of x. In addition, we assume that the chemical potential µ and the current J are
homogeneous in the spatial coordinate x. The latter assumption is consistent with the conservation of the current.

At the horizon z = zH , we impose the regularity conditions for variables as the boundary conditions. We choose the
condition of Mt as Mt = 0 at the horizon. This artificial gauge choice has been discussed in [6]. The other boundary
conditions are explicitly written as

φ′ − 1

3
∂2xφ+

1

3

(
1 +M2

x

)
φ = 0, (16)

M ′x − ∂xMz +
1

3
Mxφ

2 = 0, (17)

Mz −
1

3
∂xMx −

2Mx∂xφ

3φ
= 0. (18)

In addition to these boundary conditions, we require the conditions at x = ±∞. At these points, we require that
all the functions approach the homogeneous solutions. In other words, we need to impose the Neumann boundary
conditions for all variables at x = ±∞. For numerical convenience, however, we impose the boundary conditions at
x = 0 and x = ∞ by using the fact that φ, Mt, and Mx are even and Mz is an odd function of x. Therefore, we
impose the Neumann boundary condition for φ, Mt, and Mx, and the Dirichlet boundary condition for Mz at x = 0.

1 Note that the last term of (7) is derived from the term of z−2f−1(zf ′ − L2m2 − 2f)φ.
2 In the asymptotic form of Mz near the AdS boundary, we impose 2φ2Mz − ∂2xMz + ∂xM ′x = 0 from the zeroth order of z. If we assume
Mz(z = 0, ρ) = 0, the spatial homogeneity of the current is clearly satisfied since ∂xM ′x = ∂xJ = 0 at the AdS boundary.
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For technical reasons, we set the calculation region to −l/2 ≤ x ≤ l/2. Then, we confirm that the solution asymptotes
to a fixed profile with a sufficiently large l.

The gauge-invariant phase difference is defined by γ ≡ ∆ϕ−
∫
Ax. In our ansatz, it can be explicitly written by

γ = −
∫
dx [ν(x)− ν(±∞)] . (19)

The second term of the integrand in (19) is just a regulator since the homogeneous solutions at x = ±∞ have a
constant current and a constant velocity.

It should be noted that equations of motion are invariant under the following scaling symmetry:

(t, z, x, z)→ λ(t, z, x, y), (φ,Mt,Mz,Mx)→ 1

λ
(φ,Mt,Mz,Mx), (20)

where λ is a rescaling parameter. We fix zH = 1 by using this scaling symmetry. Thus, we choose T/µ and J/µ2 as
the scaled parameters which characterize the system.

Since the equations of motion are partial nonlinear differential equations, we solve them numerically. To perform
the numerical calculation, we use the Chebyshev pseudospectral method. In our study, we use 21 points along the
z direction and 51 points along the x direction. In order to obtain solutions, we prepare an appropriate initial
configuration and employ the Newton-Raphson relaxation method. After iteration in the Newton-Raphson relaxation
scheme, we confirm that the configurations for each field satisfy the equations of motion. In the following calculations,
we set l = 10 as the calculation region.

FIG. 1. The typical profiles of φ(z, x), Mt(z, x), and Mx(z, x) for T/µ = 0.0398 and J/µ2 = 0.0417.



5

-4 -2 0 2 4
0.0

0.5

1.0

1.5

2.0

x

〈O
2〉
no
r,
γ

-4 -2 0 2 4
0.0

0.5

1.0

1.5

2.0

x

〈O
2〉
no
r,
γ

FIG. 2. The normalized amplitude of the condensate 〈O2〉nor (solid) and the gauge-invariant phase γ (dashed) as a function of
x for J/µ2 = 0.0639 (left panel) and J/µ2 = 0.0556 (right panel).

III. INHOMOGENEOUS SOLUTIONS

In this section, we show the inhomogeneous solutions, particularly the single complex kink condensate, multiple
complex kink condensate, and twisted kink crystal condensate, by numerically solving the equations of motion (7)-(10).

