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Abstract – We investigate the stationary state of Symmetric and Totally Asymmetric Simple
Exclusion Processes with local resetting, on a one–dimensional lattice with periodic boundary
conditions, using mean–field approximations, which appear to be exact in the thermodynamic
limit, and kinetic Monte Carlo simulations. In both cases we find that in the thermodynamic
limit the models exhibit three different regimes, depending on how the resetting rate scales with
the system size. The Totally Asymmetric version of the model has a particularly rich behaviour,
especially in an intermediate resetting regime where the resetting rate vanishes as the inverse of
the system size, exhibiting 4 different phases, including phase separation.

Simple exclusion processes are models in which parti-
cles diffuse according to Markovian stochastic rules on a
lattice, often one–dimensional, with the constraint that
at most 1 particle can occupy a lattice node. They
are paradigmatic models in non–equilibrium statistical
physics, because of their simplicity and the rich behaviour
they exhibit. In the last decades a huge amount of work
has been devoted to this field (see the reviews [1–5]), which
has led to exact and numerical results for the basic models,
many generalizations, powerful approximation techniques
and connections with different models and research lines.

The simplest such model is probably the one–
dimensional Symmetric Simple Exclusion Process (SSEP)
with periodic boundary conditions (PBCs), in which par-
ticles diffuse on a ring by hopping to adjacent empty sites,
with the same hopping rate in both directions. When dif-
ferent hopping rates in the two directions are chosen, the
model is usually called Asymmetric Simple Exclusion Pro-
cess (ASEP). In the limit where hopping is allowed only in
one direction we speak of the Totally Asymmetric Simple
Exclusion Process (TASEP). In the case of PBCs the sta-
tionary state of these models is characterized by a uniform
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density of particles and converges to a product measure in
the thermodynamic limit. In the case of open boundary
conditions (OBCs), where at the end nodes particles can
leave or enter (provided the destination node is empty)
the lattice, the ASEP, as well as its limiting case TASEP,
exhibit a rich stationary state and dynamical behaviour.

Among the many generalizations and extensions of these
basic models it is especially important to mention here the
Totally Asymmetric Simple Exclusion Process with Lang-
muir Kinetics (TASEP–LK) [6–9]. This is a generalization
of a TASEP with OBCs, in which particles can also attach
to an empty node with rate ωA or detach from an occu-
pied one with rate ωD. Since attachment and detachment
are bulk processes, the most interesting situation is ob-
tained when the corresponding rates scale as the inverse
of the system size L, such that the corresponding total
rates ΩA = LωA and ΩD = LωD remain finite in the ther-
modynamic limit L → ∞.

Another important direction of investigation has been
opened very recently in [10], where the SSEP with local
resetting (SSEP–LR) has been introduced. In this model
particles diffuse as usual on a one–dimensional lattice with
PBCs and the simple exclusion constraint, but they can
also reset their position independently of one another, by
jumping to a particular lattice node named the origin with
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a rate r. The new feature in this work was the local na-
ture of the resetting process, which involves each particle
independently of the others. In previous works on exclu-
sion processes with resetting [11,12], the reset was global,
in the sense that the whole configuration of the system
was reset to some predefined condition. As noticed in
[10], local resetting can be more challenging than its global
counterpart. For instance, the approach based on renewal
theory (see [13] and references therein, also for a general
perspective on stochastic resetting) is not applicable when
resetting is applied to each particle independently.
In [10] the authors studied the SSEP–LR stationary

state with r of order 1 and r ∝ L, in the (i) fixed den-
sity and (ii) fixed number of particle cases, using both
mean–field (MF) approximation and Kinetic Monte Carlo
(KMC) simulations. Their crucial finding is that in the
thermodynamic limit the stationary density profile is in-
dependent of the resetting rate r, and depends only on the
position (in case (i) scaled by the system size) and (i) the
average density or (ii) the number of particles. In partic-
ular, the density of particles at the origin always tends to
1 as the system size L → ∞. They also find a remarkable
agreement between MF and KMC results.
Local resetting has certain analogies with the Langmuir

kinetics. The detachment process is similar, although in
the case of local resetting the detachment rate depends on
the density at the origin. On the other hand, the attach-
ment process is completely different. Based on the anal-
ogy, one may wonder whether considering a resetting rate
r which vanishes in the thermodynamic limit, with a suit-
able scaling with L, could give rise to interesting scenarios.
Here we try to answer this question in the case of SSEP–
LR and then extend our investigation to the TASEP with
local resetting (TASEP–LR).
The SSEP–LR can be defined as follows: consider a

one–dimensional lattice of L nodes with periodic boundary
conditions. We assume L even and label nodes by l =
−L/2 + 1, · · · 0, · · ·L/2. The node l = 0 will be referred
to as the origin. A time–dependent occupation number
variable nt

l is associated to each node, which at time t can
be empty (nt

l = 0) or occupied by one particle (nt
l = 1).

