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Abstract: 
The spatial scale of population synchrony gives the characteristic distance at which the 
population fluctuations are correlated. Therefore, it gives also the characteristic size of 
the regions of simultaneous population depletion, or even extinction. Single-species 
previous results imply that the spatial scale of population synchrony is equal or greater 
(due to dispersion) than the spatial scale of synchrony of environmental fluctuations. 
Theoretical results on multispecies ecosystems points that interspecies interactions 
modify the spatial scale of population synchrony. In particular, recent results on two 
species ecosystems, for two competitors and for predator-prey, point that the spatial scale 
of population synchrony generally increases as the fluctuations propagates through the 
food web, i.e., the species more directly affected by environmental fluctuations presents 
the smaller spatial scale of population synchrony. Here, we found that this behaviour is 
generally true for a two species ecosystem. The exception to this behaviour are the 
particular cases where the population fluctuations of one of the species does not damp by 
its own, but requires a strong transfer of the fluctuation to the other species to be damped. 
These analytical results illustrate the importance of applying an ecosystem rather than a 
single-species perspective when developing sustainable harvestings or assessing the 
extinction risk of endangered species. 
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I. Introduction 
The spatial scales of population synchrony provide the distance at which the population 

fluctuations of different regions remain correlated. This information is relevant for 

different aspects such as the development of sustainable crops or the protection of 

endangered species (Persson, Van Leeuwen, and De Roos 2014; Strong and Frank 2010). 

In particular, the spatial scale of population synchrony gives the characteristic size of the 

regions with risk of regional extinction  (M. Heino et al. 1997; Mikko Heino 1998a).  

 

A main result in the beginning of the research in the spatial scales of population synchrony 

was when Moran, in Ref. (Moran 1953), showed that the synchrony between the size of 

two subpopulation is the same as the synchrony of the environmental fluctuations acting 

on them. He employed a simple lineal model without dispersion to this end. Later, in Ref. 

(Lande, Engen, and Sæther 1999) was proved that dispersion increases the spatial scale 

of population synchrony. These two results are for single species models. However, 

including additional interacting species in the model changes the spatial scales of 

population synchrony from those each species has separately without interaction 

(Bjørnstad, Ims, and Lambin 1999). 

 

The influence of the inter-species interaction in the degree of spatial synchrony can also 

be seen in (Blasius, Huppert, and Stone 1999), where a three level trophic ecosystem is 

used to study periodic cycles in wildlife; in (Cazelles and Boudjema 2001), where the 

Moran effect is extended to complex non-linear dynamics; and in (Vasseur and Fox 

2009), where it is shown that environmental fluctuations can stabilize food webs 

dynamics by increasing synchrony. The interaction between species may have different 

implications on spatial scales, i.e., depending on the type of interaction the spatial scales 

will increase or decrease, and the effect could be different for each one of the species, as 

was shown in (Jarillo et al. 2018) for two competing species, and in (Jarillo et al. 2020) 

for a predator and its prey. These two later works also showed that the strength of 

interspecific interaction may strongly modify the effect of harvesting on the spatial scales 

of population synchrony. They also showed that this two particular cases (two competitor 

and predator prey) share the common feature that generally the more perturbed species 

by the environmental fluctuations has the smaller spatial scale of population synchrony, 

pointing to an increase of the spatial scale of population synchrony as the perturbation 
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propagates through a food web. Here, we address the questions on whether this statement 

is also valid for a general two species ecosystem, and we found it is valid and 

characterised the domain of validity.  

 

The spatial scales of population synchrony in multispecies ecosystems have various 

applications such as the sustainable exploitation of the environment (Baskett, Micheli, 

and Levin 2007) or the protection of endangered species (Liebhold, Koenig, and 

Bjørnstad 2004). Also, they allow us to see some consequences of climate change, in 

(Both et al. 2004) the large scale of geographical variations indicates that climate change 

is advancing the lay of eggs by birds. 

 

In section II we introduce a two species interacting model with dispersion and 

environmental stochasticity. In section III we derive and present the main result, generally 

the more perturbed species has the smaller spatial scale of population synchrony, 

explicitly solving the conditions for this result and their exceptions. Finally, in section IV 

we discuss the results and their applications and consequences as well as their limitations. 

Additionally, in Appendix A we give more details on the derivations, and the analytical 

expression of the spatial scales of population synchrony for a general two species 

ecosystem close to a stable equilibrium point and subject to small environmental 

fluctuations.  

 

II. General two interacting species ecosystem model 
Here we introduce a mathematical model which describes the population dynamics of a 

general two species ecosystem with interspecific interaction. 

 II.1. Deterministic model 

In the first place, we set out a system of differential equations, which models the 

population dynamics between the two species at a single location. This model is local and 

deterministic (dispersion and environmental fluctuations are not included). 
 

�

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑑𝑑

= 𝑅𝑅1(𝑁𝑁1,𝑁𝑁2),

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑑𝑑

= 𝑅𝑅2(𝑁𝑁1,𝑁𝑁2),
 

 

(1) 

where 𝑁𝑁𝑖𝑖 are the population size (or population density) of the specie 𝑖𝑖, and 𝑅𝑅𝑖𝑖 are smooth 

functions giving their temporal variations and they depend on the population size of the 
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two species. The shape of these functions, 𝑅𝑅𝑖𝑖, defines the interaction dynamics of the 

ecosystem, i.e., whether the system is competitive, predator-prey, or has another kind of 

dynamic. 

The functions 𝑅𝑅𝑖𝑖 can be non-linear, so the populations dynamics can be non-linear. 

Previous numerical simulations of non-linear models (Ripa and Ranta 2007; Engen and 

Lande 1996; Beddington and May 1977) have shown that linear approximations around 

equilibrium points presents the same dynamic than the non-linear model, for small 

fluctuations. This enables us to study the system close to the stable equilibrium.  

