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Abstract 

The magnetic properties and phase diagrams of the mixed spin-1 and spin-1/2 Ising 

model on a checkerboard square structure have been studied using the Monte Carlo 

simulations based on the Metropolis update protocol. The system consists of four quartets 

of alternative spin configuration. The effect of the exchange interactions J and crystal field 

D on the magnetic properties, critical and compensation temperatures, susceptibility, and 

specific heat of the system have been investigated. The phase diagrams, T-J and T-D, for 

different values of the exchange interactions and crystal field have been examined. We 

found that the compensation temperature starts to evolve for J1 < 0.6 of the spin-1 assembly 

and for J2 > 1.6 for spin-1/2. On the other hand, the effect of ferrimagnetic coupling does 

not show any threshold value; in this case, the compensation temperature is constant.  

Regarding the crystal field strength, the threshold value of 𝐷 > −0.8 has been observed. We 

obtain the N-, Q- and P-type compensation behaviors in the system. We have observed that 

the phase diagrams exhibit only a second-order phase transition to a paramagnetic phase; 

hence, the system does not show the tricritical point. The magnetic hysteresis cycles of the 

mixed spin-1 and spin-1/2 on a checkerboard square structure for different values of the 

exchange interactions, temperatures, and crystal fields have been found. Finally, the system 

exhibits the superparamagnetic behavior for a fixed value of the temperature and crystal 

field.  
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1. Introduction 

The mixed-spin Ising models have attracted a lot of interest over the last few 

decades in the magnetism community due to their huge industry and technology 

applications such as motors and magnetic recording [1-4]. These models are used to study 

the critical behaviors [5], magnetic properties [6], and to obtain the compensation 

temperature [7, 8]. The existence of compensation has been verified in different systems 

with various spins and different structures [9-12]. Therefore, this field is very active in both 

in solid-state and statistical physics. Even though the Ising model is considered one of the 

simplest models that deal with interactions, models with different spins magnitude are 

useful and give a deep understanding of ferromagnetic materials' magnetic behavior, which 

are a key ingredient in many applications in magnetic recording. It has been shown by 

many scientists that different two-dimensional mixed spin Ising models have a wide variety 

of unusual physical properties [13, 14].  

After the pioneering work of Onsager in solving the two dimensional Ising model 

analytically [15], many attempts to get an exact solution on different decorated systems 

such as triangular [16], honeycomb [17], kagome [18], bathroom-tile [19], and ruby [20] 

lattices have been obtained. Other lattices such as the checkerboard pattern is not an easy 

task to accomplish analytically. For this reason, we applied the Monte Carlo simulations to 

study the magnetic properties on a checkerboard square pattern taking into account the 

effect of anisotropy interaction and the interaction of spin with an external magnetic field. 

Therefore, different structures with different exchange coupling have been proposed to give 

richness in this type of research [21-25]. 

The Monte Carlo simulations are used to study different structures of mixed spin 

atoms such as spin-2 and spin-3/2 Ising model on a diamond-like decorated square [26]. 

The ground-state phase diagrams, the effect of the reduced transition temperature and the 



crystal field, the magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model 

on a decorated square lattice have been studied using the Monte Carlo simulations [27].  

The effective field theory has been used to study the critical phenomena in a mixed spin-1 

and spin-2 Ising model on a honeycomb structure [17]  and the dynamic phase transition 

properties for the mixed spin-(1/2, 1) Ising model on a square lattice [28] as well as two 

nanoscaled thin films with dilution at the surfaces [29].  

This work was motivated by the research done by Girovsky, Jan et al. [30]. They 

have produced a wafer-thin ferrimagnet, in which hydrocarbon compounds with different 

magnetic centers, composed of manganese and iron, arrange themselves to form a 

checkerboard pattern after applying them on a gold surface. They have also proven that the 

manganese and iron magnetism is of different strengths and appears in opposing directions, 

which is a characteristic feature of a ferrimagnet. In the present work, we will investigate 

the effect of the exchange interaction coupling and the crystal field on the thermal 

magnetization, critical and compensation behavior, susceptibility, the specific heat, 

hysteresis loops, and phase diagrams of a ferrimagnetic checkerboard square structure 

composed of spin-1 and spin-1/2 within the framework of Monte Carlo simulations. The 

structure we adopted here has ferrimagnetic coupling through the interface of the 

checkerboard domains. This paper is organized as follows: in section 2, we define our 

model and give the related formulation. The results and discussions have been given in 

detail in section 3. Finally, section 4 is devoted to our conclusions. 

