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We compare the pole structure of the electronic Green’s function obtained by Cluster Dynamical Mean Field
Theory to the results from the fractionalized Pair Density Wave idea. In the superconducting phase, we can con-
sider the system in a state with coexistence of Superconducting and Charge order. Writing the Green’s function
in a way analogous to the previously proposed “hidden-fermions” model from Ref.[1] leads to a similar pole
structure for the self-energy. The fractionalization of the Pair Density Wave order also describes the pseudogap
phase as a superposition of superconducting and charge order fluctuations. Considering a phenomenological
lifetime for the particle-particle and particle-hole pairs leads to an electronic spectral function that matches the
numerical results.

I. INTRODUCTION

Since their discovery, cuprate superconductors have been
the focus of many investigations to understand the nature of
the relation between the high-temperature superconducting
phase and the pseudogap that appears when they are doped
away from half-filling2,3. They have been the subject of an
important amount of work on the theoretical, experimental
and numerical side. In the latter case, a lot of efforts have
been invested into the development of the Dynamical Mean
Field Theory that allows for solving the Hubbard model by
mapping it onto an impurity problem4. The technique has
been extended to include multiple sites in the Cluster Dynam-
ical Mean Field Theory (CDMFT)5,6 and gives precise results
on the energy dependence of the electronic Green’s function
at specific points of the Brillouin zone7–9. Recent results from
CDMFT on 2x2 clusters have shown a peculiar link between
the structure of the electronic self-energy in the pseudogap
(PG) and in the superconducting (SC) phase1,10,11 that deviate
from the standard BCS theory. Multiple propositions have
been made to explain this with an analytical model such as a
hidden-fermion model1 or a SU (2) gauge theory12.
On the experimental side, there is growing evidence that
the charge ordering observed above the superconducting
temperature13–23 plays an important role in the pseudogap
physics. In fact, recent Raman experiment24 suggests that
the Charge Density Wave (CDW) gap is of the same order
as the superconducting gap. This charge order is also known
to coexist with the superconductivity at low temperature
and long-range CDW is observed when superconductivity
is destroyed by a magnetic field19,20,25. A recent proposal
linked these two orders by the fractionalization of modulated
particle-particle pairs, i.e. of a Pair Density Wave (PDW)
order26,27, leading to a constraint between the resulting
CDW and SC amplitudes. The resulting superposition of
fluctuations in both channels was used to explain28 the
momentum, energy and temperature dependence of the elec-
tronic spectral function observed in Bi2201 by angle-resolved
photo-emission spectroscopy29 (ARPES).
We are here interested in the possibility that the fine structure
in the self-energy obtained by CDMFT calculation1,30,31 on
the Hubbard model could be explained by the same scenario.
In the superconducting phase, the electronic Green’s function
is given by considering a coexistence of SC and CDW order.

We write the electronic Green’s function in the supercon-
ducting phase in a way analogous to the hidden-fermion
proposition that was used to describe CDMFT results1,10,11

by coupling electrons to “hidden” fermionic excitations
on top of pairing. We identify the hidden-fermion with a
modulating order and show that it leads to a pole structure
in the self-energy close to the one obtained via numerical
calculation below Tc. The fractionalized PDW scenario gives
a description of the pseudogap that relies on the superposition
of SC and CDW fluctuations in the antinodal region and is
different from the hidden-fermion model mentioned previ-
ously. We show that the fractionalized PDW still reproduces
the electronic Green’s function in the pseudogap phase.

II. ELECTRONIC SPECTRAL FUNCTION FROM CDMFT

Cluster extension of CDMFT with 2x2 sites gives detailed
energy-dependence of the electronic Green’s function in the
Hubbard model at low doping. Due to the small system size,
this is however limited to some specific points of the Brillouin
zone. One of the most important results concerns the anti-
nodal point at k = (0, π) where the pseudogap is observed
above the superconducting state. CDMFT allows us to de-
compose the deviation from the non-interacting Green’s func-
tion into two parts : the normal and anomalous self-energy.
The final form of the electronic Green’s function is given by :

G (k, ω) = [ω − εk − ΣN (k, ω)−W (k, ω)]
−1
,

W (k, ω) =
ΣAN (k, ω)

