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Time reversal invariant (TRI) topological superfluids (TSFs) and topological superconductors
(TSCs) are robust symmetry protected gapped topological states. In this article, we study the
evolution of these topological states in the presence of time reversal symmetry breaking (TRB) fields
and/or sufficiently large TRI fields. Physically, one of the realizations of TRB fields can be internal
spin exchange fields due to background magnetic ordering. We find that the fully gapped TSFs
and TSCs are generically separated from other nodal states by various zero temperature quantum
critical points that are characterized by generalized quantum Lifshitz Majorana fields with distinct
scaling properties. These emergent Lifshitz Majorana fields also define finite temperature properties
in quantum critical regimes. Moreover, for a certain subset of TRB fields, there exists a precursor
to bulk transitions, where surface states can also exhibit quantum critical behavior near zero fields.

I. INTRODUCTION

Topological superfluids and superconductors have been
a fascinating subject for long. Early explorations of topo-
logical superfluids were at least partially motivated by
their close connections to quantum Hall physics [1, 2].
Read and Green further pointed out the unique roles
played by Majorana edge states in time reversal symme-
try breaking (TRB) topological states and in phase tran-
sitions between topological and non-topological states [3].
Possible non-abelian statistical properties in topological
states [4–7] have made topological superfluids and su-
perconductors one of the very promising candidates for
topological quantum computers, an idea put forward by
Kitaev [8, 9].

Time reversal invariant (TRI) topological superfluids
and superconductors studied in more recent literatures
are relatively young members of topological states [10–
16]. These studies are also related to the developments
in topological insulators [17–24]. The possibility of hav-
ing topological superconducting states in heterostruc-
tures has also generated enormous excitements and in-
terest [25–29]. Impressive efforts have been made to sys-
tematically classify these states and characterize them
in terms of elementary Fermi surface properties [30–33].
These research efforts generalize the notion of topological
states beyond the previously known examples of topolog-
ical superfluids or superconductors and perhaps provide
very broad searching criteria in potentially realizing them
in quantum materials. They open a door to many new
studies of topological matter, both theoretical and exper-
imental.

More recently, there has also been growing interest in
nodal topological superfluids and superconductors. In
these cases, topological invariants can be defined on mo-
mentum space submanifolds enclosing the nodes [34, 35].
Various nodal structures, such as point nodes, line nodes
and surfaces nodes have been investigated and the nodal
phases are classified by symmetries of Hamiltonians [36–
38]. For example, in analogy to Weyl semimetals [39–42]

where topologically protected point nodes exist on Fermi
surfaces, Wely superconductors with similar point nodes
have been proposed to exist when TRS is broken [43–46].
Meanwhile, topological properties such as surface states
of topological phases with line nodes have been discussed
mostly in the context of noncentrosymmetric supercon-
ductors [47–50]. Possible realizations of superconduct-
ing phase with surface nodes have also been proposed in
multiband systems with broken TRS [51].

In superfluids and superconductors, there can be phase
transitions between various gapped phases, or between
gapped and gapless nodal phases that have the same local
order parameters and break the same symmetries spon-
taneously but differ in global topology. “How does one
phase make a phase transition to another topologically
distinct phase?” is the key question we want to explore
in this study. These transitions are obviously beyond the
standard Landau paradigm of order-disorder phase tran-
sitions [52] and usually occur when various symmetries
such as gauge symmetries are still spontaneously broken.
How are they different from the order-disorder transi-
tions and what are the upper critical dimensions of these
transitions, below which strong correlations can emerge?

More concretely, TRI topological superfluids and su-
perconductors are robust, gapped states that are well
protected and their surface or edge states remain gapless
if weak external fields are also time reversal invariant [15].
However, in the presence of TRB fields, either due to spin
exchange fields or pairing exchange effects, surface states
can be gapped at any finite TRB fields. The bulk of a
gapped topological state can either simply have a smooth
crossover to a gapped topologically trivial superfluid or
superconducting state, or in more generic cases that we
will focus on below undergo phase transitions to nodal
phases with various distinct nodal structures that can
also be topological states.

The main motivation of this article is to identify these
quantum transitions that turn out to only exist at T = 0,
i.e. at zero temperature, and hence can be conveniently
characterized as quantum critical points (QCPs) [53].
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These QCPs also naturally define scaling properties of
thermal states in quantum critical regimes. Phenomeno-
logically, we can always classify the nodal phases into at
least three categories: (A) nodal point phases (NPPs),
(B) nodal line phases (NLPs), and (C) nodal surface
phases (NSPs). A gapped topological state can undergo a
continuous phase transition into one of these phases and
correspondingly there should be at least three different
universality classes specifying these transitions.

Here, we do not attempt to have an exhaustive classi-
fication of all possible QCPs that may exist in superflu-
ids or superconductors. Rather, we will focus on QCPs
that are characterized by three classes of emergent ex-
tended quantum Lifshitz Majorana fields (QLMF) with
distinct scaling properties. Real Majorana fields appear
naturally because of breaking of gauge symmetries at the
points of transitions; while Lifshitz fields [54] are induced
as precursors of nodal structures. These QLMFs de-
scribe a large variety of QCPs between gapped and nodal
phases. We will attribute three types of quantum fields:
QLMFA, QLMFB, and QLMFC to transitions from a
gapped phase into (A) NPP, (B) NLP, and (C) NSP, re-
spectively. These three fields which all break the Lorentz
symmetry, together with relativistic quantum Majorana
fields with full emergent Lorentz symmetry appear to
form a set of quantum fields naturally emerging at generic
QCPs in topological superfluids (TSFs) and topological
superconductors (TSCs). They capture the low energy
physics of a very broad set of QCPs that can exist in
TSFs and TSCs. The emergent Lorentz invariant Majo-
rana fields have been pointed out to appear at a beyond-
Landau paradigm transition between a TSF and a non-
topological superfluid that spontaneously break the same
symmetries [55].

Other beyond-Landau paradigm quantum phase tran-
sitions have also been studied in various models. In 2D
and 3D topological insulators, topological quantum crit-
icality has been discussed recently [56–58]. One of the
most celebrated examples of beyond-Landau paradigm
transitions is a class of quantum phase transitions be-
tween states with different order parameters or sponta-
neously breaking different types of symmetries [59, 60].
It was suggested that such QCPs, denoted as decon-
fined QCPs, can possess new emergent symmetries and
novel particles which do not exist in either of the ordered
phases separated by the QCP. Scale invariant quantum
spin liquids can naturally appear at deconfined QCPs,
which adds an interesting new member to the earlier fam-
ily of gapped spin liquids and quantum spin valence bond
solids [59–64].

The topological quantum phase transitions discussed
in this article are driven by changes in global topology
as mentioned before. However, the unique feature that
distinguishes them from other beyond-Landau paradigm
transitions is that U(1) symmetry is broken sponta-
neously and charges are not conserved at these topolog-
ical QCPs in superfluids and superconductors. This as-
pect plays a paramount role in the following construction

of effective field theories for these QCPs.
The rest of this article is organized as follows. In Sec.

II, we introduce the basic notions of Majorana fields and
QLMFs, and general phenomenologies of three classes of
QCPs described by these QLMFs. We will present the
main results, such as the order of phase transitions and
the existence of surface QCPs with TRB fields. In Sec.
III, we will focus on the applications to the simplest p-
wave superfluids and further zoom in to examine QCPs
specifically for p-wave superfluids at T = 0. In Sec. IV,
we discuss the properties of these QCPs at finite temper-
ature. In Sec. V, we generalize our studies to TSCs with
extra orbital degrees of freedom. We present applications
to TSCs of Dirac fermions and classify all possible fields
that can drive topological quantum phase transitions. In
Sec. VI, as another application we further present re-
sults on QCPs in TSC of CuxBi2Se3 that was pointed
out previously [65, 66].

II. QLMFs AND QUANTUM CRITICALITY

A. General Phenomenology at QCPs

As stated in the Introduction, the specific transitions
of our interest in the current article, as well as in a pre-
vious article by the authors (Ref. [55]) are either entirely
driven by the change of global topologies or involve dras-
tic changes of global topologies. They are either entirely
absent in conventional non-topological superconductors
or distinctly different from their counterparts in conven-
tional superconductors.

More importantly, all these QCPs do not appear in
the Landau paradigm of order-disorder phase transitions
because the states on both sides of the QCPs and the
QCPs themselves all break the same symmetries spon-
taneously. All transitions considered below and in Ref.
[55] do not involve condensation of new bosonic quantum
fields or particles. It is exactly the global topology and
topological distinctions between different states that re-
sult in such a new class of QCPs. For this reason, we
refer them as topological QCPs.

To illustrate the possibility of a continuum quantum
field theory representation of topological quantum crit-
icality, we apply an adiabatic theorem to the situation
under our consideration. A gapped fermonic topologi-
cal state (allowed by global symmetries) can maintain its
topological distinction under small Hamiltonian defor-
mations if the gap remains open. So a change in global
topologies requires closing of a gap. The gap closing,
which is necessary for changes of global topologies, indi-
cates coalescing of gapped particles into the ground state
near topological QCPs.

The gap-closing phenomena in topological phase tran-
sitions have some unique features compared with those in
many conventional non-topological quantum phase tran-
sitions. In topological superconductors and fermonic su-
perfluids, elementary emergent particles are fermonic. In
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fact, they are real Majorana fermions due to the emergent
charge conjugation symmetry at U(1) symmetry breaking
QCPs. So generically, these topological quantum phase
transitions occur with coalescing of real fermions into the
ground state without condensation of new quantum fields
or spontaneously breaking additional symmetries. This
aspect is obviously fundamentally different from the Lan-
dau paradigm of order-disorder transitions. On the other
hand, the above observation does explicitly suggest an ef-
fective quantum (Majorana) field theory representation
for coalesce dynamics of gapped particles and therefore
topological quantum criticality.

Furthermore, different topologies of quantum phases
naturally require different quantum field theory represen-
tations and hence result in different universality classes.
For instance, a nodal point topology demands a very dif-
ferent quantum Lifshitz field theory than a nodal line
topology would demand in the bulk. Meanwhile, per-
haps the most remarkable consequence of the gap closing
in topological states is the proliferation of surface states
into the interior of topological matter. This is essential
in topological transitions so that a state can topologi-
cally reconstruct in the bulk and boundary simultane-
ously across a transition. Physically, these bulk transi-
tions are always accompanied or even heralded by surface
quantum criticality, a very distinct aspect of topological
quantum criticality. These two particular aspects, one
reflecting the bulk topology and the other more on its
consequences at boundaries, are both absent in other gap
closing phenomena in conventional non-topological sys-
tems as well as in the standard Landau paradigm. Ac-
tually these two aspects are what makes the topological
QCPs outstanding. Therefore, any appropriate quantum
field theory representation for topological QCPs have to
be in a class of quantum field theories with robust bound-
ary states reflecting a corresponding change of topologies
across the QCPs. This is indeed one of the guiding princi-
ples in our explicit constructions below, apart from more
standard symmetry considerations. The unique role of
changes of topologies in these transitions is therefore en-
coded in these quantum fields.