The system evolution, in continuous time, is determined
by 2 classes of stochastic processes: hopping and local
resetting. Each particle can hop, with rate 1, to an empty
neighbour node. In addition, each particle can also return
to the origin, provided it is empty, with rate r. The total
number of particles N =

∑

l n
t
l is conserved.

As a first step we shall explore the system dynamics
using the MF approximation, as in [10]. Introducing the
local densities ρtl = 〈nt

l〉, MF corresponds to neglecting
correlations and approximating 〈nt

kn
t
l〉 ≃ 〈nt

k〉〈nt
l〉 = ρtkρ

t
l .

The time evolution of the local densities in the MF ap-
proximation is then described by the equations [10]

ρ̇t0 = ρt1 − 2ρt0 + ρt−1 + r(1 − ρt0)
∑

l 6=0

ρtl (1)

ρ̇tl = ρtl+1 − 2ρtl + ρtl−1 − r(1 − ρt0)ρ
t
l (l 6= 0), (2)

with ρL/2+1 ≡ ρ−L/2+1 and ρ−L/2 ≡ ρL/2 due to PBCs.
In the stationary state the local densities become time–
independent, and we will denote them by ρl, dropping the
time indices. Exploiting the symmetry ρ−l = ρl and using
the definition of N we obtain, for the stationary state,

0 = 2ρ1 − 2ρ0 + r(1 − ρ0)(N − ρ0) (3)

0 = ρl+1 − 2ρl + ρl−1 − r(1 − ρ0)ρl (l > 0). (4)

We solve the above equations for the stationary state
in a continuum limit, assuming L ≫ 1 and N ≫ 1 ≥ ρ0,
and introducing a scaled coordinate x = l/L ∈ [0, 1/2] (the
x < 0 portion of the profile can be obtained by symmetry).
Denoting derivative with respect to x by a prime we obtain

0 = 2ρ′(0) + rNL(1− ρ0), (5)

0 = ρ′′(x)− rL2(1− ρ0)ρ(x). (6)

Defining λ =
√

rL2(1− ρ0), assuming that λ remains fi-
nite in the thermodynamic limit and imposing the bound-
ary condition ρ(0) = ρ0 we obtain

ρ(x) = ρ0 cosh(λx) −
λN

2L
sinh(λx), (7)

where ρ0 must be determined by imposing the condition

N = 2L

∫ 1/2

0

ρ(x)dx =
2Lρ0
λ

sinh
λ

2
−N

(

cosh
λ

2
− 1

)

,

(8)
which reduces to

ρ0 =
N

L

λ

2
coth

λ

2
. (9)

Following [10], we consider separately the cases where
the thermodynamic limit L → ∞ is taken at fixed density
ρ = N/L > 0 or at vanishing density (1 ≪ N ≪ L,
generalizing slightly the fixed N case discussed in [10]).
In the fixed ρ case, the condition for ρ0 eq. 9 becomes
ρ0 = ρλ

2 coth λ
2 and the stationary density profile becomes

ρ(x) = ρ
λ/2

sinh(λ/2)
cosh

[

λ

(

1

2
− x

)]

. (10)

The above results suggest that the stationary density pro-
file depends on r and L only through λ (except for the
prefactor ρ), and hence only through the combination rL2.
This provides some insight into the transition from the ho-
mogeneous profile that is obtained in the purely diffusive
case (r = 0) to the nonuniform profile, with a maximum
at the origin, obtained in [10] for r of order 1 and r ∝ L.
Indeed, 3 different regimes can be found, depending on
the behaviour of rL2 (or equivalently rN2) in the ther-
modynamic limit L → ∞. (i) Small resetting: if r tends
to 0 faster than L−2 (or equivalently N−2), then λ → 0,
ρ0 = ρ and ρ(x) = ρ, the purely diffusive case. (ii) Large
resetting: if rL2 → ∞, which includes the cases studied in
[10], ρ0 tends to 1 (more precisely ρ0 = 1 − λ/(rL2) and
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Fig. 1: Stationary density profiles (top lines) and NN correla-
tions (bottom line) for the SSEP–LR, ρ = 0.2, rL2 = 100. MF
density profile: black. KMC density profile: red (L = 500),
blue (L = 1000), green (L = 2000). KMC NN correlations:
red (L = 500).