2. Model and formalism 

2.1 Lattice structure and Hamiltonian 

 We consider an Ising ferrimagnetic checkerboard square lattice (see Fig. 1) of size 

L×L with L is the crystal side length. The checkerboard lattice has four quarters with equal 

side lengths. Each quarter is composed of S-type of spins-1 or σ-type of spins-1/2. The 

sublattice-A of the higher spin is represented in the first and the third quarters (blue filled 

circles in Fig. 1), and the sublattice-B consists the lower spin is represented in the second 

and the fourth quarters (red filled circles in figure 1). The coordination number of each site 

is 4.   



The Hamiltonian terms consist of S-S, σ-σ ferromagnetic interactions and S-σ 

ferrimagnetic interaction, spin - external filed interaction, and crystal field interaction with 

S-type spins. The Hamiltonian is given by: 

 

𝐻 = −𝐽1 ∑ 𝑆𝑖𝑆𝑗⟨𝑖,𝑗⟩ − 𝐽2 ∑ 𝜎𝑙𝜎𝑘⟨𝑙,𝑘⟩ − 𝐽12 ∑ 𝑆𝑖𝜎𝑙𝑖,𝑙 − 𝐵 ∑ (𝑆𝑖 + 𝜎𝑖)𝑖 − 𝐷 ∑ 𝑆𝑖
2

𝑖   (1) 

 

 

Where J1, J2, and J12 stand for the coupling constant between the spins S-S, σ-σ, and S-σ, 

respectively. The summation indices <i,j> and <l,k> denote the summations over all 

nearest-neighbor spins S-S and σ-σ, respectively. The fourth and the last terms in the 

Hamiltonian are the external magnetic field acting on the S-type and σ-type spins and the 

crystal field interaction acting on the S-type spins, respectively. In our simulations, we are 

using the usual Ising variables S=±1,0 and σ=±1/2. In this paper, we will take J1 > 0 and 

J2 > 0 to ensure a ferromagnetic interaction between the same type of spins, while we take 

J12 < 0 to ensure an antiferromagnetic interaction between the spins of different types. It is 

worth mention that the only ferrimagnetic interaction exists at the interfaces of the four 

sublattices. Therefore, we ought to use a large value of J12 to ensure that neither S-type nor 

σ-type spins behave separately. 



 

Fig. 1. Schematic representation of the checkerboard structure formed by sublattices A and B with spin-1 and 

spin-1/2, respectively. The blue filled circles represent magnetic atoms (spin S=±1,0) in sublattice A, while the 

red filled circles represent magnetic atoms (spin σ=±1/2) in the sublattice B. The lines connecting the red and 

blue circles denote the nearest-neighbor exchange couplings (J1, J2, and J12). The side length of the square 

structure is denoted by (L). 

 

2.2 Monte Carlo Simulation and Calculations 

 To simulate the checkerboard ferrimagnetic system with great success, we 

implement the Monte Carlo simulation technique based on the metropolis algorithm [31]. 

We apply periodic boundary conditions in the x and y directions. To generate new 

configurations, we choose a spin at random state and then flip it. By making spin-flip 

attempts, each flip is accepted or rejected according to the metropolis algorithm. Data were 

generated using 1000000 Monte Carlo simulations to equilibrate the system, followed by 

850000 Monte Carlo steps for each spin configuration. The results are reported for systems 

size L=50. Therefore, the total number of the spins in our simulation is Ntot=2500, which 

contains NA=1250 spins of the S-type in the sublattice-A and NB=1250 spins of the σ-type 

in the sublattice-B. We performed additional simulations with L=80 and L=100, but no 

significant differences were found from the results presented here. Calculation of the error 



is based on the method of blocks; the L-size is divided into 𝑛𝑏blocks of length  𝐿𝑏 = 𝐿/𝑛𝑏. 

The number of blocks is chosen such that Lb is higher than the correlation length. Therefore, 

error bars are calculated by grouping all the blocks, then taking the standard deviation [32]. 

In this paper, we did not use any reduced parameters. Hence, the temperatures of the system 

are measured in units of energy. Our program calculates the following parameters, namely:

  

 

The magnetization per site of the sublattice A and B can be calculated by 

𝑀𝐴 =
1

𝑁𝐴
⟨∑ 𝑆𝑖

𝑁𝐴
𝑖=1 ⟩  (2) 

 

𝑀𝐵 =
1

𝑁𝐵
⟨∑ 𝜎𝑙

𝑁𝐵
𝑙=1 ⟩  (3) 

 

𝑀𝑡𝑜𝑡 =
𝑀𝐴+𝑀𝐵

2
  (4) 

 

The magnetic susceptibilities for each sublattice are given by: 

𝜒𝐴 = 𝑁𝐴𝛽(⟨𝑀𝐴
2⟩ − ⟨𝑀𝐴⟩2)  (5) 

 

𝜒𝐵 = 𝑁𝐵𝛽(⟨𝑀𝐵
2⟩ − ⟨𝑀𝐵⟩2)  (6) 

 

and the total susceptibility is  

𝜒𝑡𝑜𝑡 =
𝜒𝐴+𝜒𝐵

2
  (7) 

 

Where β = 1/kBT, T is the absolute temperature, and kB is the Boltzmann factor. For 

simplicity, we set  𝑘𝐵 = 1. 