A. Single complex kink

As an example, we show the typical profiles of φ(z, x), Mt(z, x), and Mx(z, x) for T/µ = 0.0398 and J/µ2 = 0.0417
in Fig. 1. As can be seen from Fig. 1, we find that each bulk field has an inhomogeneous structure. We can compute
the order parameter 〈O2〉, the charge density ρ, and the velocity ν from each solution by using the asymptotic form
Eqs. (12), (13), and (15). Then, we obtain the amplitude and the phase of the order parameter as a function of x as
shown in Fig. 2. Here, we introduce a normalized condensate which is defined by 〈O2〉nor ≡ 〈O2〉 / 〈O2〉|x=±∞. These
results imply that the condensate gets close to the homogeneous solutions and the phase difference becomes smaller
as J/µ2 increases. It has been known that this type of inhomogeneous solution corresponds to the single complex kink
condensate in which both the amplitude and the phase of the condensate have the spatially inhomogeneous profile as
shown in Fig. 2 [30, 31]. As studied in [12], the holographic superconductor model exhibits a single real kink condensate
in the presence of the spatially constant chemical potential. Compared to this type of solution, the amplitude of order
parameter in the single complex kink condensate does not reach zero at the position of the kink (x = 0 in our case).
We also find that the phase of the order parameter suddenly changes at that position. It is also found that the dip of
the condensate becomes larger for larger phase difference. This behaviour can be understood by the energetics; both
the phase gradient and the amplitude modulation of the condensate give kinetic energy and thus the (meta-)stable
solutions are obtained by the solutions which minimize |Ψ∗∇Ψ|2. If we focus on the phase modulation, we note it
should take place in the region where the magnitude of the condensate is smaller and the sudden change of the phase
is not favored. On the other hand, if we focus on the magnitude of the condensate, we see that the sudden drop of
the magnitude of condensate costs the energy. This trade-off relation results in the behaviour shown in Fig. 2. If the
limit of the phase difference is π, the solution becomes the ordinal kink solution in which the condensate becomes
zero at the node. The behaviour of our single complex kink condensate is qualitatively consistent with that found in
the NJL model [31, 32].

Furthermore, we study the J/µ2 dependence of the single complex kink condensates with T/µ fixed. In the left
panel of Fig. 3, we show the plots of condensate for various values of J/µ2 at a fixed value of T/µ. We also show the
total gauge-invariant phase difference as a function of J/µ2 for several values of T/µ in the right panel of Fig. 3. For
lower J/µ2, the condensate profile becomes sharp at the kink position and the total gauge-invariant phase difference
rapidly changes. It is technically difficult to apply our numerical method near J/µ2 ∼ 0 due to the lack of numerical
accuracy. However we expect that the total gauge-invariant phase difference approaches to 2π when J/µ2 reduces,
since the condensate with the phase winding of 2π corresponds to the homogeneous one. For larger J/µ2, we find
that the condensate approaches to the homogeneous profile and the total gauge-invariant phase difference goes to
zero. It appears that the value of J/µ2 at which the total gauge-invariant phase difference for the single complex
kink condensate becomes zero coincides with the critical value of J/µ2 for the homogeneous condensate beyond which
the normal state becomes the ground state [22]. Interestingly, we find that the total gauge-invariant phase difference
shows a non-monotonic behaviour as a function of J/µ2 at temperatures much lower than the chemical potential.
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FIG. 3. The left panel shows profiles of the condensate 〈O2〉nor for several values of J/µ2 with T/µ = 0.0265. The right panel
shows the profile of the gauge-invariant phase difference γ as a function of J/µ2 for T/µ = 0.0341 (solid), T/µ = 0.0265 (dashed),
and T/µ = 0.0199 (dotted).
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FIG. 4. The plots show the amplitude (left panel) and the phase (right panel) of the order parameter for T/µ = 0.0265 and
J/µ2 = 0.0494, respectively. The solid line denotes the two complex kinks condensate and the dashed line denotes the three
complex kinks condensate.

For instance, the total-gauge invariant phase difference as a function of J/µ2 is a monotonically decreasing function
for larger T/µ (solid line in the right figure of Fig. 3). Since the larger current tends to break the condensate, it
is consistent that the inhomogeneous structure can be suppressed and the total gauge-invariant phase difference
becomes small. On the other hand, its behaviour changes to non-monotonic for smaller T/µ (dashed and dotted lines
in the right figure of Fig. 3). This characteristic behaviour implies that there could be a phase transition at specific
temperature.