λ stays finite) and the profile has a maximum at the ori-
gin. In this regime local resetting dominates over diffusion.
(iii) Intermediate resetting: if r tends to 0 as L−2 (equiv-
alently N−2), λ tends to a positive constant, ρ0 ∈ (ρ, 1)
and again the profile has a maximum at the origin. In this
regime, illustrated in Fig. 1 in the case ρ = 0.2, rL2 = 100,
local resetting and diffusion are in a balanced competi-
tion. The MF stationary density profile is plotted together
with profiles from KMC simulations for 3 different lattice
sizes. KMC simulations are carried out using Gillespie al-
gorithm, running time is 106 and averages are taken in the
stationary state, for t ∈ (105, 106). The collapse of KMC
data is remarkable, as well as the agreement with the MF
results, the profiles are almost indistinguishable on the
drawing scale. In order to further check the accuracy of the
MF approximation we also plotted the nearest–neighbour
(NN) correlations c(x = l/L) = 〈nlnl+1〉 − 〈nl〉〈nl+1〉,
which seem to vanish. This, together with the MF accu-
racy found in [10] in regime (ii), and with the exactness
of MF for the purely diffusive case, suggests that MF may
be exact for this model in the thermodynamic limit.

In the vanishing density case, the condition for ρ0 eq.
9 becomes ρ0 =

√

rN2(1− ρ0)/2, which yields ρ0 =
1
8rN

2(
√

1 + 16/(rN2)−1). The stationary density profile
eq. 7 is more conveniently rewritten as

ρ(y) = ρ0 cosh(µy)−
µ

2
sinh(µy), (11)

with new scaled variables µ =
√

rN2(1 − ρ0) and y = l/N .

As L → ∞, the behaviour of ρ0 is now determined by
rN2, and again we can find 3 different regimes, similarly
to the finite density case. (i) If rN2 → 0 (r tends to 0
faster than N−2), then ρ0 → 0, purely diffusive case. (ii)
If rN2 → ∞, local resetting dominates over diffusion, ρ0
tends to 1 (more precisely ρ0 ≃ 1− 4/(rN2)) and the pro-
file has a maximum at the origin and covers a finite portion

0 2 4 6 8 10
y

0

0.1
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0.3

0.4

ρ(
y)

Fig. 2: Stationary density profiles (top lines) and NN correla-
tions (bottom line) for the SSEP–LR, L = 1000, rN2 = 1. MF
density profile: black. KMC density profile: red (N = 25),
blue (N = 50), green (N = 100). KMC NN correlations: red
(N = 25).

of the lattice (as shown in [10]). (iii) Finally, if rN2 tends
to a positive constant (r tends to 0 as N−2), local reset-
ting and diffusion are in balanced competition, ρ0 ∈ (0, 1),
the profile has again a maximum at the origin and covers
a finite portion of the lattice. This regime is illustrated in
Fig. 2. The agreement between KMC and MF, and the
collapse of the KMC data are again remarkable, except for
some finite size effect in the case N = 100.
We now turn our attention to the asymmetric version of

the model, in which the rightward and leftward hopping
rates are different. In particular, we focus on the TASEP,
where only rightward (from l to l+1) hopping is allowed,
with rate 1. In the MF approximation, the time evolution
equations for the local densities in TASEP–LR are

ρ̇t0 = −ρt0(1− ρt1) + ρtL−1(1− ρt0) + r(1 − ρt0)

L−1
∑

l=1

ρtl (12)

ρ̇tl = −ρtl(1− ρtl+1) + ρtl−1(1− ρtl)− r(1 − ρt0)ρ
t
l

(l = 1, . . . L− 1). (13)

Now it is more convenient to let l take values from 0 to
L−1, since the system is no longer symmetric with respect
to the origin. Due to the periodic boundary conditions,
ρL ≡ ρ0. The stationary state equations are therefore