An alternative and more practical way to think about
these unique transitions is to compare them with what
happens in a non-topological s-wave superconductor
when one varies the same parameters. For instance, if one
increases the interaction strength from weak to strong,
there are no transitions in conventional s-wave supercon-
ductors, because the superconductor has the same type
of local order or break the same U(1) symmetry. This
is not the case in topological superconductors because
there can be a change of global topology when interac-
tions increase, even though states are the same locally
[55]. This results in a bulk transition (although with
relatively higher order), in addition to surface quantum
transitions. So the very existence of such transitions en-
tirely and crucially relies on the notion of global topology
of underlying superconductors and topological distinc-
tion of different states. In other words, global topologies

and their characterization add a new dimension to the
parameter space along which phase transitions can oc-
cur. This new dimension is beyond the standard Landau
paradigm.

Because of broken gauge symmetry, a generic transi-
tion from a gapped topological phase to nodal phases
in TSFs and TSCs can be characterized by an effective
QLMF, i.e., dynamics of real fermions. The emergence
of nodal structures in the low energy limit after transi-
tions generally requires different scaling properties along
different spatial-temporal directions near QCPs. This
suggests the relevance of extended quantum Lifshitz Ma-
jorana fields.

For transition to NPPs, the effective field theory con-
struction that takes into account the nodal point feature
suggests the following universality class that we name
QLMFA. In QLMF theories, the fundamental fields are
2N -component Majorana fields or real fermions defined
as

χ(x) = (χ1, χ2, ..., χ2N )T ,

χ†i (x) = χi(x),

{χi(x), χj(x)} = δ(x− x′)δij , i, j = 1, 2, ..., 2N. (1)

In terms of fundamental Majorana fields, QLMFA has
the following simple generic structure in d dimensions,

HA =
1

2

∫
ddxχT [Γ1(−∂2

x1
+m) +

d∑
α=2

Γαi∂xα ]χ+HI ,

{Γν ,Γρ} = δν,ρ, ν, ρ = 1, 2, ..., d,

Γ†1 = Γ1 = −ΓT1 , Γ†α = Γα = ΓTα , (2)

where Γα, α = 2, ..., d, are 2N × 2N real symmetric Her-
mitian matrices while Γ1 is a purely imaginary antisym-
metric Hermitian matrix. Γν , ν = 1, 2, ..., d, all anti-
commute with each other. These symmetries of the Γ
matrices are to preserve the charge conjugation symme-
try of Majorana fermions. In general if N ′ is the number
of bands involved, we should have N ′ ≥ N ≥ 1. Detailed
structures of Γ matrices will be shown in the following
sections for specific models. m is the mass term defining
the transition. At QCPs, we have m = 0.
HI is the interactions between Majorana fermions and

background dynamic fluctuations represented by real
scalar fields φγ , γ = 1, 2, ...Q. The coupling can be con-
veniently expressed as

HI = Hφ +Hφχ,

Hφ =
1

2

∫
ddx

∑
γ

[π2
γ + (∇φγ)2 +m2

φφ
2
γ ],

Hφχ =

∫
ddx

∑
i,j,γ

φγχig
γ
ijχj ,

gγij = −gγji, gγij
∗

= −gγij ,
[φγ(x), φζ(x

′)] = 0, [φγ(x), πζ(x
′)] = iδγζδ(x− x′).

(3)
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Here gγij are elements of Gγ , a set of purely imaginary
anti-symmetric tensors that couple Majorana fermion
field χi, i = 1, 2, ..., 2N , to the real field φγ , γ =
1, 2, ..., Q. πγ is the momentum field conjugate to φγ .

In the limit of massive scalar fields and 2N ≥ 4, HI in
the low energy limit can be further cast into an effective
form of four-fermion operators,

HI =

∫
ddx

∑
i,j,k,l

χiχjχkχlΠi,j,k,l + ...,

i, j, k, l = 1, 2, ..., 2N, (4)

where Πi,j,k,l is an antisymmetric tensor under the inter-
change of any pair of indices, e.g. Πi,j,k,l = −Πj,i,k,l =
−Πi,k,j,l = −Πi,j,l,k, etc. Only four-fermion interaction
terms, which are most relevant, are present here; other
less relevant terms are muted in the form of the ellipsis.
However, for 2N = 2 the four-fermion (local) operator
vanishes and minimal models must involve dynamic fields
φ.

In the same limit, the HamiltonianHA has an emergent
scale symmetry at a QCP if one introduces the following
scale transformation

t→ t′ = λ2t,

x1 → x′1 = λx1,

xα → x′α = λ2xα, α = 2, .., d, (5)

and the Majorana field transforms accordingly

χ(x)→ χ′(x′) = λ−ηAχ(x), (6)

with ηA = d− 1/2 for a free field theory QCP.
By the same token, we list the main properties of

QLMFB which can characterize the QCPs for transitions
into NLPs,

HB =
1

2

∫
ddxχT [Γ1(−∂2

x1
− ∂2

x2
+m) +

d∑
α=3

Γαi∂xα ]χ+HI

{Γν ,Γρ} = δνρ, ν, ρ = 1, 2, ..., d.

Γ†1 = Γ1 = −ΓT1 , Γ†α = Γα = ΓTα , α = 3, ..., d. (7)

The Hamiltonian is scale invariant at a QCP if one in-
troduces the following scale transformation

t→ t′ = λ2t,

x1,2 → x′1,2 = λx1,2,

xα → x′α = λ2xα, α = 3, ..., d, (8)

and the Majorana field transforms accordingly

χ(x)→ χ′(x′) = λ−ηBχ(x), (9)

with ηB = d− 1 for a free field theory QCP.
Finally, one can also have QLMFC which only involves

one antisymmetric Γ matrix,

HC =
1

2

∫
ddxχTΓ1(−∇2 +m)χ+HI

Γ†1 = Γ1 = −ΓT1 . (10)

The scaling property of QLMFC is identical to a non-
relativistic field theory with Galilean invariance. How-
ever it has an additional charge conjugation symmetry
of Majorana fermion and therefore always couple to an
antisymmetric purely imaginary Γ matrix. The Hamil-
tonian is scale invariant at a QCP if one introduces the
following scale transformation

t→ t′ = λ2t,

xα → x′α = λxα, α = 1, .., d, (11)

and the Majorana field transforms accordingly

χ(x)→ χ′(x′) = λ−ηcχ(x), (12)

with ηC = d/2 for a free theory QCP.
At last, the four-fermion interaction Π in Eq. (4) trans-

forms as

Π→ Π′ = λ2ηA,B,C−2Π. (13)

The above equation indicates that the upper critical
dimensions Du for interaction operator in which HI be-
comes a marginal operator is given by 2ηA,B,C = 2. So
for QLMFA, QLMAB and QLMFC, Du = 3/2, 2 and 2
respectively.

In contrast, Majorana fermions with Lorentz symme-
try naturally appear in quantum phase transitions be-
tween topological superfluids and non-topological super-
fluids with upper critical dimension Du = 1 [55]. The
QLMF classes with symmetries lower than the Lorentz
symmetry generally have higher upper critical dimen-
sions. Especially in the case of QLMFB and QLMFC
classes, the QCPs in 2D are strong coupling implying
conformal fields of Majorana fermions.

Before ending this part of the discussion, let us com-
ment on the subtle role of global symmetries on the con-
struction of our QLMF theories. As all the topologi-
cal transitions studied here occur in a U(1) symmetry
breaking state, QCPs here always have the charge conju-
gation symmetry C, which directly suggests a Majorana
representation. But parity symmetry P or time reversal
symmetry T is usually broken at QCPs, as transitions
happen only when external exchange fields that break
one or both of these two symmetries are applied. As
we are mainly interested in transitions to various nodal
phases that belong to symmetry protected topological
(SPT) phases [67–69], we have assumed that the addi-
tional global symmetries, beyond T or P symmetries, can
also be present in specific quantum matters to physically
protect those topological phases (see Sec. V). The effec-
tive field theories of quantum Lifshitz Majorana fermions
are introduced in this particular context if the phases
are protected by appropriate global symmetries and cor-
responding phase transitions do exist. So the number
of components of Majorana fermions involved or the di-
mension of Γ matrices further depend on the concrete
global symmetries needed to define specific stable nodal
phases. However, if the only global symmetry at transi-
tions, apart from the basic charge conjugation symmetry,
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is P or T and a nodal phase is indeed well protected by
one of these two symmetries, then QCPs shall only be
described by an effective QLMF model with a definitive
N .

For instance, if a nodal phase is fully protected by
P symmetry with T symmetry broken such as in some
NPPs, QCPs should be expected to possess P symmetry
only. The transition to such an NPP, if occurs, should
be described by QLMF models with N = 1 only. The
QCPs of N = 1 QLMFs represent stable gapless states
as long as P symmetry is present. In other words, QCPs
of N = 1 are protected by the global symmetry P.

In the same context where only P symmetry is present,
quantum critical states implied by QLMF models with
N ≥ 2 do exist but they are expected to be unstable
and their existence requires further fine tuning of multi-
ple relevant terms. In the presence of those relevant P
symmetric perturbations, we anticipate that QCPs with
N ≥ 2 collapse to the universality of N = 1 QLMFs and
this defines the universality classes of transitions with
both C and P symmetries but with T symmetry broken.
This aspect is equivalent to a general consensus that the
universality only depends on symmetries and is indepen-
dent of representations of a symmetry group. If the only
global symmetries are C and P, without other protecting
symmetries QLMF models with N ≥ 2 shall be better
considered as appropriate models for topological multi-
critical points rather than conventional QCPs.

The other possibility is that gapless states in N ≥ 2
QLMF models are fully gapped in the presence of relevant
perturbations; but this perhaps further implies the cor-
responding nodal phases no longer exist and there are no
transitions at all. In the rest of the discussion, however,
we will always assume the gapless nodal phases involved
are sufficiently protected by additional global symmetries
and so the transitions have to occur. The same global
symmetries should also be naturally present at QCPs to
be consistent. This is encoded implicitly in the dimen-
sion 2N ≥ 4, as well as the structure of anticommunting
Γ matrices. From this point of view, we will simply treat
QLMFs with general N , N ≥ 2 as different QCPs in the
presence of different topologically protecting symmetries
in quantum matters. We will come back to this issue
when discussing concrete models.