Finally, we have calculated the specific heat of the system as follows: 

𝐶

𝑘𝐵
=

𝛽2

𝑁𝑡𝑜𝑡
(⟨𝐻2⟩ − ⟨𝐻⟩2)  (8) 

 

 At the compensation temperature, Tcomp, the sublattice magnetizations cancel each other, 

and the system's total magnetization is zero. Hence, to determine Tcomp from the computed 



magnetization data, a crossing point of the absolute value of the sublattice A and B 

magnetizations needs to be determined under the following condition: 

 

|𝑀𝐴(𝑇𝑐𝑜𝑚𝑝)| = |𝑀𝐵(𝑇𝑐𝑜𝑚𝑝)|  (9) 

 

𝑠𝑖𝑔𝑛 (𝑀𝐴(𝑇𝑐𝑜𝑚𝑝)) = −𝑠𝑖𝑔𝑛 (𝑀𝐵(𝑇𝑐𝑜𝑚𝑝))  (10)
 

 

with Tcomp < Tc, where Tc is the critical temperature. Equations (9) and (10) indicate that 

the absolute values of the sublattice magnetizations are equal to each other; however, sign 

of them is different at the compensation point, Tcomp. In this paper, the second-order phase 

transition is determined from the maxima of the susceptibility and specific heat curves. 

3. Results and discussions 

  This section will present the results of the magnetic and thermodynamic properties 

of the mixed-spin ferrimagnetic checkerboard structure obtained using the Monte Carlo 

simulations. We have observed the influence of Hamiltonian parameters on the phase 

diagrams, magnetization, susceptibility, and specific heat of the system in the absence of 

the external magnetic field and finally obtained hysteresis loops. 

3.1. Phase diagrams 

 To explore the effect of the exchange coupling J1 on the critical and compensation 

temperatures, Tc and Tcomp, respectively, we have plotted in Fig. 2 the phase diagram of the 

system for different exchange coupling J1 in the absence of the external magnetic field. 

Fig. 2 shows the phase diagram (T, J1) for J2 = 2.0, J12 = -3.0, D = 0 and B = 0. From this 

figure, we can see that, as J1 increases, the critical temperature 𝑇𝑐 remains constant for J1 < 

0.4 and increases linearly for J1 > 0.6. The compensation temperature Tcomp when it exists 

also increases linearly to a threshold value of J1 (for instance, the threshold value is J1 = 

0.6 ± 0.0247). Exceeding this threshold value, the compensation temperature disappears. 

Hence, the threshold value of J1 determines whether the system can exhibit the 

compensation behavior or not. It is worth noting that, as J1 increases, the variations in the 

compensation temperature has a rapid increase compared to the critical temperature. This 

is due to the fact that increasing the value of J1 leads to a fast ordering of the sublattice-A. 

A threshold point exists at which these two temperatures Tc and Tcomp start to merge. This 



threshold point occurs at J1=0.6±0.0247. We can remark that the same behavior has been 

observed in Ref. [33-35].  

 

 

 

 

 

 

 

 

 

 

Fig. 3 illustrates the influence of the exchange coupling J2 on the critical and 

compensation temperatures, Tc, and Tcomp, respectively for J1 = 0.5, J12 = -3.0, D = 0, and B 

= 0. We can see that there exists a threshold value of J2 (for instance, the threshold value is 

J2 =1.6 ± 0.01966), which determines whether the system can exhibit the compensation 

behavior or not. Below the threshold value, the compensation temperature is no longer 

exists, and the critical temperature slightly increases. At the threshold value of J2, a 

Fig. 2. The phase diagram of the system in (T, J1) plane for J2 = 2.0, J12 

= -3.0, D = 0, and B = 0. The dashed line intersects the horizontal axis 

at the threshold value of J1. The error bars are smaller than the point 

markers. 



bifurcation of zero magnetization curves occurs. That is, as J2 increases above the threshold 

value, the compensation temperature appears and remains unchanged, whereas the critical 

temperature has a gradual increase with increasing J2. This result can be explained as 

follows: we recall that the stronger exchange coupling J2 tends to make the spins of the 

sublattice-B ordered at higher temperatures, which increases the value of the critical 

temperature of the system at which a second-order phase transition occurs. Comparing 

figures 2 and 3, in the T-J1 phase, the Tcomp exists for temperatures below the threshold 

value, while in the T-J2 phase, the Tcomp exists for T greater than the threshold value. 