2

ω + εk − ΣN (k,−ω)
∗ (1)

The anomalous part of the self-energy is directly related to
the superconducting order and vanishes outside of the ordered
phase but the normal part presents features that lead to the
pseudogap in the anti-nodal region at higher temperature.
Another quantity of interest is the electronic spectral function
A (k, ω) = −1

π Im (G (k, ω)) which relate directly to ARPES
experiment for occupied states (ω < 0). Interestingly
there are strong links between the structure in the normal
self-energy above and below Tc as well as connection with
the anomalous self-energy. These seems to indicate that the
pseudogap physics is strongly related to the superconducting
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FIG. 1. (a) Normal self-energy (red line) and electronic spectral
function (green dotted lines) obtained by CDMFT for momenta on
the line k = (0, π) − (π/2, π/2). The self-energy shows two iso-
lated poles in the anti-nodal region at ω = ±ω0 but with a clear
asymmetry in weight. In the nodal region the peak at positive energy
splits. The pole at negative energy is damped is difficult to follow.(b)
Anomalous self-energy obtained by CDMFT for the same momenta.
It shows pairs of poles at the same position as in the normal part
but with an anti-symmetric weight. The same splitting occurs when
going from the anti-nodal to the nodal region. The weight close to
k = (π/2, π/2) is close to zero, indicating that the coupling to the
hidden-fermion is specific to the anti-nodal region.

state.

The energy dependence of the normal self-energy (red
lines) and of the electronic spectral function (green dot-
ted line) for momenta on a line from k = (0, π) to
k = (π/2, π/2) is shown in Fig.1(a) in the superconducting
phase.The distinctive feature of the self-energies in the anti-
nodal region (at k = (0, π)) is the two symmetric peaks at low
energy. The two poles of ΣN have a marked weight asymme-
try with the pole at ω > 0 having a larger spectral weight than
the one at negative energies. The spectral function plotted at
the same momentum (green dotted line in Fig.1(a)) presents
3 poles, one at negative energy which is well defined and 2
at positive energies which are broader. In contrast, the two
poles of ΣAN shown in Fig.1(b) for the same momenta have
the same position as the poles of ΣN but opposite weight.
When going toward the nodal region we observe that the pole
at positive energy split into two poles of approximately equal
weight. This is also the case for the pole at negative energy
even though the vanishing weight close to k = (π/2, π/2)
makes it harder to pinpoint the position of the two peaks.
Another crucial information given by CDMFT is the cancella-
tion that occurs between the poles of ΣN andW . Indeed it has
been observed that, besides having poles at the same energy,
the residue of both the normal and the anomalous the self-
energy at these poles is such that they cancel in the expression
of the single-particle Green’s function. This has consequences
for the electronic spectral function as the poles of the self-
energy should correspond to zeros of the spectral function,
effectively leading to the splitting of the non-interacting band.
These results were interpreted in terms of ”hidden-fermions”
which couple to the original electronic degree of freedom and
are themself susceptible to pairing1,10,11. It is then possible to

write a mean-field Hamiltonian for this model and extracts an-
alytical expression for the normal and anomalous self-energy.
As we will show in the next section, this construction guaran-
tees the cancellation between ΣN and W mentioned earlier.
It also displays a structure for both parts of the self-energy in
agreement with the numerical results with proper choice for
the hidden-fermion. We will present the model and its main
features in the next section and then show how to incorporate
charge order in the hidden-fermion formalism and compare
the results to CDMFT in both the superconducting and the
pseudogap state.

