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We compute scattering rates for electrons in the two-dimensional Hubbard model for a one-orbital
metal and a two-orbital band insulator by means of the Boltzmann scattering equation (BSE) and
dynamical mean-field theory (DMFT). As an intermediate method between both, we also consider
the BSE without momentum conservation. In the weak interaction regime and for the band insulator,
the last two agree to very good accuracy. The BSE with momentum conservation, on the other hand,
shows slightly larger scattering rates, and a momentum differentiation of these on the Fermi surface.
For the Mott insulator at strong interaction, the DMFT electron scattering rates are much larger
and defy a BSE description. Noteworthy, the scattering rates for the band insulator are exceedingly
small because—in contrast to the Mott insulator—there is virtually no impact ionization.

I. INTRODUCTION

The electronic structure, i.e., the electronic states and
their broadening or scattering rate, is arguably the most
fundamental property of a solid. Scattering processes not
only affect equilibrium properties but are also essential
if a material is driven away from equilibrium. Exper-
imentally, the one-particle scattering rate for the (oc-
cupied) electronic states can be measured by angular-
resolved photoemission spectroscopy (ARPES)[1, 2]. If
vertex corrections can be neglected, there is a one-to-one
correspondence between this one-particle scattering rate
and the two-particle scattering rates for response func-
tions such as the optical conductivity. Here, the width
of the Drude peak corresponds to the two-particle scat-
tering rate that, without vertex corrections, is directly
related to the one-particle scattering rates we calculate
here[3, 4] [5]. We study them by using two methods that
are widely employed in solid state theory, albeit by dif-
ferent communities. Through our comparison, we hope
to contribute to a better mutual understanding of the
strengths and weaknesses of these methods, as well as of
the very different electron-electron scattering in a metal,
band insulator, and Mott insulator.

Dynamical mean-field theory (DMFT) [6–9] is one of
the most widely used approaches for strongly correlated
materials. It is non-perturbative and maps a correlated
lattice model onto the solution of an Anderson impurity
model in a self-consistent way [7]. DMFT becomes exact
in the limit of high dimensions or a high connectivity
of the lattice [6], which implies that the self-energy and
hence the scattering rate is momentum independent.

The Boltzmann scattering equation (BSE) [10–13] has
been originally developed for gases [10] but is nowadays
used to address a multitude of different problems, all the
way from nuclear physics to cosmology. Often the trans-
port part of this equation is combined with a crude ap-
proximation for the scattering, the relaxation time ap-
proximation, to study transport properties. However,
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the full Boltzmann scattering term can also be included,
allowing e.g. for a highly detailed reconstruction of the
thermalization process. Among the possible applications
of the full Boltzmann scattering term is the possibility of
calculating scattering rates, making a direct comparison
of this approach with DMFT possible.
To the best of our knowledge such comparison has not

been done in a systematic way, and we attempt to fill this
blank spot through this work. Specifically, we study the
equilibrium scattering rates for the single-orbital Hub-
bard model in two dimensions as well as those for a two-
orbital band insulator. The BSE is expected to fail at
strong interaction U , since it describes the dynamics of
the distribution function by a (momentum-resolved) rate
equation with the transition rates usually calculated in
lowest order perturbation theory in U (Fermi’s golden
rule). DMFT, on the other hand, neglects (as an impu-
rity model is solved) the momentum dependence of scat-
tering (an approximation known to become correct in
the limit of high dimensions). A final point is that, while
DMFT even allows for the construction of effective (lo-
cal) scattering matrix elements in form of the two-particle
vertex, the Boltzmann scattering term needs them as in-
put and only performs the joint density of states (DOS)
integration and, eventually, the time propagation.
In this paper, we show that indeed at strong interaction

U , i.e., in the Mott insulating phase [14], a BSE descrip-
tion of the scattering rate is not possible. This is surpris-
ing given a good description of the spectral redistribution
caused by impact ionization [15]. The DMFT scattering
rate is much higher than what can be expected or under-
stood in a rigid band picture; it is intimately connected
with the formation of the Hubbard bands and shoulders
therein. Conversely, at weak U we obtain a discrepancy
as well. These discrepancies, noticeable larger scatter-
ing rates and a momentum differentiation on the Fermi
surface, can be traced back to the momentum conserva-
tion or lack thereof: DMFT and BSE without momentum
conservation are in good agreement.
This paper is structured as follows: In Sec. II we in-

troduce the Hubbard-type models considered, and de-
scribe how scattering rates are calculated in DMFT and
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with the Boltzmann scattering equation. In Sec. III we
present results for the weak-coupling single-orbital Hub-
bard model. Next, we compare scattering rates for the
two-orbital band insulator in Sec. IV and the Mott in-
sulating single-orbital Hubbard model in Sec. V. In Sec.
VI we summarize the results. Furthermore we provide
additional derivations and results in the Appendix.

II. MODEL AND METHODS

A. Hubbard-type models

In this paper we study the single-orbital Hubbard
model on a two-dimensional square lattice, as well as a
related two-orbital model which is a band insulator. It
is useful to employ second quantization, where operators
c
(†)
kmσ annihilate (create) electrons at momentum k and
spin σ in orbital m. Their Fourier-transformed operators
c
(†)
imσ do the same for a lattice site i instead of momentum

k; the products nkmσ = c†kmσckmσ and nimσ = c†imσcimσ
are the particle number operators for momentum and
site occupations, respectively. Both Hubbard-type mod-
els can be described by the following Hamiltonian

H =
∑
kmσ

εm(k)nkmσ + U

2
∑
i

∑
(lσ)6=(mσ′)

nilσnimσ′ . (1)

The first term constitutes a tight-binding description of
the system. It describes the kinetic energy (“hopping”)
of non-interacting electrons with crystal momentum k
and a dispersion relation εm(k) that is assumed to be
diagonal in the orbital index m. This term is diagonal in
momentum space.

The second term models the Coulomb repulsion U be-
tween electrons. It is strictly local at each lattice site i
and, for the sake of simplicity, we take the interaction
to be the same within one orbital and between different
orbitals. Consistently, there is no Hund’s rule coupling,
i. e. J = 0. A self-interaction is excluded in the sum.
We consider both, the prevalent single-orbital Hubbard
model, where orbital indices m and l are restricted to
this single orbital, and a two-orbital band insulator with
interaction U . In the latter case, the bandgap is encoded
in the dependence of εm(k) on m ∈ {1, 2} as detailed
below.

Due to the exponential scaling of the Fock space needed
to represent an N -particle wave function, it is completely
impossible to compute the dynamics of every single elec-
tron in the system. Instead one is bound to make approx-
imations such as the DMFT and BSE, for extracting rel-
evant information from statistically averaged quantities
such as distributions or correlation functions.