B. General Scaling Properties

The emergent QLMFs imply unique scaling properties
at the QCPs and determine the order of phase transi-
tions. For HA,B,C defined up to a ultra-violet (UV) en-
ergy scale Λ, the mass and temperature dependence of
the grand potential Ω can always be expressed as

Ω

V
= Λη0+1Ω̃(m̃, G̃; T̃ ), (14)

where V is the volume of the system, η0 takes the val-
ues of ηA,B,C for free fields of QLMFA, QLMFB, and

QLMFC, respectively. m̃ = m/Λ, T̃ = T/Λ, G̃ =
GΛη0−1 are the dimensionless mass, temperature, and
interaction tensor, respectively.

As the critical physics given by the infrared behav-
ior of the grand potential should not depend on the UV
scale of the effective theory, we can set either |m̃| = 1 or

T̃ = 1 leading to scaling properties. We further associate
a fixed point under the scale transformation to a QCP
by setting G̃ = G∗, independent of the UV scale Λ. Be-
low the upper critical dimension of QLMFs, a QCP is a
strong coupling fixed point with G∗ only dependent on
the spatial dimensionalities. While above the upper crit-
ical dimensions, the QCPs are described by free theories
with G∗ = 0. In either case, the above scaling argument
indicates that at T = 0 and near a QCP, the leading
non-analytical term of Ω is given by

ΩNA

V
= |m|η0+1Ω̃(sgn(m), G∗; 0). (15)

Note that Ω̃ is a constant of order of unity but may fur-
ther carry logarithmic dependence of |m| at upper critical
dimension. The scaling exponents η0+1 are universal and
independent of details of topological states involved.

For instance, for QCPs associated with the free theory
of QLMFA, η0 +1 = d+1/2; for 3D TSCs and TSFs, the
transition can be named as 7/2th order. For QLMFB,
η0 + 1 = d and in 3D these QCPs are of the third order.
For QLMFC, η0 + 1 = d/2 + 1 and in 3D QCPs coincide
with the well known 5/2th order Lifshitz transitions [70].

Although the above analyses on thermodynamics are
applicable to QCPs characterized by either free Majo-
rana fermions or strongly interacting conformal fields of
Majorana fermions, the dynamics such as transport phe-
nomena and hydrodynamics strongly depend on whether
the QCPs are strong coupling fixed points or not. For
this reason, the upper critical dimensions computed in
the previous subsection are important. We have shown
that the upper critical dimensions for different QLMFs
are

Du =

 3/2, QLMFA;
2, QLMFB;
2, QLMFC.

(16)

Below or at the upper critical dimensions, one should
expect an emergence of strong coupling Majorana fixed
points, which are an analogue of Wilson-Fisher fixed
point in the more conventional order-disorder phase tran-
sitions in the standard Landau paradigm [71].

At finite temperature and in the quantum critical
regime where T � |m|, thermal and other properties
are also dominated by these QCPs. For instance,

Ω

V
= T η0+1Ω̃(0, G∗; 1) + ... (17)

where, as one can easily see, the same set of indices ap-
pear in the thermal properties near QCPs. Ω discussed
above is a non-analytical function of m only at T = 0 as
a result of QCPs. For QLMFB and QLMFC in d = 2, the
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interactions are marginally relevant and further carry log-
arithmic singularity of m, which indicates (2+1)D con-
formal field theory fixed points. However, at any finite
temperature, Ω turns out to be a smooth function of m
signifying quantum criticality.

Finally, let us also contrast the discussions above with
transitions between topological and non-topological su-
perfluids. Those transitions are described by relativis-
tic Majorana fields with an emergent Lorentz symmetry.
The transition there is always of (d+ 1)th order and the
corresponding index η0 + 1 = d + 1 differs from all the
QCPs discussed here [55].

In the following sections, we will illustrate these emer-
gent QLMFs at a variety of QCPs in TSFs and TSCs
where nodal phases appear.

C. Surface Quantum Criticality

3D TSFs and TSCs support gapless helical states on
its surfaces. Opposite surfaces carry states with oppo-
site handedness that are well separated by the bulk and
are effectively decoupled. Topological surface states can
respond to TRB fields in dramatic ways by opening up
a gap at any finite field. When this happens, the sur-
face states can be thought as quantum critical with re-
spect to these TRB fields. Since the topological states
are robust against TRI fields, such surface quantum crit-
icality is unique to certain TRB fields, although not all
TRB fields result in gapped surface states immediately.
For those TRB fields which do lead to surface quantum
criticality near zero field and well before a possible bulk
phase transition, surface quantum criticality can also be
thought as a precursor to the later bulk transition.

The effective Hamiltonian for surface criticality can be
cast into a simple form of

Hsurf =
1

2

∫
ddxχT (sxi∂z − szi∂x +msy)χ+HSI,

HSI =
1

2

∫
ddx(π2 +∇φ · ∇φ+m2

φφ
2)

+ gY

∫
ddxφχT syχ,

(18)

where sα’s are Pauli matrices in spin space, χT = (χ1, χ2)
is a two-component Majorana field and HSI describes the
interactions between χ field and a real scalar field φ = φ†

in a Yukawa form. Note that because χ only has two
components, the four-fermion operator vanishes in the
case of surface Majorana fermions and χ can only interact
with dynamic field φ.

On the 2D surface when mφ is finite, there is only a
free field theory fixed point with gY = 0. The surface
criticality at T = 0 is given by the following cusp struc-
ture in the grand potential similar to the discussions on
QCPs in 2D,

ΩNA
surf

S
= |m|3Ω̃s(sgn(m), 0; 0) (19)

where S is the total surface area, Ω̃s(m̃, g̃Y ; T̃ ) is a gen-
eral function of dimensionless mass m̃, interaction con-
stant g̃Y , and T̃ . For surface criticality, we further have

Ω̃s(sgn(m), 0; 0) = Ω̃s(1, 0; 0), (20)

since the energy spectrum is symmetric for ±m.
Remarkably, following Eq. (19) where m represents

Zeeman fields, the non-analytical part of surface spin sus-
ceptibility is given by

χNA
M = −6|m|Ω̃(1, 0; 0), (21)

which is even in m but varies linearly as a function of
|m|. This is in contrast to the more conventional cases
where χM can usually be expanded as an even analytical

function of m as χM ∼ χ(0)
M + χ

(1)
M m2 + ....

At any finite T , the susceptibility is analytical and
scales as

χM ∼ T, (22)

as m approaches zero.
In the limit mφ → 0, there can be further emergent

supersymmetries in addition to scale symmetries. We do
not pursue this topic in the current article. For the exam-
ples of emergent supersymmetries in condensed matter
systems, we refer readers to Refs [72–77].

In the following sections, we will illustrate the realiza-
tion of these QCPs and universality classes in a few differ-
ent TSFs and TSCs. In the concrete models we examine
below, we intend to demonstrate explicitly the physical
parameters that one can vary to drive quantum transi-
tions leading to the emergence of QCPs described in the
general phenomenology. We will also further connect the
effective QLMFs to microscopic Majorana quasi-particles
in topological states and further explore the physical con-
sequences at both T = 0 and at finite temperature quan-
tum critical regimes.

Specifically, we will identify: (1) a few relevant fields
that can lead to potential observation of QLMF physics
in TSFs/TSCs; (2) detailed structures of anti-commuting
Γ matrices, which effectively define QLMF in concrete
topological states, and the corresponding projection op-
erators that lead to the effective field theory description
near QCPs.

In particular, we discuss three physical models where
QLMFs can potentially emerge: (1) topological p-wave
superfluids in both 3D and 2D in Sec. III. (2) topological
odd-parity pairing states in Dirac semimetals in Sec. V.
(3) Fu-Berg model for CuxBi2Se3 in Sec. VI.

III. TOPOLOGICAL QCPs IN p-WAVE
SUPERFLUID MODEL AT ZERO

TEMPERATURE

A. The model

The simplest one-band model that supports fully
gapped topological states is perhaps the 2D p+ ip super-
fluids of spinless fermions. However, without breaking
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charge conjugation symmetry the only phase transition
in this model happens between two fully gapped phases.
The phase transition is driven by chemical potential or
interactions, and the effective Hamiltonian near the crit-
ical point is Lorentz invariant [55].

A minimal model that hosts QLMF QCPs is topolog-
ical p-wave superfluids involving two bands labeled by
spin indices. Let us define Majorana operators

χ+,s(r) =
1√
2

(
cs(r) + c†s(r)

)
,

χ−,s(r) =
1

i
√

2

(
cs(r)− c†s(r)

)
, (23)

where s =↑, ↓ is the spin index, cs and c†s are conven-
tional complex fermionic operators. In analogy to Nambu
spinors, we define

χk = (χ+,↑(k), χ+,↓(k), χ−,↑(k), χ−,↓(k))T . (24)

Notice in the momentum space, the anticommutation re-
lation of Majorana fermions becomes

{χi(k), χj(k
′)} = δ(k + k′)δij , with χ†k = χT−k. (25)

We start with a TRI p-wave superfluid with order pa-
rameter ∆p(k) = vs · k(isy). Here we fix the gauge such
that v > 0. This choice of order parameter corresponds
to a superfluid phase with isotropic gap. In Majorana
representation, the Hamiltonian can be written as

H =
1

2

∑
k

χT−kH(k)χk +HI , (26)

where

H(k) = v(−τz⊗szkx+τx⊗Iky+τz⊗sxkz)−τy⊗I(εk−µ).
(27)

Here εk = k2/2, µ is the chemical potential, τα’s are Pauli
matrices in the χ+, χ− Majorana space, sα’s are Pauli
matrices in spin space, I is the 2× 2 identity matrix. As
a result of charge conjugation symmetry, all terms of odd
powers of k are coupled to real matrices and all terms of
even odd of k are coupled to purely imaginary matrices
in H(k). All interactions are included in HI , and they
are irrelevant operators for the transitions and muted for
most discussions in 3D.

It is well-known that topological phase transitions hap-
pen at µ = 0 between a fully gapped topological phase
with µ > 0 and a non-topological phases with µ < 0 [11].
The topological phase is protected by TRS with robust
gapless helical states on the surface. In our previous work
(see Ref. [55]), we have identified that these transitions
are described by a Lorentz invariant free Majorana field
theory near the critical point.