B. Multiple complex kinks

In addition to the single complex kink condensate, we also find the solutions which have two or more kinks. We
show the amplitude and the phase of the order parameter for this type of solution in Fig. 4. As can be seen from
Fig. 4, two or three kinks lie close to each other and their amplitudes approach to the homogeneous condensates at
the boundary of the x coordinate. Also, the phase of the order parameter suddenly changes at the position of the
kinks, which is the same behaviors as that of the single complex kink condensate. Therefore, this type of solution
corresponds to the multiple complex kinks condensate. It is known that the multiple complex kinks condensate is
obtained from the GN model and the NJL model or the GL theory with higher derivatives and with the higher order
potential terms [33, 34]. Thus, our result implies that the holographic superconductor model succeeds to describe the
superconducting phenomena beyond the conventional GL model,3 which has only the second order derivatives, the

3 In [20], we provided the same assertion by finding the multiple real kinks condensate in the absence of the current.
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FIG. 5. The plots show the amplitude (left panel) and the phase (right panel) of the order parameter in the twisted kink crystal
condensate for T/µ = 0.0265 and J/µ2 = 0.0617, respectively.

mass term and the quartic potential term. We quantitatively confirm this expectation later.

C. Twisted kink crystal

Here, we also study the complex condensate in the periodic system. We impose the periodic boundary condition
for the fields at the spatial boundary x = ±l/2, instead of the Neumann boundary condition as mentioned above.
Fig. 5 shows a typical solution in which the amplitude and the phase of the order parameter periodically modulate in
space. This type of solution corresponds to the so-called twisted kink crystal condensate, which has been studied in
terms of the GN model and the NJL model [30, 31]. It has been known that the twisted kink crystal condensate is
also derived from GL theory with higher corrections such as higher derivative terms and higher order potential terms
as shown in the following discussion.

D. Boundary interpretation

So far we have focused on what types of inhomogeneous condensates are obtained from the bulk solutions. In this
section, we show the analytic forms of the inhomogeneous condensates in terms of the field theory and confirm if
our solutions agree with them. In the (1+1) dimensional GN model or NJL model, those types of inhomogeneous
solutions are written in the analytic forms. For instance, the two complex kinks solution is given by [33, 34]

∆(x) = −im+ 2
(
e−iθ1h1(x) + e−iθ2h2(x)

)
, (21)

where

h1(x) =
−κ1

(
1 + e−2κ2(x−x2)

)
+ α
√
κ1κ2(

1 + e−2κ1(x−x1)
) (

1 + e−2κ2(x−x2)
)
− |α|2

, (22)

h2(x) =
−κ2

(
1 + e−2κ1(x−x1)

)
+ α∗

√
κ1κ2(

1 + e−2κ1(x−x1)
) (

1 + e−2κ2(x−x2)
)
− |α|2

. (23)

Here, κ1, κ2, and α are written as functions of m, θ1, and θ2:

κ1 = m sin θ1, κ2 = m sin θ2, α =
2
√
κ1κ2

im (e−iθ1 − eiθ2)
. (24)

Since m is an overall factor, this solution is determined by four parameters: θ1, θ2, x1, and x2. Moreover, the
translation symmetry is preserved and the solution is given as a function of x1 − x2. Thus, the structure of this
solution is determined by three parameters: θ1, θ2, and x1 − x2. The two complex kinks solution (21) is the solution
of the following nonlinear Schrödinger equation (NLSE).

c1∆− ic2∂x∆ + c3

(
−∂2x∆ + 2 |∆|2 ∆

)
+ ic4

(
∂3x∆− 6 |∆|2 ∂x∆

)
= 0, (25)
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FIG. 6. The plots show the amplitude (left panel) and the phase (right panel) of the order parameter in two complex kinks
condensates for T/µ = 0.0318 and J/µ2 = 0.0711, respectively. Open circles and solid line, respectively, denote numerical plots
and the analytic function obtained from (21) with the best fitting parameters.