B. Dynamical mean field theory

Many-body quantum field theory, which also is the pil-
lar upon which DMFT is built, has the Green’s func-
tion as its basic one-particle quantity. The retarded
Green’s function is defined as follows (with operators in
the Heisenberg representation) [16]:

GR(k,m, t) = −iΘ(t)
〈
ckmσ(t)c†kmσ(0)+c†kmσ(0)ckmσ(t)

〉
(2)

GR(k,m, ω) =
∫ ∞
−∞

dt eiωt GR(k,m, t). (3)

Here, Θ(t) = 0 for t < 0 and 1 for t > 0 is the step
function; and 〈...〉 the grand canonical expectation value.
One can further define a self-energy

ΣR(k,m, ω) =
[
G

(0)
R (k,m, ω)

]−1−
[
GR(k,m, ω)

]−1 (4)

as the difference between (inverse) non-interacting (U =
0) Green’s function G

(0)
R (k,m, ω) and interacting (U)

Green’s function GR(k,m, ω), which contains all effects
of the interaction[16]. Here, and similarly in

G
(0)
R (k,m, ω) = lim

α→0+

[
ω + µ+ iα− εm(k)

]−1
, (5)

the orbital-diagonal dispersion relation allows us to avoid
matrix-inversions in the orbital indices; µ is the chemical
potential.
In DMFT, which becomes exact in the limit of infinite

dimensions [6], the momentum dependence of the self-
energy is neglected: ΣR(k,m, ω)→ ΣR(m,ω). Thus the
one-particle Green’s function of the Hubbard model in
the DMFT approximation is

GR(k,m, ω) =
[
ω + µ− εm(k)− ΣR(m,ω)

]−1
, (6)

where the iα of Eq. (5) becomes obsolete since ImΣR(ω)
is negative. For the actual calculation of this self-energy
in DMFT, done through a self-consistent solution of an
Anderson impurity model, we refer the reader to Refs. 7,
9, and 17.
Let us instead turn to our actual task, i.e. calculat-

ing scattering rates or quasiparticle life times. For the
following considerations we drop the orbital (m) depen-
dence, as the Green’s function and self-energy are any-
how diagonal in m due to the assumed dispersion rela-
tion. If we linearize the real part of the self-energy and
parameterize it through the quasiparticle weight Z, i.e.,
ReΣR(ω) ≈ ReΣR(0) + [1 − Z−1]ω we can approximate
Eq. (6) as

GR(k, ω) ≈ Z
[
ω − ε̃(k)− ZImΣR(ω)

]−1
, (7)

where the Green’s function has a quasiparticle pole
at ω = ε̃(k) = Z[ε(k) + ReΣR(0) − µ], with a
Lorentzian broadening of full-width–half-maximum of
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−2ZImΣR(ε̃(k)). That is, ε̃(k) is the quasiparticle en-
ergy and the broadening indicates that

1
τ [ω = ε̃(k)] = −2ZImΣR(ω = ε̃(k)). (8)

is the inverse life time, also known as scattering rate.
Even more transparent is the role of the life time τ

when we recapitulate the physical meaning of the time-
dependent retarded Green’s function Eq. (2). For the
special case of zero temperature the system is in the
ground state |GS〉 and if the momentum k is not occupied
in the ground state, Eq. (2) is reduced to

GR(k, t) = −i〈GS|ck(t)c†k(0)|GS〉 . (9)

That is, at time t = 0 a particle is added to the sys-
tem which is thus in the state |φ〉 = c†k(0)|GS〉. Project-
ing this state onto its propagated version at time t > 0
〈φ(t)| = eiEGSt〈GS|ck(t) yields the probability amplitude
(EGS is the ground state energy) that this state still exists
after a time t has elapsed [18]. This motivates the inter-
pretation of |GR(k, t)|2 as the probability that a state
created by addition of a particle at t = 0 still exists at
later time t > 0.

In Appendix A, we will show that this probability is
approximately∣∣GR(k, t)

∣∣2 ∝ e2ZImΣR(ε̃(k)) t ≡ e−t/τ(ε̃(k)), (10)

which again leads to Eq. (8) for the life time τ .
Technically, we calculate the DMFT self-energy on

Matsubara frequencies [19] by continuous-time quantum
Monte Carlo [20] with symmetric improved estimators
[21] using the w2dynamics program package [22, 23]. The
retarded self-energy at real (physical) frequencies is then
obtained by the maximum entropy analytic continuation
[24–26].

C. Boltzmann scattering equation

The key quantity of the BSE [10–13] is the distribu-
tion function, whose dynamics is described through the
leading-order contributions of the particle-particle inter-
action (for the models considered). In cases where ele-
mentary particles interact strongly, it is recommendable
to rewrite the Hamiltonian in terms of weakly interacting
quasiparticles so that the leading order perturbation the-
ory can be applied to the weaker effective quasiparticle
interaction.

Here, we assume that a quasielectron description is
possible and that these quasiparticles are characterized
by a certain set of quantum numbers, namely the momen-
tum k, spin σ or orbital-index n, and a corresponding
quasiparticle dispersion relation ε̃nσ(k). Then the dis-
tribution function fnσ(t,k) corresponds to the expecta-
tion value of the occupation number operator of a single-
particle state nknσ at time t. In the following the spin
will be absorbed into the band index for brevity.

The BSE in case of a spatially homogeneous system
without external fields but with a fermionic particle-
particle scattering reads [11–13]

dfn0(k0)
dt = 1

2
∑

n1n2n3

∫
ddk1ddk2ddk3

[
Wn0...n3(k0 . . .k3)

×
(

(1− fn0(k0))(1− fn1(k1))fn2(k2)fn3(k3)

− fn0(k0)fn1(k1)(1− fn2(k2))(1− fn3(k3))
)]
(11)

for a d-dimensional system. Here, Wn0...n3(k0 . . .k3) is
defined as

Wn0...n3(k0 . . .k3) = wn0...n3(k0 . . .k3)
× δ(ε̃n0(k0) + ε̃n1(k1)− ε̃n2(k2)− ε̃n3(k3))

×
∑
G

δ(k0 + k1 − k2 − k3 + G) ;
(12)

and the scattering amplitude wn0...n3(k0 . . .k3) can be
calculated by perturbation theory (Fermi’s Golden rule)
and is ∼ U2 (explicit formulas follow in the context of
the specific models below). The two delta-distributions
δ(·) ensure momentum and energy conservation at the
scattering event and the sum

∑
G runs over all reciprocal

lattice vectors G.
In thermal equilibrium, the distribution of electrons is

given by the Fermi-Dirac distribution, fFD(ε̃) = 1/
(
1 +

exp[β(ε̃)]
)
with the inverse temperature β = 1/T , and the

chemical potential µ already absorbed in ε̃. The Fermi-
Dirac distribution is a fixed point of the Boltzmann equa-
tion Eq. (11) and therefore properly represents an equi-
librium system.
The scattering rate 1/τn(k) of a test-particle that is

added in the state (n,k) in thermal equilibrium can be
calculated within the Boltzmann framework as (for a
derivation, see [27]):

1
τn0(k0) = 1

2
∑

n1n2n3

∫
ddk1ddk2ddk3

[
Wn0...n3(k0 . . .k3)

×
(

(1− fFD(ε̃n1(k1)))fFD(ε̃n2(k2))fFD(ε̃n3(k3))

+ fFD(ε̃n1(k1))(1− fFD(ε̃n2(k2)))(1− fFD(ε̃n3(k3)))
)]
.