If the symmetry allows other mass fields such as s-
wave pairing or spin exchange, it is possible to have other
phases with different topology. Let us classify all possi-
ble mass fields by charge conjugation symmetry C, time-
reversal symmetry T , and parity symmetry P. Under
these symmetries, the Hamiltonian transforms as

T H(k)T −1 = H(−k), T 2 = −1, (28)

CH(k)C−1 = −H(−k), C2 = 1, (29)

PH(k)P−1 = H(−k), P2 = 1. (30)

In the Majorana representation, we have T = τz⊗(isy)K
and C = K, with K being complex conjugate operator.
For the p-wave superfluid model, we have P = τy.

For Majorana fermions, all mass fields must be purely
imaginary and antisymmetric to preserve charge conjuga-
tion symmetry. In total, there are six possible mass fields.
Among them τy ⊗ I has been associated with chemical
potential. This leaves us with five other fields that can
be attributed to two different types of physics: (1) s-
wave pairing τz ⊗ sy and τx ⊗ sy; (2) Zeeman field term
−S · B which can be written in Cartesian components:
τy ⊗ sxBx, −I ⊗ syBy, and τy ⊗ szBz, with S defined as

S = (−τy ⊗ sx, I ⊗ sy,−τy ⊗ sz). (31)

The additional s-wave pairings will lead to transitions
or crossovers to fully gapped non-topological supercon-
ducting states. These transitions or crossovers are not
described by QMLFs. For this reason, we only include
them in Appendix A. In contrast, Zeeman fields will lead
to NPPs and QCPs belonging to QLMFA universality
class. These NPPs are protected by parity symmetry
P. In the following, we will discuss the effect of Zeeman
fields in details.

B. Phase diagram and phase transitions due to
Zeeman field at T = 0

Being charge neutral, Majorana fields do not directly
couple to gauge potential of magnetic fields like electrons
do. But they can couple to Zeeman fields through spin.
These Zeeman fields can be either external fields or due
to internal spin exchange. The presence of Zeeman fields
in superfluids has two major effects. First, TRS is bro-
ken. Therefore, we would expect changes in topology
even when the field is weak. A direct consequence of this
is the response of surface modes, which will be discussed
in Sec. III E. Second, Zeeman field defines a preferred di-
rection for spins, which breaks the isotropy of the spec-
trum. This anisotropy eventually leads to NPPs when
the Zeeman field is strong enough.

We first obtain the phase diagram by examining the
bulk spectrum in the presence of Zeeman fields. For a
Zeeman field B along an arbitrary direction, the Zeeman
Hamiltonian is

HZM = −1

2

∑
k

χT−k(S ·B)χk, (32)

which leads to an anisotropic spectrum

E
(±)
k =

√
v2k2
⊥ + (

√
v2k2
‖ + (εk − µ)2 ±B)2. (33)
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Here, k‖ (k⊥) is the momentum parallel (perpendicular)
to B, and B = |B|. The Zeeman field lifts the spin
degeneracy, resulting in two non-degenerate energy bands
labeled by the superscript. The bulk gap closes at point

nodes in the lower bands ±E(−)
k at k⊥ = 0 and v2k2

‖ +

(k2
‖/2− µ)2 = B2.

The number of point nodes in the spectrum depends on
the ratio v2/µ (Fig. 1). In the p-wave superfluid model,
v is proportional to the pairing amplitude ∆p(k), which
further depends on coupling strength between fermions.
Therefore, we need to consider strong (v2 > µ) and weak
(v2 < µ) couplings separately.

(1) On the weak coupling side v2 < µ, the chemical
potential is always positive. The TRI p-wave superfluid
is topological in the absence of Zeeman field. For given
µ, the bulk spectrum suggests two transitions as B in-
creases. The first one happens at Bc =

√
µ2 − (µ− v2)2

between a gapped phase and a NPP. At transition B =
Bc, the bulk gap closes at the two minima of the lower
band at k⊥ = 0, k‖ = ±

√
2(µ− v2). For weak field

B < Bc, the bulk is fully gapped. For intermediate field
Bc < B < µ, the bulk is gapless with four point nodes at

k⊥ = 0, k‖ = ±
√

2[(µ− v2)±
√

(v2 − µ)2 + (B2 − µ2)].

As the Zeeman field increases further, a second transi-
tion happens at B = µ between two NPPs with dif-
ferent numbers of point nodes. During this transition,
the two point nodes in the middle merge into one at
k = 0 at the transition and then annihilate each other.
The other two point nodes persist. For strong field
B > µ, the bulk has only two point nodes at k⊥ = 0,

k‖ = ±
√

2[(µ− v2) +
√

(v2 − µ)2 + (B2 − µ2)].

The topological quantum phase transitions between
gapped phase and NPP in the weak coupling limit are
driven by the deformation of Fermi surface and appear
to fall outside of the effective field theories listed in Sec.
III B. For this reason, we only discuss these transitions
in Appendix B.

(2) On the strong coupling side v2 > µ, µ can be
either positive or negative. For given µ, as B in-
creases there is only one phase transition between a
gapped phase and a NPP at B = |µ|. For B > |µ|,
the bulk is gapless with two point nodes at k⊥ = 0,

k‖ = ±
√

2[(µ− v2) +
√

(v2 − µ)2 + (B2 − µ2)]. The

same NPP exists for both positive and negative µ. For
B < |µ|, the bulk is fully gapped. Note that the TRI
topological state with B = 0 can be smoothly connected
to the gapped states with µ > B > 0. In the following,
we focus on the phase transitions on the strong coupling
side and µ > 0.

We illustrate the bulk spectra and phase diagrams for
both strong and weak coupling cases in Fig. 1.

The NPPs induced by Zeeman field are protected by
parity symmmetry P = τy.

C. Effective field theory for QLMFA transitions

For the purpose of studying phase transitions, we can
use a low energy effective field theory. The effective field
theory construction relies on the separation between low
energy and high energy degrees of freedom. This ap-
proach focuses entirely on the low energy degrees of free-
dom after high energy components are integrated out.
Therefore, the correct effective field theory should in-
clude various important renormalization effects due to
couplings between high energy and low energy degrees of
freedom.

In the following, we construct the effective field theory
explicitly for µ > 0 in the strong coupling limit and show
that it belongs to the QLMFA universality class.

Without loss of generality, we choose Zeeman field to
be along y-direction. Topological phase transition hap-
pens at By = µ > 0. In the strong coupling limit v2 � µ,
we can construct the low energy effective field theory by
first projecting the Hamiltonian onto the low energy sub-
space using projection operator

P = P τy,+P
s
y,+ + P τy,−P

s
y,−, (34)

where

P τα,± =
I ± τα

2
, P sα,± =

I ± sα
2

. (35)

Near phase transition, the projected Hamiltonian can be
written as

Hproj(k) = Γy

(
µ−By − εk

)
+ Γxvkx + Γzvkz, (36)

where

Γx = P (−τz ⊗ sz)P, Γz = P (τz ⊗ sx)P,

Γy = P (I ⊗ sy)P. (37)

The projected Hamiltonian is incomplete for the effective
field theory as we also need to include the renormaliza-
tion effect due to the couplings between high energy and
low energy degrees of freedom. After integrating out the
high energy degrees of freedom, the leading order effect
of these couplings can be written as

H(2)(k) =
v2

2µ
k2
yΓy (38)

Combining Hproj(k) and H(2)(k) and keeping the leading
order term of each momentum component, we find the
effective Hamiltonian

Heff =
1

2

∑
k

χT−k

[
Γy

(
µ−By +

v2 − µ
2µ

k2
y

)
+ Γxvkx + Γzvkz

]
χk, (39)
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k//

Ek(d)

B<Bc B=Bc Bc<B<μ B=μ B>μ

(c)

B=|μ| B>|μ|B<|μ|

Ek

k//

(b)

By

μ

Gapped

NPP2NPP2

NPP4NPP4

μ(a)

By
NPP2NPP2

Gapped

Gapped

Figure 1. Phase diagrams and bulk spectra of 3D p-wave superfluids in Zeeman fields. (a) Phase diagram on the strong coupling
side v2 > µ. Without loss of generality, we choose Zeeman field to be along y-direction B = Byŷ and B = |B|. Superfluids are
gapped in the shaded area B < |µ| and gapless with two point nodes in the unshaded area. In the nodal point phase (NPP),
the number of point nodes are indicated by the superscript. (b) Phase diagram on the weak coupling side v2 < µ, µ > 0.
Superfluids are gapped in the shaded area B < Bc and gapless with point nodes in unshaded area. The dashed lines at µ = |B|
represent the transitions between two different NPPs: NPP with four point nodes (NPP4) for Bc < B < µ and NPP with two
point nodes (NPP2) for B > µ. (c) Bulk spectrum on the strong coupling side v2 > µ. (d) Bulk spectrum on the weak coupling

side v2 < µ. We set k⊥ = 0 and only plot the lower energy bands ±E(−)
k in both (c) and (d). The higher energy bands ±E(+)

k

are always gapped (see text).

where we have dropped the irrelevant interactions. This
effective Hamiltonian belongs to the universality class of
QLMFA. One can recover the phenomenologically con-
structed Hamiltonian (2) by identifying m = 2µ(µ −
By)/(v2 − µ) and absorbing the coefficients in front of
kα into Γα.

In the strong coupling limit, this low energy effective

Hamiltonian is valid for E
(−)
k � µ.

D. Order of phase transitions

The order of these phase transitions can be computed
directly from the zero temperature grand potential

Ω0 = −1

2

∑
k,i

E
(i)
k , (40)

where i labels quantum numbers such as spin, orbit, etc.
In the strong coupling limit, the energy spectrum of the
effective Hamiltonian is

Eeff
k =

√
v2(k2

x + k2
z) +

[
(µ−By) +

v2 − µ
2µ

k2
y

]2
. (41)

Near phase transitions, the grand potential at T = 0 is
non-analytical with leading non-analytical term

ΩNA
0

V
=

8

105π2v2
|B − µ|7/2

√
2µ

v2 − µ
θ(B − µ), (42)

where θ(·) is the step function. Therefore, the phase
transitions can be named as 7/2th order, which agrees

with the result we obtained using scaling analyses in Sec.
II.

E. Surface states in Zeeman fields

To illustrate the change of topology, we study how
surface modes respond to Zeeman fields. We use a cu-
bic geometry such that the superfluids fill in the space
x0 < x < 0, y0 < y < 0, z0 < z < 0. It is vacuum in
the rest of the space, which can be modeled by setting
chemical potential as µ → −∞. We focus on the strong
coupling side v2 > µ.