III. HIDDEN-FERMION MODEL

We start with the same hidden-fermion model from Ref.1.
This model describe electrons (c†k,σ) on a square lattice cou-
pled to other fermionic excitation (fα†k,σ) :

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
k,σ

(
σ∆kc

†
k,σc

†
−k,−σ + h.c

)
+
∑
α,k,σ

εf,αk fα†k,σf
α
k,σ +

∑
α,k,σ

(
σ∆f,α

k fα†k,σf
α†
−k,−σ + h.c

)
+
∑
α,k,σ

(
V αk c

†
k,σf

α
k,σ + h.c

)
(2)

The electronic spectral function can then be obtain and the
coupling to the different fαk,σ excitation leads to a normal and
anomalous self-energy given by :

ΣN (k, ω) =
∑
α

V αk
2
(
ω + εf,αk

)
ω2 − εf,αk

2
−∆f,α

k

2

ΣAN (k, ω) = ∆k +
∑
α

−V αk
2∆f,α

k

ω2 − εf,αk
2
−∆f,α

k

2 (3)

As can be seen from Eq.(3) the normal and anomalous part of
the self-energy share a similar pole structure which is primar-
ily governed by the choice of ∆α

k and εαk . The value of the
coupling between the c†k,σ and the fα†k,σ fermions only enters
in the spectral weight at the different poles as can be seen by
computing the residue of the self-energy :

Res (ΣN ,±ωα) =
V αk

2

2

1±
εf,αk√

εf,αk
2

+ ∆f,α
k

2


Res (ΣAN ,±ωα) = ∓V

α
k

2∆α
k

2ωα
(4)

We can see that the self-energies have poles due to the hidden-

fermions at the energies ωα = ±
√
εf,αk

2
+ ∆f,α

k

2
. There is

however an important distinction between the normal part and
the anomalous part of the self-energy in the weight associated
with each of these poles. In fact, the anomalous self-energy
has equal and opposite weight at each pole while it depends on
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FIG. 2. Fermi surface for free electrons with dispersion given by
εk = −2t (cos (kx) + cos (ky)) − 4t′ cos (kx) cos (ky) − µ where
t = 1, t′ = −0.2 and µ = −0.56. The black arrow indicate the
charge order wave-vector taken to link different part of the Fermi
surface while the red line shows the path between k = (0, π) and
k = (π/2, π/2) where the self energy is computed.

the value of εf,αk for the normal self-energy. In particular the
sign of εf,αk will determine which of ωα or −ωα has a higher
weight. It is also possible to check the cancellation mentioned
previously :

Res (W,±ωα) = Res

(
ΣAN (k, ω)

2

ω + εk − ΣN (k,−ω)
∗ ,±ωα

)

= −V
α
k

2

2

1±
εf,αk√

εf,αk
2

+ ∆f,α
k

2


= −Res (ΣN ,±ωα) (5)

The original proposition was that only one of these
hidden fermionic excitations is relevant to explain the struc-
ture of the self-energy at low energy and that identifying
εfk = zkεk+π − µf , where zk is the renormalization factor
due to the strong interactions and π = (π, π), leads to a pole
structure analogous to the CDMFT results. We show here
that another choice of hidden fermion can lead to satisfactory
comparison with the results obtained by CDMFT but have
a different interpretation. Our choice of hidden fermions is
based on the experimental observation of charge order in
cuprates (by X-Ray15–19,32,33 or NMR21,22,34 measurements)
that persists in the superconducting phase. This coexistence
of CDW and SC has been shown to successfully reproduce
the single-particle electronic Green’s function observed
in Bi2201 by ARPES28 and the softening observed in the
phonon spectrum at Tc35. Our analysis is thus based on the
previous hidden-fermion model Eq.(2) but we consider that
two fermionic excitation will contribute and identify them
with fα†k,σ = c†k+Q,σ and fβ†k,σ = c†k−Q,σ .

We focus on an axial wave-vector that links different parts of
the Fermi surface, i.e. Q = (±Q0, 0) as shown in Fig.2. We
also take into account strong correlations by adding a renor-
malization factor z (k, ω) that will modify the dispersion of
the hidden fermion so that εf,αk = zεk+Q and εf,βk = zεk−Q
where we took z (k, ω) to be a constant. The bare dispersion
is given by taking nearest and second neighbours hopping
εk = −2t (cos (kx) + cos (ky)) − 4t′ cos (kx) cos (ky) − µ.
We took t = 1 as our energy scale, t′ = −0.2 and µ is chosen
to fix the electron density to n = 0.95 using the Luttinger sum
rule in the non-interacting case. Lastly, as we are interested in
the superconducting phase, we take the SC gap with a d-wave
form factor ∆k = ∆0

2 (cos (kx)− cos (ky)) and the other
gaps are given by ∆f,α

k = ∆k+Q and ∆f,β
k = ∆k−Q.