The equilibrium points �𝑁𝑁1
𝑒𝑒𝑒𝑒 ,𝑁𝑁2

𝑒𝑒𝑒𝑒� of the system verify the condition 𝑅𝑅𝑖𝑖�𝑁𝑁1
𝑒𝑒𝑒𝑒 ,𝑁𝑁2

𝑒𝑒𝑒𝑒� = 0, 
for 𝑖𝑖 = 1, 2. We express the population size around the equilibrium as 𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑖𝑖

𝑒𝑒𝑒𝑒 (1 + 𝜖𝜖𝑖𝑖) 
where 𝜖𝜖𝑖𝑖 are the relative populations fluctuations. Neglecting second or higher order of 
these fluctuations the dynamics of the model may be rewritten as  
 𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝜖𝜖1
𝜖𝜖2
� = −�

𝛾𝛾11 𝛾𝛾12
𝛾𝛾21 𝛾𝛾22� �

𝜖𝜖1
𝜖𝜖2
� = −Γ�

𝜖𝜖1
𝜖𝜖2
�. (2) 

where 𝛾𝛾𝑖𝑖𝑖𝑖 = −  ∂Ri�𝑁𝑁1
𝑒𝑒𝑒𝑒,𝑁𝑁2

𝑒𝑒𝑒𝑒�
𝜕𝜕𝑁𝑁𝑗𝑗

. The equilibrium characterised by the Γ matrix will be stable 

if the eigenvalues of the matrix have positive real part, or equivalently the trace, 𝜏𝜏, and 
the determinant, Δ, are positive, i.e.,  
 Δ = 𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21 > 0,

𝜏𝜏 = 𝛾𝛾11 + 𝛾𝛾22 > 0.
 (3) 

II.2. Spatial stochastic model 

In the second place, we introduce environmental fluctuations and dispersion. We begin 

with the environmental fluctuations. To do this we add the term  𝑁𝑁𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖𝑑𝑑𝐵𝐵𝑖𝑖(𝑑𝑑) to each 

equation in (1): 

 

�

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑑𝑑

= 𝑅𝑅1(𝑁𝑁1,𝑁𝑁2) + 𝑁𝑁1𝜎𝜎𝑒𝑒1𝑑𝑑𝐵𝐵1(𝑑𝑑),

𝑑𝑑𝑁𝑁2
𝑑𝑑𝑑𝑑

= 𝑅𝑅2(𝑁𝑁1,𝑁𝑁2) + 𝑁𝑁2𝜎𝜎𝑒𝑒2𝑑𝑑𝐵𝐵2(𝑑𝑑),
 

 

(4) 

where 𝜎𝜎𝑒𝑒𝑖𝑖2  is the environmental variance acting on species 𝑖𝑖 and 𝑑𝑑𝐵𝐵𝑖𝑖(𝑑𝑑) is the infinitesimal 

increment of a standard Brownian motion with 𝐸𝐸[𝑑𝑑𝐵𝐵𝑖𝑖(𝑑𝑑)] = 0 y 𝐸𝐸[𝑑𝑑𝐵𝐵𝑖𝑖(𝑑𝑑)2] = 𝑑𝑑𝑑𝑑. The 

two noise terms may in general be correlated, 𝐸𝐸[𝑑𝑑𝐵𝐵1(𝑑𝑑)𝑑𝑑𝐵𝐵2(𝑑𝑑)] = 𝜌𝜌12𝑑𝑑𝑑𝑑. 

 

Until here we have just considered the population dynamics at a single location, from this 

point on we are going to include spatial processes. Thus, the population fluctuations of 

each species at position 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2) ∈ ℝ2 and time 𝑑𝑑, 𝜖𝜖(𝑥𝑥, 𝑑𝑑), can be described by the 

matrix equation 
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𝑑𝑑𝜖𝜖�⃗ (𝑥𝑥, 𝑑𝑑) = −(Γ+ 𝑀𝑀)𝜖𝜖�⃗ (𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑑𝑑+ 𝑑𝑑𝐴𝐴��⃗ (𝑥𝑥, 𝑑𝑑), (5) 

where the vector 𝑑𝑑𝐴𝐴(𝑥𝑥, 𝑑𝑑) = Σ𝑒𝑒𝑑𝑑𝐵𝐵�⃗ (𝑥𝑥, 𝑑𝑑) contains the environmental noises. In the 

previous equation Σ𝑒𝑒 represents a diagonal matrix with elements 𝜎𝜎𝑒𝑒𝑖𝑖, while 𝑑𝑑𝐵𝐵�⃗  are 

increments of correlated standard Brownian motions with 𝐸𝐸�𝑑𝑑𝐵𝐵𝑖𝑖(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝐵𝐵𝑖𝑖(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑)� =

𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑑𝑑 with 𝜌𝜌𝑖𝑖𝑖𝑖(0) = 1 and |𝜌𝜌12(0)| ≤ 1. Moreover 𝐸𝐸�𝑑𝑑𝐴𝐴(𝑥𝑥)𝑑𝑑𝐴𝐴(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑)� =

𝑃𝑃(𝑦𝑦)𝑑𝑑𝑑𝑑. The elements of the covariance matrix 𝑃𝑃(𝑦𝑦) are 𝜎𝜎𝑒𝑒𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦).This way, 𝑃𝑃𝑖𝑖𝑖𝑖(0) =

𝜎𝜎𝑒𝑒𝑖𝑖2  is the environmental variance and 𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦) is the spatial autocorrelation of the noise 

acting on species 𝑖𝑖, while 𝜌𝜌12(𝑦𝑦) is the spatial autocorrelation between the noise terms 

acting on the species at distance 𝑦𝑦. Finally, we can express the dispersal contribution to 

the dynamics as 
 

𝑀𝑀 ≡ �𝑚𝑚1 −𝑚𝑚1(𝑓𝑓1 ∗. ) 0
0 𝑚𝑚2 −𝑚𝑚2(𝑓𝑓2 ∗. )�, 

 

(6) 

where (𝑓𝑓𝑖𝑖 ∗. ) is the convolution operator, whose linear action on an arbitrary function 

𝑔𝑔(𝑥𝑥, 𝑑𝑑) is given by (𝑓𝑓𝑖𝑖 ∗ 𝑔𝑔)(𝑥𝑥, 𝑑𝑑) = ∫ 𝑔𝑔(𝑥𝑥 − 𝑦𝑦, 𝑑𝑑)𝑓𝑓𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦∞
∞ . 