1. Weak Zeeman fields

We first examine the surface states in the gapped phase
B < µ, µ > 0. Let us first consider the surface at y = 0.
Without Zeeman field, there exist gapless helical surface
states,

φy1 = N
(

1
0

)
τ

⊗
(

sin(θy/2)
cos(θy/2)

)
s

e
1
v

∫ y
0
µdyeik⊥·r, (43)

φy2 = N
(

1
0

)
τ

⊗
(

cos(θy/2)
− sin(θy/2)

)
s

e
1
v

∫ y
0
µdyeik⊥·r, (44)

where cot θy = kx/kz and N is a normalization factor.
The surface Hamiltonian is gapless

H
(B=0)
surf =

1

2

∑
k

ψT−k,y(−vkxsz + vkzsx)ψk,y, (45)
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where ψk,y = P τz,+χk is the Majorana operator on this
surface.

In the presence of Zeeman field, it is convenient to
define an effective chemical potential at k = 0,

µ
(±)
eff (k = 0) = µ±B, (46)

where the superscript ± corresponds to the two energy
bands E(±)(k). In the fully gapped phase where 0 <

B < µ, µ
(±)
eff (k = 0) is positive for both bands. Thus,

both bands can support surface states.
However, the surface states can be gapped by the Zee-

man field due to broken TRS. For weak Zeeman field B
along an arbitrary direction, the surface Hamiltonian for
y = 0 becomes

Hsurf =
1

2

∑
k

ψT−k,y(−vkxsz + vkzsx −Bysy)ψk,y, (47)

up to linear order of B. In this linear approximation,
the surface modes are gapped by Zeeman field perpen-
dicular to this surface but not the field parallel to it.
Conversely, surfaces perpendicular to the Zeeman field
become gapped; while the helical Majorana modes on
surfaces parallel to the field remain gapless in this ap-
proximation (Fig. 2). This result agrees with the dis-
cussions on superfluid 3He-B in weak magnetic fields in
Refs. [78, 79].

2. Strong Zeeman fields

Next, we examine the surface states in the NPP with
strong Zeeman field B > |µ|. Note that in NPP, µ can
be either positive or negative. Without loss of generality,
let us consider Zeeman fields along y-direction.

In the NPP, we have a gapped band E(+) and a nodal

band E(−). The effective chemical potential µ
(+)
eff (k = 0)

for the gapped band is still positive. Therefore, the
gapped band can still support surface states. For the
nodal band, we can define a generalized momentum-

dependent effective chemical potential µ
(−)
eff (ky). This

effective chemical potential changes sign in momentum
space. Let us label the point nodes as (0,±k0, 0), k0 > 0.

The effective chemical potential µ
(−)
eff (ky) is positive (neg-

ative) for |ky| > k0 (|ky| < k0).

The sign of µ
(−)
eff (ky) can be argued using the effec-

tive Hamiltonian (39). For any given ky, the effective
Hamiltonian (39) describes a 2D chiral superfluid in the
xz-plane with Hamiltonian Heff

ky
(kx, kz) = Heff(k) and ef-

fective chemical potential µ
(−)
eff (ky). Near transition and

near point nodes, we have

µ
(−)
eff (ky) ≈ µ−By +

v2

2µ
k2
y. (48)

Here, we have taken the strong coupling limit v2 � µ.
In the same limit, we also have

k2
0 ≈ 2µ(By − µ)/v2. (49)

Therefore, µ
(−)
eff (ky) is positive (negative) if k2

y > k2
0 (k2

y <

k2
0) near the point nodes. Away from these nodes, the

band gap of the effective 2D Hamiltonian Heff
ky

(kx, kz) is

given by µ
(−)
eff (ky). Since the band gap only closes at

k2
y = k2

0, the sign of µ
(−)
eff (ky) does not change except at

ky = ±k0. The sign change at ky = ±k0 suggests domain

wall structures of µ
(−)
eff (ky) in momentum space.

It is well-known that domain wall structures of µ in
real space signal a change of topology across the sur-

face. Similarly, the domain wall structures of µ
(−)
eff (ky)

in the momentum space signal a change of topology in
the momentum space across a surface perpendicular to
ky and containing the point nodes. If one only focuses on

the nodal band E(−), the change of topology in the mo-
mentum space would give rise to Fermi arcs for k2

y > k2
0.

However, to obtain the complete surface states, one needs
to also take into account the gapped band E(+).

We can solve the gapless surface states explicitly. Let
us take the surface at z = 0 as an example. For |ky| < k0,
only the gapped band can support gapless surface modes

φz+ = N (0, 1,−1, 0)T e
1
v

∫ z
0

(µ+B)dzeikxx. (50)

The surface Hamiltonian is gapless

Hz
surf =

1

2

∑
k

ψT−k,z(vkx)ψk,z, (51)

where the surface Majorana operator is given by ψk,z =

(χ+,↓(k)− χ−,↑(k))/
√

2.
For |ky| > k0, both bands can support surface modes,

and we need to take into account the hybridization of
these modes. First, let us consider the zero energy surface
modes associated with each band without hybridization.
The surface states associated with the gapped band is
still given by Eq. (50). The surface states associated
with the nodal band is

φz− = N (1, 0, 0,−1)T e
1
v

∫ z
0
µ
(−)
eff (ky)dze−ikxx, |ky| > k0.

(52)
Notice that φz+ and φz− have finite coupling for any |ky| >
k0,

〈φz+|H(k)|φz−〉 ∼ −vky +O(k2
y). (53)

This coupling results in the hybridization of these two
states, and the resultant surface states have finite energy
for |ky| > k0.

Therefore, gapless surface modes only exist between
the two point nodes, i.e., at |ky| < k0. In the momentum
space, the zero energy states form a Fermi arc between
the point nodes. In the real space, the gapless surface
states are manifested as chiral Majorana modes on sur-
faces parallel to the Zeeman field. Zeeman field and these
gapless chiral surface modes on parallel surfaces form a
right-hand grip. The surfaces perpendicular to the Zee-
man field remain gapped (Fig. 2).
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(b)(a)

Figure 2. Surface states of 3D p-wave superfluids in Zee-
man field B. Without loss of generality, we choose B to be
along y-direction. (a) For B < µ, µ > 0. The bulk is fully
gapped. Surfaces perpendicular to the Zeeman field (shaded)
are gapped. Under an approximation up to linear order of
B, helical modes on surfaces parallel to the Zeeman field re-
main gapless. (b) For B > |µ|. The bulk is in the nodal
point phase. Surfaces perpendicular to Zeeman field remain
gapped. Surfaces parallel to Zeeman field have gapless chiral
surface states. The chiral surface modes and the Zeeman field
form a right-hand grip.

F. Topological phase transitions on the surface

The surface Hamiltonian is critical at B⊥ = 0, where
B⊥ is the Zeeman field perpendicular to the surface [see
e.g. Eq. (47)]. On either side of the surface critical
point, the surface states are gapped with broken TRS
(Fig. 3). Therefore, one can define a Chern number as
the topological invariant for the gapped surface Hamil-
tonian. Topological phase transitions between these two
gapped phases with different Chern numbers take place
on surfaces as Zeeman field perpendicular to the surface
sweeps across zero. Across these transitions, the order
parameter does not change but Chern number changes
by one. These transitions belong to the universality class
of Lorentz invariant free Majorana fermions in 2D.

The grand potential for the surface states at T = 0 is

Ω0,s

S
= −1

2

∫
d2k

(2π)2

√
v2k2 +B2

⊥

=
|B⊥|3

12πv2
+ analytical terms.

(54)

Thus, the surface topological phase transitions are of the
3rd order.

As a result, the surface spin susceptibility has a non-
analytical part

χNA
M = − |B⊥|

2πv2
, (55)

which varies linearly in |B⊥|. The overall susceptibility is
an even function of B⊥ with additional analytical terms,

χM = χ
(0)
M + χNA

M + χ
(1)
M B2

⊥ + ..., (56)

where χ
(0)
M , χ

(1)
M , ... are non-universal and depend on the

microscopic properties of the superfluids.

k

Ek

B⟂ > 0

k

Ek

B⟂ < 0

Ek

k

B⟂ = 0

Figure 3. Surface spectrum in the presence of perpendicular
Zeeman field B⊥. Topological phase transitions happen on
the surface between two gapped phases when B⊥ crosses zero.
Chern number changes by one across these transitions.

G. p-wave superfluids in 2D

Similar QLMFA QCPs also exist in 2D p-wave super-
fluids. The QCPs are still described by free theory, since
the upper critical dimension for QLMFA is Du = 3/2.

By setting kz = 0 in Eq. (27), we obtain the Hamilto-
nian for 2D TRI p-wave superfluids in the xy-plane. In
this case, fermions with sz = +1 and sz = −1 are paired
in px − ipy and px + ipy channels, respectively.

In 2D, Zeeman fields parallel and perpendicular to the
superfluid plane have different effects.

1. In-plane Zeeman fields

Zeeman field parallel to the superfluid plane (in-plane
Zeeman field) can drive transitions to NPPs. In the
strong coupling limit, these transitions belong to QLMFA
class. In this case, the effective Hamiltonian is given by
Eq (39) with kz = 0. We find, at T = 0, the leading
non-analytical term in the grand potential to be

ΩNA
2D

S
=

2

15πv
|B − µ|5/2

√
2µ

v2 − µ
, (57)

which suggests a 5/2th order transition.

Edge states respond to in-plane Zeeman fields simi-
larly to the 3D case: they are gapped by the Zeeman
fields perpendicular to the edge. The edge Hamiltonians
are critical when the Zeeman field perpendicular to the
edge is zero. Topological phase transitions happen on the
edges when the Zeeman field perpendicular to it is tuned
across zero. Let us take Zeeman field along y-direction
as an example to illustrate the edge states (Fig. 4). For
µ > 0, |By| < µ, the edges perpendicular to the Zeeman
field are gapped. Under the same linear approximation
used for Eq. (47), the edges parallel to Zeeman field have
gapless counter-propagating Majarona edge modes with
opposite spins. For |By| > |µ|, the edges perpendicular
to Zeeman field remain gapped, while each edge parallel
to the Zeeman field has a zero-energy flat band.
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Figure 4. Edge states of 2D p-wave superfluids in the presence
of Zeeman field B, B = |B|. (a) Zeeman field parallel to the
superfluid plane (in-plane Zeeman field). For B < µ, µ > 0,
edges perpendicular to the Zeeman field (shaded) are gapped.
Under an approximation up to linear order of B, edges par-
allel to the Zeeman field support counter-propagating gapless
edge modes with opposite spins. For B > |µ|, edges perpen-
dicular to the Zeeman field remain gapped. Edges parallel to
the Zeeman field support zero-energy flatband states. (b) Zee-
man field perpendicular to the superfluid plane (out-of-plane
Zeeman field). For B < µ, µ > 0, there are gapless helical
edge modes on all edges. For B > |µ|, there is only one gap-
less chiral edge mode with spin along the Zeeman field. The
chiral edge mode and the Zeeman field form a right-hand grip.