IV. RESULTS

A. Normal self-energy in the superconducting state

To relate the different features of the normal self-energy
to the properties of the hidden-fermions we need to study
the structure of the normal part of the self-energy given by
Eq.(3). The positions of the poles are given by ωα± =

±
√
εf,αk

2
+ ∆f,α

k

2
and thus come by pair with symmetric po-

sition in energy. The weight associated with each pole is ob-
tained by computing the residue at each of them and is given
in Eq.(4). The asymmetry in weight is thus controlled by the
sign of εf,αk and the value of ∆f,α

k . As noted in Ref.[1], the
observation that the pole at positive energy has a larger weight
than the pole at negative energy in the anti-nodal region im-
pose the fact that εf,α(0,π) has to be positive. This constraint is
naturally fulfilled in our model when we choose a CDW wave-
vector larger than the anti-nodal Fermi wave-vector which
also fits experimental observation. This is however no longer
the case for the fermion identified with ck−Q,σ when we ap-
proach the nodal region which explains the discrepancy be-
tween our model and the CDMFT results near k =

(
π
2 ,

π
2

)
.

The results for the original hidden-fermion idea1 that identi-
fies fα†k,σ = c†k+π,σ are shown in Fig.3(a) and match multiple
characteristics of the numerical results. Notably, the asym-
metry in the spectral weight in the anti-nodal region is well
reproduced and the loss of weight for the peak at negative en-
ergy is found. Note that, following Eq.(4), this happens when
εαk is positive. There is thus a crucial role of the added µf
term as the hidden-fermion dispersion zkεk+π alone is neg-
ative for k = (0, π). The combination of the renormaliza-
tion induced by zk and the positive shift of µf gives an ef-
fective dispersion that is small relative to ∆k and that does
not change sign. However, because there is only one hidden
fermion it is not possible to capture the splitting in the nodal
region for ω > 0 and the weight of the positive peak is maxi-
mal at k = (π/2, π/2) when the d-wave superconducting gap
vanishes, in contrast to the numerical results.

We now turn to the fractionalized PDW hypothesis which
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FIG. 3. a Normal self-energy in the hidden-fermion model of Ref.1.
The asymmetry in the anti-nodal region is well reproduced. As there
is only one hidden-fermion coupled to electrons it is not possible to
recover the splitting in the nodal region. The weight of the positive
energy pole is also maximum for k = (π/2, π/2) in contrast to the
numerical results shown in Fig.2. (b) Normal self-energy obtained
while considering hidden-fermions due to CDW order with a wave-
vector along the x axis. Due to the symmetry between εk+Q = εk−Q

at k = (0, π) we only have two visible poles with an asymmetry con-
sistent with the CDMFT results. This symmetry is lost when going to
the nodal region and we observe a splitting of the poles. The change
of sign of εk−Q close to k = (π/2, π/2) explains the significant
weight for the pole at negative energy. We choose here Q0 = 0.27π,
z = 0.22, ∆0 = 0.55, V0 = 0.7 and a numerical broadening factor
iη = 0.03i.

gives the same form for the electronic Green’s function, in
the superconducting phase, to the hidden-fermion model with
fα†k,σ = c†k+Q,σ and fβ†k,σ = c†k−Q,σ . Our results for the two
hidden fermions coming from the charge order are shown in
Fig.3(b). At k = (π, π) we can only see a pair of symmetric
peaks due to the fact that εk+Q = εk−Q. Moreover, the
charge order wave-vector being larger than the anti-nodal
Fermi momentum means that we have εk±Q > 0. Using the
result of Eq.(4), this leads to the same weight asymmetry
observed in the CDMFT study with the pole at +ωα having
a higher weight than the pole at −ωα. When going towards
the nodal region the previous symmetry between εk+Q and
εk−Q is lost and we observe a splitting of the poles at ω > 0
analogous to the numerical results. It is important to point
out that the behaviours of the spectral weight for the two
peaks are different. In fact, the pole due to the coupling to
c†k+Q,σ will have a higher weight at −ωα in the nodal region.
This is because εk−Q will change sign and become negative.
Because the pairing gap for the hidden-fermion is taken as
∆f,α
k = ∆k±Q, there is no cancellation of the weight at