(13)

The calculation of the scattering rate above is done nu-
merically with the method presented in Ref. 27. Notice
that DMFT scattering rates are only energy (and orbital)
dependent. In the BSE we can, on the other hand, add
a quasiparticle at every momentum k which then neces-
sarily has the quasiparticle energy ε̃n(k). When we later
plot the BSE scattering rates as a function of energy,
there will be different 1/τn(k)’s at the same energy ε̃.
Note that the many-body life time broadening discussed
above also allows us to add particles away from ε̃n(k)
in DMFT, albeit the spectral density of such states is
strongly suppressed if the broadening is weak.
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D. BSE without momentum conservation

Prospective differences between the BSE and DMFT
may emerge because of (i) strong coupling effects be-
yond the perturbative treatment of the scattering in the
BSE rate equation and (ii) neglecting the momentum de-
pendence in DMFT. The latter not only reflects in the
momentum-independent DMFT self-energy but also in
disregarding the momentum conservation at scattering
events in DMFT. That is, the DMFT self-energy is cal-
culated from Feynman diagrams to all order in U but
with the interaction only on an impurity which per con-
struction breaks momentum conservation.

We can apply the same approximation also to Boltz-
mann scattering. That is, we remove in Eq. (12) the mo-
mentum conserving delta-distributions

∑
G δ(k0 + k1 −

k2 − k3) → 1
VBZ

, where VBZ is the volume of the first
Brillouin-zone, as was proposed in Ref. 15. Eq. (13) can
then be simplified to a purely energy-dependent scatter-
ing rate 1/τn(ε) that is calculated as [15, 27]

1
τn0(ε0) = 1

2
∑

n1n2n3

∫
dε1dε2dε3

[
w̃n0...n3(ε0 . . . ε3)

× δ(ε0 + ε1 − ε2 − ε3)An1
0 (ε1)An2

0 (ε2)An3
0 (ε3)

×
(

(1− fFD(ε1))fFD(ε2)fFD(ε3)

+ fFD(ε1)(1− fFD(ε2))(1− fFD(ε3))
)]
,

(14)

where An0 (ε) is the normalized DOS of band n and
w̃n0...n3(ε0 . . . ε3) is the thus modified scattering ampli-
tude that depends on the energies only.

Notice that in Eq. (14) we have explicitly used the
fact that the interaction is itself momentum-independent
(which is the case for the purely local interaction in the
Hubbard model). In the general case Eq. (14) cannot
be derived, but it can be constructed as an approxima-
tion [28, 29]. In the following we will refer to Eq. (14) as
Boltzmann without momentum conservation (BSE with-
out k).
Note that the structure of Eq. (14) is way simpler than

Eq. (13): it can be computed by inverting analytically the
energy-conserving delta distribution in Eq. (14) and then
using standard numerical integration techniques.

III. ONE-BAND HUBBARD MODEL AT WEAK
COUPLING

As a first comparison, we discuss the case of the pro-
totypical one-band Hubbard model in two dimensions at
half-filling. Depending on the strength of the local inter-
action U and the temperature T = 1/β, such a system
is predicted by DMFT to be either metallic or Mott-
insulating.

For the weak coupling case we may employ Boltzmann
theory with the dispersion relation of the non-interacting

Hamiltonian, which is

ε(k) = −2t[cos(kx) + cos(ky)] (15)

for k = (kx, ky) ∈ [−π, π)⊗ [−π, π) (lattice constant a ≡
1; unit-cell volume VUC = a2 = 1) and the corresponding
DOS [30]

A0(ω) =
∫
BZ

d2k

VBZ
δ(ω−ε(k)) = 1

2π2t
K
(√

1−
( ω

4t

)2
)
(16)

where K(. . .) is the complete elliptic integral of first kind.
As hopping parameter and unit of energy we choose t ≡ 1
in the following. The scattering amplitude for this system
can be calculated in perturbation theory as

w(k0 . . .k3) = 2π
VBZ

2U
2δσ0σ̄1δσ2σ̄3 (17)

with the short-hand notation σ̄i ≡ −σi for the BSE scat-
tering rate Eq. (13), and

w̃(ε0 . . . ε3) = 2πU2δσ0σ̄1δσ2σ̄3 (18)

for the case of BSE without k in Eq. (14), cf. Ref. 15.
In Fig. 1 we show the calculated scattering rates for

different temperatures comparing DMFT and the BSE
with and without momentum conservation. The quasi-
particle renormalization is Z ≈ 1 for these values of the
interaction. In order to compare the structure of the
scattering rates for different interaction strengths, we di-
vide the scattering rate by U2. The Boltzmann scat-
tering rates then become completely independent of U .
In contrast, the DMFT scattering rates depend on U in
a non-trivial fashion (Fig. 1 shows U = 1 and U = 2)
since it is a non-perturbative approach. Nonetheless in
the limit U → 0, the DMFT normalized scattering rates
must be U -independent.
Comparing the DMFT scattering rates for both inter-

action strengths, one notices that the thus normalized
scattering rates lie almost on top of each other for the
inverse temperatures β = 1.0, β = 2.5 and β = 20, while
they slightly deviate for β = 0.5, β = 1.5, β = 2.0. Since
there is a rather large uncertainty from the maximum
entropy analytical continuation and the deviation is not
systematic, we can conclude that the differences in the
normalized DMFT scattering rates at U = 1 and U = 2
are within the error bars.
The scattering rates calculated by the BSE without

k are in very good agreement with the DMFT data for
all inverse temperatures except for β = 1.0. Again, this
deviation may well originate from the uncertainties of the
analytic continuation. In any case, the good agreement
of the scattering rates from BSE without k and DMFT
along with the ∼ U2 scaling of the DMFT results, clearly
show that even at U = 2t we are still in the perturbative
regime. As we show in Appendix C, to second order in
U the scattering rates as calculated in DMFT and BSE
without k are indeed identical.
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Figure 1. Scattering rates 1/τ normalized by the interaction squared (U2) for the two-dimensional Hubbard model at half-filling
calculated by DMFT and BSE with and without k conservation. The case β = 20 could not be calculated with full Boltzmann
due to computational limitations. The scattering rates shown are the same for both spins in the paramagnetic phase.
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Figure 2. DMFT spectral densities for (a) U = 1 and (b)
U = 2 for different temperatures

Note however that the spectral density[31] in Fig. 2
is already significantly smeared, especially at the band
edges and the Van-Hove singularity, because of the
stronger interaction. This smearing is a direct conse-
quence of the scattering rate in Fig. 1; and through the
DMFT self-consistency it will in turn affect the scat-
tering rates, but only in higher order in U (when self-
consistently calculating the spectral function as indicated
in Appendix C). Possibly this explains why the BSE with-
out k in Fig. 1 has a lower scattering rate at the band
edge ω = ±4 and a larger one for larger |ω|, albeit we
cannot exclude this to be an artifact of the analytical
continuation.