2. Out-of-plane Zeeman fields

In contrast, Zeeman field perpendicular to the super-
fluid plane (i.e., along z-direction) does not lead to nodal
phases. The bulk spectrum

E
(±)
k,z =

√
v2(k2

x + k2
y) + (εk − µ±Bz)2 (58)

is always gapped except at transitions Bz = ±µ when
gap closes at k = 0.

For µ > 0 and |Bz| < µ, despite the broken TRS, the
helical edge modes are still present. This gapped phase
can be smoothly connected to the 2D TRI topological
superfluids at B = 0. For |Bz| > |µ|, there exists only
one chiral edge mode with spin along Bz, which forms a
right-hand grip with the Zeeman field. This phase can be
smoothly connected to the chiral superfluids in 2D (Fig.
4).

IV. TOPOLOGICAL QUANTUM CRITICALITY

In this section, we will discuss the properties of 3D
TSFs/TSCs near the topological QCPs at finite temper-
ature. These discussions not only apply to p-wave super-
fluids discussed in Sec. III, but also to the TSC models
in the following sections.

A. Finite temperature

First, we show that the transitions in the bulk and on
the surface discussed in this article only exist at T = 0.

As shown in Sec. II, all classes of QLMF QCPs in 3D,
as well as the surface QCPs, are described by free field
theories. Therefore, we can compute the grand poten-
tial near QCPs using simple thermodynamic relations for
non-interacting systems. The grand potential Ω can be
split into two parts Ω = Ω0 + F , where Ω0 is the zero
temperature grand potential and F is the thermal free
energy. Utilizing standard thermodynamic relations for
fermions, we have

Ω = −T
∑
k,i

[
ln
(

1 + e−βE
(i)
k

)
+
βE

(i)
k

2

]
, (59)

where β = 1/T .
For the purpose of understanding QCPs, only the in-

frared behavior of Ω is relevant. We can expand the

grand potential into a power series of βE
(i)
k as

Ω = T
∑
k,i

∞∑
l=1

[(
βE

(i)
k

)2l

Li1−2l(−1)

]
, (60)

with Lil(·) being the polylogarithm function. Notice that

this expansion only contains even powers of E
(i)
k . Since

(E
(i)
k )2 is an analytical function of m for all the transi-

tions we are interested in, Ω is also an analytical function
of m at any finite temperature. Therefore, all transitions
discussed in this article, which are described by either
QLMFs or Lorentz invariant Majorana fields, only exist
at zero temperature.

The QCP divides the phase diagram into three
smoothly connected regions with qualitatively different
behaviors (Fig. 5). In the quantum critical regime
T � |m|, the temperature scaling of thermodynamic
quantities in the superfluids is universal and dictated by
the QCP (see also Sec. II). The scaling exponents are
unique to each universality class. These scaling behav-
iors can be used to probe the QCPs at zero temperature.
Outside the quantum critical regime where T � |m|, the
low temperature properties of the superfluids are similar
to the zero temperature states on either side of the QCP.

B. Surface quantum criticality

Let us now focus on the surface quantum criticality
induced by Zeeman or spin exchange fields. In this case,
m = B⊥ and the QCP is at B⊥ = 0. The surface
spectrum is fully gapped except at QCP. We compare
the spin susceptibility inside the quantum critical regime
T � |B⊥| and outside the regime T � |B⊥|.

Inside the quantum critical regime where T � |B⊥|,
the temperature is much higher than the excitation gap;
thermal excitations exhibit universal properties. Thus,
susceptibilities should have universal dependence on T .
The surface spin susceptibility is analytical in the quan-
tum critical regime and scales linearly in T in the leading
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T

mQCP m=0

Quantum Critical 

T ≫|m|

T ≪|m|T ≪|m|

Gapped Nodal

Figure 5. Finite temperature phase diagram. Topological
phase transitions discussed in this article only exist at zero
temperature at m = 0. T = 0 and m = 0 corresponds to a
quantum critical point (QCP). In the quantum critical regime
where T � |m|, the temperature scaling of thermodynamic
quantities in superfluids and superconductors are universal
and dictated by the QCP. Outside the universal quantum
critical regime where T � |m|, the states have similar prop-
erties to the zero temperature phases. For QLMF QCPs,
the zero temperature phases are gapped (nodal) for m > 0
(m < 0). For surface QCPs, we have m = B⊥ and the QCP
is at B⊥ = 0. B⊥ is the Zeeman field perpendicular to the sur-
face. The zero temperature phases on the surface are gapped
on both sides of the QCP.

order

χM ∼ T. (61)

Outside the quantum critical regime where T � |B⊥|,
the excitation gap is much higher than the temperature.
Therefore, all thermal excitations are suppressed expo-
nentially, and the thermal free energy F is exponentially
small. The total grand potential is mainly given by the
zero temperature contribution Ω ≈ Ω0. Therefore, when
|B⊥| � T , surface spin susceptibility has similarly scal-
ing as the zero temperature case. But different from
T = 0 case, the surface susceptibility is always analytical
at finite T .

Finally, we would like to emphasize that all the dis-
cussions on finite temperature properties near QCPs are
not only applicable to the p-wave superfluid model in Sec.
III, but also to the TSC models in the following sections.
These properties are universal and robust.

V. TSC OF DIRAC FERMIONS

In the p-wave superfluid model discussed in Sec. III,
only QLMFA QCPs exist between gapped phase and
NPP. More degrees of freedom (e.g., different orbitals)
need to be introduced to realize all three classes of QLMF
QCPs in a given model. In this section, we discuss a TSC

model of Dirac fermions with four bands labeled by spin
and orbital degrees of freedom. In this model, all three
classes of QLMF QCPs exist. In the next section, we will
show that similar physics also exist in the TSC model of
CuxBi2Se3.

Topological classifications of NPPs, NLPs and NSPs
can be found in Refs. [36–38], and we refer readers to
these references for general discussions. Generally speak-
ing, the topological stability of these nodal phases in
TSFs/TSCs further depends on additional global sym-
metries. We will discuss the symmetries that protect
these nodal phases in concrete examples below.

In our discussions of QCPs, we assume the nodal
phases are either protected by global symmetries and
topology, or due to the absence of other gapping cou-
plings in materials as a result of specific energetic non-
topological reasons. We focus on the dynamics of QCPs
between gapped TSCs and nodal phases assuming these
phases are present and phase transitions do exist. The
particular transitions we describe below offer concrete
realizations of different QCPs in TSCs and detailed en-
ergetics of how to drive the corresponding transitions in
terms of generalized mass fields.

Before considering pairing fields, we first introduce a
low energy effective Hamiltonian for Dirac semimetals
[42, 80] with two orbitals

H0 =
∑
k

C†kH0(k)Ck, (62)

where Ck = (c1,↑,k, c1,↓,k, c2,↑,k, c2,↓,k)T , 1 and 2 are or-
bital indices, and

H0(k) = vσz ⊗ (sxkx + syky + szkz). (63)

Here, σα’s are Pauli matrices in orbital space. Let us
rewrite the Hamiltonian in the Majorana representation.
We define

χk =

(
χ1,k

χ2,k

)
, (64)

where

χj,k = (χj,+,↑(k), χj,+,↓(k), χj,−,↑(k), χj,−,↓(k))T ,(65)

and j = 1, 2. Then the Hamiltonian of the Dirac
semimetal becomes

H0 =
1

2

∑
k

χT−kHM0 (k)χk, (66)

where

HM0 (k) = vσz ⊗ (I ⊗ sxkx − τy ⊗ syky + I ⊗ szkz). (67)

TSCs can be generated by introducing an odd-parity
TRI intraorbital spin singlet pairing

H∆ = σz ⊗ τx ⊗ sy∆. (68)
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For convenience, we choose ∆ > 0. The Hamiltonian of
Dirac TSCs is

H =
1

2

∑
k

χT−kH(k)χk +HI ,

H(k) = HM0 (k) +H∆. (69)

The interactions represented by HI are irrelevant oper-
ators in 3D. Therefore, they are muted in the following
discussions of QCPs.

The Hamiltonian is invariant under parity P = σx ⊗
τy. The bulk spectrum is fully gapped and isotropic.
This topological phase is protected by TRS. Only TRB
or sufficiently large TRI mass fields that commute with
H∆ can drive quantum phase transitions.

A. Quantum criticality in the bulk

This TSC model of Dirac fermions can host all three
classes of QLMF QCPs and all three types of nodal su-
perconducting phases. In the following, we show explic-
itly which mass fields will lead to these nodal phases and
corresponding QCPs.

We first consider phase transitions driven by U(1) in-
variant non-pairing mass fields. In this case, the order
parameter does not change across the transitions. It is
worth noting that weak magnetic fields cannot penetrate
into the bulk of superconductors due to Meissner effect
[81]. Our discussions below mainly apply to the effects
of various internal spin-exchange fields J. We find that
both NPPs and NLPs exist as a result of spin exchange
fields. In particular, NPPs only exist if TRS is broken;
while NLPs only exist if TRS is preserved (see Tables I
and II).

To realize NSP in this model, it is necessary to intro-
duce additional pairing fields that also break U(1) gauge
symmetry. In fact, introducing additional pairing fields
can lead to both NSPs and NPPs when TRS is broken
(see Table III).

In addition to nodal phases, additional mass fields
(pairing or non-pairing) can also lead to phase transi-
tions to different gapped phases when these mass fields
are large enough (see Table IV). For example, the TRI
even-parity intraorbital spin singlet pairing I⊗ τx⊗sy∆′

drives a transition to a non-topological superconduct-
ing phase when ∆′ > ∆. The TRI interorbital hopping
σx⊗τy⊗It drives a transitions to a topological insulating
phase when t > ∆.

Following the arguments in Sec. IV, we find that all the
phase transitions discussed in this section only exist at
zero temperature and corresponds to topological QCPs.

For other mass fields allowed by charge conjugation
symmetry but not listed in the Tables, the supercon-
ducting gap remains open regardless of the magnitude of
these fields. Thus, these mass fields do not lead to phase
transitions, and we will not discuss them in details.

1. QLMFA and NPPs.

TRB intraorbital spin exchange fields can lead to
NPPs. We list them in Table I. The bulk spectrum near
phase transitions in the presence of these fields becomes

Ek =

√
v2k2
⊥ + (

√
v2k2
‖ + ∆2 ± J)2, (70)

which has two point nodes at k⊥ = 0 and k‖ =

±
√
J2 −∆2/v when J > ∆. k‖ (k⊥) is the momentum

parallel (perpendicular) to the spin exchange field J, and
J = |J|.