II.3. Spatial scales of population synchrony 

From the population fluctuations we can define the cross-covariance elements 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) ≡

𝐸𝐸�𝜖𝜖𝑖𝑖(𝑥𝑥, 𝑑𝑑0)𝜖𝜖𝑖𝑖(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑0)�. We introduce the spatial covariance matrix of the population 

density fluctuations as 
 𝐶𝐶(𝑦𝑦) = �𝑐𝑐11

(𝑦𝑦) 𝑐𝑐12(𝑦𝑦)
𝑐𝑐21(𝑦𝑦) 𝑐𝑐22(𝑦𝑦)�. 

 

(7) 

𝑐𝑐𝑖𝑖𝑖𝑖(0)  provides the change of the relative population fluctuations of species 𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) 

relies on the size and the synchrony of the relative population fluctuations of each species 

at a position y. The non-diagonal terms 𝑐𝑐12(𝑦𝑦) and 𝑐𝑐21(𝑦𝑦) satisfy that 𝑐𝑐21(𝑦𝑦) = 𝑐𝑐12(−𝑦𝑦),  

and they rely on the size and the synchrony of the relative population fluctuations of 

species 1 and 2 separated a distance 𝑦𝑦. 

Because of the stationarity of the process, the cross-covariance elements, 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) are time 

independent, so 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) = 𝐸𝐸�𝜖𝜖𝑖𝑖(𝑥𝑥, 𝑑𝑑0)𝜖𝜖𝑖𝑖(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑0)� = 𝐸𝐸�𝜖𝜖𝑖𝑖(𝑥𝑥, 𝑑𝑑0 + 𝑑𝑑𝑑𝑑)𝜖𝜖𝑖𝑖(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑0 +

𝑑𝑑𝑑𝑑)�. Replacing in the 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) time independent expression the differential variations in 

the population fluctuations in a different time step 𝑑𝑑𝑑𝑑, Eq. (5), and neglecting second 

order terms on 𝑑𝑑𝑑𝑑, we gain the equation 
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𝐶𝐶(𝑦𝑦)(Γ′ + 𝑀𝑀′) + (Γ + 𝑀𝑀)𝐶𝐶(𝑦𝑦) = 𝑃𝑃(𝑦𝑦). (8) 

We can see an analogous expression to the latter equation in Eq. (3) of Ref. (Lande, 

Engen, and Sæther 1999) where the single species case is analysed. The Eq. (8) here is 

the multispecies generalization of that single species equation. 

Then, we can use (9) to calculate the integral of the covariances over the hold space, 
 

𝐼𝐼𝑖𝑖𝑖𝑖 ≡ �𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦. (9) 

Due to the symmetry of the problem, we can study the spatial scales of population 

synchrony along a given direction chosen as the direction of the first axis without loss of 

generality. For positive covariances, we can define the spatial scales of population 

synchrony in this direction as 
 

𝑙𝑙𝑖𝑖𝑖𝑖2 ≡
1
𝐼𝐼𝑖𝑖𝑖𝑖
� 𝑦𝑦12𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦 = −

1
4𝜋𝜋2

𝜕𝜕2�̂�𝑐𝑖𝑖𝑖𝑖(𝑘𝑘)
𝜕𝜕𝑘𝑘12

�̂�𝑐𝑖𝑖𝑖𝑖(𝑘𝑘) ��

𝑘𝑘=0 

, (10) 

with �̂�𝑐𝑖𝑖𝑖𝑖(𝑘𝑘) ≡ ∫ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑥𝑥) exp(−2𝜋𝜋𝑖𝑖𝑘𝑘𝑥𝑥)𝑑𝑑𝑥𝑥 the Fourier spatial transform of 𝑐𝑐𝑖𝑖𝑖𝑖(𝑥𝑥). The later 

or the two expressions in Eq. (10) is particularly convenient for analytical computations. 

The Fourier transformation of Eq. (8) converts the dispersal convolutions (contained in 

𝑀𝑀) into products of the autocovariances �̂�𝑐𝑖𝑖𝑖𝑖(𝑘𝑘) and the dispersal functions  𝑓𝑓𝑖𝑖(𝑘𝑘) in Fourier 

space. This makes that the solution of Eq. (8) becomes an algebraic problem due to its 

linearity in the covariances. The general results for 𝑙𝑙𝑖𝑖𝑖𝑖2  are given in Appendix A (Jarillo et 

al. 2018). 

 

III. Results: Spatial Scales of Population Synchrony generally 

increases as fluctuations propagate in a Two Species 

Ecosystem 
Here we address whether the spatial scale of population synchrony is smaller for the 

species more affected by the environmental fluctuations. We use the general results for 

the spatial scales of population synchrony have been obtained following the procedure in 

the previous section. (See Appendix A for the full analytical expressions resulting.) 
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We focus first on the case where the environmental noise of the second specie is bigger 

than the environmental noise of the first specie (𝜎𝜎𝑒𝑒2 ≫ 𝜎𝜎𝑒𝑒1), which implies for the 

differences of the square of spatial scales of population synchrony 
 

(𝑙𝑙112 − 𝑙𝑙222 )  
𝜎𝜎𝑒𝑒2≫𝜎𝜎𝑒𝑒1�⎯⎯⎯⎯�  

𝛾𝛾11(𝑚𝑚1𝑙𝑙𝑚𝑚12 + 𝑚𝑚2𝑙𝑙𝑚𝑚22 ) + 𝜏𝜏 𝑚𝑚1𝑙𝑙𝑚𝑚12

𝛾𝛾112 + Δ
. (11) 

Defining, the rate of migration capacities as 𝑑𝑑21 = (𝑚𝑚2𝑙𝑙𝑚𝑚22 )/(𝑚𝑚1𝑙𝑙𝑚𝑚12 ), Eq. (11) can be 

rewritten as  
 

(𝑙𝑙112 − 𝑙𝑙222 )  
𝜎𝜎𝑒𝑒2≫𝜎𝜎𝑒𝑒1�⎯⎯⎯⎯�  

𝑚𝑚1𝑙𝑙𝑚𝑚12

𝛾𝛾112 + Δ
 [ 𝛾𝛾11 (2 + 𝑑𝑑21) + 𝛾𝛾22]. (12) 

The first factor is definite positive. Thus, the second factor, the bracket, gives the sign, 

determining which of the spatial scales of synchrony is larger when the environmental 

noise of the second species dominates. Additionally, the rate of migration capacities is 

always positive, 𝑑𝑑21 > 0. 