Moreover, in the T-J2 phase, no variations for Tcomp with J2. 

Also, since the value of J1 is fixed, increasing the value of J2 does not change the 

crossing point of the absolute value of the sublattice A and B magnetizations. However, it 

only changes the general behavior of the magnetization tail of the sublattice-A. Hence, the 

compensation temperature remains constant. Similar behavior has also been observed in 

nanoparticles with hexagonal core-shell structure [36] and a mixed Ising ferrimagnet with 

spins (3/2, 5/2) alternating on a square lattice [37].    

 

Fig. 3. The phase diagram of the system in (T, J2) plane for J1 = 0.5, J12 = -3.0, D = 0, and B = 0. The dashed 

lines intersect the horizontal axis at the threshold value of J2. The error bars are smaller than the point 

markers. 

 

To explore the effect of exchange ferrimagnetic interaction J12, we plot in Fig. 4 the 

phase diagram of the system in the (T, J12) plane for J1 = 0.2, J2 = 2.0, D = 0, and B = 0 at 

different values of J12. We can see that the exchange interaction J12 does not affect the 



compensation temperature, while the critical temperature remains almost constant. Here, 

we take the value of J1 in the compensation regime of the T-J1 phase, and J2 is the 

compensation regime of the T-J2 phase. The similar phenomena are observed in mixed spin 

(1-1/2-1) three layers system of cubic structure [34]. 

 

 

 

 

To study the effect of the crystal field D, Fig. 5 shows the phase diagram (T, D) for 

J1 = 0.5, J2 = 3.0, J12 = -3.0 and B = 0. We can see that for D = 0, the system exhibits critical 

and compensation temperatures, which can also be confirmed from Fig. 4. When the crystal 

field for D < 0 decreases, the compensation temperature decreases until it disappears below 

a threshold value D = -0.8 ± 0.0003 at which, below this threshold value, no compensation 

exists, while increasing D for positive values of the crystal field results in increasing the 

compensation temperature of the system. The figure shows a gradual increase in Tcomp with 

increasing D and reaches a constant value for D > 3. We also observe that the critical 

temperature of the system slightly changes with varying the crystal field. Hence, we can 

conclude that the crystal field plays a major role in the appearance of the system's 

compensation behavior, which is beneficial for the thermomagnetic recording materials 

[37, 38]. Therefore, it is not just the magnetic interaction that influenced the Tcomp and Tc, 

but the crystal field D has a significant impact on both temperatures. In our earlier work on 

Fig. 4. The phase diagram of the system in (T, J12) plane for 

J1 = 0.2, J2 = 2.0, D = 0, and B = 0 



different structures, we ignored the crystal field because of its weak significance [14, 34]. 

The same behavior has also been observed in nanoparticles with hexagonal core-shell 

structure [36] as well as a Blume Capel ferrimagnetic core/shell nanoparticle with spherical 

shape [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The phase diagram of the system in (T, D) plane for J1=0.5, J2=3.0, J12=-3.0, and B=0. The dashed 

lines intersect the horizontal axis at the threshold value of D. The error bars are smaller than the point 

markers. 

 

 

 

3.2. Magnetic properties 

In order to confirm the results obtained in the previous figures of phase diagrams 

(Fig. 2, Fig. 3, Fig. 4, and Fig. 5), we will present in this section the general trend of the 

behavior of the magnetization, susceptibility as well as the specific heat of the system as a 

function of temperature for selected values of the system parameters. The values of J1 and 

J2 have been chosen to be within the range of existence of Tcomp of the T-J1 and the T-J2 

phases discussed above. 



In Fig. 6, we show the sublattice magnetizations MA, MB, total magnetization Mtot 

of the system, total susceptibility, and specific heat as a function of temperature. We have 

chosen J1 = 0.5, J2 = 3.0, J12 = -3.0 and B = 0 for different positive values of the crystal 

field D = 0, 0.5, 2.0 and 5.0. In Fig. 6a, we can note that the magnetization curves of the 

sublattice A and B decrease monotonically, from the saturation values |MA| = 1 and |MB| = 

0.5 at zero temperature, as the temperature increases, and diminishes to zero at the critical 

temperature (Tc=1.6), which results in a second-order phase transition to a paramagnetic 

phase. We also note that MB changes more slowly than that of MA, which is due to the fact 

that the stronger exchange coupling J2 tends to make the spins of the sublattice-B ordered 

at higher temperatures. In Fig. 6b, we plot the system's total magnetization using Eq.4 as a 

function of temperature. The magnetization curves show two magnetizations zero points. 