where the parameters ci (i = 1, 2, 3, 4) are related to m, θ1, and θ2 in the following manner,

c1 = −2c3m
2, c2 = 2m2 (2 cos θ1 cos θ2 − 1) , c3 = −2m (cos θ1 + cos θ2) . (26)

Here, we set c4 = 1 without loss of generality. This type of NLSE is derived from the generalized GL expansion of the
grand potential in the vicinity of the tricrtical point [31, 35]. The renormalized grand potential density is written as

ΩGL = c0 + c1 |∆|2 + c2 Im (∆∂x∆∗) + c3

(
|∆|4 + |∂x∆|2

)
+ c4 Im

[(
∂2x∆− 3 |∆|2 ∆

)
∂x∆∗

]
+ · · · . (27)

Here, dots denote higher derivative terms and higher order potential terms. In fact, the NLSE (25) can be derived by
considering the variation of the grand potential up to the order of c4 with respect to ∆∗.

Now let us consider if the two complex kinks condensate obtained from our calculation agrees with the analytic
solution. By fitting the analytic solution (21) with proper scaling to our numerical results, we find that the two
complex kinks condensate is well described by (21). Note that ∆ = 〈O2〉 eiγ in our convention. The fitting results of
the amplitude and the phase of order parameter in the two complex kinks condensate are, respectively, shown in the left
panel and the right panel of Fig. 6. The fitting details are given in Appendix A. Since the fitting paramters determine
the GL paramters ci in (27), it quantitatively implies that the boundary theory in the holographic superconductor
model can be effectively described by GL theory with higher derivative terms and higher order potential terms. In
other words, we find that holographic superconductor model represents the boundary physics beyond the conventional
GL theory only containing c0, c1, and c3, in which multiple complex kinks solutions cannot be found.

Furthermore, we also confirm if the twisted kink crystal condensate is well described by the analytic solution derived
from the GN model and the NJL model. The twisted kink crystal solution is explicitly given by [30, 31, 35]

∆(x) = −A
σ
(
Ax+ iK′ − iθ/2

)
σ (Ax+ iK′)σ (iθ/2)

exp [iAx (−iζ(iθ/2) + ins(iθ/2)) + iθζ(iK′)/2] , (28)

where ns is the Jacobi elliptic function and the functions σ and ζ are the Weierstrass sigma and zeta functions. The real

and imaginary half periods are given by ω1 = K(ν) and ω3 = iK′ ≡ iK(1−ν), where K(ν) =
∫ π/2
0

= dt/
√

1− ν sin2 t
is the complete elliptic integral. The range of the parameter θ is 0 ≤ θ ≤ 4K′(ν). The real constant A is a function
of θ and ν: A(θ, ν) = −2i sc(iθ/4; ν)nd(iθ/4; ν), where sc and nd are the Jacobi elliptic functions controlled by the
elliptic parameter ν. The range of ν is 0 ≤ ν ≤ 1 and the twisted kink crystal is reduced into the single complex kink
in the limit of ν → 1. The amplitude and the phase of order parameter are written as

|∆(x)|2 = A2 (P(Ax+ iK′)− P(iθ/2)) , (29)

γ(x) = A (−iζ(iθ/2) + ins(iθ/2))x+
i

2
ln

(
σ(Ax+ iK′ + iθ/2)

σ(Ax+ iK′ − iθ/2)

)
+
ζ(iK′)θ

2
, (30)

where P is the Weierstrass P function. The twisted kink crystal solution (28) is the solution of the NLSE (25) with
c4 = 0 and this NLSE can be derived from the GL expansion of the grand potential up to the order of c3 [31, 35]. The
coefficients of each term are related to the parameters of the solution,

c1 = A2
[
3P(iθ/2)− ns2(iθ/2)

]
, c2 = −2A ins (iθ/2) . (31)
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FIG. 7. The plots show the amplitude (left panel) and the phase (right panel) of the order parameter in the twisted kink crystal
condensate for T/µ = 0.0341 and J/µ2 = 0.327, respectively. Open circles and solid line, respectively, represent numerical plots
and the analytic function obtained from (28) with the best fitting parameters.