k = (π/2, π/2) which result in a non-vanishing weight in the
nodal region for the pole at ω < 0. Note that we took here
a coupling between the electrons and the hidden-fermions to
be independent of momentum, i.e V f,αk = V0. This does not
impact the position of the poles as shown by Eq.(3) but only
the weight at each pole (see Eq.(4)). Furthermore, results
from CDMFT away from the antinodal point k = (0, π) are
extrapolated from the available momentum points. Thus, the
discrepancy between the spectral weight in the nodal region
can be due to multiple factors.

B. Pseudogap phase

We showed that both the antiferromagnetic hidden-fermion
and the fractionalized PDW models give similar results in the
superconducting phase. The two models differ strongly in the
pseudogap phase where the hidden-fermion model restores
the charge conservation symmetry but keeps the coupling be-
tween electrons and the hidden fermions unchanged. In con-
trast, the fractionalization of a Pair Density Wave leads to the
superposition of SC and CDW fluctuations that have a strong
impact on the electronic spectral functions.

1. Pseudogap in the hidden-fermion model

In the hidden-fermion model, the pseudogap phase is ob-
tained by setting the superconducting order parameters ∆k

and ∆f,α
k to zero. The remaining part of the self-energy is

due to the hybridization to the hidden-fermions through V α.
The self-energy thus take the form:

ΣN (k, ω) =
∑
α

V αk
2

ω − εf,αk
ΣAN (k, ω) = 0 (6)

The structure of the self-energy is then reduced to peaks
located at the energy of the hidden-fermions as shown in
Fig.4(a) (red dotted line). In our case, the self-energy in the
anti-nodal region will display a single peak at ω > 0 because
επ+Q = επ−Q > 0. This leads to the electronic spectral
function having two poles with a vanishing spectral weight at
ω = 0 for k = (0, π) (red line in Fig.4(a)). Note that a non-
zero value of hybridization between ck,σ and ck+Q,σ should
be interpreted as a long-range CDW at the mean-field level.
As such, we should observe a Fermi surface reconstruction
with gapless states in the pseudogap phase. This long-range
order has only been observed by applicatying strong magnetic
fields19,20,25 in the superconducting phase. Furthermore, the
short-range charge order above Tc is only observed below a
transition temperature TCO which is lower than the pseudo-
gap temperature T ∗. The band structure observed by ARPES
does not however show significant change for temperatures in
the pseudogap region. It is thus inconsistent to consider that
the pseudogap phase is solely due to the charge order.

2. Fractionalized Pair Density Wave

We start by giving details on the Pair Density Wave frac-
tionalization as described in Ref.[26 and 27]. The fraction-
alization of the PDW operator is based on the relation be-
tween the η-mode, which is a modulated particle-particle
pair and the SC (∆̂ij = Jd̂ij

∑
σ σci,σcj,−σ) and the CDW
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FIG. 4. (a) Electronic spectral function (full line) and self-energy
(dotted line) in the pseudogap (red) and superconducting phase (blue)
in the hidden-fermion model. Above Tc, the self-energy is reduced
to a single pole at ω = εk±Q > 0 and the resulting electronic spec-
tral function shows 2 poles. There is no spectral weight at ω = 0
but there will be gapless states away from kx = 0 in contrast to ex-
perimental observations. (b) Electronic spectral function (full line)
and self-energy (dotted line) in the pseudogap phase from a fraction-
alized PDW at k = (0, π). Green lines show effects of CDW fluc-
tuations (Γ1) while the red lines show the effect of superconducting
fluctuations (Γ2). Due to the superposition of SC and CDW in the
fractionalized PDW idea, the electronic spectral function retains the
4 poles structure seen in the superconducting phase. Finite lifetime
for the particle-particle or particle-hole pairs have a much stronger
dampening effect in the two poles closest to ω = 0 which could
explain the observed two peaks structure in CDMFT or the single
occupied band in ARPES above Tc. We choose here Q0 = 0.27π,
z = 0.22, |Ψ0| = V0 = 0.15, Γ1 = Γ2 = 0.1 and a numerical
broadening factor iη = 0.03i.