The first point at lower T corresponds to the compensation temperature at which the 

system's total magnetization reduces from the saturation (|Mtot| = 0.25) to zero. 

 The second one at higher T corresponds to the critical temperature at which the 

second-order phase transition to a paramagnetic phase occurs. In both figures, the crystal 

field's effect shifted the magnetization curves to the right toward higher temperatures, 

suggesting that the compensation temperature increases with increasing the crystal field's 

positive value. In contrast, the second magnetization zero points of all magnetization 

curves stay fixed, which indicates that the system's critical temperature remains constant. 

To understand the crystal field's effect on the compensation temperature, we recall that the 

crystal field interacts with the spins in the sublattice-A. Using large positive values of the 

crystal field suggests that a higher temperature is needed to disorder the sublattice-A by 

forming magnetic domains inside it. Hence, the crossing point of the absolute value of the 

sublattice A and B magnetizations increases, thereby increasing the system's compensation 

temperature. Similar behavior of MA, MB and Mtot as a function of temperature has been 

confirmed in a ferrimagnetic mixed-spin (2, 5/2) Ising system on a layered honeycomb 

lattice [40], two dimensional mixed-spin (1, 1/2) graphene-like Ising nanoparticle [41] and 

ferrimagnetic mixed-spin (2, 5/2) system on a bipartite square lattice [42]. The variation of 

the total susceptibility χtot as a function of temperature is depicted in Fig. 6c. One can 

remark that, for each value of the crystal field, two peaks of susceptibility occur. The first 

peak occurs due to the abrupt drop of MA, as shown in Fig. 6a, and its location coincides 



with the compensation temperature location. The second peak occurs at the critical 

temperature at which phase transition to the paramagnetic phase occurs, which indicates 

the second-order phase for magnetic materials. With the increase of the positive value of 

the crystal field, the location of the first peak moves right, which also proves that the 

compensation temperature increases as the value of the crystal field increases. The location 

of the second peak remains fixed, which indicates that the critical temperature is the same 

as the value of the crystal field increases. The double-peak phenomena appear in the 

susceptibility curves have well confirmed within the framework of the mean-field theory 

based on Bogoliubov inequality for the Gibbs free energy [43]. Furthermore, Monte Carlo 

simulations have also well confirmed the double-peak phenomena in the susceptibility 

curves [27, 34, 35, 42, 44]. The influence of the crystal field's positive values on the specific 

heat C is shown in Fig. 6d. We observed two peaks for each value of the crystal field. The 

first peak at lower T occurs at the compensation temperature, while the second peak at 

higher T occurs at the transition temperature. These results are in agreement with the 

previous results, Fig. 6 (b and c). We can remark that a similar double-peak phenomenon 

in C curves have been observed in a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with 

hexagonal core-shell structure [23], ferrimagnetic mixed-spin (5/2, 2) on a bipartite square 

lattice [42], mixed spin-5/2 and spin-3/2 Ising model on a  square lattice [45], triple layer 

spin (1-1/2-1) cubic system [34], ferrimagnetic mixed-spin (3/2, 5/2) in a graphene layer 

[46]. 

 

 

  

  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 The influence of the crystal field's negative values on the sublattice magnetizations 

MA, MB, total magnetization Mtot of the system, total susceptibility, and specific heat as a 

function of temperature is depicted in Fig. 7. We have chosen J1 = 0.5, J2 = 3.0, J12 = -3.0 

and B = 0 but with negative values of the crystal field D = 0, -0.4, -0.8 and -1.0. Fig. 7a 

shows that the sublattice A and B's magnetization curves decrease monotonically, from the 

Fig. 6.  The temperature dependencies of (a) sublattice magnetizations, (b) total magnetization, (c) 

total susceptibilities, (d) specific heat, for  J1 = 0.5, J2 = 3.0, J12 = -3.0, B = 0 and different positive 

values of D (D = 0, 0.5, 2.0 and 5.0). 



saturation values |MA| = 1 and |MB| = 0.5 at zero temperature as the temperature increases 

and diminishes to zero at the critical temperature (Tc = 1.6). The figure also shows that MA 

changes more rapidly than MB because of the weaker exchange coupling J1. More magnetic 

domains appear in the sublattice-A as the temperature increases, results in the fast 

disordering of the sublattice-A. In Fig. 7b, we plot the system's total magnetization using 

Eq.4 as a function of temperature.  Two magnetizations zero points in the magnetization 

curves were observed. The first one denotes the compensation temperature, whereas the 

second one corresponds to the critical temperature. It is worth mentioning that the first 

magnetization zero points of each magnetization curve move left, which suggests that the 

compensation temperature decreases with increasing the negative value of the crystal field. 