Both DMFT and BSE without k show a two-peak

structure in the scattering rates with the peak positions
roughly at the band-edges. The width of these peaks in-
creases with temperature. At the highest temperature
(β = 0.5) there is only one peak visible which actually
consists of the two peaks that are strongly overlapping.
In Appendix B, we show that the position of the two
peaks can be approximately calculated from the first mo-
ment of the particle- and hole-density. The width and
height of the peaks can be calculated when the zeroth
and second moment of the particle-density is taken into
account in addition to the first moment.
After establishing a good agreement between DMFT

and BSE without k at weak coupling, we next turn to
the full BSE with momentum conservation. The thus
calculated BSE scattering rates (dots in Fig. 1) deviate
from the rates obtained with the other methods. First
of all, as already mentioned, we highlight that several
values, corresponding to different momenta, are present
for each energy. Fig. 1 shows a particularly strong spread
at the Fermi level (ω = 0). Furthermore, in contrast
to BSE without k and DMFT, there are no scattering
rates outside the non-interacting bandwidth (|ω| > 4)
any longer, as there is no momentum that has such an
energy. In DMFT due to the aforementioned smearing of
the band-edges there are such states, and in BSE without
k we can at least calculate the scattering rate a state at
such an energy would have.
Another difference is that the BSE scattering rates are

generally higher than DMFT or BSE without k, espe-
cially at the band edge (|ω| . 4 and at higher tempera-
tures also around the Fermi level (ω = 0). As DMFT and
BSE without k agree with each other, we can safely con-
clude that this difference originate from neglecting the
momentum conservation of the scattering vertex. One
can also smoothly interpolate between the results for the
BSE with and without k, by replacing the momentum
conserving δ-function by a Gaussian and increasing its
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Figure 3. Spectral-densities for different temperatures for the
case (a) U = 4, ∆ = 0 and (b) U = 2, ∆ = 2. For both cases,
the effective band gap is ∆eff. ≈ 4.

width (not shown here). The reason for these discrepan-
cies is that the momentum averaged scattering amplitude
does not take into account that there is e.g. a particularly
strong scattering among momenta at the Hove singular-
ities (±π, 0) and (0,±π). At low temperatures this scat-
tering even leads to the formation of a pseudogap [32–39]
which requires a beyond DMFT description [40–45]. A
precursor thereof is visible here as the strong-momentum
dependence of the scattering rate on the Fermi surface.

IV. TWO-ORBITAL BAND INSULATOR

In this section, we address the case of a band insulator
in the weak to intermediate coupling regime. We con-
sider a two-dimensional Hubbard-type model with two
orbitals (A and B) at half-filling, i.e., n = 2 electrons per
site in the two orbitals. This corresponds to µ = 0 for
our dispersion relation below. For simplicity, we assume
that electrons may only hop to neighboring orbitals of
the same type and that the hopping amplitude has the
same absolute size but opposite sign for both orbitals
(tA = −1, tB = 1 = t). Further, we add a local one-
particle energy ∓(∆/2 + 4t) for orbital A and B, respec-
tively. This results in a band gap of size ∆ in the non-
interacting DOS, with the top of the valence(A)-band
and the bottom of the conduction(B)-band both at the
Γ point. The interaction U is local and the same within
and between both orbitals such that the interaction term
of the Hubbard model acquires the simple form of Eq.
(1).

We now discuss two different systems, one with U = 4
and one-particle gap ∆ = 0 and one with U = 2 and
∆ = 2. Due to the constant Hartree term in the self-
energy, the effective gap in the interacting system is es-

sentially the same ∆eff. ≈ U + ∆ = 4 for both setups.
This is because at sufficiently low temperatures, orbital
A is almost completely filled with two electrons per site
and orbital B is empty. Hence an electron in orbital B
perceives a Hartree energy 2U (interacts with both A
electrons); an electron in orbital A instead has a Hartree
energy 1U (as it only interacts with the electron of op-
posite spin in orbital A). The difference enlarges the
bandgap to ∆eff. = U + ∆.
The spectral densities for both cases are displayed in

Fig. 3 and follow the above reasoning. At higher tem-
peratures, we however induce holes in the valence and
electrons in the conduction band. The difference in oc-
cupation is reduced, the bandgap hence smaller. For the
highest temperature (β = 0.25), the gap disappears com-
pletely for the case U = 4, ∆ = 0. The non-interacting
DOS in Fig. 3 is constructed with the above enhanced
effective band gap ∆eff. instead of ∆.
As this describes the DMFT spectrum at low temper-

atures reasonably well, we employ for the BSE the cor-
responding effective bandstructure

εA(k) =− ε(k)−
(

∆eff.

2 + 4t
)
, (19)

εB(k) =ε(k) +
(

∆eff.

2 + 4t
)
, (20)

where ε(k) is defined by Eq. (15). The correspond-
ing DOS of the non-interacting system corrected by the
Hartree shift is used for the BSE without k and given by

AA0 (ω) =A0

(
ω +

(
∆eff.

2 + 4t
))

, (21)

AB0 (ω) =AA0 (−ω) (22)

with A0(ω) defined in Eq. (16). Due to particle-hole sym-
metry and the simple form of the interaction, the BSE
calculation can be simplified as outlined in Appendix D.
Fig. 4 shows the scattering rate of the two-band sys-

tem. The BSE with momentum conservation shows a
seemingly parabolic increase starting with a sizable value
at the lower band edge (ω = 2). Superimposed on this
trend is an enhanced scattering rate in the middle of the
band at ω = 6 with a strong momentum spread of the
scattering rate. This is akin to the behavior at the Fermi
level for the weakly correlated one-band Hubbard model
in Fig. 1 and can again be attributed to the van Hove
singularity.
Similar as for the one-band case, the scattering rates in

BSE without k are slightly smaller than in the BSE with
k conservation and already decay toward the upper band
edge (ω = 10). They closely resemble the DMFT values
for the U = 2 case; only the peak of the scatterings is
shifted to slightly higher energies than in DMFT. There
are larger differences to the DMFT data at the interme-
diate coupling U = 4, which have systematically higher
scattering rates at low energies. This is because stronger
smearing of the spectral density at U = 4 leads to a
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Figure 4. Scattering rates normalized by the squared interaction for an electron in the upper band of a two-orbital band
insulator as calculated with DMFT, BSE with and without k. Two different sets of parameters are used: U = 4, ∆ = 0 and
U = 2, ∆ = 2. The gray, vertical lines indicate the band edges of the non-interacting system.

smaller effective gap and some in-gap spectral weight,
see Fig. 4. This, in turn, leads to more thermal excita-
tions and therefore more scatterings. These effects can
be included in BSE without k if we use the interacting
spectral density An(ω) instead of the non-interacting one
An0 (ω), which leads to a good agreement with the DMFT
results, see Appendix E.