0 = −ρ0(1− ρ1) + (1 − ρ0)[ρL−1 + r(N − ρ0)] (14)

0 = −ρl(1 − ρl+1) + ρl−1(1 − ρl)− r(1 − ρ0)ρl

(l = 1, . . . L− 1). (15)

It can be verified that eq. 15 is equivalent to the MF sta-
tionary state equation for a TASEP–LK with OBCs [9]
and ρ0–dependent parameters: injection rate ρ0 at l = 1,
extraction rate 1− ρ0 at l = L− 1, total attachment rate
ΩA = 0 and total detachment rate ΩD = rL(1− ρ0). The
resetting current into the origin generates a discontinuity,
an effect analogous to opening the lattice.
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Taking the continuum limit of eq. 15 as in the SSEP
case (now with x ∈ [0, 1)) we obtain

d

dx
[ρ(x) (1− ρ(x))] = −rL(1− ρ0)ρ(x), (16)

more conveniently rewritten in terms of the function
f(x) = F (ρ(x)), where F (ρ) = ρe−2ρ, as

f ′(x) = −rL(1− ρ0)f(x). (17)

A first consequence of this result is that the behaviour
of the TASEP–LR will exhibit different regimes depending
on the value of rL. If rL tends to 0 in the thermodynamic
limit then ρ(x) ≡ ρ0 and we are in a small resetting, purely
diffusive regime. If λ = rL(1 − ρ0) stays finite in the
thermodynamic limit L → ∞ we obtain

f(x) = const · e−λx. (18)

Moreover, eq. 14 tells us that the current has a finite dis-
continuity at the origin. Summing it with eq. 15 for l = 1
and l = L− 1 and neglecting terms of order 1 we obtain

J∗ ≡ J+ − J− = rN(1− ρ0) = ρλ. (19)

Here J+ = ρ1(1− ρ2) (respectively J− = ρL−2(1− ρL−1))
denotes the current out of the origin, to the right (resp.
into the origin, from the left), and J∗ is the current into the
origin due to resetting (we have neglected ρ0 with respect
to N). In the continuum limit we obtain

J± = ρ±(1− ρ±), (20)

where ρ+ = limx→0+ ρ(x) and ρ− = limx→1− ρ(x). The
average density can then be written, using eq. 19 as

ρ =

(

ρ− − 1
2

)2 −
(

ρ+ − 1
2

)2

rL(1− ρ0)
. (21)

Before turning these results into results for the den-
sity profile, a few remarks are in order. The function
f = F (ρ) = ρe−2ρ is increasing for ρ ∈ (0, 1/2), has a
maximum at ρ = 1/2 and then decreases for ρ ∈ (1/2, 1).
For f ∈ (1/e2, 1/(2e)), its inverse is not single–valued.
Indeed, it can be written in terms of a Lambert W func-
tion as ρ = −W (−2f)/2. W has 2 real branches, the
so–called principal branch W0(z) and a second branch
W−1(z) ≤ W0(z), with equality for z = −1/e. As a
consequence, we have to consider two possible solutions
for our density profile, a low–density (LD) one ρLD(x) =
−W0(−2f(x))/2 ∈ (0, 1/2) for f(x) ∈ (0, 1/(2e)), and a
high–density (HD) one ρHD(x) = −W−1(−2f(x))/2 ∈
(1/2, 1) for f(x) ∈ (1/e2, 1/(2e)). Keeping this in mind,
we now proceed to a discussion of the stationary state.
We consider a fixed, finite value of rL, corresponding to

an intermediate resetting regime (we will discuss the large
resetting regime later) and an average density ρ ∈ (0, 1).
Representative density profiles from MF approximation
and KMC simulations (running time is 106 and averages

-0.4 -0.2 0 0.2 0.4
x

0

0.2

0.4

0.6

0.8

1

ρ(
x)

Fig. 3: Stationary density profiles for the TASEP–LR in the
intermediate resetting regime for L = 103, r = 10−3 and several
values of ρ. Smooth lines: MF approximation. Noisy lines:
KMC. ρ = 0.2 (black), 0.3 (red), 0.5 (green), 0.6 (blue) and
0.8 (yellow). The x range has been shifted to (−1/2, 1/2) for
clarity by taking advantage of PBCs.