In contrast, the second magnetization zero points of all magnetization curves are 

fixed, suggesting that the system's critical temperature remains constant. By using large 

negative values of the crystal field, more magnetic domains inside the sublattice-A appear 

even at low temperatures, which means a very low temperature is required to ensure a 

perfectly ordered sublattice-A, hence, the crossing point of the absolute value of the 

sublattice A and B magnetizations decreases, thereby the compensation temperature of the 

system decreases. In Fig. 7c, we plot the total susceptibility 𝜒𝑡𝑜𝑡 using Eq.7 as a function 

of temperature. We note that for each value of the crystal field, two peaks of susceptibility 

occur. The first peak occurs due to an abrupt drop of MA, as shown in Fig. 7a, and its 

location coincides with the location of the compensation temperature. The second peak 

occurs at the critical temperature. With the increase of the crystal field's negative value, the 

location of the first peak moves to the left, which also proves that the compensation 

temperature decreases as the negative value of the crystal field increases. 

In contrast, the second peak location remains fixed, which indicates that the critical 

temperature is the same as the negative value of the crystal field increases. Finally, to 

confirm the results presented in Fig. 7 (b and c), we plot the specific heat C of the system 

using Eq.8 as a function of temperature, as shown in Fig. 7d. Two peaks were observed in 

the specific heat curves for each value of the crystal field, and the location of the first 

(second) peak coincides with the location of Tcomp (Tc). 

 

 

 



 

 

 

 

 

Fig. 8 shows the system's total magnetization as a function of temperature for 

selected values of the system parameters in the absence of the external magnetic field. In 

Fig. 8(a) we varied J1 for J2 = 2.0, J12 = -3.0, D = 0 and B = 0. The magnetization curves 

present N-, Q- and P-type compensation behaviors in the system for J1 ≤ 0.4, J1 = 0.6 and 

J1 = 0.9, respectively as classified in the Néel theory [47]. Besides, one can observe that 

for J1 < 0.6, the system exhibits critical and compensation temperatures, while for J1 ≥ 0.6, 

the system exhibits only critical temperature. For a very low-temperature T, both sublattices 

Fig. 7.  The temperature dependencies of (a) sublattice magnetizations, (b) total magnetization, 

(c) total susceptibilities, (d) specific heat, for  J1 = 0.5,  J2 = 3.0,  J12 = -3.0, B = 0 and different 

negative values of D (D = 0.0, -0.3, -0.6 and -0.9). 



A and B are fully ordered, thus leading to the saturation value of the total magnetization of 

the system 𝑀𝑡𝑜𝑡 =
1+(−1 2⁄ )

2
= 0.25 by Eq (4). The negative sign in the previous equation 

appears because spins in both sublattices point in an opposite direction due to the effect of 

the ferrimagnetic coupling. We present in Fig. 8(b) the effect of J2 on the general trend of 

the behavior of the system's total magnetization for J1 = 0.5, J12 = -3.0, B = 0, and D = 0. 

In this figure, we can note that below the critical temperature, all the magnetization curves 

have the same zero magnetization point, which represents the compensation temperature. 

Hence, the compensation temperature does not change as the value of J2 increases, while 

the second zero magnetization point of all curves move right, which proves that the critical 

temperature increases as J2 increases. Also, the figure shows N-type magnetization, where 

the J1 and J2 are within the Tcomp range for the phases mentioned above of T-J1 and T-J2. To 

investigate the influence of the crystal field D on the system's total magnetization, we have 

shown this effect in Fig. 8 (c) by varying D for J1 = 0.5, J2 = 3.0, J12 = -3.0, and B = 0. The 

figure shows N-type magnetization as described in the Néel theory [47], where J1 and J2 

are in the Tcomp range.  One can notice that for large positive values of the crystal field D, 

the compensation temperature increases. Using large positive values of the crystal field 

makes the spin-flip in sublattice-A harder, leads to a slower change in MA with the increase 

of temperature. Hence, the crossing point of the absolute value of the sublattice A and B 

magnetizations increases to higher values, therefore, increasing the system's compensation 

temperature. It is also worth noting that the compensation temperature decreases for large 

negative values of the crystal field. The decrease is attributed to the fact that using large 

negative values of the crystal field makes the spin-flip in sublattice-A easier, which leads 

to a faster change of MA with the increase of temperature. Hence, the crossing point of the 

absolute value of the sublattice A and B magnetizations decreases, thereby decreasing the 

system's compensation temperature. Consequently, the behavior of the magnetization 

curves shown in Fig. 8 has well confirmed by means of Monte Carlo simulations in a mixed 