Eye catching is the strong suppression of the scatter-
ing rate upon decreasing temperature. The reason for
this is the dramatic reduction of the number of ther-
mally excited carriers which are needed to act as scatter-
ing partners. Note that with a density-density Coulomb
interaction, the electron in the conduction(B)-band ei-
ther needs (i) another B-electron to scatter with [the
final state being again two B-electrons], or (ii) a hole in
the valence(A)-band into which an A-electron can scatter
[final and initial state being one A- and one B-electron].
Both B-electron and A-hole scattering partners however
require thermally excited carriers that are absent at low
temperatures.

For the Mott insulator discussed in the next section,
the scattering rates are much higher because of impact
ionization processes. Here, an electron in the upper
Hubbard band excites an additional electron-hole pair
across the gap. In the band insulator impact ioniza-
tion corresponds to a process c†iBσciAσc

†
iBσ̄ciBσ̄ which

is not possible in lowest order perturbation theory in
the density-density interaction, nor are Auger processes
c†iBσciAσc

†
iAσ̄ciAσ̄. In the one-band Mott insulator, the

two Hubbard bands have the same orbital index and such
processes hence dominate the scattering rate if ω is suf-
ficiently large to allow impact ionization [15, 46–49].

Even if we generalize the Coulomb interaction to the

widely employed Kanamori form [50] with spin-flip and
pair-hopping terms, we still need a thermally excited sec-
ond electron or hole for scattering. Only, the full Slater
interaction [51, 52] also contains interaction terms that
directly mediate impact ionization. These interaction
terms are however small or even vanish, which is the
reason why they are often disregarded in the first place.
Consider e.g. a material with cubic symmetry and the
orbitals A = dxy and B = dxz. Then interaction terms
such as UBAAAc†iBσciAσc

†
iAσ̄ciAσ̄ vanish because the inte-

gral to calculate the matrix element UBAAA is odd under
the transformaton z → −z; for a furthergoing discussion,
see e.g. [53, 54]. A more viable route to enhance the scat-
tering rate through impact or Auger processes in a band
insulator is if the bands strongly hybridize so that the
conduction and valence bands are admixtures of the A
and B orbitals.

It is interesting to note that the scattering rate pre-
serves its two-band like structure even in the case U = 4,
β = 0.25 when the spectral density does not show a gap
any longer. The reason for this is again that the density-
density interaction does not allow for impact excitation
and Auger emission, which are very gap-size sensitive.
Instead the scattering processes induced by the density-
density interaction are agnostic about the gap-size per-se.
The additional B electron still needs another B (or A)
electron to scatter with, and two empty final B states
(or an empty A and an empty B state). The scattering
process does not need to overcome the size of the gap, in
contrast to impact ionization.
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Figure 5. (a) Spectral density as obtained by DMFT and
Fermi-Dirac distribution for the case U = 12 and β = 5. (b)
Scattering rates as obtained from DMFT, and BSE without k
using either the non-interacting density of states (BSE with-
out k A0(ω)) or the interacting DMFT spectral density shown
(BSE without k A(ω)).

V. STRONG COUPLING: MOTT-INSULATOR

Finally, we compare the approaches introduced above
in the strong coupling regime of the single-orbital Hub-
bard model. Since the BSE is a perturbative treatment
in the interaction, this is certainly the most problem-
atic case for the BSE. For sufficiently large interaction,
the non-interacting DOS splits into two, the upper and
lower Hubbard band, see Fig. 5 (top). We have a Mott
insulator, one of the cornerstones of strongly correlated
electron systems [55].

If we use the BSE with the non-interacting DOS, this
dramatic reshuffling of the DOS is not incorporated. The
scattering rate is still the very same with a two peak
structure as for weak coupling—just with the prefactor
rescaled by U2, see black-dotted line in Fig. 5. This kind
of description assumes that we have a metal with states
at low energies. It is not an appropriate description of a
Mott insulator.

This problem can be mitigated if we consider better
suited quasiparticles instead of the non-interacting ones.
This is in general not trivial, and not always can proper
quasiparticles with a long life time and weak interaction
be identified. They might not even exist. Taking the
electronic DMFT excitations of the Hubbard bands as
our quasiparticles in the BSE without k, we have to re-
place the non-interacting DOS A0(ω) by the interacting
spectral density A(ω) of Fig. 5 (top) in Eq. (14). Even
if we have no well defined quasiparticles such a quantum
Boltzmann description is possible [15] if we have a sepa-

ration of time scales, and the average-time (distribution
function) dynamics is slower than the relative-time dy-
namics. As was shown in [15] the thus modified BSE
without k provides a good description of the DMFT im-
pact ionization processes and redistribution of spectral
weight in non-equilibrium[56]
Here, we instead study in Fig. 5 (bottom, blue line) the

one-particle scattering rates in the BSE without k and
interacting A(ω): The Mott insulator is described as two
split quasiparticle bands with the gap ∼ 4 being much
larger than temperature T = 1/5. Hence, if we add an
extra electron in the upper Hubbard quasiparticle band
it has no partners to scatter in BSE, the scattering rate
is zero similar to the suppression of the scattering rate in
the band insulator. However, if the added electron has an
excess energy [ω − ωLBE relative to the lower band edge
of the upper Hubbard band ωLBE & 2 in Fig. 5] which
is larger than the Mott gap [∆Mott & 4], i.e., ω & 6,
impact ionization processes with an electron-hole excita-
tion across the gap become possible. The phase space
of such scattering processes increase quadratically with
ω − ωLBE −∆Mott for a box shaped DOS. This explains
the BSE without k scattering rate in Fig. 5, which as
already mentioned well describes impact ionization pro-
cesses, including the change of the double occupation
and redistribution of spectral weight with time in non-
equilibrium [15].
Let us now turn to the DMFT scattering rate as ex-

tracted from the self-energy and shown in Fig. 5 (bot-
tom, red-dashed line) [57]. The by far dominating fea-
ture (cut-off by the finite y-axis scale) is at ω = 0 where
Σ(ω) = (U2/4) 1/(ω + iα) in the large U limit of the
Mott insulator with a Lorentzian broadening α ∼ πT .
This pole is responsible for the splitting of the DOS into
two Mott bands and yields the δ-like peak in ImΣ at
ω = 0. As a matter of course we cannot expect this fea-
ture to be described in the BSE without k. It is also
not necessary as ω = 0 is in the middle of the Mott gap
where there are essentially no states—essentially since
at low temperature the aforementioned finite broadening
leads to a very small spectral weight. This filling of the
Mott gap with temperature [58] is a feature distinct from
a band insulator. These in-gap states have an extremely
short life time.
Let us now turn to the more relevant DMFT scatter-