are taken in the stationary state, for t ∈ (105, 106)) are
shown in Fig. 3 in the case rL = 1.
As ρ grows, the local density ρ0 at the origin also grows

from 0 to 1, as illustrated in Fig. 4, and the parameters of
the equivalent TASEP–LK model vary, describing a line
in its phase diagram. The stationary state goes through
4 different phases, separated by 3 transitions at average
density ρc1−3. These transitions are shown in Fig. 4 with
black lines, marking explicitly the case rL = 1. The phase
diagram in terms of the control parameters ρ and rL is
reported in the inset, where the vertical coordinate has
been chosen as (rL − 1)/(rL + 1) for convenience.
We now describe the 4 phases which are encountered for

increasing average density. In particular, for each phase,
we shall give ρ± (thence ρ, by eq. 21) as a function of ρ0.
Notice that ρ±, except in the case of phase separation, are
related through eq. 18 by the condition

F (ρ−) = e−rL(1−ρ0)F (ρ+) = e−λF (ρ+). (22)

For ρ < ρc1 we find a LD solution, with ρ′LD(x) < 0,

ρ+ = ρ0, ρ− = − 1
2W0

(

−2F (ρ0)e
−rL(1−ρ0)

)

. (23)

The density discontinuity at the origin (more precisely,
immediately on the left of the origin) corresponds to the
discontinuity in the current. ρ0 is an increasing function
of ρ, implicitly given by eqs. 21 and 23 and shown in Fig.
4, which reaches the limiting value 1/2 at the transition
value ρc1.
Our results suggest that the stationary density pro-

files depend on the parameters r and L only through
their combination rL. It is therefore interesting to check
this scaling behaviour as L → ∞. In Fig. 5 we plot
the MF stationary density profile in the case rL = 1,
ρ = 0.2 together with profiles and NN correlations from

p-4



Simple Exclusion Processes with Local Resetting

ρ
c1

ρ
c2

ρ
c30 10.5

ρ

0

0.2

0.4

0.6

0.8

1

ρ 0

0 0.5 1
ρ

-1

-0.5

0

0.5

1

(r
L

-1
)/

(r
L

+
1)

LD

M

M-HD

HD

Fig. 4: Local density ρ0 at the origin in the TASEP–LR as a
function of the average density ρ for rL = 0.1 (red), 1 (blue)
and 10 (green). Full lines: LD and HD phases. Dashed lines:
M phases. Dotted lines: M–HD phase separation. Black lines
denote phase transitions. Inset: phase diagram in the (ρ, (rL−

1)/(rL+ 1)) plane.

KMC simulations for 3 different lattice sizes. As in the
SSEP–LR case, the collapse of KMC data is remarkable,
as well as the agreement with the MF results. The NN
correlations seem to vanish everywhere except close to
the origin. The largest of these correlations is always
c(x = −1/L) = 〈nL−1n0〉 − 〈nL−1〉〈n0〉. This result sug-
gests that MF may be exact except in a small (vanishing,
on the scale of the lattice size, in the thermodynamic limit)
region around the discontinuity.

In order to better understand the region close to the
origin, the KMC results are plotted in Fig. 6 as a func-
tion of the node index l (instead of the scaled coordinate
x = l/L). On the left of the origin, in a microscopic (with
respect to the lattice size L) region, whose width is a few
lattice nodes, density profiles and correlations turn out
to be well–defined functions of the scaled resetting rate
rL and the position l (not scaled), a behaviour which re-
sembles that of a boundary layer in pure TASEP and in
TASEP–LK.

For ρ ∈ (ρc1, ρc2) (e.g. ρ = 0.3 in Fig. 3) a different
solution is found, still of the LD type for x ∈ (0, 1), but
now with

ρ+ = 1
2 < ρ0, ρ− = − 1

2W0

(

−2F (ρ+)e
−rL(1−ρ0)

)

. (24)

Physically, ρ0 determines the resetting current and the
shape of the profile, and the current J+ = 1/4 is maximal.
For this reason, this phase is called maximal current (M)
in TASEP–LK, and we will follow this convention. In a
finite system, a microscopic boundary layer forms, joining
the local density at the origin with the bulk profile. This
is shown in Fig. 7 for ρ = 0.3, where ρ0 ≃ 0.738 (MF,
continuum limit) is represented by an isolated point. The
scaling of KMC results, and the agreement with MF, is

-0.4 -0.2 0 0.2 0.4
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Fig. 5: Stationary density profiles and NN correlations for the
TASEP–LR, ρ = 0.2, rL = 1. MF density profile: black. KMC
density profile (top lines) and NN correlations (bottom lines):
red (L = 500), blue (L = 1000), green (L = 2000).