Ising ferrimagnet with spins (3/2, 5/2) alternating on a square lattice [37], ferrimagnetic 

mixed-spin (2, 5/2) Ising system on a layered honeycomb lattice [40], ferrimagnetic 

nanocube with a spin-3/2 core surrounded by a spin-1 shell layer [48], the mixed spin-7/2 

and spin-3 ferrimagnetic Ising system on a square lattice [49], nano-dicoronylene like-



structure in a Blume-Capel model [50], ferrimagnetic mixed spin-2 and spin-5/2 Ising 

system on a honeycomb lattice [51]. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 8. The temperature dependencies of the total magnetization of the system for (a)  J2 = 2.0, J12 = -3.0, B = 

0 and D = 0 with J1 = 0.2, 0.4, 0.6 and 0.9, (b) J1 = 0.5, J12 = -3.0, B = 0 and D = 0 with J2 = 3.0, 3.5, 4.0 and 

4.5, (c) J1 = 0.5, J2 = 3.0, J12 = -3.0, B = 0 with D = -0.9, -0.6, 0, 1.0 and 3.0 

 

3.3. Hysteresis loops 

In this part, we investigated the effect of J1, J2, J12, and D on the magnetic 

hysteresis cycles for a ferrimagnetic checkerboard structure. Our results are shown in 

Figures. 9 to 13. 

Fig. 9 shows the effect of temperature on the magnetic hysteresis cycles. We have 

plotted in Fig. 9 (a) the total magnetization (left panel), (b) sublattices magnetization (right 

panel) versus the external magnetic field for J1 = 1.0, J2 = 2.0, J12 = -3.0, and D = 0 at T = 

0.8, 1.0 and 1.8. We can observe that the hysteresis cycle's surface loop decreases with 

increasing the temperature. If the temperature increases, the magnetic domains will start to 

appear in the system, so less work is needed, hence the area decreases, namely, the loop 

disappears. We observe that the system enters into the superparamagnetic phase at T = 1.8. 

This behavior is observed in the mixed spin-3/2 and spin-2 Ising model on a diamond-like 

decorated square [26], the mixed spin-7/2 and spin-3/2 Ising model located in alternating 

sites of a square lattice [52], a mixed Spin-3/2 and Spin-1/2 Ising Ferrimagnetic System 

[11], mixed spin-1/2 and spin-3/2 Ising nanoparticles system within the framework of the 

EFT with correlations [53]. 



 

 

 In order to study the effect of J1 on the magnetic hysteresis cycles, we have plotted 

in Fig. 10 (a) the total magnetization (left panel), (b) sublattice magnetization (right panel) 

versus the external magnetic field for J2 = 2.0, J12 = -3.0, D = 0 at T = 0.8 with J1 = 1.5, 2.0 

and 2.5. From the figure, one can see that as J1 increases, the area of the loop also increases; 

hence, the coactivity of the system is significantly improved. Also, two steps hysteresis 

exists. The obtained results are similar to those obtained in Ref. [53-55]. 

Fig. 9. The magnetic hysteresis loops with different temperature T (T = 0.8, 1.0, and 1.8) for (a) total 

magnetization, (b) sublattice A and B magnetization when J1 = 1.0, J2 = 2.0, J12 = -3.0 and D = 0 



 

 

 Fig. (11, 12) shows the effect of J2 on the magnetic hysteresis cycles. We have 

plotted in Fig. (11, 12) (a) the total magnetization (left panel) (b) sublattice magnetization 

(right panel) versus the external magnetic field for J1 = 1.0, J12 = -3.0, D = 0, and T = 0.8 

with J2 = 0.5, 1.0 and 5.0. We found that the shape of the hysteresis loop changes when 

increasing the value of J2; the system has a single hysteresis loop for J2 = 0.5 and 1.0, while 

at very high J2 = 5.0 two steps hysteresis loop exist. In addition, similar multiple hysteresis 

loop behaviors have also been discovered in many theoretical studies of magnetic 

nanowires [56-58] nanoparticles [59, 60] and molecule magnets [61]. The interesting 

multiple hysteresis behaviors in experiments have also been discussed in nanoparticles 

[62]. 