The NPPs are SPT states. We take the orbital depen-
dent spin exchange field σz ⊗ τy ⊗ szJ as an example. In
this case, both T and P are broken, but the Hamiltonian
has a combined T P symmetry. In addition, there also ex-
ists a reflection symmetry across z-axis Mz = σz⊗τy⊗sz,
under which the Hamiltonian transforms as

MzH(k)M−1
z = H(−kx,−ky, kz). (71)

The point nodes are protected by both T P and Mz.
We can construct the effective Hamiltonian at low en-

ergy using similar procedures as described in Sec. III B.
The effective Hamiltonian near ∆ = J can be written as

Heff =
1

2

∑
k

χT−k

[
Γz

(
∆− J +

v2k2
z

2∆

)

+ Γxvkx + Γyvky

]
χk, (72)

where

Γx = P (σz ⊗ I ⊗ sx)P, Γy = P (−σz ⊗ τy ⊗ sy)P,

Γz = P (σz ⊗ τx ⊗ sy)P, (73)

and

P = P τz,+P
s
x,− + P τz,−P

s
x,+. (74)

The effective Hamiltonian belongs to QLMFA class.
These phase transitions are 7/2th order in 3D.

We notice that Eq. (71) implies an emergent parity
symmetry P in the effective Hamiltonian (72), which is
absent in the original Hamiltonian with J included.

Similarly, TRB interorbital spin triplet pairing fields
listed in Table III also lead to QLMFA QCPs.

2. QLMFB and NLPs.

TRI spin exchange fields can lead to NLPs. We list
them in Table II. The bulk spectrum near transitions
taken into account of these fields is

Ek =

√
v2k2
‖ + (

√
v2k2
⊥ + ∆2 ± J)2, (75)
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Description Matrix Operator Dirac TSCs CuxBi2Se3
interorbital spin conserved hopping σy ⊗ I ⊗ I Gapped∗ NPP

interorbital spin exchange
σx ⊗ τy ⊗ sx Gapped∗ NPP
−σx ⊗ I ⊗ sy Gapped∗ NPP

Zeeman-type
intraorbital spin exchange

I ⊗ τy ⊗ sx NPP Gapped∗

−I ⊗ I ⊗ sy NPP Gapped∗

I ⊗ τy ⊗ sz NPP NPP

orbital dependent
intraorbital spin exchange

σz ⊗ τy ⊗ sx NPP NPP
−σz ⊗ I ⊗ sy NPP NPP
σz ⊗ τy ⊗ sz NPP Gapped∗

Table I. List of U(1) symmetry invariant mass fields that lead to NPPs in Dirac TSC and/or CuxBi2Se3 model. NPPs are
realized when these fields are sufficiently large. All these fields break TRS. The interorbital spin conserved hopping and orbital
dependent intraorbital spin exchange fields also break the existing parity symmetry of H(k), while the rest do not. In some
cases, the superconducting gap remain open regardless of the strength of these fields and we label these phases as ‘Gapped∗’.
Here, the asterisk means the gap never closes and there is no phase transition.

Description Matrix Operator Dirac TSCs CuxBi2Se3
orbital dependent chemical potential σz ⊗ τy ⊗ I Gapped∗ NLP

interorbital spin exchange
σy ⊗ I ⊗ sx NLP NLP
−σy ⊗ τy ⊗ sy NLP NLP
σy ⊗ I ⊗ sz NLP Gapped∗

Table II. List of U(1) symmetry invariant mass fields that lead to NLPs in Dirac TSC and/or CuxBi2Se3 model. NLPs are
realized when these fields are sufficiently large. All these fields are TRI but break the existing parity symmetry of H(k). In some
cases, the superconducting gap remain open regardless of the strength of these fields and we label these phases as ‘Gapped∗’.
Here, the asterisk means the gap never closes and there is no phase transition.

which has line nodes at k‖ = 0 and k2
⊥ = (B2 −∆2)/v2

when J > ∆.
The NLPs are SPT states. For example, for −σy ⊗

τy ⊗ syJ , P symmetry is broken. The NLP is protected
by TRS and mirror reflection with respect to xz-plane
Mxz = σy ⊗ τy ⊗ sy, under which the Hamiltonian trans-
forms as

MxzH(k)M−1
xz = H(kx,−ky, kz). (76)

The effective Hamiltonian can be constructed similarly

Heff =
1

2

∑
k

χT−k

[
Γx

(
v2

2∆
(k2
x + k2

z) + ∆− J
)

+ Γyvky

]
χk, (77)

where

Γx = P (σz ⊗ τx ⊗ sy)P, Γy = P (−σz ⊗ τy ⊗ sy)P,

(78)

and

P = Pσx,+P
τ
z,+ + Pσx,−P

τ
z,−. (79)

Here Pσα,± = (1 ± σα)/2. The effective Hamiltonian be-
longs to QLMFB universality class. The phase transi-
tions are 3rd order in 3D.

We again note that Eq. (76) implies an emergent parity
symmetry P in the effective Hamiltonian (77), which is
absent in the original Hamiltonian with J included.

3. QLMFC and NSPs.

With the TRB interorbital spin singlet pairing σx ⊗
τz ⊗ syD, the bulk spectrum near transitions is

Ek =
∣∣∣√v2k2 + ∆2 ±D

∣∣∣ , (80)

which has surface nodes at k2 = (D2 − ∆2)/v2 when
D > ∆.

Nodal surface states are generally less stable. Here
we simply treat the QCP as a multicritical point. The
effective Hamiltonian

Heff =
1

2

∑
k

χT−kΓ

(
v2k2

2∆
+ ∆−D

)
χk, (81)

belongs to QLMFC class with

Γ = P (σz ⊗ τx ⊗ sy)P (82)

and

P = Pσy,+P
τ
y,− + Pσy,−P

τ
y,+. (83)

These phase transitions are 5/2th order in 3D.

B. Surface quantum criticality

Gapless helical Majorana states exist on the surfaces
of TRI Dirac TSCs. In the presence of Zeeman-type or
orbital dependent intraorbital spin exchange fields that
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Decription Matrix Operator Dirac TSCs CuxBi2Se3
interorbital spin singlet pairing σx ⊗ τz ⊗ sy NSP NSP
intraorbital spin singlet pairing σz ⊗ τz ⊗ sy Gapped∗ NPP

interorbital spin triplet pairing
σy ⊗ τz ⊗ I NPP NPP
σy ⊗ τx ⊗ sz NPP NPP
σy ⊗ τx ⊗ sx NPP Gapped∗

Table III. List of U(1) symmetry breaking mass fields that lead to NSPs and NPPs in Dirac TSC and/or CuxBi2Se3 model.
Nodal phases are realized when these terms are sufficiently large. All these terms break TRS. The interorbital spin singlet
pairing field breaks the existing parity symmetry of H(k), while the rest do not. In some cases, the superconducting gap remain
open regardless of the strength of these fields and we label these phases as ‘Gapped∗’. Here, the asterisk means the gap never
closes and there is no phase transition.

Description Matrix Operator Dirac TSCs CuxBi2Se3
intraorbital spin singlet pairing I ⊗ τx ⊗ sy Gapped Gapped

interorbital spin conserved hopping σx ⊗ τy ⊗ I Gapped Gapped

Table IV. List of mass fields that lead to transitions to different gapped phases when these mass fields are sufficiently large. All
these fields are TRI. The intraorbital spin singlet pairing breaks the existing parity symmetry of H(k), while the interorbital
spin conserved hopping does not.

lead to NPPs, the surface states can be gapped by the
field J⊥ perpendicular to this surface. Topological phase
transitions happen on the surface between two gapped
states when J⊥ is tuned across zero. On a given surface,
J⊥ = 0, T = 0 corresponds to a surface QCP.

VI. TOPOLOGICAL SUPERCONDUCTING
CuxBi2Se3 MODEL

As another example, we discuss the QLMF QCPs in
the TSC CuxBi2Se3 model. We first tune the topological
insulating gap and chemical potential to zero to obtain a
semimetal Hamiltonian [82], which can be written in the
Majorana representation at low energy as

H′0M (k) = vσz⊗ (τy⊗sykx+ I⊗sxky)+vzσy⊗ τy⊗ Ikz,
(84)

v 6= vz due to the crystal symmetry.
Following the criterion given by Fu and Berg [65], the

TRI odd-parity interorbital spin triplet pairing

H′∆ = σy ⊗ τz ⊗ sx∆ (85)

should generate a fully gapped TSC. The TSC Hamilto-
nian

H =
1

2

∑
k

χT−k(H′0M (k) +H′∆)χk +HI , (86)

is invariant under parity transformation P = σx ⊗ τy.
The interactions in HI are irrelevant operators and will
be muted for the discussions of QCPs. The topological
phase is protected by TRS.

A. QCPs in the bulk

In this model, we also have all three classes of QLMF
QCPs. Similar to the Dirac TSC model, NPPs and

NLPs can be generated by U(1) invariant non-pairing
mass fields. NPPs exist when TRS is broken; NLPs ex-
ist when TRS is preserved. NSP must be generated by
an additional TRB pairing field. We list all mass fields
that lead to nodal phases in Tables I, II and III. These
nodal phases are protected by relevant symmetries de-
pending on the operators driving the transitions. We do
not discuss each case individually. The QCPs associated
with transitions to these nodal phases belong to their cor-
responding QLMF universality classes. The low energy
effective field theory near QCPs can be obtain similarly
as in Sec. V A, and we do not list them here.

B. Surface QCPs

Surface QCPs also exist in TSC CuxBi2Si3. The gap-
less Majorana surface states in TSC CuxBi2Si3 can be
gapped by some TRB mass fields that lead to NPPs. The
mass fields that open gaps on the surface depend on the
orientation of these surfaces. For example, Zeeman-type
spin exchange field along z-direction I ⊗ τy ⊗ szJ and
TRB interorbital hopping σy ⊗ I ⊗ It can open gaps on
surfaces perpendicular to z-axis with any finite strength.
Surface states are quantum critical when these fields are
zero.

VII. CONCLUSIONS

In conclusion, we have investigated a broad set of
QCPs in TSFs and TSCs. These QCPs define quan-
tum phase transitions driven by generalized mass fields
between fully gapped TSFs/TSCs and nodal phases.
Phases on two sides of the transition can break the same
symmetries and have the same local ordering but with
different global topologies. These QCPs therefore are
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beyond the standard Landau paradigm of order-disorder
phase transitions. U(1) symmetry is also spontaneously
broken at these QCPs.