When the fluctuations are damped by its own we have that both of the diagonal damping 

rates are positive, 𝛾𝛾11 > 0 and 𝛾𝛾22 > 0, which implies that the smaller spatial scale of 

population synchrony is that of the species 2, i.e., the more affected by the environmental 

noise. However, stability requires a less restrictive condition, that the trace is positive, 

𝜏𝜏 = 𝛾𝛾11 + 𝛾𝛾22 > 0, allowing negative values of one of the two diagonal damping rates. 

The stability condition implies 𝛾𝛾22 > −𝛾𝛾11. Therefore, within the stability region we have 

two possible regimes 
 

(𝑙𝑙112 − 𝑙𝑙222 )  
𝜎𝜎𝑒𝑒2≫𝜎𝜎𝑒𝑒1�⎯⎯⎯⎯� �> 0, if 𝛾𝛾22/𝛾𝛾11 > −(2 + 𝑑𝑑21),

< 0, if −(2 + 𝑑𝑑21) > 𝛾𝛾22/𝛾𝛾11 > −1. 
(13) 

The regions in the (𝛾𝛾11, 𝛾𝛾22) plane of these two regimes (for 𝛾𝛾11 > 0) are depicted in 

Panel A of Fig. 1. Fig. 1 also shows the differences of spatial scales of populations 

synchrony for three examples, two corresponding to the regime where (𝑙𝑙112 −

𝑙𝑙222 )|𝜎𝜎𝑒𝑒2≫𝜎𝜎𝑒𝑒1 > 0, and another one to the other regime. Fig. 2 also shows in a color plot 

the sign and magnitude of the spatial scale of population synchrony as a function of the 

environmental noise ratio 𝜎𝜎𝑒𝑒2/𝜎𝜎𝑒𝑒1 and of the diagonal damping rate of the second species 

𝛾𝛾22. In the examples of the previous plots consider and compare the uncorrelated case 

[𝜌𝜌12(𝑦𝑦) = 0] and the completely correlated case [𝜌𝜌12(𝑦𝑦) = 𝜌𝜌11(𝑦𝑦) = 𝜌𝜌22(𝑦𝑦)] showing 

that both have the same asymptotic behaviour when the environmental noise of the second 

species dominates 𝜎𝜎𝑒𝑒2 ≫ 𝜎𝜎𝑒𝑒1. This is also true for the opposite limit, when it is the 

environmental noise of the first species which dominates 𝜎𝜎𝑒𝑒1 ≫ 𝜎𝜎𝑒𝑒2. 
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The results for the opposite limit, 𝜎𝜎𝑒𝑒1 ≫ 𝜎𝜎𝑒𝑒2, are easily obtained just switching indices  

 
(𝑙𝑙222 − 𝑙𝑙112 )  

𝜎𝜎𝑒𝑒1≫𝜎𝜎𝑒𝑒2�⎯⎯⎯⎯�  
𝑚𝑚2𝑙𝑙𝑚𝑚22

𝛾𝛾222 + Δ
 [ 𝛾𝛾22 (2 + 𝑑𝑑12) + 𝛾𝛾11]. (14) 

The stability condition implies 𝛾𝛾11 > −𝛾𝛾22. Therefore, within the stability region we have 

two possible regimes 
 

(𝑙𝑙222 − 𝑙𝑙112 )  
𝜎𝜎𝑒𝑒1≫𝜎𝜎𝑒𝑒2�⎯⎯⎯⎯� �> 0, if 𝛾𝛾11/𝛾𝛾22 > −(2 + 𝑑𝑑12),

< 0, if −(2 + 𝑑𝑑12) > 𝛾𝛾11/𝛾𝛾22 > −1, 
(15) 

where 𝑑𝑑12 = 1/𝑑𝑑21 = (𝑚𝑚1𝑙𝑙𝑚𝑚12 )/(𝑚𝑚2𝑙𝑙𝑚𝑚22 ). The regions of these two regimes (for 𝛾𝛾11 >

0) are also depicted in the (𝛾𝛾11,𝛾𝛾22) plane in Panel A of Fig. 1. Therefore, Panel A of 

Fig. 1 shows the three regions resulting from the two different regimes in the two limits 

(first or second species environmental noises dominates). [The condition 𝛾𝛾11/𝛾𝛾22 >

−(2 + 𝑑𝑑12) can also be expressed as 𝛾𝛾22/𝛾𝛾11 > −1/(2 + 𝑑𝑑12)] 

 

In summary, the spatial scale of population synchrony is smaller for the species more 

affected by environmental noise provided the following condition is satisfied 
 𝛾𝛾22

𝛾𝛾11
> max �−(2 + 𝑑𝑑21) ,   −

1
(2 + 𝑑𝑑12)�. 