ing rate within the Hubbard bands. These are orders
of magnitude larger in DMFT than those from the BSE
without k and with interacting A(ω). Also their shape is
completely different: There is no suppression at the lower
edge of the upper Hubbard bands which, as argued above,
was the case if the scattering is due to impact ionization
requiring a threshold energy; neither are the DMFT scat-
tering rates flat or follow the shape of the upper Hubbard
band. Instead the scattering rates are strongest around
ω ∼ 4 close to the lower band edge, and are dramatically
reduced for larger ω. Similar as the pole at ω = 0, the
maximum at ω ∼ 4 leads to a suppression of the spectral
weight. Fig. 5 (top) where we have calculated A(ω) from
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Figure 6. (a) Spectral density as obtained by DMFT for
β = 10 and different interaction strengths U = 10, 12, 16. The
solid line A(ω)’s are calculated from the analytically contin-
ued Σ(ω); the dashed lines are directly analytically continued
from the Matsubara Green’s function. (b) DMFT scattering
rates for the same parameters as in (a).

the analytically continued Σ(ω) even shows a two peak
structure in the upper Hubbard band. Such a two peak
structure was previously observed on the metallic side of
the Mott transition, immediately before the quasiparticle
peak vanishes [59–61]. On the Mott insulating side, Refs.
62 and 63 show an extra peak or a shoulder feature on
the inner side of the Hubbard bands, similar to our find-
ings. In Fig. 6 we also compare the A(ω) that is directly
continued from the Green’s function on the imaginary
axis, which shows a shoulder rather than a double peak.
While we hence cannot resolve within the maximum en-
tropy uncertainty, whether we actually have a shoulder
or double peak structure, it is clear that there is a fea-
ture in the upper Hubbard band. Mathematically, this is
necessitated by the strong scattering rate in this region.
A simple physical picture or understanding of these side
structures in the Hubbard bands is still missing. Note,
that also in strong coupling perturbation theory to sec-
ond order such a shoulder and hence asymmetry of the
self-energy within the upper Hubbard band is observed
[64], whereas the Hubbard-III approximation [65] and the
Falicov-Kimball model [66, 67] do not show such a shoul-
der. In agreement, Fig. 6 shows this feature for different
values of U . Since the scattering in BSE without k and

with non-interacting A0(ω) is merely rescaled by U2, it
is clear from Fig. 6 that the agreement of the position of
the maximal scattering rate between BSE and DMFT in
Fig. 5 (bottom, black-dotted vs. red-dashed line) was by
chance.
We can conclude that the one-electron scattering rate

in a Mott insulator is very different from an impact
ionization picture. It is associated with the formation
(ω ∼ 0) of the Hubbard bands and even side structures
therein (ω ∼ 4 in Fig. 5). The Hubbard bands are cre-
ated by the interaction of the same electrons we also use
as a test charge for calculating the scattering rate. If
there is a local extra hole or electron, locally the Hub-
bard bands deform. Most noticeable this is in the filling
of the Mott gap, which does not only occur with increas-
ing temperature [58] but also if we drive the system out of
equilibrium [15, 46, 47]. If we have an extra electron in a
disordered spin background of the DMFTMott insulator,
it can hop or cannot hop to a neighboring site depending
on the spin orientation of this neighbor. This leads to
a large scattering rate without changing the number of
double occupations. These processes are included in the
DMFT but not in the BSE, they do not contribute to
impact ionization (do not change the number of double
occupations) or major energy redistributions.

VI. CONCLUSION

We have studied and compared scattering rates us-
ing two widely employed methods: BSE and DMFT. We
have employed these methods out of their comfort zone,
where they cannot be applied with mathematical rigor.
For DMFT this is the dimensionality of the systems stud-
ied (2D), which is far away from the limit of infinite di-
mensions where DMFT become exact. For the BSE it is
the strong interaction regime of the Mott insulator, where
a rate equation with perturbatively determined scatter-
ing rates cannot safely be applied. We have mitigated the
latter in part by using the interacting spectral function
instead of the non-interacting DOS as the quasiparticle
states whose occupation dynamics (here scattering rate)
is calculated by BSE.
DMFT somewhat underestimates the scattering rates

and by construction cannot resolve their momentum-,
only their energy-dependence. This momentum depen-
dence is particularly strong in the middle of the band
where the Van-Hove singularity is located. The physi-
cal reason behind both discrepancies is that the phase
space for the scattering of a quasiparticle with another
quasiparticle explicitly depends on available unoccupied
states linked by momentum conservation. If we replace
the momentum-conserving δ-function by a Gaussian with
increasing width or directly disregard momentum conser-
vation in the BSE without k, the scattering rates are re-
duced and the DMFT results reproduced by BSE without
k for the weakly correlated metal (U = 1 or 2).
The biggest challenge for the BSE is the strongly in-
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teracting Mott insulating state. Here the DOS is split
into two Hubbard bands which we take as the starting
quasiparticle DOS in the BSE without k. In the BSE,
the scattering rate is due to impact ionization. These
processes are well described and in good agreement with
DMFT [15]. However, in DMFT additional scattering
processes which can be associated with the formation
of the Hubbard bands and shoulders therein dominate.
The same specimen of electrons that through their in-
teraction form the Hubbard bands are also added as a
charge probe, locally disturbing the spectrum. These
huge DMFT scattering rates are beyond a BSE descrip-
tion with a static DOS.

Scattering in an interacting band insulator bears no
similarity at all with that in the Mott insulator. It is
strongly suppressed at low temperatures since scattering
is only possible if there are thermal excitations across
the gap. BSE without k and DMFT agree, while the
BSE with momentum conservation has, similar as for
the weakly correlated metal, somewhat larger scattering
rates. The difference to the Mott insulator does not only
lie in the huge scattering associated with the Hubbard
bands, but also in the absence of impact ionization which
dominates the scattering in BSE for a Mott insulator.
Impact ionization and Auger processes are only possible
in a band insulator through higher order in U processes,
through quite small Coulomb matrix elements beyond
the Kanamori interaction, or a sizable hybridization be-
tween valence and conduction band. This strongly sug-
gests that Mott insulators are better suited than band in-
sulators for increasing the efficiency of solar cells through
impact ionization [15, 46–49, 68, 69].
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Appendix A: Scattering rate from the retarded
Green’s function

1. Derivation of the formula

If we linearize the self-energy around the (real part of
the) pole ε̃(k) = Z[ε(k) + ReΣR(0) − µ] we get Eq. (7)
whose Fourier transformation is

G(k, t) = 1
2π

∫ ∞
−∞

dω
Ze−iωt

ω − ε̃(k)− ZImΣR(ω) . (A1)

6 4 2 0 2 4 6
0.10

0.05

0.00

0.05

0.10

0.15 Re R( )
-2 Im R( )
(1 Z 1)

Figure 7. Model self-energy of Eq. (A4) for A = 0.1.