(χ̂ij = Jd̂ij
∑
σ c
†
i,σcj,σe

iQ.(ri+rj)/2) operators where J is
the typical interaction strength giving rise to the SC and CDW

orders. In particular we can write :

η̂ = [∆̂ij , χ̂
†
ij ], η̂† = [χ̂ij , ∆̂

†
ij ], (7)

whereQ is the modulation wave-vector of the PDW. In a way
analogous to the electron’s fractionalization in strong cou-
pling theory36,37, the η-operators are then invariant with the
following gauge structure

∆̂ij → eiθ∆̂ij , χ̂ij → eiθχ̂ij . (8)

The effective field theory for the fluctuating PDW thus in-
volved an emergent U(1) gauge field whose fluctuation pro-
duces a constraint between the two fields:

|∆̂ij |2 + |χ̂ij |2 ≡ |Ψij |2 = const, (9)

where Ψij = (∆̂ij , χ̂ij)
t. The energy scale associated with

Eq.(9) is typically the scale at which the fractionalization
occurs.

Earlier descriptions of the pseudogap phase as a fractional-
ized PDW led to good agreement with experimental ARPES
results for the electronic spectral function28. The main char-
acteristic of the pseudogap in this theory is to be an equal
superposition of SC and CDW fluctuations in the anti-nodal
regions. This is achieved at the mean-field level by consid-
ering the previous model but constraining the amplitude for
the SC and CDW amplitude to be equal while adding finite
lifetime Γ1 and Γ2 for the particle-hole and for the particle-
particle pairs respectively. Because none of the parameters
is put to zero, the self-energy and the spectral function have
the same pole structure in both the pseudogap and the super-
conducting phases. In fact, the electronic spectral function at
k = (0, π) given in Fig.4(b) with both damping rate Γ1 and Γ2

being turned on alternatively clearly shows 4 poles indicated
by arrows. The main observation is that there is a significant
reduction in the spectral weight of the two poles at lower en-
ergy for both positive and negative energy. This is the same
phenomenon that was used to describe the observation of a
“flat band” below Tc by ARPES in Bi220128. Similarly to this
previous study, this description of the pseudogap effectively
leads to Fermi arcs and no long-range order is expected. We
show the resulting electronic spectral function at ω = 0 in
the antinodal region in Fig.5(b). We can see that part of the
Fermi surface is washed out even in the absence of fluctua-
tions (Γ1 = Γ2 = 0).
Despite having a similar structure for the self-energy in the
pseudogap phase, there is an important difference between the
structure of the Green’s function in our approach and in pre-
vious studies based on fractionalization such as the one using
a SU(2) theory12 of fluctuating antiferromagnetism. In our
case, the line of zeros for the real part of the Green’s function
(black dotted line in Fig.5) is very close to the non-interacting
Fermi surface. This is in strong contrast to other cases where
the Luttinger surface created by interaction with the antifer-
romagnetic fluctuations intersect the Fermi surface to create
small pockets in the nodal region38.

It is important to note that in order to obtain a good fit with
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FIG. 5. (a) Electronic spectral function at ω = 0 for the fractional-
ized PDW model. The white dotted line indicates the non-interacting
Fermi surface while the black dotted line indicates the surface of ze-
ros of the Green’s function. We see that the Fermi surface is washed
out in the antinodal region. We choose here Q0 = 0.27π, z = 0.22,
|Ψ0| = 0.15 and a numerical broadening factor iη = 0.03i.

the numerical result obtained by CDMFT, it is necessary here
to take a value of V α (in the superconducting phase) and Ψ (in
the pseudogap phase) significantly lower than the value of the
pairing amplitude ∆ in the superconducting phase. Indeed, an
agreement between the experimental ARPES results and the
fractionalized PDW scenario was obtained with the SC and
CDW order being very close, a fact supported by Raman ex-
periment in mercury-based cuprate24. This would indicate that
only a part of the particle-particle pairs come from the frac-
tionalization while the other part can be described by a stan-
dard superconducting condensate. This can also be compared
to the two behaviours observed in Raman experiment for the
nodal and antinodal part of the superconducting gap39. In fact,
the nodal gap follows the critical temperature with doping and
decreases away from optimal doping while the antinodal gap
decreases linearly with doping, following the pseudogap tem-
perature. This imbalance could be here a result of the finite
size of the cluster (2x2 sites) used in the CDMFT calculation
which is smaller than the wavelength of the charge modula-
tion, thus hindering the formation of modulated orders.