(16) 

This condition is stronger than the stability condition, 𝛾𝛾22/𝛾𝛾11 > −1, but it is fulfilled in 

particular in the cases where both diagonal damping rates are positive, 𝛾𝛾11 > 0 and 𝛾𝛾22 >

0. 
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Figure 1. Difference of squared spatial scales of population synchrony 𝒍𝒍𝟏𝟏𝟏𝟏𝟐𝟐 − 𝒍𝒍𝟐𝟐𝟐𝟐𝟐𝟐  of the two 
species as a function of their diagonal damping rates 𝜸𝜸𝟏𝟏𝟏𝟏 and 𝜸𝜸𝟐𝟐𝟐𝟐. A) The (𝛾𝛾11,𝛾𝛾22) plane 
presents three subregions within the stable region, for the asymptotic behaviour of the difference 
of squared spatial scales of population synchrony 𝑙𝑙112 − 𝑙𝑙222  of the two species. In the first main 
stable region (upper-right of this panel) the more intensively perturbed species by environmental 
fluctuations has the smaller spatial scale of population synchrony. (Panels B and C represent 
examples of this case, examples 1 and 2.) In the other two stable regions (upper-left and down-
right of this panel) one of the spatial scales of population synchrony tends to be always the smaller 
one, this regimes require one of the diagonal damping rates, 𝛾𝛾11 or 𝛾𝛾22, to be negative.  (Panel D 
represents an example of this latter case, example 3.)  B) In Example 1 (𝛾𝛾22 ≥ 0) we can see that 
the more directly perturbed species has the smaller spatial scale of population synchrony, 
independently on whether the environmental noises on the species are completely correlated 
(solid lines, 𝜌𝜌11(𝑦𝑦) = 𝜌𝜌22(𝑦𝑦) = 𝜌𝜌12(𝑦𝑦)) or uncorrelated (dashed lines, 𝜌𝜌12(𝑦𝑦) = 0). The 
independence of the results from the correlation of the noises was expected due to independence 
of the result in Eq. (11). C) In Example 2 �− 𝛾𝛾11

2+𝑑𝑑12
< 𝛾𝛾22 < 0� we have the same behaviour than 

in the previous example. The difference is that here one of the diagonal elements of the Γ matrix 
is negative. This shows illustrates that this asymptotic behaviour can also occur with one negative 
diagonal damping rate. D) In Example 3 �−𝛾𝛾11 < 𝛾𝛾22 < − 𝛾𝛾11

2+𝑑𝑑12
� we observe that one of the 

species (the first one) always have the bigger correlation scales when the noise affecting one of 
the species is bigger than the noise affecting the other one, consistently with the regions 
represented in Panel A of this figure. All panels of this figure represent the case 𝑚𝑚1𝑙𝑙𝑚𝑚12 =
𝑚𝑚2𝑙𝑙𝑚𝑚2

2 = 1, 𝑙𝑙𝑒𝑒112 = 𝑙𝑙𝑒𝑒222 = 𝑙𝑙𝑒𝑒122 = 1 and 𝜌𝜌11(𝑦𝑦) = 𝜌𝜌22(𝑦𝑦). Therefore, for the rate of diffusion 

capacities we have 𝑑𝑑12 = 𝑚𝑚1𝑙𝑙𝑚𝑚1
2

𝑚𝑚2𝑙𝑙𝑚𝑚2
2 = 1

𝑑𝑑21
= 1. 
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Figure 2. Difference of squared spatial scales of population synchrony 𝒍𝒍𝟏𝟏𝟏𝟏𝟐𝟐 − 𝒍𝒍𝟐𝟐𝟐𝟐𝟐𝟐  as a function 
of the diagonal damping rate of the second species 𝜸𝜸𝟐𝟐𝟐𝟐 and of the ratio of environmental 
noises 𝝈𝝈𝒆𝒆𝟐𝟐/𝝈𝝈𝒆𝒆𝟏𝟏. The other three elements of the Γ matrix are fixed to: 𝛾𝛾11 = 1, 𝛾𝛾12 = −1 and 
𝛾𝛾21 = 1. The dotted line indicates when both spatial scales of correlation are equal. The dashed 
line separates the two different regimes  �𝛾𝛾22 = − 𝛾𝛾11

2+𝑑𝑑12
� described in Fig. 1 and in Section III of 

the text. Above the dashed line the more directly perturbed species has the smaller spatial scale 
of population synchrony, below the dashed line is always species 2 that has the smaller spatial 
scale of population synchrony. Panel A shows the completely correlated noise case 
�𝜌𝜌11(𝑦𝑦) = 𝜌𝜌22(𝑦𝑦) = 𝜌𝜌12(𝑦𝑦)� and Panel B the uncorrelated noise case (𝜌𝜌12(𝑦𝑦) = 0). Both 
presents the same asymptotic behaviour. The independence of the results from the correlation of 
the noises was expected due to independence of the result in Eq. (11). All panels of this figure 
have the following values of the other parameters 𝑚𝑚1𝑙𝑙𝑚𝑚12 = 𝑚𝑚2𝑙𝑙𝑚𝑚22 = 1, 𝑙𝑙𝑒𝑒112 = 𝑙𝑙𝑒𝑒222 = 𝑙𝑙𝑒𝑒122 = 1 
and 𝜌𝜌11(𝑦𝑦) = 𝜌𝜌22(𝑦𝑦). 
 

 
IV. Discussion  

Previous research on single species models have shown that the spatial correlation of the 

environmental noise and the dispersal of the species determines the spatial scale of 

population synchrony (Moran 1953; Lande, Engen, and Sæther 1999). These phenomena 

causes variations in the geographical distribution of the species (Levin 1992). Here, we 

show how these intraspecies effects are modulated by the interactions with other species. 

Specifically, we focus on finding out which is the species with the higher spatial scale of 

population synchrony when the ratio of environmental noise is big or small, i.e. when one 

of the environmental noises dominates. 
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We found that the criteria which determines the larger spatial scale of population 

synchrony, depends on the diagonal damping rates and on the dispersal rates and dispersal 

lengths. These characteristics of the results were to be expected in view of previous results 

(Engen, Lande, and Sæther 2002), where the connection between dispersal and the spatial 

scale of population synchrony is proved. One additional relevant aspect of the results is 

its independence from the correlation between the environmental noises for each species. 