Note that a linearization of the self-energy around ω = 0
might not be justified any longer if the pole is at large
frequencies and that there may be more than one pole
at a given k. For example for the Mott insulator we
have two poles for each k. However this merely means
that we have ReΣR(ε̃) instead of ReΣR(0) and that we
have a sum of poles in Eq. (A1) instead of a single one,
respectively. With these modifications, we can use the
same procedure as discussed in the following for a single
pole.
The integral (A1) can be solved by closing the con-

tour on the lower complex half-plane of frequencies (since
t > 0 the integrand is exponentially suppressed here).
Then, Eq. (A1) can be computed by the residue theorem.
The pole is at [Reωp, Imωp] = [ε̃(k), ZImΣ(ωp ≈ ε̃(k))].
Here, in principle Imωp would have to be obtained self-
consistently, but if ImΣ is small we can (approximately)
calculate it using only the real part the pole. The residue
theorem then yields for the integral in Eq. (A1)

2πi lim
ω→ωp

(ω−ωp)
Ze−iωt

ω − ε̃(k)− ZImΣR(ε̃) ∝ e
−itε̃etZImΣR(ε̃);

(A2)
or for the probability to find a particle that is added at
time 0 to the quasiparticle state k still in this state at a
later time t:

|GR(k, t)|2 ∝ e2ZImΣR(ε̃(k))t, (A3)

which yields the (inverse) life time Eq. (8).

2. Analytic example

It is instructive to consider an example, where every-
thing can be computed exactly, such that we can test the
above approximations. We consider a self-energy of the
form

Σ(ω) = A
( 1
ω − E + iα

+ 1
ω + E + iα

)
. (A4)
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Figure 8. Pole locations with model self-energy. Clearly the
imaginary part of the location of the pole with the smallest
imaginary part (pole 2) agrees well with the imaginary part
of the self-energy ImΣ(ω = ε̃). The imaginary parts of the
other two poles are much larger. Z ≈ 0.99 for this case.

For parameters A = 0.1, E = 4, α = 1.5 it is very similar
in size and shape to our results for the single-orbital weak
coupling results for β ≈ 2, as shown in Fig. 7.

If we insert this self-energy together with µ = 0 into
the Green’s function Eq. (6), the locations of the poles
are determined by a cubic equation in ω. It is possible to
solve this equation analytically for arbitrary parameters.
Notably, the pole locations will depend on ε(k). The
locations of the poles in dependence of ε are shown in
Fig. 8, and for a larger value of A = 0.8 in Fig. 9. Pole 2
is the one, we usually associate with the quasiparticle.

Now it is possible to compute the time-dependent
Green’s function exactly by evaluating the Fourier inte-
gral in Eq. (A1). The results for a few different values of
ε are shown as solid lines in Fig. 10. Given the exact G(t)
as a reference, we show the contribution of the residue of
the pole (pole 2) that is closest to the real axis, Eq. (A2)
as dashed lines. Finally we also show the exponential de-
cay where the scattering rate was approximated by the
imaginary part of the self-energy. Clearly, for small val-
ues of ε this is an excellent approximation. Closer to the
band edge it does not match so well any more, especially
in the case of the large self-energy (large A; right panel).
This mismatch may already be anticipated when looking
at Fig. 9.
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Figure 9. Same as Fig. 8 but with A increased by a factor
of 8. Also here the imaginary part of the location of the pole
with the smallest imaginary part is similar to the imaginary
part of the self-energy, but not in quantitative agreement. At
the band edge, a second pole is of similar size and will thus
have considerable influence on the scattering rate. Z ≈ 0.94
for this case.

Appendix B: Convolution Method

For the case of a single band at half-filling, we here
reformulate the expression for the scattering rate in
BSE without k, Eq. (14), to gain some further analyt-
ical insight. To this end, we define the particle den-
sity as np(ω) ≡ fFD(ω)A0(ω) and the hole-density as
nh(ω) ≡ (1− fFD(ω))A0(ω). With these definitions and
the scattering amplitude for the one-band system intro-
duced in Section III we may rewrite Eq. (14) as

1
τn(ε0) = 2πU2

∫
dε1dε2dε3

[
δ(ε0 + ε1 − ε2 − ε3)

×
(
nh(ε1)np(ε2)np(ε3) + np(ε1)nh(ε2)nh(ε3)

)]
.

(B1)

For a system with particle-hole symmetry it holds that
np(ω) = nh(−ω). Using this property and the defini-
tion of the convolution (a ∗ b)(ω) ≡

∫
dω̃ a(ω − ω̃)b(ω̃),

Eq. (B1) can be further reduced to

1
τn(ω) = 2πU2[g(ω) + g(−ω)

]
, (B2)
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Figure 10. Absolute square
of the time-dependent
Green’s function for the
model self-energy with
A = 0.1 (left) and A = 0.8
(right). Solid lines are
time-dependent Green’s
functions that are com-
puted by Eq. (A1). Dots
show the contribution of
the residue at the pole with
smallest |Imω̂|. Crosses
show the approximation
given by Eq. (A3).

with

g(ω) ≡ (np ∗ np ∗ np)(ω) . (B3)

The above equation states that the scattering rate con-
sists of the sum of the particle density convoluted with
itself twice, and its mirrored version.

According to the central limit theorem [70], a function
with compact support becomes a Gaussian function in
the limit when it is convoluted an infinite times with
itself. If the particle-density is smooth, the result after
two convolutions with itself is already very similar to a
Gaussian, see Fig. 11 (a).

This allows us to further reduce complexity and in-
crease understanding: A general Gaussian function, i.e.

fgauss(ω) ≡ α

σ
√

2π
× exp

[
− (ω − ω0)2

2σ2

]
(B4)

is completely defined by three parameters: its integral
value α, its variance σ2 and its zero-point ω0. For a
given Gaussian these three parameters can be calculated
from its zeroth-, first- and second-moment,

α = F0[fgauss], (B5)

ω0 = F1[fgauss]
F0[fgauss]

, (B6)

σ2 = F2[fgauss]
F0[fgauss]

−
(
F1[fgauss]
F0[fgauss]

)2
, (B7)

where Fn[f ] is the n-th moment of the function f(ω), i.e.,

Fn[f ] ≡
∫

dωf(ω)ωn . (B8)

We can now approximate the function g(ω) with a
Gaussian function by calculating the parameters α, ω0
and σ from its moments using Eqs. (B5)-(B7) with g in-
stead of fgauss. The function g(ω) is calculated from a

(a)

(b)

np

np*np

np*np*np
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2πU2g(ω)

2πU2g(-ω)