again very good, but the approach to the thermodynamic
limit is now much slower than in the pure LD phase.
For ρ ∈ (ρc2, ρc3) (e.g. ρ = 0.5 or 0.6 in Fig. 3) the

system exhibits phase separation into 2 pure phases: a
M phase on the right of the origin, and a HD phase
(with ρ′HD(x) > 0) on the left. The mean–field station-
ary density profile is a piecewise combination of a M por-
tion for x ∈ (0, xs) and a HD one for x ∈ (xs, 1), with 2
domain walls (DWs). One DW is (as usual) at the ori-
gin, where the density jumps downward from ρ− = ρ0 to
ρ+ = 1/2. Eq. 21 thus reads ρ = (ρ0−1/2)2/ [rL(1 − ρ0)],
shown in Fig. 4 with a dotted line. The other DW is at
x = xs, where the density jumps upward from ρs < 1/2 to
1− ρs > 1/2, such that the current is continuous, accord-
ing to eq. 15. Quantitatively, we can write

ρ(x) =

{

− 1
2W0

(

−2F (ρ+)e
−λx

)

x ∈ (0, xs)

− 1
2W−1

(

−2F (ρ−)e
λ(1−x)

)

x ∈ (xs, 1)
(25)

The position xs of the extra DW and the density ρs can
then be obtained from the conditions limx→x−

s

ρ(x) = ρs
and limx→x+

s

ρ(x) = 1− ρs that, according to eq. 25, read

F (ρs) = F (12 ) e
−rL(1−ρ0)xs (26)

F (1− ρs) = F (ρ0) e
rL(1−ρ0)(1−xs) (27)

The position xs of this DW decreases with ρ, and the 2
transition values ρc2 and ρc3 can be obtained by imposing
xs = 1 and xs = 0 respectively.
The scaling behaviour of this phase separation phe-

nomenon is shown in Fig. 8 for ρ = 0.5. The KMC density
profile seems to tend to the MF one as the system size
L grows, although the approach is very slow, apparently
slower than in the M phase. In particular, the DWs be-
come steeper as L grows (numerically, we observe that the
DW width is compatible with the TASEP–LK L−1/2 scal-
ing [6], though a more refined analysis is certainly worth),
and NN correlations vanish everywhere except at DWs.
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Fig. 6: KMC results in Fig. 5 as functions of the node index l.
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Fig. 7: Stationary density profiles and NN correlations for the
TASEP–LR, ρ = 0.3, rL = 1. MF density profile: black. KMC
density profile (top lines) and NN correlations (bottom lines):
red (L = 500), blue (L = 1000), green (L = 2000), orange
(L = 5000), cyan (L = 10000).

-0.4 -0.2 0 0.2 0.4
x

0

0.2

0.4

0.6

0.8

ρ(
x)

, c
(x

)

Fig. 8: Stationary density profiles and NN correlations for the
TASEP–LR, ρ = 0.5, rL = 1. MF density profile: black. KMC
density profile (top lines) and NN correlations (bottom lines):
red (L = 500), blue (L = 1000), green (L = 2000), orange
(L = 5000), cyan (L = 10000).

Finally, for ρ > ρc3 (e.g. ρ = 0.8 in Fig. 3) we find a
pure HD solution, with

ρ− = ρ0, ρ+ = − 1
2W−1

(

−2F (ρ0)e
rL(1−ρ0)

)

. (28)

The density discontinuity is now immediately on the right
of the origin. Results for this phase exhibit scaling be-
haviours and boundary layers which are qualitatively sim-
ilar to the LD phase, so we omit their detailed discussion.