We have identified three main universality classes that
have distinct scaling properties and are characterized by
generalized QLMFs. The main conclusions are:

(1) All the QCPs studied here can naturally emerge
when generalized Zeeman (spin exchange) fields or other
relevant fields are varied. QCPs separate states with dif-
ferent global topologies. The upper critical dimensions
of these QCPs are either Du = 3/2 or Du = 2 depending
the classes QLMFA, QLMFB, QLMFC, to which they
belong. Below or at the upper critical dimension, QCPs
are described by strong coupling conformal field theory
fixed points; while above it free quantum Lifshitz Majo-
rana fermions are robustly stable.

(2) These QCPs induce various subtle non-analytical
cusp structures in bulk quantities such as generalized sus-
ceptibility. Each QLMF class has its own unique bulk
signatures as a smoking gun of topological QCPs. For
instance, in 3D the non-analytical structures associated
with QCPs are of 7/2th, 3rd and 5/2th order for QLMFA,
QLMFB, and QLMFC, respectively. They are generally
smoother than a typical 2nd order phase transition.

(3) For transitions driven by the generalized mass fields
that lead to QLMFA QCPs, as precursors to transitions
in the bulk, surface states can be gapped by arbitrarily
small fields perpendicular to the surface. This critical
behavior of surface states, i.e., the surface states being
quantum critical at zero field, leads to non-analytical sur-
face spin susceptibilities that can be potentially studied
in experiments. In fact, the susceptibility itself, being
an even function of the field, has a non-analytical part
that is proportional to the magnitude of Zeeman fields,
indicating a cusp structure.

(4) There exist no finite temperature transitions be-
tween the phases we have studied. All the cusp
structures disappear once temperatures become finite
and non-analytical structures are replaced with smooth
crossovers. The physics in the quantum critical regime
is completely defined by the quantum criticality physics,
and the temperature scaling of thermodynamic quantities
are distinct for each class of QLMFs. This can be poten-
tially important, as in practical situations it is likely the
distinct temperature scaling dictated by QCPs in quan-
tum critical regimes rather than the T = 0 cusp struc-
tures that can be measured.

(5) In a few concrete models such as p-wave superflu-
ids, and TSCs of Dirac fermions and CuxBi2Se3, we have
found detailed realizations of the QCPs and universality
classes discussed above. These concrete studies are in-
tended to bring the physics of QCPs one step closer to
physical reality.

There are a few very exciting issues we plan to ex-
plore in the near future. The first one is related to the
strong coupling conformal field theory (CFT) fixed point
in (2+1)D. As we have stated in the article, although
there may be no clear distinctions between a free field

theory QCP and a QCP of a CFT fixed point, the trans-
port properties and hydrodynamics in these two classes
of QCPs should be very different. It remains to be under-
stood the transport properties and hydrodynamics near
a QCP of a CFT fixed point, which we speculate to be
highly universal as well. The second issue is perhaps the
relation between Gross-Neveu strong coupling fixed point
in (1+1)D relativistic theory [83], and the relevant inter-
actions in (2+1)D QLMFB/QLMFC implied by the scal-
ing argument or a simple 1-loop calculation. [In (2+1)D,
QLMFB and QLMFC are identical.] It is possible that
QLMFB/QLMFC presents a generalization of the Gross-
Neveu CFT field but in two spatial dimensions. If this is
true, QLMFB/QLMFC maybe a new candidate for CFT
but in (2+1)D. It remains to be investigated in the fu-
ture, perhaps in the context of large N -expansion.
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Appendix A: Quantum phase transitions in
superfluids with competing s- and p-wave pairings

In Sec. III A, we mentioned that in TSFs if symmetry
allows competing s- and p-wave pairings, there can be
phase transitions or crossovers between topological and
non-topological superfluids. Here, we discuss them in
details.

We choose the same TRI p-wave pairing ∆p(k). If
the s-wave pairing is also TRI, we expect the topolog-
ical phase to persist for weak s-wave pairing, because
the topological phase is protected by TRS. On the other
hand, pure s-wave superfluids are always topologically
trivial. Therefore, we expect a topological phase tran-
sition into this non-topological phase when the s-wave
pairing becomes strong enough.

On the other hand, if the s-wave pairing breaks TRS,
the non-trivial topology is no longer protected and could
be broken immediately by any finite TRB pairing. As
shown below, the superconducting gap never closes in
this case. Instead of phase transitions, there exist a
crossover between the topological and non-topological
states.

Let us introduce an s-wave order parameter ∆s =
|∆s|eiθ = ∆I

s+i∆
B
s , with phase θ relative to ∆p(k). Here,

∆I
s = |∆s| cos θ (∆B

s = |∆s| sin θ) is the TRI (TRB) s-
wave pairing. In the Majorana representation, the s-wave
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pairing field can be written as

Hs =
1

2

∑
k

χT−k(τx ⊗ sy∆I
s − τz ⊗ sy∆B

s )χk. (A1)

1. TRI s-wave pairing

For θ = 0 or π, we get the TRI s-wave pairing τx ⊗
sy∆I

s. The energy spectrum for the quasiparticles is

E
(±)
k =

√
(vk ± |∆I

s|)2 + (εk − µ)2. (A2)

Notice that we cannot drop the εk term even it is of
higher order of k. This is because the minima of the bulk
spectrum are at finite k near phase transitions. For µ >
0, we expect topological phase transitions as the ratio
between s- and p-wave pairings |∆I

s|/v is varied. Indeed,
when |∆I

s| = v
√

2µ, the bulk gap closes on a surface
given by k =

√
2µ. Phase transitions occur between two

gapped phases: topological superfluids for |∆I
s| < v

√
2µ

and non-topological superfuids for |∆I
s| > v

√
2µ.

It is worth noting that these phase transitions, albeit
between gapped phases, do not belong to the universality
class of Lorentz invariant Majorana fields studied in Ref.
[55], since the bulk gap closes on a surface k =

√
2µ

rather than at k = 0.

2. TRB s-wave pairing

For θ = ±π/2, the s-wave pairing −τz ⊗ sy∆B
s breaks

TRS, and the bulk spectrum

Ek =
√
v2k2 + (∆B

s )2 + (εk − µ)2 (A3)

is always gapped except at µ = ∆B
s = 0. There exists a

tricritical point at µ = ∆B
s = 0. Rather than phase tran-

sitions, the topological and non-topological states can be
smoothly connected by a crossover. In contrast to the
TRI s-wave pairing case, here we can neglect the εk term
when studying universality, as the bulk gap can only close
at k = 0. In the low energy limit, the tricritical point is
described by Lorentz invariant free Majarana fields with
two anticommuting mass terms µ and ∆B

s .
Any finite TRB s-wave pairing immediately opens a

gap on all surfaces. For example, on the surface y = 0,
the surface Hamiltonian is

Hsurf =
1

2

∑
k

ψT−k,y(−szvkx+sxvkz−sy∆B
s )ψk,y. (A4)

Hamiltonians on other surfaces have similar forms.
Topological QCPs also exist on surfaces. Surface

Hamiltonians are quantum critical at ∆B
s = 0. When

the TRB s-wave pairing ∆B
s is tuned across zero, topo-

logical quantum phase transitions happens on all surfaces
simultaneously between two gapped surface phases with

different topologies. The Chern number associated with
the surface Hamiltonian changes by one across the tran-
sition. These QCPs are described by Lorentz invariant
free Majorana fields and the zero temperature transitions
are 3rd order.

In 2D, s-wave pairings have similar effects.

Appendix B: Phase transitions in p-wave superfluids
driven by Zeeman field in the weak coupling limit

Here we discuss the topological quantum phase tran-
sitions between a fully gapped phase and an NPP in the
weak coupling p-wave superfluid model. We present the
low energy Hamiltonian in the momentum space near
phase transitions.

In the weak coupling limit v2 � µ, the chemical po-
tential is approximately at the Fermi energy µ ≈ εF > 0.
The transition hapens at B = Bc ≈ vkF when the gap
closes at k⊥ = 0, k‖ = ±K ≈ ±kF , kF being the Fermi

momentum and K =
√

2(µ− v2). Without loss of gen-
erality, we choose the magnetic field to be along y-axis.

There are two point nodes in the spectrum at crit-
ical point. Let us first write the Hamiltonian in the
low energy limit near one of them, kx = kz = 0,
ky = −K ≈ −kF . We first project the Hamiltonian
onto the low energy subspace using projection operator

P (−) = P τx,+P
s
y,− + P τx,−P

s
y,+. (B1)

The projected Hamiltonian is

H(−)
proj(k) = −Γ(−)

y (vky +By)+Γ(−)
x vkx+Γ(−)

z vkz. (B2)

where

Γ(−)
x = P (−)(−τz ⊗ sz)P (−),

Γ(−)
z = P (−)(τz ⊗ sx)P (−),

Γ(−)
y = P (−)(I ⊗ sy)P (−). (B3)

In this particular limit of weak coupling, Eq. (B2) ob-
tained by a simple projection suggests a Lorentz sym-
metry near the point node. This emergent Lorentz sym-
metry is an artifact of projection that turns out to be
inadequate for scaling in this case. We need to further
take into account the couplings between the low energy
states near point nodes and high energy states.

By integrating out the high energy degrees of freedom,
we obtain the leading order contribution from the cou-
pling

H(2)(k) = − (µ− εk)2

2vky
Γ(−)
y . (B4)

Combining it with the projected Hamiltonian (B2) and
expanding ky near the point node ky = δky − K, we
obtain the Hamiltonian in the low energy limit near this
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point node

H(−)
eff (k) = Γ(−)

y

[
(Bc −By) +

µ− v2

Bc
(δky)2

]
+ Γ(−)

x vkx + Γ(−)
z vkz. (B5)

Similarly, near the other point node kx = kz = 0,
ky = K ≈ kF . The Hamiltonian in the low energy limit
is

H(+)
eff (k) = Γ(+)

y

[
(Bc −By) +

µ− v2

Bc
(δky)2

]
+ Γ(+)

x vkx + Γ(+)
z vkz, (B6)

where Γ
(+)
α ’s are obtained by replacing P (−) with

P (+) = P τx,+P
s
y,+ + P τx,−P

s
y,−, (B7)

in Eq. (B3). Notice that P (−) +P (+) = I ⊗ I. Near this
point node, we have ky = δky +K.

The Hamiltonian involving both point nodes is a 4× 4
matrix in the low energy limit

Heff(k) = H(−)
eff (k)⊕H(+)

eff (k). (B8)

This Hamiltonian is valid in the low energy regime

E
(−)
k � v2 =

|∆p(k=kF )|2
2εF

. The NPP is protected by
parity symmetry P = τy.
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