Fig. 10. The magnetic hysteresis loops with different exchange coupling J1 (J1 = 1.5, 2.0 and 2.5) for 

(a) total magnetization, (b) sublattice A and B magnetization when J2 = 2.0, J2 = -3.0, D = 0 and T = 

0.8 



 

 

 

 

 

 

 

 

 

 

Fig. 11. The magnetic hysteresis loops with different exchange coupling J2 (J2 = 0.5, 1.0 and 2.0) for 

(a) total magnetization, (b) sublattice A and B magnetization when J1 = 1.0, J12 = -3.0, D = 0 and T = 

0.8 



 

 

 

 

 

 

 

 

 

The effect of ferrimagnetic coupling does not affect the shape of the hysteresis loop; 

for this reason, we preferred not to show it in the context.  

 

Fig. 12. The magnetic hysteresis loops with different exchange coupling J2 ( J2 = 3.0, 4.0 and 5.0) for 

(a) total magnetization, (b) sublattice A and B magnetization when J1 = 1.0, J12 = -3.0, D = 0 and T = 

0.8 



 Fig. 13 shows the effect of D on the magnetic hysteresis cycles, we have plotted in 

Fig. 13 (a) the total magnetization (left panel) (b) sublattice magnetization (right panel) 

versus the external magnetic field for J1 = 1.0, J12 = 2.0, J12 = -3.0 and T = 0.8 with D = -

2.0, -1.0 and 1.0. The figure shows that the system exhibits a superparamagnetic behavior 

at D = -2, and as we are increasing D, the magnetization reveals two-step hysteresis with a 

wider width. Therefore, for such a checkerboard structure, this confirms the essential 

feature that D plays a major role in the appearance of Tcomp (see Fig. 5). Similar behavior 

has been observed in Ref. [11, 53, 55, 63, 64]. 

 

 

 

 

 



  

 Finally, to explore the effect of number of layers, we plot in Fig. 14 the phase 

diagram of the system in the (T, Lz) plane for J1 = 0.5, J2 = 3.0, D = 0 and B = 0. We have 

noticed that the compensation temperature reaches a saturation value for Lz > 3, whereas 

the critical temperature reaches the saturation value for Lz > 4. The value of both 

compensation and critical temperatures for Lz = 1 can be compared with result in Fig. 3 in 

the text.  

 

 

 

 

 

 
Fig. 13. The magnetic hysteresis loops with different D (D = -2.0, -1.0 and 1.0) for (a) total 

magnetization, (b) sublattice A and B magnetization when J1 = 1.0, J2 = 2.0, J12 = -3.0 and T = 0.8   



 

 

4. Conclusion 

In the present work, we employed Monte Carlo simulations based on the Metropolis 

update protocol to study the effect of Hamiltonian parameters on the magnetic and 

thermodynamic properties and the phase diagrams of a ferrimagnetic checkerboard square 

structure. Our results show that the system exhibits a second-order phase transition to a 

paramagnetic phase. Threshold values of the exchange interactions (𝐽1 < 0.6 and 𝐽
2

> 1.6) 

and crystal field (𝐷 > −0.8) have been found in the phase diagrams, and these values are of 

great importance since they can determine whether the system can exhibit a compensation 

behavior or not. We have found that the ferrimagnetic coupling has no significant effect on 

the critical and compensation temperatures. We have observed that the system's critical 

temperature slightly changes with varying the crystal field, which in contrast to the 

compensation temperature. For high values of the crystal field (𝐷 > 3), the critical and 

Fig. 14. The phase diagram of the system in (T, Lz) plane for J1 = 0.5, J2 = 3.0, J12 = -3.0, D = 0 and 

B = 0. 



compensation temperatures reach a saturation value and remain constant. The double-peak 

phenomenon has been observed in the susceptibilities and the specific heat curves, and the 

location of the first (second) peak coincides with the location of the compensation (critical) 

temperature. We have noticed that the compensation temperature is strongly linked with 

the Hamiltonian parameters of the system. The existence of the compensation point in our 

system makes it potential candidate for use in the area of thermo–magnetic data storage 

and magneto–optical recording media devices [37, 38, 65-67]. The critical temperature 

shows a gradual increase with increasing J1 or J2, and our simulations reveal the existence 

of N-, Q- and P-type compensation behaviors in the system. The coercive magnetic field 

increases with increasing the absolute value of exchange interactions J1 and decreases with 

increasing the crystal field's negative values. The hysteresis loop pattern changes from a 

single loop into a double loop by increasing the value of J2. The multiple hysteresis 

behaviors are of great interests in the applications of multi-state memory devices [52]. Also, 

the hysteresis loop area decreases as the system's temperature increases, whereas the 

ferrimagnetic coupling has no effects on the hysteresis loop area. Finally, the 

superparamagnetic behavior is observed at temperature T = 1.8 and crystal field D = -2.0.  
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