Here, we set c3 = 1 without loss of generality.
In the same way as the two complex kinks condensate, we fit the analytic solution of the twisted kink crystal

solution (28) with proper scaling to the our numerical results (see Appendix A for details). Fig. 7 shows that the
fitting results of the amplitude and the phase of the order parameter in the twisted kink crystal condensates. The
fact that our inhomogeneous condensates are well-fitted by the analytic form of the twisted kink crystal solution (28)
again implies that the boundary theory can be represented by the GL theory with higher corrections.

Our results show that the fitting parameters in the analytic solutions determine each coefficient ci in the GL
expansion of the grand potential. As a result, we find that the two complex kinks condensates and the twisted kink
crystal condensates obtained from our calculations can be effectively described by the GL theory with the grand
potential (27). Note that the grand potentials for each solution do not have the same parameters ci because we
consider the different order of the GL expansion for them. Here, we also note that the above analytic results from the
(1+1) dimensional GN or NJL model are derived in the vicinity of tricritical point, although our boundary theory is
in (2+1) dimensional spacetime at an arbitrary finite temperature. Also, the infinite spatial region is considered in the
analytic approach whereas we have to consider a sufficiently large but finite spatial region for numerical computations.
We consider that these differences give rise to a slight modification for fitting such as a proper scaling (Appendix A).
Nevertheless, we find that the inhomogeneous condensates we obtained in the holographic superconductor model can
be well described by those analytic forms. Therefore, our results strongly support the expectation that the holographic
superconductor model represents the GL theory with higher corrections beyond the conventional GL theory.

E. Free energy

In this section, we compute the free energy of the inhomogeneous solutions. The free energy of the dual field theory
is defined from the on-shell bulk action Ω = −TSos. The on-shell bulk action in our setup is explicitly given by

Sos = −
∫
d3x

[
1

2
MtM

′
t +

f

2
(∂xMz −M ′x)Mx −

f

z2
ψψ′

]∣∣∣∣
z=0

−
∫
d4x

ψ2

z2

(
M2
t

f
− fM2

z −M2
x

)
,

(32)

where the first term is evaluated at the AdS boundary z = 0. For our inhomogeneous solutions, the free energy can
be explicitly written as

Ω

Vol
=

1

l

∫ l/2

−l/2
dx

[
1

2

(
µρ(x)− ν(x)J

)
+

1

2

∫ 1

0

dz

(
M2
t

f
−M2

x − fM2
z

)
φ2
]
, (33)

where Vol =
∫
dzdxdy = l

∫
dy in our setup. We evaluate the thermodynamic stability of the inhomogeneous solutions

by defining ∆Ω as the difference of the free energy between the superconducting state and the normal state with the
corresponding value of T/µ. Note that we cannot compare the free energy of the superconducting state with that of
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FIG. 8. The difference of the free energy between the superconducting state and the normal state as a function of J/µ2 with
T/µ = 0.0318. Each plot represents the free energy in the solutions with different numbers of kinks.

the normal state with the same values of T/µ and J/µ2 since it is difficult to prepare the normal state with a finite
current (a similar issue on the shortcoming of this method is also mentioned in [22]).

In Fig. 8, we plot ∆Ω as a function of J/µ2 with T/µ fixed. Here, we show ∆Ω for different solutions: a stable
homogeneous condensate, a metastable homogeneous condensate, and a complex kink(s) condensate. In Fig. 8, N
stands for the numbers of kinks in the solutions. As studied in [22], there are two different homogenous condensates
in the presence of the constant current. It has been shown that one is thermodynamically stable and the other is
metastable by computing the free energy. Comparing the value of ∆Ω for the complex kink(s) condensate to those
for the homogeneous condensates, we find that the complex kink(s) condensate is metastable for any value of J/µ2.
Also, we find that the free energy becomes larger for more kinks and these solutions are also metastable. Our result
is consistent with the GN theory or the BCS theory for low density at low temperatures, since the inhomogeneous
solutions such as the complex kink(s) condensate or the twisted kink crystal condensate appear and they are metastable
in these theories. This fact is important due to the following reason. The existence of the metastable (not unstable)
inhomogeneous condensates not only agrees with the microscopic theory such as the GN theory or BCS theory, but
also implies that these inhomogeneous condensates could be stable in another setup. In fact, the LOFF phase is
realized in the presence of a large magnetic field. Therefore, our findings of the inhomogeneous condensates are
a preliminary step towards realizing the one-dimensional inhomogeneous condensates in the minimum setup of the
holographic superconductor.