This independence may seem surprising, but it is important to recall that this 

independence only occurs in the limit when one of the environmental noises dominates. 

Therefore the effects of the other environmental noise becomes negligible, including its 

correlation with the dominant environmental noise. Results outside this limit are not 

independent of the correlation between environmental noises, as can be seen in Panels B, 

C and D of  Fig. 1. 

 

Several theoretical studies (M. Heino et al. 1997; Mikko Heino 1998b; Earn, Levin, and 

Rohani 2000; Ripa and Ranta 2007; Engen 2007) have shown the link between the spatial 

scale of population synchrony and the size of the region suffering local extinction. 

Consequently, knowing the relative magnitudes of the spatial scales of population 

synchrony can be decisive when setting up strategies for a sustainable management of 

exploited species, e.g., deciding fishing quotas or harvesting strategies. Although the 

achieved result could seem scant general, since we have just considered the limits 

situations where one of the noises dominates, this situation is very common in the nature 

and in the ecosystems models (McCann 2012; Terborgh 2015). For instance, a simple 

example of this situation are the predator-prey ecosystems with bottom-up regulation, 

where the environmental noises affecting the prey are bigger than the ones affecting the 

predator (Jarillo et al. 2020). In top-down ecosystems we have the opposite situation. 

 

Finally, our model only considers two species, adding the interactions with the other 

species living in the ecosystem to the environmental noise. A more realistic analysis 

should deal with the dynamics of all the species in the ecosystem, however it seems 

difficult to obtain general analytical results in these general multispecies models. The next 

step between an entirely realistic analysis and this one, could be the incorporation of a 

third species. This three species model could let us study different situations such as the 

coexistence of two different species with a common predator or the interactions between 

species of a simple three level trophic web. 
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Appendix A: Analytical expressions for the spatial scales of population synchrony 
in a general two species ecosystem. 

 
The population fluctuations for each species in a given position and time can be expressed by the 
following matrix equation: 
 

𝑑𝑑𝜖𝜖�⃗ (𝑥𝑥, 𝑑𝑑) = −(Γ+𝑀𝑀)𝜖𝜖�⃗ (𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑑𝑑+ 𝑑𝑑𝐴𝐴��⃗ (𝑥𝑥, 𝑑𝑑), (A1) 

where 𝜖𝜖 symbolises the fluctuations, Γ is the equilibrium matrix from the deterministic model, 𝑀𝑀 
gives the dispersal contribution and 𝑑𝑑𝐴𝐴 contains the environmental noises. 
Let 𝐶𝐶(𝑦𝑦) be the spatial covariance matrix of the population density fluctuations, with 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) =
𝐸𝐸�𝜖𝜖𝑖𝑖(𝑥𝑥, 𝑑𝑑0)𝜖𝜖𝑖𝑖(𝑥𝑥 + 𝑦𝑦, 𝑑𝑑0)�. Due to the stationarity of the process, replacing 𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦) in two different 
time steps in Equation A1 and neglecting second order terms on 𝑑𝑑𝑑𝑑 we obtain: 
 

𝐶𝐶(𝑦𝑦)(Γ′ + 𝑀𝑀′) + (Γ + 𝑀𝑀)𝐶𝐶(𝑦𝑦) = 𝑃𝑃(𝑦𝑦), (A2) 

where ′ denotes transposition and 𝑃𝑃(𝑦𝑦) is the covariance matrix with elements 𝜎𝜎𝑒𝑒𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦). 
Using Equation A2 we can compute the integral of the covariance over the hold space 

𝐼𝐼𝑖𝑖𝑖𝑖 = �𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦. 

As a consequence of the symmetry of the problem we can study the spatial scales along a given 
direction as the direction of the first axis without loss of generality. Then, for positive covariances 
we can define the spatial scales of population synchrony in this direction as 
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𝑙𝑙𝑖𝑖𝑖𝑖2 =
1
𝐼𝐼𝑖𝑖𝑖𝑖
�𝑦𝑦2𝑐𝑐𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦 = −

1
4𝜋𝜋2

𝜕𝜕2𝑐𝑐𝚤𝚤𝚤𝚤�(𝑘𝑘)
𝜕𝜕𝑘𝑘2
𝑐𝑐𝚤𝚤𝚤𝚤�(𝑘𝑘) �

𝑘𝑘=0

 

 

(A3) 

where 𝑐𝑐𝚤𝚤𝚤𝚤�(𝑘𝑘) = ∫ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑥𝑥) exp(−2𝜋𝜋𝑖𝑖𝑘𝑘𝑥𝑥)𝑑𝑑𝑥𝑥 is the Fourier spatial transform of 𝑐𝑐𝑖𝑖𝑖𝑖(𝑥𝑥). In order to 
obtain the expressions for the spatial scales of population synchrony we will use the definition in 
terms of the Fourier spatial transform. When we apply the Fourier spatial transform to Equation 
A2, the transformed elements of 𝐶𝐶 form an algebraic equation system that we can solve. Then we 
just derive the 𝑐𝑐𝚤𝚤𝚤𝚤�(𝑘𝑘) and we gain 𝑙𝑙𝑖𝑖𝑖𝑖2 . 
The expressions for the spatial scales of population synchrony read 
 

𝑙𝑙112 =
𝛾𝛾122 𝐽𝐽𝑒𝑒22(𝑙𝑙𝑒𝑒222 − 𝑙𝑙𝑒𝑒112 ) − 2𝛾𝛾12𝛾𝛾22𝐽𝐽𝑒𝑒12 �𝑙𝑙𝑒𝑒122 − 𝑙𝑙𝑒𝑒112 − 𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
� − 𝐽𝐽𝑒𝑒11𝛾𝛾22 �𝛾𝛾11 �

𝑚𝑚1𝑙𝑙𝑚𝑚1
2

𝛾𝛾11
+ 𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
� + 2𝛾𝛾22

𝑚𝑚2𝑙𝑙𝑚𝑚2
2

𝛾𝛾22
�

𝛾𝛾122 𝐽𝐽𝑒𝑒22 − 2𝛾𝛾12𝛾𝛾22𝐽𝐽𝑒𝑒12 + 𝐽𝐽𝑒𝑒11(𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22) − 𝛾𝛾12𝛾𝛾21)  