2πU2[g(ω)+g(-ω)]
(1/τ)gauss

Figure 11. (a) Particle-density np and the particle-density
convoluted one- and two-times with itself. (b) Scattering rate
in BSE without k calculated with the convolution method
compared to the approximated scattering rate that consists
of two Gaussian functions.

convolution of the particle-density, hence, the moments
of g(ω) can be directly inferred from the moments of the
particle-density np(ω),

F0[g] =(F0[np])3
, (B9)

F1[g] =3F1[np](F0[np])2
, (B10)

F2[g] =3
[
F2[np](F0[np])2 + 2(F1[np])2

F0[np]
]
. (B11)

With the Eqs. (B5)-(B7) and the Eqs. (B9)-(B11) the
parameters for the Gaussian function can eventually be



13

calculated from the moments of particle-density as

α = (F0[np])3
, (B12)

ω0 = 3F1[np]
F0[np]

, (B13)

σ2 = 3
[
F2[np]
F0[np]

−
(
F1[np]
F0[np]

)2
]
, (B14)

and the scattering rate may be approximated as(
1

τ(ω)

)
gauss

≡ 2πU2 [fgauss(ω) + fgauss(−ω)] . (B15)

Fig. 11 (b) shows that this approximate Gaussian agrees
with the exact BSE without k scattering rate to very
good approximation. This explains the origin of the max-
imal scattering rate and why this maximum lies within
the bandwidth of the DOS not at its edge as in the BSE
with k.

Appendix C: Connection to 2nd order perturbation
theory

The scattering rate of Eq. (B1) is actually equivalent
to second order iterated perturbation theory (IPT) [7,
71, 72]. In IPT, the DMFT self-energy is calculated in
second order in U from the impurity Green’s function
G. Directly on the real frequency axis and in terms of
the impurity spectral function A(ω) = −1/π ImG(ω) the
IPT self-energy reads (see e.g. Eq. (22) in [73] where ε1
and ε2 are exchanged)

ΣR(ω)= lim
α→0

U2
∫

dε1dε2dε3A(ε1)A(ε2)A(ε3) (C1)

×fFD(−ε1)fFD(ε2)fFD(ε3)+fFD(ε1)fFD(−ε2)fFD(−ε3)
ω + iα+ ε1 − ε2 − ε3

.

With fFD(−ε) = 1−fFD(ε) and limα→0 Im1/(ω+ε1−ε2−
ε3) = −πδ(ω+ε1−ε2−ε3) this yields Eq. (B1) or Eq. (14)
if we replace A(ε) by A0(ε) which is possible to lowest
order in U or the first iteration of the IPT. Through
the DMFT self-consistency condition [9, 74] G(ω)−1 =
G(ω)−1 +Σ(ω), A(ε) is updated in subsequent iterations.

Appendix D: Simplifications for the two-orbital case
due to particle-hole symmetry

In this Section, we discuss some simplifications that
are possible due to particle-hole symmetry and a density-
density interaction U which is the same for all orbitals.
Indeed, the scattering rate can be actually calculated
from a single band in BSE. The reason for this is as
follows: For the BSE with momentum conservation the

scattering rate in the upper band reads

1
τB(k0) = 6πU2 1

VBZ
2

∫
d2k1d2k2d2k3

[
× δ(εB(k0) + εB(k1)− εB(k2)− εB(k3))

×
∑
G

δ(k0 + k1 − k2 − k3 + G)

×
(

(1− fFD(εB(k1)))fFD(εB(k2))fFD(εB(k3))

+ fFD(εB(k1))(1− fFD(εB(k2)))(1− fFD(εB(k3)))
)]
,

(D1)

and for the BSE without k case it reads

1
τB(ε0) = 6πU2

∫
dε1dε2dε3

[
× δ(ε0 + ε1 − ε2 − ε3)AB0 (ε1)AB0 (ε2)AB0 (ε3)

×
(

(1− fFD(ε1))fFD(ε2)fFD(ε3)

+ fFD(ε1)(1− fFD(ε2))(1− fFD(ε3))
)]
.

(D2)

Due to particle-hole symmetry it further holds that
1/τA(−ω) = 1/τB(ω) ≡ 1/τ(ω). The multiplicative fac-
tor of 3 compared to the one-band case (Section III) in
the scattering amplitude reflects the different scattering
processes an electron in the upper band may perform: an
electron with a certain spin σ in band B may scatter with
an an electron Bσ̄, Aσ and Aσ̄. Since the density-density
interaction does not allow for spin-flips and pair-hopping
nor impact excitation which would require an interac-
tion of the form c†iBσ̄ciAσ̄ c†iBσciBσ nor Auger excita-
tions, there are no further allowed processes to be taken
into account. Since the interaction between the bands
is the same as within the bands (U = V ), all scattering
processes have the same scattering amplitude ∝ 2πU2

(∝ 2π 1
VBZ

2U2), eventually leading to ∝ 3×2πU2 = 6πU2

(∝ 6π 1
VBZ

2U2).

Appendix E: Band insulator with renormalized
bands

As already mentioned in Section IV the deviation of
BSE without k and DMFT can be reduced by using the
interacting spectral density instead of the non-interacting
DOS [A0(ω) → A(ω) in Eq. (D2)]. For the theoreti-
cal justification and background of this procedure, see
Ref. [15].
For the band insulator, the main difference between

A0(ω) and A(ω) is that thermal excitation across the
gap reduce the difference in Hartree energy and hence
the band gap. Moreover, with more thermal excitations
there are more particles an electron or hole can scatter
with. Hence the scattering rate is enhanced, which in
turn leads to broadening effects in A(ω), visible in Fig. 3
at the band edges and the van Hove singularity.
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Figure 12. Scattering rate normal-
ized by U2 for the two-band case
with U = 4. Same as Fig. 4 but us-
ing the interacting DMFT spectral
density A(ω) instead of A0(ω) in
Eqs. (21), (22) for the BSE without
k. For the BSE with momentum
conservation the dispersion and gap
has been adapted to the DMFT as
well. Using the interacting spectral
function leads to a better agreement
with DMFT.

In order to make all methods comparable, we are also
using a renormalized band for the BSE with momen-
tum conservation. For that purpose we calculate the
momentum-dependent spectral density Ak(ω) and then
extract for each given momentum the corresponding en-
ergy where the spectral density has its maximum. In this
way one can obtain a renormalized dispersion relation
which we then use for the calculation of the scattering
rate.

Fig. 12 shows the thus obtained BSE results at U = 4

with and without momentum conservation; the DMFT
result is the same as in Fig. 4. Using the interact-
ing spectral function and correspondingly renormalized
bandstructure, reduces the scattering rate in the middle
of the upper band at ω ∼ 6. In contrast the scatter-
ing rate at small ω ∼ 0 is enhanced at high tempera-
tures. Here, the interacting spectrum has states in the
(pseudo)gap. Overall, using the interacting DOS as a
starting point the BSE can explain most changes of the
U = 4 DMFT scattering rate compared to U = 2.
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