IV. CONCLUSION AND DISCUSSION

In this paper, we study the inhomogeneous solutions which appear in the (3+1)-dimensional holographic super-
conductor model. In our previous work [20], we showed that the holographic superconductor model reproduces the
inhomogeneous solutions which have the spatially inhomogeneous amplitude of the order parameter without a current.
In this work, adding to these solutions, we also show the different inhomogeneous solutions, the single complex kink
condensate, the multiple complex kinks condensate, and the twisted kink crystal condensate, by numerical calculations
in the framework of the holographic superconductor model. In these solutions, both the amplitude and the phase
of the order parameter spatially modulate in the presence of the current. We find that the amplitude of the order
parameter for these solutions is finite at the position of the kink, whereas it is zero for the real kink solutions and the
real multi-kink solutions [20]. This behaviour is consistent with the behaviour of the inhomogeneous solution found
in the previous investigations based on the BCS, NJL, or GN models for low density [35–37]. In Fig. 9, we show the
phase diagram of the holographic superconductor model with a constant current. In the condensate phase, one can
find not only the homogeneous condensate but also the single complex kink condensate, the multiple complex kinks
condensate, and the twisted kink crystal condensate. We find that the phase boundary of the homogeneous condensate
denoted by the blue curve in Fig. 9 is coincident with that of the complex kink(s) condensates. In other words, both
the homogeneous condensates and the complex kink(s) condensates can be found in the condensate phase.

It is constructive to compare our results with the moving kink solution at zero temperature [24]. Our solutions
correspond to the static inhomogeneous solutions in which the kink structure does not have a relative velocity with
respect to the thermal bath. On the other hand, for the moving kink solution, the superconducting component has a
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FIG. 9. The phase diagram of the holographic superconductor model with a constant current. The red dot corresponds to
the criticial temperature T/µ ≈ 0.0587. In the condensate phase, we find not only the homogeneous condensate but also the
single complex kink condensate, the multiple complex kinks condensate, and the twisted kink crystal condensate. The phase
boundary of the homogeneous condensate denoted by the blue curve is coincident with that of the complex kink(s) condensates.

relative velocity with respect to the normal component (namely the thermal bath), since the non-zero super current is
present. Since mutual friction is absent in our static solutions, it would imply that the mutual friction could appear
only when there is a relative velocity between the kink structure and the normal component.

We also study the current dependence of the total gauge-invariant phase difference in the single complex kink
condensate. It is likely to approach 2π in the limit of the zero current and goes to zero for a larger current. At high
temperatures, the total gauge-invariant phase difference is a monotonically decreasing function of the current. At low
temperatures, on the other hand, we find that it becomes non-monotonic with respect to the current. This result
implies the existence of the phase transition at specific temperatures.

We also study the boundary interpretation of those inhomogeneous condensates by comparing the analytic solutions
derived from the (1+1) dimensional GN model and NJL model. We perform the fitting of them to the two complex
kinks condensate and the twisted kink crystal condensate. As a result, we find that they are well-fitted by the
known analytic solutions. Since these analytic solutions satisfy the NLSE which is derived from GL theory with
higher corrections such as the higher derivative terms and the higher order potential terms, our results imply that
the boundary theory can also be effectively described by the GL theory with higher corrections. In other words, it is
expected that holographic superconductor model represents the boundary physics beyond the conventional GL theory.

Moreover, we compute the free energy of the complex kink(s) condensate as a function of the current and compare
it to those of the homogeneous solutions. We find that the free energy of the complex kink(s) condensate is always
higher than that of the homogeneous solution for given J/µ2. Our result implies that the complex kink(s) condensates
are metastable. In the microscopic theories such as GN theory or BCS theory, it is known that the complex kink(s)
condensates and the twisted kink crystal condensate are metastable. Thus, our calculation of the free energy agrees
with the implications in the previous studies. Though it is known that the inhomogeneous phase becomes stable
for a larger chemical potential [35–37], the behaviour is not observed in the present study. The region in which the
inhomogeneous phase becomes stable would be approachable by improving the numerics; however, it is beyond the
scope of this paper.