Regarding the transition lines shown in Fig. 4, we ob-
serve that, at the phase transitions, ρ, ρ0 and rL can be
written as functions of J∗. Indeed, in pure phases we can
solve eq. 22 for λ, yielding λ = ln(ρ+/ρ−) − 2(ρ+ − ρ−).
This allows to write ρ = J∗/λ and rL = λ/(1 − ρ0) as
functions of ρ0 and ρ±. From eq. 19 and eq. 20 we also

find ρ− = 1
2 ±

√

J∗ +
(

ρ+ − 1
2

)2
, where the + (respec-

tively −) sign applies to the HD (resp. LD and M) phase.
The 3 transition lines can then be obtained by plugging
the appropriate conditions in the above equations and by
varying J∗ ∈ (0, 1/4).
The continuous LD–M transition, occurring at ρ = ρc1,

is characterized by ρ+ = ρ0 = 1/2, from which ρ− =
1
2 −

√
J∗. The transition between the M phase and the

M–HD phase separation, at ρ = ρc2, is characterized by
ρ+ = 1/2 and ρ− = 1 − ρ0 (corresponding to xs = 1),
hence ρ− = 1

2 −
√
J∗ and ρ0 = 1

2 +
√
J∗. Finally, the

transition between the M–HD phase separation and the
HD phase, at ρ = ρc3, is characterized by ρ+ = 1/2 and
ρ− = ρ0 (corresponding to xs = 0), which yields ρ− =
ρ0 = 1

2 +
√
J∗.

The large resetting regime rL → ∞ is illustrated in Fig.
9 in the case rL = 103. ρ0 is always practically 1 (exactly
as rL → ∞), a pure HD profile is observed at large average
density (precisely, as rL → ∞, for ρ > 1/(4(1 − ln 2)),
a value which corresponds to λ = 1 − ln 2) and a pure
LD or M profile would be observed only for a very small
average density, which tends to 0 as rL → ∞ (see Fig.
4). The profiles are qualitatively similar to those in the
intermediate regime, except for the value of ρ0.
The phase separation phenomenon in the large resetting

regime is qualitatively similar to the one we have just dis-
cussed, the main difference being that in this case ρ0 = 1.
Finally, in the case of vanishing density (1 ≪ N ≪ L),

the stationary state is determined by the parameter rN ,
with 3 regimes which are analogous to the SSEP case. In
the thermodynamic limit, if rN → 0 we have the purely
diffusive case, with ρ0 → 0, otherwise we have an asym-
metric density profile, which covers a finite portion of the
lattice on the right of the origin, whose density ρ0 ∈ (0, 1)
if rN tends to a finite value, while ρ0 → 1 if rN → ∞. In
both cases, the proper coordinate is y = l/N .

Summarizing, we have shown that the stationary state
of SSEP–LR and TASEP–LR in the thermodynamic limit
depends crucially on how the resetting rate r scales with
the system size L. In SSEP–LR with finite density we find
a small resetting, purely diffusive regime if rL2 → 0, an in-
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Fig. 9: Same as Fig. 3 for r = 1. ρ = 0.2 (black), 0.4 (red), 0.5
(green), 0.6 (blue), 0.8 (yellow) and 0.9 (brown).

termediate resetting regime if rL2 tends to a positive con-
stant, and the large resetting regime investigated in [10] if
rL2 → ∞. In the vanishing density case similar considera-
tions apply, with the driving parameter rN2. In TASEP–
LR we have a similar picture in terms of the parameter rL
(rN in case of vanishing density) and we suggest an anal-
ogy between TASEP–LR with PBCs and TASEP–LK with
OBCs. The intermediate resetting regime of TASEP–LR
is especially interesting, since the stationary state exhibits
4 different phases (3 pure phases and a phase separation),
separated by 3 phase transitions. In all cases the agree-
ment between MF and KMC, as the system size grows, is
remarkable.

These results suggest several possible lines of further in-
vestigation, and work is in progress along at least some of
these lines. A first question is how an ASEP with local
resetting would bridge the SSEP–LR and TASEP–LR re-
sults, in particular it would be interesting to understand
whether an arbitrarily small asymmetry is sufficient to in-
duce the rich behaviour that we have observed in TASEP–
LR. Another natural step forward would be to introduce
local resetting in TASEP (or, more generally, ASEP) with
OBCs, and in model with additional interactions [14–17].
Regarding methods, based on the agreement between MF
and KMC found in [10] and in our work, it would be in-
teresting to rigorously assess whether, and to what extent,
MF results can become exact in the thermodynamic limit.
It would also be worth investigating the relaxation towards
the stationary state, in which dynamical transitions with-
out a static counterpart have been found in (T)ASEP with
OBCs [18–20], also (at least with approximate methods)
in the presence of Langmuir kinetics [21,22] or additional
interactions between particles [23, 24]. Finally, we hope
that these theoretical results can stimulate progress in the
experimental studies, which as far as we know have been so
far limited to resetting in single–particle systems [25, 26].
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