 
 

+𝑙𝑙𝑒𝑒112 +
𝑚𝑚1𝑙𝑙𝑚𝑚1

2 + 𝑚𝑚2𝑙𝑙𝑚𝑚2
2

𝛾𝛾11 + 𝛾𝛾22
+

𝛾𝛾11𝛾𝛾22
𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21

�
𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
+
𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
�, 

 
(A4) 

 

𝑙𝑙222 =
𝛾𝛾212 𝐽𝐽𝑒𝑒11(𝑙𝑙𝑒𝑒112 − 𝑙𝑙𝑒𝑒222 ) − 2𝛾𝛾21𝛾𝛾11𝐽𝐽𝑒𝑒12 �𝑙𝑙𝑒𝑒122 − 𝑙𝑙𝑒𝑒222 − 𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
� − 𝐽𝐽𝑒𝑒22𝛾𝛾11 �𝛾𝛾22 �

𝑚𝑚1𝑙𝑙𝑚𝑚1
2

𝛾𝛾11
+ 𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
� + 2𝛾𝛾11

𝑚𝑚1𝑙𝑙𝑚𝑚1
2

𝛾𝛾11
�

𝛾𝛾212 𝐽𝐽𝑒𝑒11 − 2𝛾𝛾21𝛾𝛾11𝐽𝐽𝑒𝑒12 + 𝐽𝐽𝑒𝑒22(𝛾𝛾11(𝛾𝛾11 + 𝛾𝛾22) − 𝛾𝛾12𝛾𝛾21)  

 
 

+𝑙𝑙𝑒𝑒222 +
𝑚𝑚1𝑙𝑙𝑚𝑚1

2 + 𝑚𝑚2𝑙𝑙𝑚𝑚2
2

𝛾𝛾11 + 𝛾𝛾22
+

𝛾𝛾11𝛾𝛾22
𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21

�
𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
+
𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
�, 

 

 
(A5) 

where 

𝐽𝐽𝑒𝑒𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑒𝑒𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖 �𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦, 

𝑙𝑙𝑒𝑒𝑖𝑖𝑖𝑖2 =
𝜎𝜎𝑒𝑒𝑖𝑖𝜎𝜎𝑒𝑒𝑖𝑖
𝐽𝐽𝑒𝑒𝑖𝑖𝑖𝑖

� 𝑦𝑦2𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦 =
∫𝑦𝑦2𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦
∫𝜌𝜌𝑖𝑖𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦

, 

 

𝑙𝑙𝑚𝑚𝑖𝑖2 = �𝑦𝑦2𝑓𝑓𝑖𝑖(𝑦𝑦)𝑑𝑑𝑦𝑦. 

 
However, we are interested in the difference between the spatial scales of population synchrony 
of each species. The expression for the difference is 
 

𝑙𝑙112 − 𝑙𝑙222 = 𝑙𝑙𝑒𝑒112 − 𝑙𝑙𝑒𝑒222 + 
 

+
𝑎𝑎1111𝐽𝐽𝑒𝑒112 + 𝑎𝑎2222𝐽𝐽𝑒𝑒222 + 𝑎𝑎1212𝐽𝐽𝑒𝑒122 + 𝑎𝑎1122𝐽𝐽𝑒𝑒11𝐽𝐽𝑒𝑒22 + 𝑎𝑎1211𝐽𝐽𝑒𝑒12𝐽𝐽𝑒𝑒11 + 𝑎𝑎1222𝐽𝐽𝑒𝑒12𝐽𝐽𝑒𝑒22
𝑏𝑏1111𝐽𝐽𝑒𝑒112 + 𝑏𝑏2222𝐽𝐽𝑒𝑒222 + 𝑏𝑏1212𝐽𝐽𝑒𝑒122 + 𝑏𝑏1122𝐽𝐽𝑒𝑒11𝐽𝐽𝑒𝑒22 + 𝑏𝑏1211𝐽𝐽𝑒𝑒12𝐽𝐽𝑒𝑒11 + 𝑏𝑏1222𝐽𝐽𝑒𝑒12𝐽𝐽𝑒𝑒22

, (A6) 

 
where 

𝑎𝑎1111 = −𝛾𝛾212 �𝛾𝛾22 �𝛾𝛾11 �
𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
+
𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
� + 2𝛾𝛾22

𝑚𝑚2𝑙𝑙𝑚𝑚2
2

𝛾𝛾22
� + (𝑙𝑙𝑒𝑒11

2 − 𝑙𝑙𝑒𝑒22
2 )�𝛾𝛾22�𝛾𝛾11 + 𝛾𝛾22� − 𝛾𝛾12𝛾𝛾21��, 

 

𝑎𝑎2222 = 𝛾𝛾122 �𝛾𝛾11 �𝛾𝛾22 �
𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
+
𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
� + 2𝛾𝛾11

𝑚𝑚1𝑙𝑙𝑚𝑚1
2

𝛾𝛾11
� + (𝑙𝑙𝑒𝑒22

2 − 𝑙𝑙𝑒𝑒11
2 )�𝛾𝛾11�𝛾𝛾11 + 𝛾𝛾22� − 𝛾𝛾12𝛾𝛾21��, 
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𝑎𝑎1212 = 4𝛾𝛾11𝛾𝛾22𝛾𝛾12𝛾𝛾21 �𝑙𝑙𝑒𝑒222 − 𝑙𝑙𝑒𝑒112 +
𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾11
−
𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾22
�, 

  
𝑎𝑎1122 = 2𝛾𝛾122 𝛾𝛾212 (𝑙𝑙𝑒𝑒222 − 𝑙𝑙𝑒𝑒112 ) + (𝛾𝛾22𝑚𝑚1𝑙𝑙𝑚𝑚1

2 + 𝛾𝛾11𝑚𝑚2𝑙𝑙𝑚𝑚2
2 )(𝛾𝛾222 − 𝛾𝛾112 ) + 2𝛾𝛾11𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22)(𝑚𝑚1𝑙𝑙𝑚𝑚1