Before ending the conclusion, we have few remarks. In our study, we ignore the backreaction to the matter sector
from the gravity sector by taking the probe limit. Since the backreaction should be important at low temperatures,
it would be interesting to consider the effect of the backreaction on the non-monotonic behaviour we found. We
also ignore the magnetic field which is known to stabilize the inhomogeneous solutions due to the Zeeman effect and
the Aharonov-Bohm effect [38]. It would be interesting to consider the spin degrees of freedom and the magnetic
field. Also, it is straightforward to extend our study to the p-wave superconductor [39, 40], although we focus on
the s-wave superconductor in this paper. Along this direction, it would be interesting to study the competition
between the s-wave and the p-wave superconductor [41] for the inhomogeneous condensate we found. Recently,
the nonequilibrium process of the inhomogeneous condensate was studied in [42]. The dynamical behaviour of the
inhomogeneous solutions we found in this paper should be investigated. In another direction, it is also interesting
to investigate the hydrodynamic behaviour of the Nambu-Goldstone mode in our case by studying the quasi-normal
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mode in holographic superconductor [43].4 For the gravity side, the interpretation of the (meta-)stable inhomogeneous
solutions are still lacking. We leave them for future works.
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APPENDIX A: FITTING DETAILS

In this appendix, we show the details of fitting performed in section III D. The analytic solution of the two complex
kinks condensate (21) is derived under the assumption of the infinite range of the spatial direction x. On the other
hand, we fix the spatial range −l/2 ≤ x ≤ l/2 for numerical calculations. Then, we perform the rescaling x → ax
in (21) and consider a as one of parameters. Also, for convenience, in order to perform the fitting of the phase, we
fit the x derivative of the phase in (21) to the velocity ν(x). The best fitting parameters in Fig. 6 are m = 0.249873,
θ1 = 1.28987, θ2 = 1.31977, x1 = x2 = −2.16001, and a = 1.93453 for the amplitude (left panel) and m = 0.249873,
θ1 = 1.26635, θ2 = 1.29073, x1 = x2 = −2.27880, and a = 2.03423 for the phase (right panel). Substituting the fitting
parameters (m, θ1, θ2) into Eq. (26), the corresponding GL parameters are determined.

In the fitting for the twisted kink crystal condensate, the form of (28) is not well-fitted to our numerical results.
Alternatively, we assume the following form:

∆(x) = −B σ (Cx+ iK′ − iθ/2)

σ (Cx+ iK′)σ (iθ/2)
exp [iCx (−iζ(iθ/2) + ins(iθ/2)) + iθζ(iK′)/2] , (34)

where the parameters B and C are independent of each other. Using this form, we obtain the well-fitted results as
shown in Fig. 7. The best fitting parameters in Fig. 7 are B = 0.242465, C = 1.62465, θ = 2.54102, and ν = 0.74711
for the amplitude (left panel) and C = 1.38987, θ = 2.98549, and ν = 0.481891 for the phase (right panel). We
consider that the reason why we have to use the alternative form (34) can be related to the difference of the spacetime
dimension, the finite spatial range, and so on, as discussed in the main text. Note that one can confirm that the
alternative form of the twisted kink crystal solution (34) is also the solution to NLSE (25) with c4 = 0. That is, one
can check that the analytic form (34) satisfies the following NLSE,

∂2x∆−2 |∆|2 ∆−
[
2
(
C2 −B2

)
P(Cx+ iK′) +

(
C2 + 2B2

)
P(iθ/2)− C2ns2(iθ/2)

]
∆−2iC [ins(iθ/2)] ∂x∆ = 0. (35)

This implies that the alternative form of the twisted kink crystal solution (34) can also be derived from GL theory
with higher corrections. In other words, the four parameters (B,C, θ, ν) determine the GL paramters ci according to
(25) with c4 = 0 and (27) via the following relation

c1 =
[
2
(
C2 −B2

)
P(Cx+ iK′) +

(
C2 + 2B2

)
P(iθ/2)− C2ns2(iθ/2)

]
,

c2 = −2C i ns(iθ/2), c3 = 1.
(36)
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