V. DISCUSSION

The results obtained from CDMFT calculations give valu-
able information on the energy dependence of the electronic
Green’s function in the doped Hubbard model. This is often
limited to specific points in the Brillouin zone which depend
on the cluster size. From this, it seems difficult to account for
potential modulating orders with a wavelength larger than the
cluster size. There is however a large number of experimental
evidence13–24 for these orders to exist and compete in the
pseudogap phase of cuprates superconductors. We argued
in this paper that despite the numerical limitation, there are
signatures of the charge order in the electronic self-energy
calculated in CDMFT.

Much like in ARPES experiments, the observations are
indirect consequences of the charge order and there is no
Fermi surface reconstruction as the charge order remain
short-ranged and fluctuating. In the case of ARPES in

Bi2201, the main indicators for a modulating order were the
back-bending of the band at the Brillouin zone’s edge and the
specific way the pseudogap was closing close to the nodal
region (for more details see Ref.[29 and 40]). The limited
momentum resolution of CDMFT does not allow for such
distinction but the singular pole structure of the self-energy
in the anti-nodal region could itself contain evidence for
this modulating order. It is important to note the similarities
between the original hidden-fermion from Ref.[1] and our
proposition which contain the charge order. In particular
both of them give the same result for k (0, π). There are
however distinctions to be made when going close to the
nodal region where the two models differ. The main argument
for the CDW scenario is that it allows for the double pole
structure observed for ω > 0 (see Fig.3) which is observed
numerically. This is to be taken with caution as both the
numerical results and the idea of CDW order reaches their
limit in the nodal region.

A more convincing argument may come from the elec-
tronic spectral function in the pseudogap phase. The original
idea for the hidden-fermion is to describe the pseudogap by
the absence of pairing. At the mean-field level, this would
lead to a CDW long-range order with the associated Fermi
surface reconstruction. The spectral function at the anti-nodal
point does show the 2 poles observed by CDMFT with a van-
ishing weight at ω = 0 but there are still gapless states away
from kx = 0. In contrast, the fractionalized PDW scenario is
characterized by the equal superposition of SC and CDW fluc-
tuations in the pseudogap. As such the spectral function has
the same structure as in the superconducting state and is fully
gapped at the Brillouin zone’s edge, leaving Fermi arcs in the
nodal region if we include a momentum dependence for the
pseudogap order27,28. Taking into account fluctuations in the
SC and CDW orders leads to a drastic reduction in the spectral
weight of specific poles, giving an effective spectral function
with two apparent peaks. The same argument was given
to explain the observation of a “flat band” in Bi2201 below Tc.

There are still many differences between the results from
CDMFT and the experimental spectral function measured by
ARPES. It is however interesting to find common ground to
link these two essential techniques to investigate the pseudo-
gap phase of cuprates. The capacity of CDMFT to explore
the positive energies which are inaccessible to ARPES and
the wide range of doping available to the experimental are
complementary to elucidate the pseudogap phase of cuprates.
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M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Phys. Rev.
Lett. 110, 137004 (2013).

18 G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Salluzzo,
E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer,
and L. Braicovich, Science 337, 821 (2012).

19 S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A.
Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song,
M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Dev-

ereaux, Z.-X. Shen, C. C. Kao, W. S. Lee, D. Zhu, and J. S. Lee,
Science 350, 949 (2015).

20 J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. Chris-
tensen, M. Huecker, R. Liang, D. A. Bonn, W. N. Hardy, U. Ruett,
M. V. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Com-
mun. 7 (2016), 10.1038/ncomms11494.
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