2 − 𝑚𝑚2𝑙𝑙𝑚𝑚2
2 )

+ 2𝛾𝛾12𝛾𝛾21(𝛾𝛾22𝑚𝑚2𝑙𝑙𝑚𝑚2
2 − 𝛾𝛾11𝑚𝑚1𝑙𝑙𝑚𝑚1

2 ), 
 

𝑎𝑎1211 = 2𝛾𝛾21 �𝑚𝑚1𝑙𝑙𝑚𝑚1
2 (𝛾𝛾12𝛾𝛾21 − 𝛾𝛾222 ) + 𝑚𝑚2𝑙𝑙𝑚𝑚2

2 �𝛾𝛾12𝛾𝛾21 + 𝛾𝛾11(𝛾𝛾11 + 2𝛾𝛾22)� + 2𝛾𝛾22𝛾𝛾122 𝑙𝑙𝑒𝑒112

+ 𝑙𝑙𝑒𝑒122 (𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21)(𝛾𝛾11 + 𝛾𝛾22) − 𝑙𝑙𝑒𝑒222 (𝛾𝛾11𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22) − 𝛾𝛾12𝛾𝛾21(𝛾𝛾11 − 𝛾𝛾22)�, 
 

𝑎𝑎1222 = −2𝛾𝛾12(𝑚𝑚2𝑙𝑙𝑚𝑚2
2 (𝛾𝛾12𝛾𝛾21 − 𝛾𝛾112 ) + 𝑚𝑚1�𝛾𝛾12𝛾𝛾21 + 𝛾𝛾22(2𝛾𝛾11 + 𝛾𝛾22)�

+ 2𝛾𝛾12𝛾𝛾21𝛾𝛾11𝑙𝑙𝑒𝑒222 +𝑙𝑙𝑒𝑒12(𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21)(𝛾𝛾11 + 𝛾𝛾22) + 𝑙𝑙𝑒𝑒112 (𝛾𝛾12𝛾𝛾21(𝛾𝛾22 − 𝛾𝛾11)
− 𝛾𝛾11𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22), 

 
𝑏𝑏1111 = 𝛾𝛾212 (𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22) − 𝛾𝛾12𝛾𝛾21), 

 
𝑏𝑏2222 = 𝛾𝛾122 (𝛾𝛾11(𝛾𝛾11 + 𝛾𝛾22) − 𝛾𝛾12𝛾𝛾21), 

 
𝑏𝑏1212 = 4𝛾𝛾11𝛾𝛾12𝛾𝛾21𝛾𝛾22, 

  
𝑏𝑏1122 = �(𝛾𝛾11 + 𝛾𝛾22)(𝛾𝛾122 𝛾𝛾22 + 𝛾𝛾212 𝛾𝛾11) − 𝛾𝛾12𝛾𝛾21(𝛾𝛾122 + 𝛾𝛾212 )�, 

 
𝑏𝑏1211 = −2�𝛾𝛾12𝛾𝛾212 (𝛾𝛾22 − 𝛾𝛾11) + 𝛾𝛾22(𝛾𝛾11 + 𝛾𝛾22)�, 

 
𝑏𝑏1222 = −2�𝛾𝛾21𝛾𝛾122 (𝛾𝛾11 − 𝛾𝛾22) + 𝛾𝛾11(𝛾𝛾11 + 𝛾𝛾22)�. 

 
 
Regarding the environmental noise ratio, we will focus on two specific situations: when the 
environmental noise of the second specie is bigger than the environmental noise of the first specie 
(𝜎𝜎𝑒𝑒2 ≫ 𝜎𝜎𝑒𝑒1 → 𝐽𝐽𝑒𝑒22 ≫ 𝐽𝐽𝑒𝑒12, 𝐽𝐽𝑒𝑒11) and vice versa (𝜎𝜎𝑒𝑒1 ≫ 𝜎𝜎𝑒𝑒2 → 𝐽𝐽𝑒𝑒11 ≫ 𝐽𝐽𝑒𝑒12, 𝐽𝐽𝑒𝑒22). 
Applying these two limits to Eq A3, we obtain the following expressions: 

 
𝜎𝜎𝑒𝑒2 ≫ 𝜎𝜎𝑒𝑒1 → 𝑙𝑙112 − 𝑙𝑙222 ≈ 𝑙𝑙𝑒𝑒112 − 𝑙𝑙𝑒𝑒222 +

𝑎𝑎2222
𝑏𝑏2222

=
𝛾𝛾11(𝑚𝑚1𝑙𝑙𝑚𝑚1

2 + 𝑚𝑚2𝑙𝑙𝑚𝑚2
2 ) + 𝜏𝜏𝑚𝑚1𝑙𝑙𝑚𝑚1

2

𝛾𝛾112 + Δ
 (A7) 

 
𝜎𝜎𝑒𝑒1 ≫ 𝜎𝜎𝑒𝑒2 → 𝑙𝑙222 − 𝑙𝑙112 ≈ 𝑙𝑙𝑒𝑒222 − 𝑙𝑙𝑒𝑒112 −

𝑎𝑎1111
𝑏𝑏1111

=
𝛾𝛾22(𝑚𝑚1𝑙𝑙𝑚𝑚1

2 + 𝑚𝑚2𝑙𝑙𝑚𝑚2
2 ) + 𝜏𝜏𝑚𝑚2𝑙𝑙𝑚𝑚2

2

𝛾𝛾222 + Δ
, (A8) 

 
where, 𝜏𝜏 = 𝛾𝛾11 + 𝛾𝛾22 and Δ = 𝛾𝛾11𝛾𝛾22 − 𝛾𝛾12𝛾𝛾21 are the trace and the determinant of the Γ matrix 
from the deterministic model. 
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